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Hùng Viê.t Chu
Department of Mathematics

University of Illinois at Urbana-Champaign
Champaign, IL 61820

USA
hungchu2@illinois.edu

Abstract

A finite subset of the natural numbers is weak-Schreier if minS ≥ |S|, strong-

Schreier if minS > |S|, and maximal if minS = |S|. Let Mn be the number of
weak-Schreier sets with n being the largest element and (Fn)n≥−1 denote the Fibonacci
sequence. A finite set is said to be Zeckendorf if it does not contain two consecutive
natural numbers. Let En be the number of Zeckendorf subsets of {1, 2, . . . , n}. It is
well-known that En = Fn+2. In this paper, we first show four other ways to generate the
Fibonacci sequence from counting Schreier sets. For example, let Cn be the number of
weak-Schreier subsets of {1, 2, . . . , n}. Then Cn = Fn+2. To understand why Cn = En,
we provide a bijective mapping to prove the equality directly. Next, we prove linear
recurrence relations among the number of Schreier-Zeckendorf sets. Lastly, we discover
the Fibonacci sequence by counting the number of subsets of {1, 2, . . . , n} such that
two consecutive elements in increasing order always differ by an odd number.

1 Background and main results

Let the Fibonacci sequence be F−1 = 1, F0 = 0, and Fm = Fm−1 + Fm−2 for all m ≥ 1. We
only concern ourselves with finite subsets of natural numbers greater than 0 and use N for
the set {1, 2, 3, . . .}. We define a set to be

• weak-Schreier if minS ≥ |S|,

• strong-Schreier if minS > |S| and

• maximal if minS = |S|,

where |S| is the cardinality of set S. Schreier sets are named after Schreier who defined them
to solve a problem in Banach space theory in 1930 [10]. These sets were also independently
discovered in combinatorics and are connected to Ramsey-type theorems for subsets of N.
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For each n ∈ N, let Mn be the number of weak-Schreier sets with n being the largest element.
In notation,

Mn = |{S ⊆ N : minS ≥ |S| and maxS = n}|.

The first few values of Mn are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .; indeed, it is known that Mn = Fn

for all n [12]. However, the author is unable to locate the first person to prove this result.
If we look at either strong-Schreier sets or maximal sets instead, we can also generate the
Fibonacci sequence. Let

• An be the number of strong-Schreier sets S with maxS = n,

• Bn be the number of maximal sets S with maxS = n,

• Cn be the number of weak-Schreier subsets of {1, 2, . . . , n} (including the empty set),

• Dn be the number of strong-Schreier subsets of {1, 2, . . . , n} (including the empty set).

For our sequence (Cn)n≥1 and (Dn)n≥1, we relax the condition about the maximum of our
sets. Clearly, for each n ∈ N, Mn = An +Bn, Cn =

∑n

k=1Mk + 1 and Dn =
∑n

k=1An + 1.

Theorem 1. For each n ∈ N, we have An = Fn−1, Bn = Fn−2, Cn = Fn+2 and Dn = Fn+1

The Fibonacci representation of natural numbers was first studied by Ostrowski [9] and
Lekkerkerker [8]. In 1972, Zeckendorf proved that every positive integer can be uniquely
written as a sum of non-consecutive Fibonacci numbers [11]. Since then, many papers
have generalized this result and explored properties of the Zeckendorf decomposition: see
[1, 2, 3, 4, 5, 6, 8]. We instead focus on the important requirement for uniqueness of the
Zeckendorf decomposition; that is, our set contains no two consecutive Fibonacci numbers.
We give the same definition for natural numbers.

Definition 2. A finite set of natural numbers is Zeckendorf if the set does not contain two
consecutive natural numbers.

Let En be the number of subsets of {1, 2, . . . , n} that satisfy the Zeckendorf condition.
It is well-known that En = Fn+2.

Two different ways of counting subsets of {1, 2, . . . , n} give the same number; that is,
Cn = En. To understand the connection, we construct a bijective mapping to show that
Cn = En directly. Our proof is independent of the fact that Cn = En = Fn+2 and thus,
provides insight into the seemingly mysterious equality.

Theorem 3. For each n ∈ N, Cn = En.

Next, a natural question is about sequences formed by the number of sets that satisfy
both the Schreier and the Zeckendorf conditions. In particular, we say that a set satisfies the
k-Zeckendorf condition if two arbitrary numbers in the set are at least k apart. We discover
linear recurrence relations among the number of sets satisfying both the Schreier and the
k-Zeckendorf conditions.

For each n ∈ N, let Hk,n be the number of subsets of {1, 2, . . . , n} that
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(1) satisfy the k-Zeckendorf condition;

(2) contain n; and

(3) are weak-Schreier.

Theorem 4. Fix k ∈ N≥2. We have

Hk,n =

{

1, if 1 ≤ n ≤ k + 1;

Hk,n−1 +Hk,n−(k+1), if n > k + 1.

Using the exact same argument as in the proof of Theorem 4, we can also deduce the
following theorems regarding strong and maximal Schreier sets. For each n ∈ N, let Ik,n be
the number of subsets of {1, 2, . . . , n} that (1) satisfy the k-Zeckendorf condition, (2) contain
n, and (3) are strong-Schreier.

Theorem 5. Fix k ∈ N≥2. We have

Ik,n =











0, if n = 1;

1, if 2 ≤ n ≤ k + 2;

Ik,n−1 + Ik,n−(k+1), if n > k + 2.

For each n ∈ N, let Jk,n be the number of subsets of {1, 2, . . . , n} that

(1) satisfy the k-Zeckendorf condition;

(2) contain n; and

(3) are maximal.

Theorem 6. Fix k ∈ N≥2. We have

Jk,n =



















1, if n = 1;

0, if 2 ≤ n ≤ k + 1;

1, if k + 1 < n ≤ 2k + 2;

Jk,n−1 + Jk,n−(k+1), if n > 2k + 2.

We give the following definition that is useful for the statement of our last result.

Definition 7. Let A = {a1, a2, . . . , ak} (a1 < a2 < · · · < ak) for some k ∈ N≥2. The
difference set of A is {a2 − a1, a3 − a2, . . . , ak − ak−1}. The empty set and a set with exactly
one element do not have a difference set.

We end with the following small result.

Theorem 8. Fix n ∈ N. The number of subsets of {1, 2, . . . , n}

1. that contain n and whose difference sets contain only odd numbers is Fn+1,

2. whose difference sets contain only odd numbers (the empty set and sets with exactly
one element vacuously satisfy this requirement) is Fn+3 − 1.
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2 Proof of Theorem 1

Proof of Theorem 1. We first prove item (1). Simple computation gives A1 = 0 = F0,
A2 = 1 = F1, A3 = 1 = F2, A4 = 2 = F3, and A5 = 3 = F4. It suffices to prove that
An + An+1 = An+2 for n ≥ 4. Fix n ≥ 4 and let us find a formula for An. The minimum
number k in our sets can take values from 1 to n. For each value of k, there are n − k − 1
numbers strictly between k and n. Because our sets are strong-Schreier, they contain at
most k − 3 numbers out of these n− k − 1 numbers. Hence, our formula for An is

An =

n−1
∑

k=1

k−3
∑

j=0

(

n− k − 1

j

)

+ 1.

Note that the number 1 in our formula accounts for the set {n}. It remains to show that
An + An+1 = An+2 or equivalently, An+2 − An+1 = An for n ≥ 4. We have

An+2 − An+1 =

n+1
∑

k=1

k−3
∑

j=0

(

n− k + 1

j

)

−
n

∑

k=1

k−3
∑

j=0

(

n− k

j

)

=

n
∑

k=1

k−3
∑

j=0

((

n− k + 1

j

)

−

(

n− k

j

))

+

n−2
∑

j=0

(

0

j

)

=

n
∑

k=1

k−3
∑

j=1

(

n− k

j − 1

)

+ 1.

Therefore,

An+2 − An+1 − An =
n

∑

k=1

k−3
∑

j=1

(

n− k

j − 1

)

−
n−1
∑

k=1

k−3
∑

j=0

(

n− k − 1

j

)

=
n

∑

k=4

k−3
∑

j=1

(

n− k

j − 1

)

−
n−1
∑

k=3

k−3
∑

j=0

(

n− k − 1

j

)

= 0.

The last equality is because for each 4 ≤ t ≤ n, we have
∑t−3

j=1

(

n−t

j−1

)

=
∑(t−1)−3

j=0

(

n−(t−1)−1
j

)

.
Hence, An+2 = An+1 + An and we are done.

Next, we prove item (2), which follows immediately from item (1). We know that

Bn = Mn −An = Fn − Fn−1 = Fn−2.

We prove item (3). Fix n ≥ 1. We have

Cn =
n

∑

k=1

Mk + 1 =
n

∑

k=1

Fk + 1 = (Fn+2 − 1) + 1 = Fn+2,
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as desired. The number 1 accounts for the empty set. The fact that
∑n

k=1 Fk = Fn+2 − 1 is
due to Lucas [7, p. 4].

Similarly, we prove item (4). Fix n ≥ 1. We have

Dn =
n

∑

k=1

Ak + 1 =
n

∑

k=1

Fk−1 + 1 = (Fn+1 − 1) + 1 = Fn+1.

We complete our proof of Theorem 1.

Let Lw
n be the number of weak-Schreier sets as subsets of {1, 2, . . . , n} with an even

maximum.

Corollary 9. For each n ∈ N,

Lw
n =

{

Fn, if n is odd;

Fn+1, if n is even.

Proof. We have

Lw
n =

∑

1≤k≤n

2|k

Mk + 1 =
∑

1≤k≤n

2|k

Fk + 1.

The number 1 accounts for the empty set.
If n is even,

Lw
n =

∑

1≤k≤n

2|k

Fk + 1 = (Fn+1 − 1) + 1 = Fn+1.

If n is odd,

Lw
n =

∑

1≤k≤n

2|k

Fk + 1 = (Fn − 1) + 1 = Fn.

Let Ls
n be the number of strong-Schreier sets as subsets of {1, 2, . . . , n} with an odd

maximum.

Corollary 10. For each n ∈ N,

Ls
n =

{

Fn, if n is odd;

Fn−1, if n is even.

Proof. We have

Ls
n =

∑

1≤k≤n

2∤k

Ak + 1 =
∑

1≤k≤n,2∤k

Fk−1 + 1.
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If n is even,

Ls
n =

∑

1≤k≤n

2∤k

Fk−1 + 1 = (Fn−1 − 1) + 1 = Fn−1.

If n is odd,

Ls
n =

∑

1≤k≤n

2∤k

Fk−1 + 1 = (Fn − 1) + 1 = Fn.

3 Proof of Theorem 3 — Explanation of the mysterious

identity

Recall that Cn is the number of weak-Schreier sets as subsets of {1, 2, . . . , n}, while En is the
number of subsets of {1, 2, . . . , n} that do not contain two consecutive numbers. At the first
glance, Cn and En are little related, so it is surprising to see that Cn = En for all n ∈ N.

For each n ∈ N, let Xn denote the set of weak-Schreier sets as subsets of {1, 2, . . . , n} and
let Yn denote the set of subsets of {1, 2, . . . , n} that do not contain two consecutive numbers.
In this section, we construct a bijective function f : Xn → Yn to prove that |Xn| = |Yn|.

Proof of Theorem 3. Fix n ∈ N. Let A = {a1, a2, . . . , ak−1, ak} (a1 < a2 < · · · < ak) be a
weak-Schreier subset of {1, 2, . . . , n}. Our mapping f acts on A as follows

f(A) = f({a1, a2, . . . , ak−1, ak}) = {a1 − (k − 1), a2 − (k − 2), . . . , ak−1 − 1, ak}.

Define f(∅) = ∅. To show that f is well-defined, we show that {a1 − (k − 1), a2 − (k −
2), . . . , ak−1 − 1, ak} is in Yn. Because A is weak-Schreier, k ≤ a1 < a2 < · · · < ak. Hence,

1 ≤ a1 − (k − 1) < a2 − (k − 2) < · · · < ak−1 − 1 < ak ≤ n.

Let ti = ai − (k − i) for 1 ≤ i ≤ k. If k = 1, then {t1} is clearly in Yn. If k ≥ 2, then for
each 2 ≤ i ≤ k, we have

ti − ti−1 = (ai − (k − i))− (ai−1 − (k − (i− 1))) = (ai − ai−1) + 1 ≥ 2.

Therefore, {t1, t2, . . . , tk} ∈ Yn. So, f is well-defined.
Next, we prove that f is injective. Suppose that f(A) = f(B). Let A = {a1, a2, . . . , ak}

and B = {b1, b2, . . . , bk}, where a1 < a2 < · · · < ak and b1 < b2 < · · · < bk. Because

a1 − (k − 1) < a2 − (k − 2) < · · · < ak−1 − 1 < ak,

b1 − (k − 1) < b2 − (k − 2) < · · · < bk−1 − 1 < bk,

we know that f(A) = f(B) implies ai − (k − i) = bi − (k − i) for all 1 ≤ i ≤ k. Hence,
ai = bi, which shows that A = B. Therefore, f is injective.
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Finally, we prove that f is surjective. Let C = {c1, c2, . . . , ck} ∈ Yn be chosen, where
c1 < c2 < · · · < ck. We claim that

D = {c1 + (k − 1), c2 + (k − 2), . . . , ck−1 + 1, ck}

satisfies f(D) = C and D ∈ Xn. Because C do not contain two consecutive numbers, we
know that

k ≤ c1 + (k − 1) < c2 + (k − 2) < · · · < ck−1 + 1 < ck ≤ n.

Hence, D ∈ Xn.
We have shown that f is both well-defined and bijective. Therefore, |X| = |Y | or

Cn = En, as desired.

Remark 11. We would like to discuss the motivation for the bijection f used in the proof of
Theorem 3. Let A be a Schreier set. The map f serves to increase the gap between adjacent
elements of A by 1, thus fulfilling the Zeckendorf condition that adjacent elements differ
by at least 2. Furthermore, the weak-Schreier condition that minA ≥ |A| ensures that the
resulting set is in {1, 2, . . . , n}.

4 Proof of Theorem 4

Before we prove Theorem 4, we need a simple proposition.

Proposition 12. For n, k ∈ Z, the following claims hold.

1. If
⌊

n−2
k+1

⌋

=
⌊

n−k−2
k+1

⌋

, then
⌊

n−1
k+1

⌋

=
⌊

n−2
k+1

⌋

+ 1.

2. If
⌊

n−2
k+1

⌋

>
⌊

n−k−2
k+1

⌋

, then
⌊

n−1
k+1

⌋

<
⌊

n−2
k+1

⌋

+ 1.

3. If
⌊

n−k−2
k+1

⌋

=
⌊

n−2
k+1

⌋

, then n−k−2
k+1

=
⌊

n−2
k+1

⌋

.

Proof. We prove claim (1). We have

⌊

n− 2

k + 1

⌋

=

⌊

n− k − 2

k + 1

⌋

=

⌊

n− 1

k + 1
− 1

⌋

=

⌊

n− 1

k + 1

⌋

− 1.

Therefore,
⌊

n− 1

k + 1

⌋

=

⌊

n− 2

k + 1

⌋

+ 1.

Next, we prove claim (2). We have

⌊

n− 2

k + 1

⌋

>

⌊

n− k − 2

k + 1

⌋

=

⌊

n− 1

k + 1
− 1

⌋

=

⌊

n− 1

k + 1

⌋

− 1.
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Therefore,
⌊

n− 1

k + 1

⌋

<

⌊

n− 2

k + 1

⌋

+ 1.

Lastly, we prove claim (3). Write n− k − 2 = (k + 1)p+ q for some 0 ≤ q ≤ k. Then

n− 2

k + 1
=

(k + 1)p+ q + k

k + 1
= p+

q + k

k + 1
= p+ 1 +

q − 1

k + 1
.

If q ≥ 1, then
⌊

n−2
k+1

⌋

= p + 1 > p =
⌊

n−k−2
k+1

⌋

, a contradiction. So, q = 0, implying that
n−k−2
k+1

=
⌊

n−2
k+1

⌋

.

The following lemma is from [6, Lemma 2.1] by Kologlǔ et al.

Lemma 13. The number of solutions to y1+ · · ·+yp = n with yi ≥ ci (each ci a non-negative

integer) is
(

n−(c1+···+cp)+p−1
p−1

)

.

Proof of Theorem 4. Fix k ≥ 2. We now find a formula for Hk,n for all n ∈ N. Fix 1 ≤ ℓ ≤
n − 1. Suppose that the set {a1, . . . , aℓ, n} satisfies all of our requirements. (For ℓ = 0, we
have the set {n}.) In particular,

1. a1 ≥ ℓ+ 1,

2. di = ai+1 − ai ≥ k and dℓ = n− aℓ ≥ k.

Note that

a1 +
ℓ

∑

i=1

di = n. (1)

By Lemma 13, the number of sets satisfying Equation (1) is

(

n− (ℓ+ 1 + kℓ) + (ℓ+ 1)− 1

(ℓ+ 1)− 1

)

=

(

n− kℓ− 1

ℓ

)

.

Therefore, the number of sets containing n that are k-Zeckendorf and weak-Schreier is

Hk,n =

⌊

n−1
k+1

⌋

∑

ℓ=1

(

n− kℓ− 1

ℓ

)

+ 1.

The number 1 accounts for the set {n} and we only let ℓ run up to
⌊

n−1
k+1

⌋

to make sure that

n− kℓ− 1 ≥ ℓ. It can be easily verified that Hk,n = 1 for 1 ≤ n ≤ k + 1 because
⌊

n−1
k+1

⌋

= 0
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for 1 ≤ n ≤ k + 1. It suffices to show that for n ≥ k + 2, Hk,n = Hk,n−1 + Hk,n−(k+1).
Equivalently,
⌊

n−1
k+1

⌋

∑

ℓ=1

(

n− kℓ− 1

ℓ

)

=

⌊

n−2
k+1

⌋

∑

ℓ=1

(

n− kℓ− 2

ℓ

)

+

⌊

n−(k+1)−1
k+1

⌋

∑

ℓ=1

(

n− kℓ− 1− (k + 1)

ℓ

)

+ 1. (2)

Equivalently, noting that the +1 term cancels with the l = 1 term in the left hand side
summation

⌊

n−2
k+1

⌋

∑

ℓ=2

((

n− kℓ− 1

ℓ

)

−

(

n− kℓ− 2

ℓ

))

+

⌊

n−1
k+1

⌋

∑

⌊

n−2
k+1

⌋

+1

(

n− kℓ− 1

ℓ

)

(3)

=

⌊

n−k−2
k+1

⌋

∑

ℓ=1

(

n− k(ℓ + 1)− 2

ℓ

)

.

We can simplify Equation (3) further by applying the binomial coefficient recurrence
⌊

n−2
k+1

⌋

∑

ℓ=2

(

n− kℓ− 2

ℓ− 1

)

+

⌊

n−1
k+1

⌋

∑

⌊

n−2
k+1

⌋

+1

(

n− kℓ− 1

ℓ

)

=

⌊

n−k−2
k+1

⌋

∑

ℓ=1

(

n− k(ℓ+ 1)− 2

ℓ

)

.

Reindexing ℓ in the first summation, we have
⌊

n−2
k+1

⌋

−1
∑

ℓ=1

(

n− k(ℓ+ 1)− 2

ℓ

)

+

⌊

n−1
k+1

⌋

∑

⌊

n−2
k+1

⌋

+1

(

n− kℓ− 1

ℓ

)

=

⌊

n−k−2
k+1

⌋

∑

ℓ=1

(

n− k(ℓ+ 1)− 2

ℓ

)

.

Subtract the first summation from both sides to have
⌊

n−1
k+1

⌋

∑

⌊

n−2
k+1

⌋

+1

(

n− kℓ− 1

ℓ

)

=

⌊

n−k−2
k+1

⌋

∑

ℓ=
⌊

n−2
k+1

⌋

(

n− k(ℓ+ 1)− 2

ℓ

)

. (4)

We now prove that Equation (4) is correct, which implies that Equation (2) is correct.

Case 1:
⌊

n−k−2
k+1

⌋

<
⌊

n−2
k+1

⌋

. Then
⌊

n−2
k+1

⌋

+ 1 >
⌊

n−1
k+1

⌋

by Proposition 12. Therefore, two sides
of Equation (4) are identically 0.

Case 2:
⌊

n−k−2
k+1

⌋

=
⌊

n−2
k+1

⌋

. Then
⌊

n−2
k+1

⌋

+ 1 =
⌊

n−1
k+1

⌋

and n−k−2
k+1

=
⌊

n−2
k+1

⌋

by Proposition 12.
Therefore, the left side of Equation (4) is

(

n− k(
⌊

n−2
k+1

⌋

+ 1)− 1
⌊

n−2
k+1

⌋

+ 1

)

= 1

9



because n−k−2
k+1

=
⌊

n−2
k+1

⌋

. Similarly, the right side is also equal to 1.

In both cases, Equation (4) is correct. This completes our proof.

5 Proof of Theorem 8—A new way to generate the

Fibonacci sequence

Proof of Theorem 8. First, we prove item (1). Let Pn be the number of subsets of {1, 2, . . . , n}
that contain n and whose difference sets contain only odd numbers.

Base cases: For n = 1, we have {1} to be the only subset of {1} that satisfies our
requirement. So, P1 = 1 = F2. For n = 2, we have {2} and {1, 2} to be the only two subsets
of {1, 2} that satisfy our requirement. So, P2 = 2 = F3.

Inductive hypothesis: Suppose that there exists k ≥ 2 such that for all n ≤ k, Pn = Fn+1.
We show that Pk+1 = Fk+2. Let On denote the set of subsets of {1, 2, . . . , n} that satisfy our
requirement. Observe that unioning a set in On−1−2i (for i ≥ 0) with n produces a set in On

and any set in On is of the form of a set in On−1−2i plus the element n. Therefore,

Pk+1 = |Ok+1| =
∑

1≤i≤k

2∤i

|Ok+1−i|+ 1 = Pk +
∑

3≤i≤k

2∤i

|Ok+1−i|+ 1.

The number 1 accounts for the set {n}. If k is odd,
∑

3≤i≤k

2∤i

|Ok+1−i| = |O1|+ |O3|+ · · ·+ |Ok−2|

= |F2|+ |F4|+ · · ·+ |Fk−1| = Fk − 1 = Pk−1 − 1.

If k is even,
∑

3≤i≤k

2∤i

|Ok+1−i| = |O2|+ |O4|+ · · ·+ |Ok−2|

= |F3|+ |F5|+ · · ·+ |Fk−1| = Fk − 1 = Pk−1 − 1.

In both cases, we have
∑

3≤i≤k

2∤i
|Ok+1−i| = Pk−1 − 1. Therefore, Pk+1 = Pk + Pk−1 = Fk+1 +

Fk = Fk+2, as desired.
Next, we prove item (2). Let Qn be the number of subsets of {1, 2, . . . , n} whose difference

sets contain only odd numbers is Qn (the empty set and sets with exactly one element
vacuously satisfy this requirement). Note that by definition of Pn and Qn, we have

Qn = 1 +

n
∑

k=1

|Pk| = 1 +

n
∑

k=1

Fk+1 =

n+1
∑

k=1

Fk = Fn+3 − 1,

as desired. (The +1 before the first summation accounts for the empty set.)
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