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Abstract: We classify all positive n-particle NkMHV Yangian invariants in N = 4

Yang-Mills theory with n = 5k, which we call extremal because none exist for n > 5k.

We show that this problem is equivalent to that of enumerating plane cactus graphs

with k pentagons. We use the known solution of that problem to provide an exact

expression for the number of cyclic classes of such invariants for any k, and a simple

rule for writing them down explicitly. As a byproduct, we provide an alternative (but

equivalent) classification by showing that a product of k five-brackets with disjoint sets

of indices is a positive Yangian invariant if and only if the sets are all weakly separated.
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1 Introduction

N = 4 supersymmetric Yang-Mills theory (SYM) [1] provides a remarkable playground

for physical mathematics. The conformal [2] and dual conformal symmetry [3] of the

planar theory close into a Yangian symmetry algebra [4]. This Yangian symmetry can

be understood as a manifestation of T-duality in the dual string theory [5–7].

Yangian invariants (see for example [8–15]) are the basic building blocks for many

amplitude-related quantities of interest: any tree-level amplitude can be written as a

linear combination of Yangian invariants [16], and any leading singularity of a loop-level

integrand is a Yangian invariant [17]. Thus a complete understanding of all Yangian

invariant functions, and their properties, is of considerable interest.

Following [15, 18] another key theme which has been emerging in the study of SYM

is the importance of positive geometry. Indeed all of the abovementioned scattering

amplitude quantities can be expressed in terms of positive (or at least, non-negative)

Yangian invariants (defined below). There are no positive n-particle NkMHV Yangian

invariants for n > 5k. The purpose of this paper is to provide a complete classification

of all positive Yangian invariants with n = 5k, which we call extremal.

Every extremal Yangian invariant is a product of five-brackets (defined in [8]) but

the converse is far from true; the restriction of positivity drastically restricts which

products of five-brackets are allowed. We show that the combinatorial problem of

enumerating extremal Yangian invariants is precisely encoded in the counting of plane

cactus graphs [19] with k pentagons, which was solved in [20]. We are therefore able
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to provide an analytic expression for the number of cyclic equivalence classes of such

invariants for any k, and a simple rule for writing them down explicitly.

We also find, and employ, an interesting direct connection between the condition

for an extremal Yangian invariant to be positive and a “weak separation” criterion [21]

closely related to those that have appeared in other positive geometry problems. Specif-

ically, we prove that a product of k five-brackets with disjoint sets of indices corresponds

to a positive Yangian if and only if the sets are all weakly separated.

The paper is organized as follows. In Sec. 2 we review the relevant aspects of the

positive Grassmannian integral and its connection to Yangian invariants. In Sec. 3 we

show that every extremal Yangian invariant is a product of five-brackets, and express

the positivity criterion on such products as a combinatorial problem. This problem is

solved in Sec. 4 in terms of cactus graphs. In Sec. 5 we introduce a notion of weak

separation and explain its connection to positivity. We then introduce “weak separation

graphs” which provide an alternative, but equivalent, graphical tool for enumerating

all extremal Yangian invariants.

In an ancillary Mathematica file we include a complete list of the 7561 cyclic

classes of extremal Yangian invariants for 1 ≤ k ≤ 7.

2 Yangian Invariants

We begin by reviewing from [15] a few aspects of the construction of NkMHV Yangian

invariants from Grassmannian integrals [22] that will be most relevant for our analysis.

The basic objects of study are n-point on-shell functions, which are residues of the top

form on the Gr(k, n) momentum twistor Grassmannian [8, 9] expressible as

fσ(Z) =

∮
C⊂Γσ

dk×nC

volGL(k)

δ4k|4k(C · Z)

M1M2 · · ·Mn

(2.1)

Here Γσ is some d-dimensional cell in Gr(k, n), ZAa = (ZA
a , η

A
a ) are momentum super-

twistors [23] whose bosonic components ZA
a comprise n homogeneous coordinates on

P3, and Mi = det(CiCi+1 · · ·Ci+k) are (ordered, adjacent) maximal minors of C. Cells

of dimension d = 4k are of special interest because the 4k integrals over the parameters

of C(α1, ..., α4k) ⊂ Γσ are entirely localized by the 4k bosonic delta functions, providing

a non-trivial function of Z as long as C · Z = 0 admits solutions for generic Z. The

number of such solutions is called the intersection number Γ4(C) of the cell.

We will say that a quantity of the form (2.1) is an n-particle NkMHV positive

Yangian invariant, denoted Y (k), if C is a 4k-dimensional positroid cell (which means

that all ordered maximal minors of C are non-negative), C has no zero columns, and
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Γ4(C) > 0. Some aspects of the significance of positivity will play a crucial role in

Sec. 5. We note however that the earlier literature on Yangian invariants cited above,

prior to [15], did not require C to be positive. The added requirement that C has

no zero columns (which was used in [15]) means that our positive n-particle Yangian

invariants automatically have full functional dependence on all n momentum twistors.

The simplest non-trivial Yangian invariant is the unique 5-particle NMHV invariant

obtained from the cell

C(α1, . . . , α4) =
(
1 α1 α2 α3 α4

)
(2.2)

Note that here and in all following examples, we use parameterizations that render

C-matrices non-negative when all αi are positive. For this C-matrix (2.1) evaluates to

the five-bracket [8] (originally presented as an “R-invariant” in [3])

Y (1) = [1, 2, 3, 4, 5] ≡ δ(4)(〈1 2 3 4〉χA5 + cyclic)

〈1 2 3 4〉〈2 3 4 5〉〈3 4 5 1〉〈4 5 1 2〉〈5 1 2 3〉
(2.3)

where 〈a b c d〉 ≡ εABCDZ
A
a Z

B
b Z

C
c Z

D
d are the SL(4)-invariant Plücker coordinates. Note

that the five-bracket is fully antisymmetric under the exchange of any two of its indices.

For any finite k and n the number of positive n-particle NkMHV Yangian invariants

is finite. In the next section we review the fact that there are no invariants with n > 5k,

so we will call those satisfying n = 5k extremal. There we will also see that all extremal

Yangian invariants are products of five-brackets with disjoint indices. For example,

consider the 12-dimensional cell in Gr(3, 15) with

C1 =

1 α1 α2 α3 α4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 α5 α6 α7 α8 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 α9 α10 α11 α12

 , (2.4)

in which case (2.1) evaluates to

Y
(3)

1 = [1, 2, 3, 4, 5][6, 7, 8, 9, 10][11, 12, 13, 14, 15] . (2.5)

We will shortly see that every Gr(3, 15) Yangian invariant is cyclically equivalent (with

respect to the Zn symmetry that shifts Za → Za+1 modn) to (2.5) or one of

Y
(3)

2 = [1, 2, 3, 4, 5][15, 6, 7, 8, 9][10, 11, 12, 13, 14] ,

Y
(3)

3 = [1, 2, 3, 4, 5][14, 15, 6, 7, 8][9, 10, 11, 12, 13] ,
(2.6)
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which are obtained respectively from

C2 =

1 α1 α2 α3 α4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 α5 α6 α7 0 0 0 0 0 −α12

0 0 0 0 0 0 0 0 0 1 α8 α9 α10 α11 0

 ,

C3 =

1 α1 α2 α3 α4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 α5 α6 0 0 0 0 0 −α11 −α12

0 0 0 0 0 0 0 0 1 α7 α8 α9 α10 0 0

 .

(2.7)

For Gr(4, 20) we will see that there are a total of 17 cyclic classes.

The classification of positive Yangian invariants for general k and n is discussed

in Chapter 12 of [15], where the number of cyclic classes is tabulated for k ≤ 4 in

Table 3. We note however typos in the (3, 15) and (4, 20) entries, which were both

underreported as 1 instead of 3 and 17. These missing Yangian invariants are precisely

of the extremal type that are the focus of this paper. In the next section we describe

the general construction of this interesting class of Yangian invariants.

3 Building Extremal Yangian Invariants

Using the lexicographic BCFW-bridge construction [15], in order to build a C-matrix

for some 4k-dimensional cell one begins with a k×n matrix that has precisely k non-zero

entries equal to 1, one in each row and each column. Then one performs 4k “shifts” to

populate C with 4k parameters αi. Since we do not consider C matrices with vanishing

columns, we cannot have n > 5k, and for n = 5k each of the 4k shifts must be used to

populate precisely one of the 4k columns that are initially zero. Requiring Γ4(C) > 0,

i.e. demanding that there is always a solution to C · Z = 0 for generic Z ∈ Gr(4, 5k),

requires that exactly four α’s appear in each row. This means that C · Z = 0 imposes

linear dependencies between k disjoint subsets of 5 momentum twistors each. Therefore

there are no Yangian invariants with n > 5k, and all invariants with n = 5k are products

of five-brackets with disjoint indices.

In other words, every extremal Yangian invariant has the form

[1, 2, 3, 4, 5][6, 7, 8, 9, 10] · · · [n−4, n−3, n−2, n−1, n] (3.1)

up to some Sn permutation of the particle labels. However, not all n! permutations are

allowed. Due to the disjoint nature of the linear dependencies, the on-shell diagram [15]

associated to each such invariant will be the union of k disconnected 5-particle on-shell

diagrams, each involving only the five external lines whose indices appear in one of the

five-brackets. The criterion for determining which permutations are valid is that the
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Figure 1: On-shell diagrams corresponding to the Yangian invariants (2.5) and (2.6).

resulting on-shell diagram must be planar. In Sec. 5 we indicate that this restriction to

planar graphs is equivalent to restricting to the positive region of the Grassmannian.

For example, in the left panel of Fig. 1 we have used [24] to draw the on-shell

diagram corresponding to Y
(3)

1 . Most permutations of the n particle labels render this

diagram non-planar, but a few do not. For example, note that Y
(3)

2 can be obtained

from Y
(3)

1 by applying the cyclic permutation σ : 15 → 14 → · · · → 6 → 15 to the

indices of the last two five-brackets in (2.5), and applying the same σ to the diagram

on the left of Fig. 1 produces the one in the middle. Applying σ again turns Y
(3)

2 into

Y
(3)

3 while transforming the diagram in the middle to the one on the right. Applying

σ a third time yields an on-shell diagram that evaluates to Y
(3)

3 again (due to the

symmetry of the five-bracket), applying a fourth time gives one that evaluates to Y
(3)

2 ,

and applying σ a fifth time brings us back to Y
(3)

1 .

It is clear that a graph of the type under consideration can be planar only if at

least two five-brackets involve only cyclically adjacent indices. (This explains why every

Gr(2, 10) Yangian invariant is cyclically equivalent to [1, 2, 3, 4, 5][6, 7, 8, 9, 10].) As the

examples in Fig. 1 illustrate, for k > 2 each of the other k−2 five-brackets can involve

indices associated to a component of the graph that stretches from one gap between the

two privileged five-brackets to the other. The precise ordering of particle number labels

within each five-bracket is inconsequential due to the symmetries of the five-bracket;

the Yangian invariant associated to such an on-shell diagram depends (up to an overall

sign) only on how the indices { 1, . . . , n } are split into k disjoint subsets as in (3.1).

In conclusion, the problem of enumerating all (cyclic classes of) extremal Yangian

invariants reduces to the combinatorial problem of enumerating (cyclic classes of) pla-

nar on-shell graphs comprised of k disconnected 5-particle on-shell diagrams, of the

type shown in Fig. 1. This problem is equivalent to the problem of enumerating plane

5-gonal cactus graphs, to which we now turn our attention in the next section.
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[Y
(3)

1 ] [Y
(3)

2 ] [Y
(3)

3 ]

Figure 2: The 3 plane 5-gonal cacti. Each corresponds to the indicated cyclic class

[Y
(3)
α ] of extremal Yangian invariants containing the element Y

(3)
α given in (2.5) or (2.6).

.

4 Counting Cacti

Cactus graphs (or cacti) were first defined in [19] under the name of “Husimi trees”.

They are connected simple graphs in which every edge lies in a single elementary cycle.

A cactus is called m-gonal if every elementary cycle is an m-gon. Finally, a plane

m-gonal cactus is an m-gonal cactus drawn on the plane such that no edges cross and

each edge is adjacent to the unbounded region. The following are examples of unlabeled

plane 5-gonal cacti with 3 and 4 pentagons respectively:

Cacti related by rotations on the plane are equivalent, but we can obtain cyclically

inequivalent cacti by fixing one of the pentagons and then changing the shared vertices

of two or more of the other pentagons. This change moves a pentagon around another

one, and when performed five times in a row gives back the initial cactus. This process is

similar to the one we described in the previous section for obtaining distinct extremal

Yangians, where the choice of how many cyclic permutations to perform on p five-

brackets is in one-to-one correspondence with moving p 1 pentagons around another

pentagon. For example, there are precisely three distinct plane 5-gonal cacti, and these

relate to the three cyclic classes of Gr(3, 15) Yangian invariants as indicated in Fig. 2.

Moving the lower left pentagon around the lower right one corresponds to applying

the cyclic permutation σ of the indices of the last two five-brackets in (2.6) that we

considered in Sec. 3.

Similarly, there are 17 distinct plane 5-gonal cacti shown in Fig. 3, and each is

– 6 –



[Y
(4)

1 ] [Y
(4)

2 ] [Y
(4)

3 ]

[Y
(4)

4 ] [Y
(4)

5 ] [Y
(4)

6 ]

[Y
(4)

7 ] [Y
(4)

8 ] [Y
(4)

9 ]

[Y
(4)

10 ] [Y
(4)

11 ] [Y
(4)

12 ]

[Y
(4)

13 ] [Y
(4)

14 ] [Y
(4)

15 ]

[Y
(4)

16 ] [Y
(4)

17 ]

Figure 3: The 17 plane 5-gonal cacti. Each corresponds to the indicated cyclic class

[Y
(4)
α ] of extremal Yangian invariants containing the element Y

(4)
α given in (4.1).
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matched to a cyclic class of Gr(4, 20) Yangian invariants, generated for example by

Y
(4)

1 = R1,2,4R6,7,9R11,12,14R16,17,19 , Y
(4)

2 = R1,2,4R6,7,9R20,11,13R15,16,18 ,

Y
(4)

3 = R1,2,4R6,7,9R11,12,19R14,15,17 , Y
(4)

4 = R1,2,4R6,7,9R18,19,11R13,14,16 ,

Y
(4)

5 = R1,2,4R6,7,9R11,17,19R12,13,15 , Y
(4)

6 = R1,2,4R20,6,8R19,10,12R14,15,17 ,

Y
(4)

7 = R1,2,4R20,6,8R10,11,18R13,14,16 , Y
(4)

8 = R1,2,4R20,6,8R19,10,17R12,13,15 ,

Y
(4)

9 = R1,2,4R20,6,8R10,16,18R11,12,14 , Y
(4)

10 = R1,2,4R6,7,19R18,9,11R13,14,16 ,

Y
(4)

11 = R1,2,4R6,7,19R9,10,17R12,13,15 , Y
(4)

12 = R1,2,4R6,7,19R18,9,16R11,12,14 ,

Y
(4)

13 = R1,2,4R20,6,18R17,8,10R12,13,15 , Y
(4)

14 = R1,2,4R20,6,18R8,9,16R11,12,14 ,

Y
(4)

15 = R1,2,4R6,17,19R16,7,9R11,12,14 , Y
(4)

16 = R1,2,4R9,10,12R15,16,18[6, 7, 8, 14, 20] ,

Y
(4)

17 = R1,2,4R20,6,13R8,9,11R15,16,18 ,
(4.1)

where we use Ri,j,k = [i, j, j+1, k, k+1] for notational efficiency.

The enumeration of several kinds of cacti was carried out [20]. In particular, the

number of unlabeled plane m-gonal cacti having k polygons is given by

H̃k = αk + βk − γk, (4.2)

in terms of

αk =
1

mk

∑
d|k

φ

(
k

d

)(
dm

d

)
,

βk =
1

mk

∑
d|(m,k−1)

φ(d)

(
km/d

(k − 1)/d

)
,

γk =
1

k(m− 1) + 1

(
mk

k

)
,

(4.3)

where φ is Euler’s totient function. We conclude that the number of cyclic classes of

Gr(k, 5k) Yangian invariants is then given by H̃k with m = 5 (see Tab. 1).

5 Weak Separation and Positivity

In this section we demonstrate an alternative procedure for generating all positive ex-

tremal Yangian invariants. This method will have the added benefit of making it trans-

parent that it is the positivity requirement which most strongly restricts the allowed

form of products of five-brackets at n = 5k.
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k H̃k

1 1

2 1

3 3

4 17

5 102

6 811

7 6626

8 58385

9 532251

10 5011934

11 48344880

12 475982471

13 4766639628

14 48434621610

15 498363430232

Table 1: The number of cyclic classes of Gr(k, 5k) Yangian invariants for k ≤ 15, given

by (4.2). Also the number of plane 5-gonal cacti with k pentagons [20] (see also [25]).

As explained in Sec. 3, all extremal Yangian invariants are products of k five-

brackets involving disjoint particle numbers. In fact, any product of five-brackets in-

volving disjoint particle numbers is Yangian invariant, but not necessarily positive. A

relevant way to see this is to use the result of [13] that the Grassmannian integral (2.1)

is Yangian invariant for any C-matrix, and it is always possible to find an appropri-

ate C-matrix such that (2.1) evaluates to any desired product of five-brackets. For

example, in order to produce the product [1, 3, 4, 5, 6][2, 7, 8, 9, 10] we could choose

C =

(
1 0 β1 β2 β3 β4 0 0 0 0

0 1 0 0 0 0 γ1 γ2 γ3 γ4

)
(5.1)

(the general rule is that the rth row refers to the rth five-bracket, the columns refer to the

particle number, and we gauge fix the first non-zero entry in each row to 1). Evaluating

the integral (2.1) for this C-matrix produces our product [1, 3, 4, 5, 6][2, 7, 8, 9, 10], which

is therefore Yangian invariant. From this example it should be clear that any product

of five-brackets involving disjoint particle labels is Yangian invariant.

However, a brief examination of the matrix (5.1) reveals that this Yangian invariant

is not positive. That is, there is no nontrivial choice of domain for the β and γ pa-

rameters which renders the matrix non-negative. To see this, examine the consecutive
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minors 〈2, 3〉 = −β1, 〈3, 7〉 = β1γ1 and 〈1, 7〉 = γ1. Non-negativity of the first minor

implies β1 ≤ 0, but then the second implies γ1 ≤ 0, while the third requires γ1 ≥ 0,

which is a contradiction unless γ1 = 0 which we disallow because it gives a zero column.

One must also check whether a row interchange alleviates the contradiction, and one

finds that it does not. Therefore our example is Yangian invariant but not positive.

It turns out that the necessary and sufficient condition for a disjoint product of

five-brackets to have a non-negative C-matrix is that the five-brackets all be weakly sep-

arated. The notion of weak separation was first introduced in [21]. There they defined

two r-element subsets I and J of the integers { 1, 2, ..., n } ≡ [n] to be weakly separated

if there exists a chord separating the sets I\J and J\I drawn on a circle (here I\J
denotes the relative complement of J with respect to I; I\J = {x : x ∈ I;x /∈ J }). In

our application the sets we encounter will always be disjoint, so the necessity for tak-

ing the relative compliments evaporates and the weak separation requirement becomes

simply that there exist a chord separating the two sets I and J when drawn on a circle.

We now state this as our main theorem, a proof of which is presented in appendix A.

Theorem: A disjoint and complete five-bracket partition of [n] corresponds to a non-

negative C-matrix if and only if all of the five-brackets are weakly separated.

Using this theorem, we conclude that the set of positive extremal Yangian invariants

is in perfect correspondence with the set of five-bracket partitions of [n] for which each

pair of five-brackets is weakly separated.

It should be mentioned that the relevance of the notion of weak separation to plabic

graphs has been studied previously in [26]. There it was shown that maximally weakly

separated collections in a positroid are in bijective correspondence with plabic graphs.

However, there the maximally separated collections corresponded to the face labels of

the plabic graph, which is a completely different construction to the one we encounter.

The concept of weak separation has also appeared in some recent papers [27, 28] on the

cluster structure of scattering amplitudes in SYM theory, since [26] showed that two

Plücker coordinates 〈I〉, 〈J〉 are cluster adjacent [29] if and only if I and J are weakly

separated.

A convenient graphical tool for finding all cyclically distinct weakly separated par-

titions of [n] into k disjoint subsets of length 5 is to draw k−1 chords on a circle that

separate the integers into k such sets. We call these weak separation graphs. The cycli-

cally distinct weak separation graphs for k = 3, n = 15 and k = 4, n = 20 are displayed

in Figs. 4 and 5, respectively.

Before concluding this section we remark that the above theorem is trivial if one ob-

serves the structure of on-shell graphs corresponding to the product of k five-brackets

– 10 –



[Y
(3)

1 ] [Y
(3)

2 ] [Y
(3)

3 ]

Figure 4: The 3 cyclically distinct weak separation graphs for n = 15, k = 3. Each

corresponds to the indicated cyclic class [Y
(3)
α ] of extremal Yangian invariants containing

the element Y
(3)
α given in (2.5) or (2.6). In each graph the interior of the circle is cut

into three disjoint regions, and each disconnected component of the corresponding on-

shell diagram (which we omit for the sake of clarity) would lie entirely within a single

region (as in Fig 1).

involving disjoint particle labels. For example, examining the on-shell graphs given

in Fig. 1 it is clear that all such positive Yangian invariants are obtained by gluing

multiple copies of the primitive [a, b, c, d, e] on-shell graph onto the circle whilst pre-

serving planarity. One can then see the rather straightforward correspondence between

on-shell graphs and weak separation graphs. One can then make use of the fact that

on-shell graphs always correspond to positive regions of the Grassmannian [15]. This

then implies that any weakly separated product of five-brackets involving disjoint par-

ticle labels corresponds to a non-negative C-matrix. In the appendix we show that the

converse is also true. One can then use the interchangeability of weak separation and

planarity in this case to make the statement that the appearance of positive geometry

is, at least as far as the extremal Yangians are concerned, a consequence of having

restricted to the planar limit of the theory. That aspects of positive geometry arise

more generally in planar theories has already been emphasized in [15].
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[Y
(4)

1 ] [Y
(4)

2 ] [Y
(4)

3 ] [Y
(4)

4 ] [Y
(4)

5 ] [Y
(4)

6 ]

[Y
(4)

7 ] [Y
(4)

8 ] [Y
(4)

9 ] [Y
(4)

10 ] [Y
(4)

11 ] [Y
(4)

12 ]

[Y
(4)

13 ] [Y
(4)

14 ] [Y
(4)

15 ] [Y
(4)

16 ] [Y
(4)

17 ]

Figure 5: The 17 cyclically distinct weak separation graphs for n = 20, k = 4. Each

corresponds to the indicated cyclic class [Y
(4)
α ] of extremal Yangian invariants containing

the element Y
(4)
α given in (4.1).

A Proof of the Theorem

To clarify the theorem which needs to be proven, we begin with an example. Suppose we

partition the integers { 1, ..., 12 } into four subsets r1 = { 1, 2, 6 } , r2 = { 3, 4, 5 } , r3 =

{ 7, 8, 12 } , r4 = { 9, 10, 11 }. This particular partition is depicted on the left of Fig. 6.

For any such partition we assign a corresponding C-matrix, constructed according to

the rule described under (5.1) except that we don’t yet gauge fix any parameters to 1.

In our example we would have

C =


α1 α2 0 0 0 α6 0 0 0 0 0 0

0 0 α3 α4 α5 0 0 0 0 0 0 0

0 0 0 0 0 0 α7 α8 0 0 0 α12

0 0 0 0 0 0 0 0 α9 α10 α11 0

 . (A.1)

The question to be addressed is whether there exists a non-empty domain for the α’s

on which which matrix is non-negative. (We could also allow C to be non-positive; a

non-positive matrix can be made non-negative by exchanging two rows.) We claim:

Theorem: The C-matrix associated to a partition of the integers { 1, ..., n } into subsets

can be made non-negative if and only if the subsets are all weakly separated.
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1
2
3

4
567

8
9
10

11 12

r1

r2

r1

r3

r4

r3

7→

r3

r1

r2r3

r4

r1

Figure 6: The left graph depicts an example partition of the integers { 1, ..., 12 }
into four weakly separated subsets. As the positivity requirement imposes the same

conditions on consecutive numbers in the same subset, all of the positivity properties

of a partition are contained in its reduced graph, an example of which is depicted on

the right.

First notice that the positivity requirement imposes the same restrictions on any

set of αi’s which appear consecutively in the same row. For example the domain of

α3, α4, α5 in (A.1) must clearly be the same. Thus in general we need only study

partitions of a “reduced graph” and its “contracted matrix”. In our example we can

simplify our analysis to that of the graph on the right of figure 6 and we may equally

well study the corresponding contracted matrix

C ′ =


α1 0 α6 0 0 0

0 α3 0 0 0 0

0 0 0 α8 0 α12

0 0 0 0 α9 0

 . (A.2)

We will only need one lemma to prove the theorem:

Lemma: If a subset ri occurs more than once around the circle, then the relative sign

of the α parameters (in the contracted matrix) associated to each of those occurrences is

(−1)m where m is the number of different subsets between those subsets when moving

in a clockwise direction, but not counting any occurrences of ri subsets. This is a

necessary but not sufficient condition for ensuring positivity.

For example, between the two r1 elements 1 and 6 in Fig. 6 there is one distinct

subset, r2, so the lemma implies that α1 and α6 must have a relative minus sign. If a

subset ri occurs more than once around the circle then we will call the jth clockwise
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occurrence of it rji . To show first that the lemma holds in the specific case of r1
1 and r2

1

in Fig. 6, one constructs the following two maximal minors, one involving r1
1 and the

other r2
1: first take any selection of particle labels from each of the different subsets

between r1
1 and r2

1. In this case there is only one distinct subset between the r1’s,

namely r2, and we will take our particle representative of this subset to be particle 3.

To form a maximal minor in this case we will need particle labels from outside of the

bounded region, say particles 8 ∈ r3 and 10 ∈ r4. We now compare the signs of the

two so constructed maximal minors:

sign
(
〈r1

1, 3, 8, 10〉
)

= s(r1
1)s(α3)s(α8)s(α10)× εr1r2r3r4 , (A.3)

sign
(
〈3, r2

1, 8, 10〉
)

= s(α3)s(r2
1)s(α8)s(α4)× εr2r1r3r4 , (A.4)

where s is shorthand for “sign” and the r1
1 and r2

1 in the maximal minors denote any

particle labels from these subsets. By requiring that (A.3) and (A.4) have the same

sign (neither is zero, by construction), we determine that entries in C corresponding to

particles in r1
1 must differ by a sign from those in r2

1, as our lemma would suggest, e.g.

s(α1) = −s(α6) . (A.5)

With this notation we can prove the lemma in generality. For any two occurrences

of the same subset ri consider the set of subset labels occurring between them in the

clockwise direction. Let m denote the number of different subsets within this region, not

including ri subsets. Let {B } denote any selection of m particle labels from this region

all of which are from different subsets, but not including ri type particles. In order to

form a maximal minor we may need more particle labels from outside of the bounded

region. Call any such selection {W }. Then compare the signs of the two maximal

minors (here rji refers to any selection of a particle label from the jth occurrence of

subset ri):

〈rki , {B } , {W }〉 , 〈{B } , rli, {W }〉 . (A.6)

To move from one to the other we must pass an ri through {B } which contains m

elements. This corresponds to shifting an index on the Levi-Civita symbol m places,

thus indicating that s(rki ) = (−1)ms(rli). This proves the lemma.

We can now prove that weak separation implies positivity. We will do so induc-

tively. By our freedom in choosing the α’s there is always at least one cyclically ordered

maximal minor which is positive. Starting with any cyclically ordered maximal minor

we can “mutate” to generate another cyclically ordered maximal minor in the following

manner. If a subset ri occurs more than once around the circle then given a maximal

minor replace the one instance of ri with the other. For example, starting from the
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Figure 7: A depiction of any graph which is not weakly separated. The dots refer to

any distribution of other subset labels.

first maximal minor in Fig. 6 〈r1
1r

1
2r

1
3r

1
4〉 we could mutate to the 〈r1

2r
2
1r

1
3r

1
4〉 maximal mi-

nor. Doing this for all repetitions of subsets will generate all possible cyclically ordered

maximal minors. We will show that if the subsets are weakly separated then positivity

of the first maximal minor implies that its mutated version is also positive.

Now if the subsets are all weakly separated, then any subset label that occurs within

the region bounded by rki and rli cannot occur outside of the bounded region. Therefore,

any maximal minor must involve m particle labels from m distinct subsets inside the

bounded region, where m is the number of distinct subsets, not including ri subsets,

in the bounded region. In this case our condition from the lemma s(rki ) = (−1)ms(rli)

is sufficient to ensure that if a maximal minor involving rki is positive, then so is its

mutated maximal minor rji → rli. The only possible contradiction would be if we

could reach the same maximal minor by mutating on two different maximal minors

and reaching conflicting requirements on the sign of one of the rli’s. This is not possible

in the case of weak separation because for a given mutation, the number of elements

that an ri must pass through in a maximal minor is fixed, being equal to the number

of distinct non-ri subsets in the region bounded to the right of the two ri’s. Thus any

two sets of mutations to the same maximal minor necessarily involve the same number

column interchanges. This proves that weak separation implies positivity. We now

show that not weak separation implies not positivity.

If the subsets are not weakly separated then there exists a subset which occurs

more than once, say r1
B and r2

B, for which there is a subset r1
A which occurs within

the bounded region of these two rB’s with another occurrence r2
A of it outside of the

bounded region. This generic scenario is depicted in Fig. 7. The difference now is that

not every maximal minor must involve m particle labels from the m distinct subsets in

the bounded region. The strategy then is to examine a maximal minor which involves

m−1 subsets from the rB bounded region.
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Let l denote the number of distinct subsets in the region { II }∪{ III } not including

rA type subsets. Let (II) and (III) denote any selection of particle labels from l distinct

subset in region II and III not including rA type particles. To form a complete maximal

minor we may require particles from regions III and IV. Denote any such generic

selection by (III) and (IV). Then compare the sign of the maximal minors:

〈r1
A(I)r1

B(II)(III)(IV)〉 , 〈r1
A(I)(II)(III)r2

B(IV)〉 . (A.7)

In going from one to the other we must move rB through l particle labels hence imposing

the requirement s(r1
B) = (−1)ls(r2

B). However, because there are l+1 distinct subsets

(the +1 comes from now including rA type subsets) between r1
B and r2

B, our lemma

tells us that s(r1
B) = (−1)l+1s(r2

B). These are two contradicting requirements. Hence

a not weakly separated graph cannot give rise to a positive matrix. �

It is interesting to note that in the n = 5k (extremal) case weak separation is the

same as planarity. And now that we have shown that weak separation is interchangeable

with positivity, we can conclude that the positivity of the Grassmannian is in part, or

perhaps solely, due to taking the planar limit of a theory.
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