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Abstract. The Kubelka-Munk equations describe one-dimensional transport
with scattering and absorption. The reflectance for a semi-infinite slab is the
Laplace transform of the distribution of the photon path length λ. It is determined
by the first-passage probability of an alternating random walk after np peaks.
The first-passage probability as a function of the number of peaks is a path-
length distribution-free combinatoric expression involving Catalan numbers. The
conditional probability P (λ|np) is a Poisson process.

We present a novel demonstration that the probability of first-passage of
a random walk is step-length-distribution-free. These results are verified with
two iterative calculations, one using the properties of Volterras composition
products and the other via an exponential distribution. A third verification is
based on fluctuation theory of sums of random variables. Particle trajectories
with scattering and absorption on the real half-line are mapped into a random
walk on the integer number line in a lattice model, therefore connecting to path
combinatorics. Including a separate forward scattering Poisson process results in
a combinatoric expression related to counting Motzkin paths.

Keywords: Random walk, Kubelka-Munk equations, first passage, Poisson process,
Catalan numbers, Motzkin numbers

1. Introduction

The simplest solution of the radiative transfer equation is for a one-dimensional flux
traveling perpendicular to a plane-parallel layer of absorbing and scattering medium
with isotropic radiation intensity over the forward and backward hemispheres.

The solutions of radiation transport equations, obtained during the previous
century, have been applied to a broad variety of practical situations from neutron
diffusion, optical tomography, spreading of infra-red and visible light in the atmosphere
to prints on paper.

One-dimensional radiative transfer can be solved by the well-known two-flux
approximation proposed independently by Schuster[14] and Schwarzschild[15] in
astronomy, Darwin[4] and Hamilton [6] in crystallography, and Kubelka and Munk
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[10]. in graphic-art and print quality. More recently it had been used by Youngquist,
Carr and Davies [20] in optical coherence tomography and Haney and van Wijk [7] in
geology.

Simon and Trachsler [16], in their paper A random walk approach for light
scattering in material gave an explicit expression for the reflectance. They show
first that the scattering problem can be treated as a Markov chain involving Narayana
polynomials. But this Markov chain does not provide a solution of a first-passage time
problem that fits the reflectance calculated with the Kubelka-Munk equations. Then
using the compositional optical reflectance and transmittance properties for multilayer
specimens, they are able to determine a generating function and find a solution as
elementary variants of Chebyshev polynomials. This is another way to interpret the
hyperbolic functions of the classical solution of Kubelka-Munk equations.

Wuttke [19], in his paper The zigzag walk with scattering and absorption on the
real half line and in a lattice model expands the Darwin-Hamilton equations, (identical
to the Kubelka-Munk equations) into a recursion and finds that Catalan numbers
gives the recurrence probability as function of scattering order. He assumes that the
random character of the zigzag walk comes from the exponentially distributed step
length between scattering events. As we demonstrate, it is not necessary to specify
the distribution since his result is independent of the distribution of step length.

One of our goals is to describe the Kubelka-Munk solution directly in terms of
the statistics of the number of peaks np and the path length λ of rays. We explore the
solution using a mathematically equivalent one-dimensional random walk model with
random step lengths between reflection events described by a Poisson process with a
rate per unit length S. We demonstrate further that the recurrence probability given
by Catalan numbers is independent of the step length distribution. We provide another
demonstration of the independence of step length distribution using our formulation
of the fluctuation theory introduced by Andersen [2].

Additionally, we include an independent Poisson process for forward scattering
with a rate Sf . Usually forward scattering is not included in one-dimensional
scattering because it does not change the ray propagation. We include it here as a step
towards analysis of three-dimensional problems. Therefore we obtain a generalization
of the Wuttke zigzag walk.

2. Traditional solution of the Kubelka-Munk model

Let us consider a homogenous layer with thickness d characterized by its absorption
coefficient χ and its scattering coefficient S. In this layer, the incident irradiance I

propagates in the positive direction and the reflected irradiance J propagates in the
negative direction. Both I and J are functions of the depth x in the layer. Depth
0 corresponds to the layer’s boundary receiving the incident irradiance I0. Depth d

indicates the other boundary. We consider, at an arbitrary depth x, a sub-layer with
infinitesimal thickness dx. The effect of the material in a thin element dx on I and J

is to:

• decrease I by I(S + χ)dx (absorption and scattering)

• decrease J by J(S + χ)dx (absorption and scattering)

• increase I by JSdx (scattered light from J reinforces I)

• increase J by ISdx (scattered light from I reinforces J).
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On these assumptions we obtain the system of equations:
(

dI

dJ

)

=

(

− (χ+ S) S

−S (χ+ S)

)(

I

J

)

dx, (1)

with solution
(

I(x)
J(x)

)

=

(

1− β 1 + β

1 + β 1− β

)(

Aeκx

Be−κx

)

, (2)

where β =

√

χ (χ+ 2S)
−1

and κ =
√

χ (χ+ 2S).
The coefficients A and B are determined by the boundary conditions at the two

surfaces. After some elementary calculations reflectance R and transmittance T of a
slab of thickness d are given by:

R =
J(0)

I0
=

(

1− β2
) (

eκd − e−κd
)

(1 + β)
2
eκd − (1− β)

2
e−κd

R0 =
Sd

1 + Sd
for χ = 0

T =
I(d)

I0
=

4β

(1 + β)
2
eκd − (1− β)

2
e−κd

T0 =
1

1 + Sd
for χ = 0.

(3)

The reflectance of a very thick layer (d → ∞) is:

R∞(S, χ) =
S + χ

S
−

√

(

S + χ

S

)2

− 1. (4)

The Kubelka-Munk reflectance, plays a major role in elucidating the connection
to combinatorics and random walks.

3. Distribution of path lengths from the reflectance

The fluxes I and J can be interpreted as ensembles of photons moving in the positive
and negative directions. The photons are absorbed at a rate χ and scattered in a
Poisson process at a rate S. Each photon path is weighted according to the Beer-
Lambert law by the absorption factor e−χλ. The reflectance is therefore the Laplace
transform of the path length distribution. Conversely the inverse Laplace transform
of R∞ leads to the path distribution.

We calculate the inverse Laplace transform of the reflectance L−1
χ (R∞(S, χ)) by

first expanding the reflectance in the scattering order

R∞(S, χ) =

∞
∑

np=1

Cnp−1

22np−1

(

S

S + χ

)2np−1

=
1

2

S

S + χ
C

(

(

1

2

S

S + χ

)2
)

, (5)

where C(x) is the generating function

C (x) =
∞
∑

n=0

Cnx
n =

1−
√
1− 4x

2x
(6)
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of the Catalan numbers Cn = (2n)! (n!(n+ 1)!)−1. We identify, term-by-term, the
path-length distribution of a random walk model with the inverse Laplace transform
ofR∞ (S, χ)

L−1
χ

(

S

S + χ

)2np−1

=
S2np−1λ2np−2e−Sλ

(2np − 2)!
. (7)

The distribution of λ and np derived from R∞ (S, χ) is

P (λ, np) =
1

λ
Cnp−1

(

Sλ

2

)2np−1
e−Sλ

(2np − 2)!

=
1

λ

(

Sλ

2

)2np−1
e−Sλ

np!(2np − 1)!
.

(8)

We agree with Wuttke[19] that “while scattering occurs at random, its effect
is deterministic when we model the Kubelka-Munk equation with a random walk.
Scattering always reverses the direction of motion. Therefore, trajectories form a
zigzag walk rather than a drunkard’s walk.” The random character of the zigzag
walk does not come necessarily from an exponentially distributed step length between
scattering events. We will demonstrate later in the paper that the effect of the
distribution of the step length between scattering events is distribution-free.

With no loss of generality we can include nf forward scattering events at a rate
Sf thus providing a persistent random walk model compatible with Kubelka-Munk.
Therefore the joint probability of the three random variables λ, np and nf is given by

P (λ, np, nf) =
Cnp−1

22np−1

S2np−1S
nf

f λ2np−2+nf

(2np − 2)!nf

e−(S+Sf )λ, (9)

and the joint probability for np and nf is then given by

P (np, nf ) =

∞
∫

0

P (λ, np, nf ) dλ

=
1

22np−1

[nf + 2 (np − 1)]!

nf !np! (np − 1)!

S
nf

f S2np−1

(Sf + S)
nf+2np−1 .

(10)

The combinatorial factor is related to the “Triangular array of Motzkin poly-
nomial coefficients” T (n, k), the number of Motzkin paths of length n with k up steps
T (nf + 2np − 2, np − 1), where according to the OEIS A055151[17],

T (n, k) =
n!

k! (k + 1)! (n− 2k)!
. (11)

4. Probability of first-passage by convolution

4.1. Iterations: building the skeleton

The previous results are derived from the inverse Laplace transform of the reflectance.
We now want to do a direct calculation of the trajectory distribution.

A skeleton trajectory, a.k.a. zigzag or alternating random walk, starts at 0 and
moves in the positive direction until it eventually reflects back towards the origin. If
it does not again reverse direction before it reaches the negative half plane, we say it
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x

y

x > y

x < y

Figure 1. Trajectories in the x, y plane

left the medium. A trajectory with np peaks is subject to (2np − 1) reflections before
leaving the medium and is labeled by the index np.

Consider now the flux of all possible trajectories starting at x = 0 and beginning
in the positive direction. The distribution of the first valley is a symmetrical function
P1(z) with the following properties:

∫

∞

−∞

P1(z)dz = 1

∫

∞

−∞

Pnp+1(z)dz =

∫

∞

0

Pnp
(z)dz.

(12)

A trajectory reflects back towards the origin at a height x. It reflects next time in
the positive direction after a distance y. If y > x, then we say the trajectory left the
medium. The probability distribution for the height of the second reflection z = x− y

is

P2 (z) =

∫ z

−∞

P1(z − y)P1(y)dy. (13)

This is a particular case of composition products considered by the Italian
mathematician Vito Volterra in 1913. The probability distribution for the location of
the following reflections np = 3, 4, · · · are given by iterative convolutions:

Pnp+1 (z) =

∫ z

−∞

Pnp
(z − y)P1(y)dy. (14)

Only the trajectories that stay in the medium at step np, are transferred to step np+1,
giving:

∫

∞

−∞

Pnp+1 (z)dz =

∫

∞

0

Pnp
(z)}dz. (15)

Using equations (12) to (15), calculating by induction and using the suitable limits of
integration, we obtain the probability of first-passage after peak np:

∫

∞

−∞

∫

∞

z

Pnp
(z − y)P1 (y) dydz =

Cnp−1

22nnp−1 . (16)

This explains the relation between the Kubelka-Munk reflection and the generating
function of the Catalan numbers.
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4.2. Dressing the skeleton: connection with combinatorics

The enumeration of lattice paths is a topic in combinatorics, closely related to the
study of random walks in probability theory. The ubiquitous presence of Catalan
numbers in the joint distribution function P (λ, np, nf ;S, Sf ) suggests a connection
with combinatorics. One approach to explain this connection is discretization. Since
the statistics of first passage is independent of the distribution of the path length, to
discretize the path we just have to integrate over λ. Therefore the discretized skeleton
(zigzag) walk is mapped onto a path in a two-dimensional lattice. We expect from
this transition to a lattice model to reproduce the analytical result obtained in section
(6).

The joint probability function is the product of the marginal probability times
the conditional probability:

P (np, nf ;S, Sf ) = P (nf |np)P (np) . (17)

The goal is to create new steps by randomly filling the 2np segments of the skeleton
with nf forward random scattering events and to calculate the resulting distribution.
Ultimately we want to find the related conditional probability P (np|nf ). There are
2np − 1 reflections and ms = 2np + nf steps.

With our notations we have paths from (2, 0) to 2(np, nf ) with the constraint
that np ≥ 1. Therefore the number of paths is given by:

(

2np + nf − 2
2np − 2

)

, (18)

then the number NC of combinations is given by:

NC(ms, np) =
(ms − 2)!

(2np − 2)!(ms − 2np)!
. (19)

We can now write the conditional probability of ms at constant np with r = S
S+Sf

P (ms|np; r) =
(ms − 2)!

(2np − 2)!(ms − 2np)!
r2np−1(1− r)ms−2np . (20)

This result has been confirmed by extensive Monte Carlo calculations and is
obtained by recursion in section (5). Then the joint probability PJG is given by

P (np, nf ; r) =
[nf + 2 (np − 1)]!

nf !np!(np − 1)!

( r

2

)2np−1

(1− r)nf . (21)

This is the same as equation ((10)). This confirms the combinatorial nature
(lattice paths enumeration) of the discrete form of the Kubelka-Munk equation.

5. Analytic calculation of the path distribution

In this section we integrate the scattering and attenuation of an ensemble of light rays.
We show directly the connection to Eq.(4), as opposed to the two-step calculation in
section (4). We use an exponentially distributed step length consistent with a uniform
absorption and scattering rate. Explicit integration will serve as a foundation for
exploration of higher dimensions and the effect of inhomogeneities in the media that
are important for print quality and medical imaging.

Consider a statistical ensemble of rays of light moving in a one-dimensional
diffusive medium on the positive axis. Again, the ray starts at the origin moving
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xP
1

xP
2

xP
3

xV
1 xV

2

E3

Figure 2. Example path with first passage at step 6.

upward in the positive direction and after multiple reflections, escapes the media to
the negative axis. The distribution of the number of scattering events and the path
length for the escaping rays is indicative of the statistical behavior in three dimensions.

A ray traveling through the medium is reflected at a rate of S reflections per
unit length and is attenuated at a rate of χ per unit length. The Poisson probability
density for reflection of a ray after traveling distance d is

ρ (d) = Φ(d)Se−Sd, (22)

where Φ(d) is the Heaviside step function. We will derive information about the
distribution of the number of scattering events and the path length when the ray
ultimately escapes. We choose to describe the current state of a ray by the direction,
the total prior upward movement l, the prior number of peaks np and the position x.
The upward movement is related to the path length by 2l− x = λ. Later we will add
the distribution of forward scattering events as an independent Poisson process based
on the path length.

The probability density for an upward reflection at a valley at height x with total
prior upward movement l at the valley after np peaks is PV

np
(x, l). The probability

density that the ray escapes with total path length λ in the scattering medium, after

the nthp peak is Enp
(λ). The probability densities for the peaks and valleys are not

normalized because the ray may escape before the reflection.
There are constraints on the integrals in iterating from one valley to the next.

The peaks are higher than the surrounding valleys. The ray must travel at least the
height of the peak to reach it. The path length is an increasing function as the ray
progresses. Therefore, as shown in Fig.(2),

xV
n ≤ xP

n ≥ xV
n−1, ln ≥ xP

n and ln ≥ ln−1. (23)

The sequence of probability densities at the peaks and valleys can be tediously
calculated recursively. The probability density at the next peak is found by integrating
the probability density at the valley over the height of the previous valley. Substituting
for PP

n and marginalizing over the peak, we obtain the valley-to-valley transfer.

PV
n (x, l) = Φ(x)

∫

∞

0

∫ l+x′

max(x,x′)

PP
n−1

(

x′, l − xP + x′
)

S2 e−S(2xP
−x′

−x)dxP dx′. (24)

The functional form of the probability densities at the valleys is evaluated by
iterating this expression starting from the initial condition that the ray starts with
upward motion from x = 0.

P0 (l, x) = δ (x) δ (l) , E0 (l) = 0. (25)
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The first peak integral simply involves satisfying the delta functions. Similarly, the
first valley integral uses the fact that l is the total upward motion. The probability that
the ray escapes is given by dropping the constraint that x is positive and integrating
over the negative half space:

E1 (l) = Φ (l)

∫ 0

−∞

S2e−S(l−x)dx

= Φ(l)Se−S(l).

(26)

Iterating from the probability distribution at one valley to that at the next valley,
we obtain:

Pnp
(x, l) = S2ne−S(l−x)Φ (l − x)Fnp−1

(x, l) . (27)

Here Fnp
is the total volume of the dimensional space of allowed configurations of the

2np−2 step path from the origin to a valley at the point x with path length λ = 2l−x.
The same form, an exponential times the volume of path configurations, will apply
in higher dimensions and more complicated geometries. Monte Carlo methods can be
applied to measure the path configuration volume in these situations.

Fnp
(x, l) =

∫ l

0

∫ l′

0

Fnp−1 (x
′, l′)Φ (l− l′ + x′ − x) dx′dl′

=
lnp−2(l − x)

np−1
(l + (np − 1)x)

(np − 1)! (np)!
.

(28)

Integrating over the negative half-space gives the escape probability density as a
function of upward path length and the total escape probability after the nth

p peak:

Enp
(λ) =

∫ 0

−∞

Pnp

(

λ

2
, x′

)

dx′ = S

(

S
λ

2

)2(np−1)
e−Sλ

(

nnp
− 1
)

! (np)!
. (29)

Integrating over λ gives the escape probability after np peaks in terms of Catalan
numbers. The result is independent of the scattering rate and the formula is identical
to Eq. (5) with χ = 0:

Enp
=

∫

∞

0

Enp
(λ) dλ =

1

22np−1
Cnp−1. (30)

We can add in absorption because we have the distribution of the path length.
The attenuation simply adds χ to S in the exponent:

Eχ
np

(λ) = S(Sλ)
2np−1 e−(S+χ)λ

(np − 1)! (np)!
. (31)

Integrating over the path length again yields Eq. (5)

Eχ
np

=

∫

∞

0

Eχ
np
(λ)dλ =

(

S

S + χ

)2np−1
(2np − 1)!

22np−1 (np − 1)! (np)!

=

(

S

S + χ

)2np−1 Cnp−1

22np−1
.

(32)
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The joint probability for np and nf is obtained by adding an independent Poisson
process for forward scattering

P (nf , np) =

∫

∞

0

ρ(nf |2Sfλ)E
χ
np
(λ)dλ

=
(nf + 2 (np − 1))!

22np−1nf ! (np − 1)!(np)!

S2np−1(Sf )
nf

(S + Sf + χ)
nf+2np−1 .

(33)

This result is identical to equations (10) and (21).

6. First passage events are distribution-free

The location of an alternating walk alternates between peaks and valleys. First passage
for an alternating walk occurs only at a valley where the step number m is even. We
start with the finite set of alternating walks An (cn) generated by permutations of a
set of n step sizes cn. The set cn is an element of the set Cn of all sets of lengths.

The first passage events are the subsets Fm of all allowed walks that are positive
before step m and first become negative at step m. It is possible that a walk never
becomes negative, so we add the event F0 of walks that are positive for the first n

steps. The set of n + 1 first passage events is a partition of the finite sample space.
We will show that the cardinality of Fm is independent of the set of n step sizes cn
as long as no sub-walk returns to the origin. We define a boundary subset Bn of Cn of
measure zero, where no sub-walk constructed from cn returns exactly to the origin.

We analyze the changes in event membership as we adjust values in cn
continuously by modifying step sizes. For a walk constructed from a set of lengths
not in the boundary set, let δ be the closest approach to the origin of any non-empty
sub-walk. At step m > 0 the absolute value of the position must be at least δ. If δ > 0
then a step size change with magnitude smaller than δ to any length ck ∈ cn will not
cause any change in first passage event membership. First passage event cardinality
is therefore locally constant, and so is constant within connected subsets of Cn − Bn.
The set Cn − Bn is not connected, so we examine changes in event cardinality when
crossing the boundary.

Any set of lengths can be reached by changing one length at a time, and so if
cardinality of an event does not change when crossing Bn, then the event cardinality
is constant in Cn − Bn.

The sequences of lengths in Bn are the only elements of Cn where walks can leave
or enter first passage events with small changes to a length. When changing a length
in a walk wm and moving the walk through the boundary point w∗

m the membership
of wm in an event can change. The set of walks generated from permutations or an
overall sign change of the steps in the sub-walk w∗

m also return to the origin. The
problem is to show cancellation of the changes in event membership among the walks
in this set as lengths are changed so that wm moves through the boundary point w∗

m.
The key step in our approach is to consider uniquely defined pairs of walks w∗

and w′∗ from the boundary set. Walk w∗ begins with a positive critical sub-walk
w∗

j as in Fig. (3). The paired walk w′∗ is identical after step j but begins with the
time-reversed sub-walk w′∗

j . The sets of positions of the paired walks are the same,
but they are in the reverse order for the first j steps. The step sizes in w′∗

m are the
same as the step sizes in w∗

m, but the first j steps occur in the reverse order and with
the opposite sign. All the critical walks generated from c∗n ∈ Bn that could change
the cardinality of Fm can be uniquely paired in this way.
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(a) (b)

(c) (d)

Figure 3. Example of pairing critical walks for the event “First passage on step
8.” Critical walk (a) is paired with critical walk (b) with the sub-walk reversed.
When the sixth step length is shortened, (c) shows walk (a) leaving the event and
(d) shows walk (b) joining the event.

For the first passage problem, the boundary of Fm consists of walks that are
non-negative for the first m − 1 steps and return exactly to zero at one of the first
m steps. Walks that return precisely to the origin on step m and are positive before
that step for steps 1, · · · (m− 1) will enter or leave the event with a small change in
a length. Similarly, walks that pass zero on step m but return precisely to the origin
on step j < m change membership in Fm with small length changes.

Suppose a walk from the boundary of Fm begins with such a j-step sub-walk w∗

j

which is positive for k < j and returns to 0 at step j. Consider changing a length
ck ∈ w∗

j through the critical value c∗k. A small increase in a length that is a downward
step in w∗

j will cause the walk to be in Fj while decreasing the same step will cause
the walk to be in Fm. Similarly, a small increase in a length that is an upward step
in w∗

j will cause the walk to be in Fm while decreasing the same step will cause the
walk be in Fj . Alternatively, if the walk touches zero at step m then increasing a
downward length will cause it to be in Fm while the paired walk will leave Fm.

If a step of length c∗k in sub-walk w∗

j has, say, a negative sign, then it is in w′∗

j

with a positive sign. When c∗k is changed to a lower value then walk w′ is in Fm and w

is not. Similarly, when ck is changed to a higher value, then walk w is in Fm and w′ is
not. Thus as ck is changed and the set of lengths crosses Bn one of each pair of walks
leaves the event Fm and the other joins the event. Although the pair of walks switch
which one is in event Fm, the total contribution of the two walks to the cardinality
of the event is the same. The cardinality of Fm is therefore unchanged by crossing
Bn. Examining the complete set of pairs of walks with time-reversed sub-walks thus
shows that the cardinality of first passage events, and thus the probability of first
passage at step m is independent of the set of n real lengths, except for the boundary
set Bn of measure 0 in Cn. Now averaging over Cn of this invariant probability gives
the result that the distribution of first passage step for alternating walks is step-size
distribution-free.

A critical point is that the sub-walk must have even length for alternating walks
so that walks beginning with w and w′ are both alternating walks in our sample space.
First passage always occurs on an even number step for alternating walks, so that is
not a problem here. In other types of events on An the requirement that the sub-
walks must have even length is important. The argument for first passage statistics for
symmetric walks carries through the same as for alternating walks with the exception
that the location of the first passage, and the length of the relevant sub-walks, need
not be even.



Light scattering as a Poisson process and first passage probability 11

To calculate first passage probabilities for an alternating walk, any set of lengths
suffices. Make a convenient choice like any subset of integer powers of 2 where each
length is larger than the sum of all smaller lengths. First passage of an alternating
walk occurs only in a valley which occurs on even numbered steps m = 2mp.

Given a set of n = 2np lengths selected from integer powers of 2, the fraction of
walks with first passage at step m = 2mp < n is

pfmp
=

Cmp−1

22mp−1
(34)

and the fraction that remains nonnegative is

p+mp
= (2mp − 1)

Cmp−1

22mp−1
(35)

The calculation will proceed by induction on np. The theorem is true for np = 1
because the probability of first passage in the first valley is 1

2 , as is the probability
that the walk stays positive. Either the first step upward is larger or smaller than
second step.

Suppose the theorem is true for allmp ≤ np. Consider alternating walks generated
from a set c2(np+1) of 2(np + 1) lengths selected from integer powers of 2. Divide the
alternating walks generated into a complete set of disjoint subsets where all walks in a
subset have the same last two steps. For each of these subsets, the first 2np steps are
all the permutation of the same set of lengths. By induction, the fraction of these in
F2mp

for mp ≤ np is given by the theorem. Similarly, the fraction that stay positive
until the last step is given by the theorem.

First passage can occur after the peak np + 1 only if the walk stayed positive for
the first np valleys and step 2np is the largest element of the set. The probability of
this is

p
f
np+1 =

p+np

2np + 2
. (36)

The walk will stay positive only if it is positive for the first np valleys and it does not
have a first passage at valley np + 1, so

p+np+1 = p+np
− p

f
np+1

in agreement with (35). The theorem is true for np+1, and so is proved by induction.
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