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In filtering, each output is produced by a certain number of different inputs. We explore the
statistics of this degeneracy in an explicitly treatable filtering problem in which filtering performs
the maximal compression of relevant information contained in inputs. The filter patterns in this
problem conveniently allow a microscopic, combinatorial consideration. This allows us to find the
statistics of outputs, namely the exact distribution of output degeneracies, for relatively large input
sizes. We observe that the resulting degeneracy distribution of outputs decays as e−c log

αd with
degeneracy d, where c is a constant and exponent α > 1, i.e. faster than a power law. Importantly,
its form essentially depends on the size of the input data set, appearing to be closer to a power-law
dependence for small data set sizes than for large ones. We demonstrate that for sufficiently small
input data set sizes typical for empirical studies, this distribution could be easily perceived as a
power law.

I. INTRODUCTION

Compression, filtering, and cryptography are related
areas in signal and information processing. By defini-
tion, a large number of possible inputs are mapped to a
smaller number of possible outputs, so that a given out-
put may correspond to multiple inputs, which number is
the output’s degeneracy. A similar problem emerges in
cooperative systems with a large number of local minima
in the energy landscape, in particular, in spin glasses and
deep learning neural networks. The configuration space
of a system of this sort can be divided into a set of do-
mains (basins) of attraction of these minima. One can
ask: what is the statistics of these domains of attraction,
what is the distribution of their sizes? This is analogous
to the degeneracy statistics problem.

These issues were explored in a recent series of works
[1–5] which exploited the principle of maximum entropy,
see also Refs. [6–10]. The finding of Refs. [1–5] is that
optimal compression generates outputs with broad dis-
tributions. More specifically, their entropy optimization
based theory predicts power-law like distributions of de-
generacy of maximally informative outputs (minimal suf-
ficient representations). The title of the paper “Minimum
description codes are critical” [2] published in the journal
Entropy highlights the message of that theory in the most
succinct way. On the other hand, distributions markedly
distinct from power laws can be observed in empirical dis-
tributions for these and related problems, for example, a
collection of empirical curves in Fig. 1 of Ref. [2].

In the present work we demonstrate how such diversity
can emerge by analysing a simple representative problem.
We introduce and explore a reference filtering problem
straightforwardly treatable through purely combinatorial
techniques. This filter performs the maximal compres-
sion of relevant information contained in inputs extract-
ing all positions of a given local pattern in the input,
see Fig. 1. The chosen simple filter pattern enables us

FIG. 1. (a) Filter extracting single ones and their positions
from sequences of ones and zeroes. Here the filter pattern
is a single one. Ones and zeroes are shown as black and
white pixels, respectively. (b) A number of different inputs
produce the same output. This number is the degeneracy of
the output.

to uncover a direct relation to a statistical physics prob-
lem, namely, the statistics of dimers on a chain. We
directly obtain the complex degeneracy distributions for
outputs generated from various input sets. We develop
efficient recursive methods that allow us to find this dis-
tribution for large input strings, as can be seen in Fig.2,
which would not be accessible through empirical sam-
pling methods. Due to the tractability of this problem,
we are able to identify precisely how these distributions
deviate from a power-law dependence. We find scaling
forms that accurately describe the tail of the degeneracy
distributions (see Fig. 3). We discover that these distri-
butions are essentially shaped by the size of the input
data. That is, input data sets of relatively small size,
typical for empirical studies, produce degeneracy distri-
butions of outputs that are closer to a power-law than
the distributions of outputs from very large input data
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sets. Finally, we develop a mean field theory and ob-
tain the asymptotics of the degeneracy distribution and
the spectrum of degeneracies. Our findings indicate that
the phenomena we observe should apply to more general
filtering and compression problems.

Our paper is organized in the following way. In Sec. II
we introduce our filter and the synthetic input data sets
for it. In Secs. III, IV, and V we obtain the basic relations
for the degeneracy of outputs, develop our algorithm, ob-
tain the complex degeneracy distributions of outputs for
the complete input data sets, and describe their features.
We develop the mean-field theory of these distributions
in filtering in Sec. VI. In Sec. VII we obtain the degener-
acy distributions of outputs for uniformly random input
data sets of various sizes. In Sec. VIII we discuss our re-
sults and indicate possible generalizations of our problem.
The Appendix contains the combinatorial derivations of
recursive relations used in Sec. III and explicit asymp-
totics. The exact results obtained by our algorithm and
recursions are provided in the Supplementary Material
[11].

II. A REFERENCE FILTERING PROBLEM

We study the distribution of outputs in a solvable fil-
tering problem by implementing a purely combinatorial,
microscopic approach not involving entropy considera-
tions. Let the input data be a set of N strings of zeroes
and ones (xi), xi = 0, 1, of length n, assuming the pe-
riodic condition x1 = xn+1. We consider two types of
data set. The first set is the complete set of all possible
unique inputs. Its size N is determined by the size n of
inputs, N = 2n. Second, we consider data sets of arbi-
trary size N consisting of strings of uniformly randomly
generated zeroes and ones constrained by the same peri-
odic condition as above. In the latter situation, some of
the elements of a data set may coincide. Clearly, in the
limit N → ∞, we arrive at a situation equivalent to the
complete data set. (We stress that the random data set
of size N = 2n differs from the the complete data set.)

The filter works as follows: every instance of a specific
pattern in the input is marked by a one in the corre-
sponding position in the output. All other positions are
marked with zeroes. This produces a minimal coding of
the positions of the pattern occurrences in the input. For
the sake of simplicity, we use the following filter. Each
sequence of ones of length 1 in the input (i.e., every 1
whose neighbors are both zeroes) gives 1 at the same po-
sition in the output. All other sequences of ones or zeroes
in the input produce zeroes in the corresponding places
in the output, as shown in Fig. 1. In other words, the
input vector (xi), i = 1, 2, ..., n, xi = 0, 1, is transformed
to the output vector with the following components:

yi = (1− xi−1)xi(1− xi+1). (1)

Filters extracting more complex patterns may be con-
structed in a similar way.

III. OUTPUTS AND THEIR DEGENERACIES
FOR COMPLETE INPUT DATASET

Let us begin by considering the complete input data
set, all 2n different configurations of zeroes and ones.
The total number of generated outputs, M(n), is the
number of all possible combinations having no sequences
of ones longer than one. This number coincides with the
number of different configurations of dimers in a closed
chain (ring) of length n:

M(n) = n

[n/2]∑

k=0

1

n− k

(
n− k
k

)
, (2)

where [n/2] is the integer part of n/2, see Appendix A 1.
M(n) = M(n−1)+M(n−2), M(3) = 4, M(4) = 7, which
gives a sequence corresponding to the Lucas numbers [12–
14]. The elements of the sequence may be written in
terms of the roots of the characteristic equation

z2 − z = 1. (3)

Thus

M(n) =
(1 +

√
5

2

)n
+
(1−

√
5

2

)n ∼=
(1 +

√
5

2

)n
= zng ,

(4)
where the last expression gives the large n limit. Here the
largest root (1 +

√
5)/2 = 1.61803... ≡ zg is the famous

golden ratio.
Each output consists of isolated ones separated by

strings of zeroes of various lengths. The key point for our
study is that the degeneracy of an output is the product
of the degeneracies of these strings of zeroes between ones
in this output. As is clear from Eq. (1), the presence of
a 1 in an output at position i fixes the digits of its inputs
at positions i − 1, i, and i + 1. These digits must be
0, 1, and 0, respectively. This is true for each 1 in the
output. On the other hand, each of the remaining digits
of these inputs compatible with a given output must be
either a 0 or be a 1 with one or two neighboring ones.
All the degrees of freedom in the input corresponding to
a given output correspond to these digits. Thus the de-
generacy of a given output is given by the product of the
degeneracies the strings of zeroes lying between the ones.

Let an output with m ≥ 1 ones contain m strings of
zeroes with lengths `1, `2, ..., `m. Then the degeneracy of
this output equals

d =

m∏

i=1

d̃(`i). (5)

Here d̃(`) is the number of input strings of length `, hav-
ing the first and last digits 0, that generate an output
string of ` zeroes. This number plays an important role
in our problem, similar to prime numbers in number the-
ory, so we call the d̃(`) prime degeneracies. Below we
shall find these prime degeneracies explicitly. The case
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FIG. 2. (a,c,e) Degeneracy distribution for the complete input data set: number of outputs of a given degeneracy vs.
degeneracy. (b,d,f) Cumulative degeneracy distribution for the complete input data set: number of outputs of degeneracy
greater than or equal to a given degeneracy vs. degeneracy. The input length is n = 21, 50, 120.

m = 0 is special due to the periodicity of the inputs and
outputs. Suppose that the output contains µ` strings of
zeroes of length `, ` = 1, 2, ..., where

m+
∑

`≥1

`µ` = n. (6)

Then Eq. (5) may be rewritten

d =
∏

`≥1

[d̃(`)]µ` (7)

for m ≥ 1.

Let us obtain d̃(`). We consider input strings whose
first and last digits are 0 and produce the output string
of ` zeroes. The number of these configurations, i.e., the
degeneracy d̃(`) of the output string of ` zeroes, can be
obtained recursively in the following way. We take into
account three points.

(i) Relevant input configurations of length ` are ob-
tained by inserting 0 or 1 into each relevant configuration
of length `− 1 between the first and second positions of
the sequence. (Recall that the first and last positions of
the input sequence are fixed to 0.)

(ii) Input strings of length ` beginning and/or ending
with 010 are irrelevant, and so they should be removed
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from the set generated at the previous step. These con-
figurations can be obtained by inserting two digits 10 into
each relevant input string of length `−2 between its first
and second positions.

(iii) Finally, there exist input strings, compatible with
the output string of ` zeroes, that cannot be obtained
by inserting a single digit into relevant input strings of
length ` − 1 between their first and second positions.
These are the input strings of length ` beginning with
0110. These inputs can be obtained by inserting 110 into
each relevant input string of length ` − 3 between their
first and second positions.

Following these rules, the degeneracy of a string of `
zeroes at the output, prime degeneracy d̃(`), can be writ-
ten recursively as a linear difference equation:

d̃(`) = 2d̃(`− 1)− d̃(`− 2) + d̃(`− 3) (8)

with the initial condition d̃(1) = d̃(2) = d̃(3) = 1. Alter-

natively, applying this equality to the term with d̃(`− 1)
on the right-hand side of this equation we arrive at the
equivalent difference equation

d̃(`) = d̃(`− 1) + d̃(`− 2) + d̃(`− 4) (9)

with the initial condition d̃(0) = 0, d̃(1) = d̃(2) = d̃(3) =
1. The solution of Eq. (8) is explicitly expressed in terms
of the complex roots z1, z2, and z3 of the characteristic
equation

z3 = 2z2 − z + 1, (10)

given initial conditions d̃(1) = d̃(2) = d̃(3) = 1:

d̃(`) = C1z1
` + C2z2

` + C3z3
`, (11)

where

C1 = (z1 − 1)/[(z1 − z2)(z1 − z3)],

C2 = (z2 − 1)/[(z2 − z1)(z2 − z3)],

C3 = (z3 − 1)/[(z3 − z1)(z3 − z2)]. (12)

One of the roots of Eq. (10), z1, say, is real,

z1 ≡ zd = 1.75488... . (13)

It determines the large ` asymptotics of prime degenera-
cies d̃(`):

d̃(`) ∼= zd
z4d − 2

z`d. (14)

Here we used the identity C1 = zd/(z
4
d − 2). The two

other roots are complex conjugate numbers,

z2,3 = 0.122561...± 0.744862... i. (15)

The special case of the periodic output of length n
with all digits 0 has to be considered separately. First let
us take an arbitrary digit of the input. The number of
input configurations where this digit is 0 and the resulting

output has only zeroes is given by d̃(n+ 1), because the
fixed 0 of the periodic input plays the role of first and
last digit of the configurations of a string of n+ 1 digits.
If the chosen digit is 1, then the number of the relevant
input configurations equals 1+

∑n−1
i=2 id̃(n−i), where the

sum over i accounts for the configurations where the digit
is in a group of i consecutive ones, plus one configuration
with all input digits equal to 1. Consequently, we obtain
the following expression for the degeneracy of the output
with all zeroes:

dD(n) = 1 + d̃(n+ 1) +

n−1∑

i=2

id̃(n− i), (16)

which is the largest possible degeneracy of an output of
a given length. Applying the recursion relation for prime
degeneracies d̃, Eq. (8) [or (9)], to the terms on the right-
hand side of Eq. (16) we find that the largest degeneracy
dD(n) satisfies the same difference equation as Eq. (8) [or,
equivalently, Eq. (9)] though with different initial condi-
tion, see, e.g., Ref. [15] and the On-line Encyclopedia of
Integer Sequencies [16]. We present this equation here
for future reference,

dD(n) = 2dD(n− 1)− dD(n− 2) + dD(n− 3) (17)

with the initial condition dD(3) = 5, dD(4) = 10, and
dD(5) = 17 or, equivalently, dD(0) = 3, dD(1) = 2, and
dD(2) = 2. Here, of course, D = D(n). With these initial
condition, we get the explicit solution of this equation,

dD(n) = z1
` + z2

` + z3
`, (18)

where z1 ≡ zd, z2, z3 are given by Eqs. (13) and (15), and
its large n asymptotics

dD(n) ∼= znd . (19)

IV. CALCULATING THE EXACT
DEGENERACY SPECTRUM

Let us explore the outputs generated by the complete
input data set, 2n inputs. In principle, we can find them
directly. That is, for each of these inputs, one by one, we
can obtain an output numerically by applying Eq. (1).
It is convenient to treat each output as an n-digit binary
number x1x2...xn. This enables us to sort all generated
outputs and easily find the degeneracy of each output.
In practice, we use a more efficient algorithm described
below. This algorithm focuses on outputs with a fixed
number of ones and exploits the factorization of the out-
put degeneracies, see Eq. (5).

Let us first describe how to generate the full list of
degeneracies. This can be found from integer parti-
tions in an explicit form, as follows. From Eqs. (8)

and (14), we know the prime degeneracy d̃(`) and
dD(n), respectively. Let us introduce the operator P,
which generates all integer partitions of positive inte-
ger k into r integers, that is, P(k, r) is the matrix
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FIG. 3. (a) Cumulative degeneracy distribution for
n = 20, 40, 60, 80, 100, 120. The black curves repre-
sent least-squares fittings of lnNcum(d, n) as lnN ∗

cum(n) +
Bn lnαn d for each n. (b) Cumulative degeneracy distri-
bution ln{− ln[Ncum(d, n)/N ∗

cum(n)]} vs. ln ln d for n =
20, 40, 60, 80, 100, 120. Inset: exponent α vs. 1/n.

whose rows i = 1, 2, ..., r are all different integer parti-
tions {Pi1(k, r),Pi2(k, r), ...,Pij(k, r), ...,Pir(k, r)} of k,∑r
j=1 Pij(k, r) = k [17, 18]. For an output of length

n, we consider all partitions of n −m into m integers ,
for all possible m = 1, 2, ..., [n/2]. For each such parti-
tion, [i.e., a row of P(n−m,m)], we find the degeneracy

di =
∏
j d̃(Pij(n−m,m)) [see Eq. (5)]. Some of them co-

incide, so we find the union of them. Finally, we add the
largest degeneracy dD(n) (corresponded to m = 0) to the
resulting set. In summary, for the full set of degeneracies
Dfull(n), we have

Dfull(n) = dD(n)
⋃{

[n/2]⋃

m=1

[⋃

i

∏

j

d̃(Pij(n−m,m))
]}

(20)

with d̃(`) and dD(n) provided by Eqs. (8) and (14), re-
spectively.

For each integer partition, i.e., for each row i of the
matrix P(n−m,m) we introduce the number µ(i)(`;n−
m,m) of pieces of length ` present in this partition:

n−m =
∑

`

`µ
(i)
` (n−m,m),

m =
∑

`

µ
(i)
` (n−m,m). (21)

So one can write

di =
∏

j

d̃(Pij(n−m,m)) =
∏

`

[d̃(`)]µ
(i)
` (n−m,m). (22)

The number of outputs that contain m chains of ze-
ros with lengths specified by the integer partition
Pi(n−m,m) is then obtained by considering the num-
ber of distinct permutations of the m strings of zeros,
multiplying by n, and finally dividing by m, giving

N [Pi(n−m,m)] = n
(m− 1)!

∏
` µ

(i)
` (n−m,m)!

, (23)

where the product in the denominator is over the lengths
of the parts of this partition. The total number of outputs
with degeneracy d is then finally:

N (d, n) = δ[d, dD(n)]

+

[n/2]∑

m=1

∑

i

n
(m− 1)!

∏
` µ

(i)
` (n−m,m)!

δ
[
d,
∏

`

[d̃(`)]µ
(i)
` (n−m,m)

]
,

(24)

where δ(a, b) is the Kronecker symbol. This is the ex-
pression we use for computing N (d) in an efficient way.
For the sake of brevity, hereafter we refer to N (d) as a
degeneracy distribution, without normalization.

The distribution N (d, n) can also be built up recur-
sively starting from small values of d and n, as we show
in Appendix A 2. This technique is valid for any finite d
and n.

V. OUTPUT DEGENERACY DISTRIBUTION
FOR COMPLETE INPUT DATASETS

Using this algorithm we obtained the number of out-
puts N (d) for the full spectrum of degeneracies d for n
up to 120, see Supplementary Material [11]. These re-
sults demonstrate that the degeneracies di , i = 1, ..., D,
form a discrete spectrum of values where dD is the largest
degeneracy, and d1 = 1.

Figure 2 shows the resulting distribution and the cor-
responding cumulative distribution Ncum(d) for n = 21,

50, and 120. Here Ncum(di) ≡
∑D
j=iN (dj). In particu-

lar, Ncum(d1) = M(n), i.e., the total number of outputs.
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Figures 2(b), (c), and (d) demonstrate that the cumula-
tive degeneracy distributions decay with d more rapidly
than a power law. On the other hand, the decay of the
cumulative distribution is well described by the function

Ncum(d) ∝ e−c lnα d = d−c ln
α−1d, (25)

where c is a positive number and exponent α approaches
2.3 as n→∞, see the inset in Fig. 3 (b). Notice that the
degeneracy distribution for smaller n, Fig. 2 (a), appears
more like a power law than the degeneracy distribution
for larger n, Fig. 2(c), for example, since the range of
d increases with n, while the exponent c lnα−1d of the

function d−c ln
α−1d varies slowly. Similarly, the cumula-

tive distribution plotted in log-log scale for n = 21 de-
viates from linear (power law behavior) noticeably less
than for larger n. The wide range of degeneracies d
that we observe enable us to present Fig. 3 (b) showing
ln{− ln[Ncum(d)/Ncum(1)]} vs. ln ln d. This plot sup-
ports the functional form given in Eq. (25). Note that
in Fig. 3 we assumed that the coefficient factor of the
asymptotics in Eq. (25) is close to Ncum(1), which is
justified by the results. Figure 4 shows how the set of
degeneracies Dfull(n) varies with n, see below for more
detail.

In Sec. III we derived the explicit expression for the
largest degeneracy dD(n) corresponding to the output
with all zeroes, Eq. (18), and found its large n asymp-
totics, dD(n) ∼= znd , Eq. (19). As is natural, N (1, n) = 1.
The second largest degeneracy corresponds to an output
with a single 1. The third largest degeneracy is for an
output with two ones separated by a single 0. The fourth
largest degeneracy is of the output with two ones sepa-
rated by three 0. Clearly, N (D − 1, n) = N (D − 2, n) =

N (D−3, n) = n. Using the asymptotics of d̃(`), Eq. (14),
we find that, asymptotically, at large n,

dD−1(n) ∼= znd
7.48391...

=
znd

z4d − 2
,

dD−2(n) ∼= zn−2d

z4d − 2
,

dD−3(n) ∼= zn−3d

z4d − 2
. (26)

One may also notice a complex structure in the cu-
mulative distributions Figs. 2(b), (d), and (f), Ncum(d)
resembling a staircase, with steep jumps between steps.
The heights of these jumps are especially large in the
region of high degeneracies. Inserting the asymptotics
of d̃(`), Eq. (5), into the expression for the degeneracy,
Eq. (14), we see that outputs with the same number of
ones have degeneracies exponentially close to znd /(z

4
d−2)2

if these ones are separated by many zeroes and n is large.
The slight deviations from this asymptotic value mean
that the degeneracies are split among many points falling
in a narrow range. For example, in the rightmost step,
corresponding to outputs with exactly two ones, the num-
ber of these outputs is n2/2 because there are relatively

0 5 10 15 20 25 30
n

100

102

104

106

108

d

FIG. 4. The set of degeneracy values d for each n (logarith-
mic scale). (The range of n was selected to make individual
points visible.)

few outputs in which the two ones are close together.
This is the height of this jump. If n is finite, these de-
generacies are split into a set of about n/2 distinct values,
each one for n outputs corresponding to the location of
the same structure in different parts of the ring. Other
jumps are produced by outputs with m strongly sepa-
rated ones, or by outputs with, e.g., a pair of ones sepa-
rated by one 0 with m− 2 ones far from each other and
from that pair, and so on. This forms the rich staircase-
like structure that we observe in Figs. 2(b), (d), and (e)
and that is also reflected in Fig. 4.

Note that any filter of our sort for a finite input pattern
will produce a similar complex structure in the degener-
acy distribution, as the degeneracy associated to a chain
of zeroes (in output) of a given length must asymptoti-
cally grow exponentially with the length of the chain, as
in Eq. (19). We stress that Eq. (19) is asymptotic and
not exact.

In Appendix A 2 we derive the chain of linear coupled
recursion relations for the number of outputs of degen-
eracy d, N (d, n), see Eqs. (A3), (A5) and (A12), (A13).
These recursions generate exact N (d, n) for finite d and
n, and in this sense provide the exact full spectrum of de-
generacies. (There recursions also provide us with the ex-
plicit leading large n asymptotics of N (d, n), Eq. (A14),
for an arbitrary d.) In particular, Eqs. (A3) with the
initial conditions, Eq. (A5), provide N (1, n) which is the
number of configurations having only groups of zeroes of
length 1, 2, and 3 between single ones. We find the large
n asymptotics for this number:

N (1, n) ∼= zna , (27)

where

za = 1.46557... (28)
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is the real root of the characterstic equation z4 = z2 +
z + 1.

One should note that there are three key constants
in this problem, namely zg, zd, and za, which appear
in the main asymptotics: M(n) ∼= zng , dD(n) ∼= znd ,
and N (1, n) ∼= zna . Indeed, zg enters the distribution
N (d, n)/M(n) after normalization, zd enters the asymp-

totics for degeneracies, see, e.g., Eq. (14) for d̃(`) and
(26) for di(n), and za enters the asymptotics for N (d, n),
Eqs. (A10) and (A14). In fact, all moments ofN (d, n) ex-

ponentially diverge with n,
∑D
i=1 d

k
iN (di, n) ∼= cnk , where

the numbers ck and their large k asymptotics are pre-
sented in Appendix B. Clearly, for the first moment we

have
∑D
i=1 diN (di, n) = 2n.

Using Eq. (20) we obtain the full set of degeneracies
Dfull(n) for different n, shown in Fig. 4, and the series of
total number of discrete values of degeneracy D(n) versus
input size, represented in Fig. 5, see also the Supplemen-
tary Material [11]. As is natural, D(n) is smaller than the
number p(n) of integer partitions of n. Figure 5 demon-
strates that D(n) is close to p(n)/n for large n. The well

known large n asymptotics p(n) ∼= 1
4
√
3n
eπ
√

2n/3 [19–21]

enables us to estimate D(n) ∼ eπ
√

2n/3.

By ranking the full set of degeneracies Dfull(n) for n =
120 we arrive at Fig. 6, where the main plot presents the
number of different degeneracies lower than or equal to d
vs. d, increasing roughly as exp[π

√
2 ln d/3 ln zd] in the

region 1 � d � dD, and the inset shows the number of
different degeneracies higher than or equal d vs. d. The
latter demonstrates a staircase-like structure similar to
that of Ncum(d).

The set of degeneracies occurring in the infinite sys-
tem (n→∞) can be obtained from the combinations of

integer powers of the prime degeneracies d̃(`) for all `. In
Fig. 6 we plot the number of different degeneracies lower
than or equal to d in the infinite system, i.e., the rank
of each degeneracy d. To obtain the full set of different
degeneracies for n→∞ up to some dmax we generate the
set of prime degeneracies d̃ ≤ dmax. We start by listing
all powers m ≥ 1 of the first prime degeneracy d̃ while
d̃m ≤ dmax. Then, we multiply each member of that
list by increasing powers of the next prime degeneracy,
while the product stays lower or equal to dmax, and so
on with all the remaining prime degeneracies d̃ ≤ dmax.
This procedure will result in duplicate degeneracies that
should be removed, particularly for those values of d that
have non-unique multiplicative partitions in terms of the
prime degeneracies.

For example, the two smallest (larger than 1) prime

degeneracies are d̃(4) = 2 and d̃(5) = 4, so a multiplica-

tive partition of d with at least a part equal to d̃(5) = 4
is not unique because there is at least another partition
of d where the contribution of the 4 for given in terms
d̃(4) as 22. However, apart from the partitions with parts
equal to 4, the non-unique partitions are very rare, see
Appendix A 2. In fact we were able to check that d̃(4) = 2

is the only prime degeneracy d̃(`) that can be expressed

as a product of lower d̃ for all ` ≤ 5000.

To explain why this property of primality is very likely
to hold for all large enough d̃(`), let us consider the num-
ber of conventional prime numbers smaller than some
number d, which grows as ∼ d/ ln d. Since d̃(`) ∼ z`d, the

number of conventional primes smaller than d̃(`) grows
exponentially with ` as ∼ z`d/`. Additionally, the aver-
age number of conventional primes in the factorization of
numbers of the magnitude of d grows as ∼ ln ln d [22]. A

necessary condition for some d̃(`) to not be prime is that
all of its prime factors are also factors of at least another
d̃ < d̃(`). The combination of the exponential increase of

conventional primes smaller than d̃(`), and the increase

of the number of factors of d̃(`) as ` increases, makes the

probability of the degeneracy d̃(`) not being prime ap-

proach 0 very rapidly. In the set of values d̃(` ≤ 200), the
only ones that do not contain at least one conventional
prime factor absent from all factorizations of smaller d̃
are d̃(5) = 4, d̃(8) = 21, d̃(12) = 200, d̃(13) = 351, and

d̃(24) = 170 625, and from these only d̃(5) is actually not
a prime degeneracy.

A similar argument can be used to derive recursion
relations that allow the calculation of N (d, n) up to any
finite n and d. We explain this calculation in Appendix
A 2.

The rank of the degeneracies in the infinite system can
be estimated with precision for large d, as shown by the
black line in Fig. 6. For large ` the logarithms of prime
degeneracies are uniformly distributed ln d̃(`) ≈ ` ln zd.
Assuming that all degeneracies d have a unique factor-
ization in terms of the prime degeneracies d̃, the expect
number of different degeneracies smaller than d ∼ zmd
would be rank d ≈ ∑n≤m p(n), where p(n) is the num-
ber of integer partitions of n. The vast majority of the
degeneracies for which the assumption does not hold are
the values of d which are multiples of 4, because that fac-
tor 4 can also be expressed as 22. We therefore remove
from each term of the previous sum the number of integer
partitions that have at least one factor equal to 2, which
is given by p(n− 2), and write for large d:

rank d ≈
∑

n≤ln d/ ln zd

[p(n)− p(n− 2)]

≈ p(ln d/ ln zd) + p(ln d/ ln zd − 1)

≈
exp

(
π
√

2/3
√

ln d/ ln zd

)

π2
√

3(ln d/ ln zd)

[
1−
(

13π

72
+

1

π

)√
3 ln zd
2 ln d

]
,

(29)

where we have used the two leading terms of the asymp-
totic expansion of the number of integer partitions [19]

p(n) ≈
exp

(
π
√

2/3
√
n
)

4
√

3n

[
1−
(
π

72
+

1

π

)√
3

2n

]
. (30)
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FIG. 5. Total number of different degeneracies D vs. n
(symbols). The curve is the number of integer partitions of n
divided by n.

FIG. 6. Number of distinct degeneracies less than or equal to
d vs. d. Inset: number of different degeneracies higher than
or equal d vs. d. The orange square symbols are full results
for n = 120. The circular blue symbols are values calculated
in the limit n→∞ as described in Sect. V. Solid black curve
is the asymptotic approximation Eq. (29).

Fig. 6 demonstrates that rank d as a function of d is well
described by the estimate Eq. (29).

VI. MEAN-FIELD THEORY

Here we develop a mean-field theory enabling us to
describe the cumulative distribution of degeneracies,
Ncum(d), in the region of large d where there are few
ones in the outputs, and so the gaps of zeroes between

them are typically large. In this situation one can assume
that the ones exist in a sea (or a mean field) of zeroes,
far from each other, so that the degeneracy of an output
is completely determined by the number of its ones (and
the output size n).

This ansatz is based on the observation that the three
terms on the right-hand side of Eq. (11) behave very
differently for increasing `: The first term grows expo-
nentially as z`d, where zd ≡ z1 = 1.754877... is real. The
combined contribution of the other two terms is also real,
since z2 = z∗3 (here ∗ denotes the complex conjugate). It
decays exponentially because |z2| = |z3| = 0.754877... <
1. Thus, for increasing `, the deviation of the asymptotics

d̃(`) ∼= C1zd
`, (31)

where the coefficient

C1 =
z1 − 1

(z1 − z2)(z1 − z3)
=

zd
z4d − 2

=
1

4.26463...
(32)

from the exact value of d̃(`) approaches 0 exponentially
rapidly, making this approximation excellent for large `.
The simplicity of Eq. (31) enables us to find the degen-
eracy of outputs whose strings of zeroes are large. These
are the typical outputs when there are sfew ones. Con-
sider an output with m ones, separated by m strings of
zeroes of length `1, `2, ..., `k. If all `i � 1 the degeneracy
d(m) of this output with m ones is accurately given by
the asymptotic expression

d(m) =

m∏

i=1

C1zd
`i = C1

mzd
n−m, (33)

where we used the condition
∑m
i=1 `i = n −m that the

number of ones plus the number of zeroes must be equal
to the total number of digits n.

The total number of different outputs with m ones is

N (m) =
n

n−m

(
n−m
m

)
, (34)

see Eq. (A1) in Appendix A 1. Notice that N (m) coin-
cides with the m-th term of the sum in Eq. (2), as it
must.

One should stress that although we derived the expres-
sions for d(m) and N (m) for m > 0, these expressions
are equally valid in the special case of m = 0. Indeed,
Eq. (34) givesN (0) = 1, which is exact. Further, Eq. (33)
gives d(0) ∼= znd for large n coinciding with dD ∼= zd

n,
Eq. (19). Thus Eqs. (33) and (34) work very well also
for m = 0. For m = 1 we find a similar situation in
terms of accuracy. In this case there is a single string
of zeroes of size n − 1, then every output with a single
1 has degeneracy equal to d̃(n − 1). The deviation be-

tween d(1) = C1z
n−1
1 and d̃(n− 1) decays exponentially

with n, making the estimation d(1) to d(1) extremely ac-
curate. For each value of m > 1 there is actually more
than one possible value for the degeneracy, that depends
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on the particular distribution of lengths of the strings of
zeroes. Nonetheless, for large n and m � n most of the
outputs contain only large strings of zeroes. Therefore
the set of points (d,N cum) for k = 0, 1, 2, ... describes the
exact cumulative distribution Ncum(d) well at the points
d = d(m) in the region of large d, which corresponds to
m � n. There are jumps in the cumulative distribution
at these points when n is large, and N cum(m) approaches
the top points of these jumps.

The resulting mean-field theory expression for the dis-
tribution takes the following form:

N (d, n) = δ(d, dD(n))

+

[n/2]∑

m=1

n

n−m

(
n−m
m

)
δ
(
d,

znd
(z4d − 2)m

)
. (35)

This approximation could also be obtained from the ex-
act result for N (d, n), Eq. (24), by approximating the
weighted sum

∑
i of Kronecker symbols in the expression

for N (d, n) by a single Kronecker symbol with a factor.
Let us obtain an explicit formula for the asymptotics of

N in terms of the degeneracy d. We simply replace m in
Eq. (34) by the inverse of the function d(m) in Eq. (33).
The inverse function is m(d) = (ln d − n ln zd)/(lnC1 −
ln zd) (where we have dropped the bar because d is now
the independent variable), and substituting into Eq. (34)
gives

N =
n

n−m

(
n−m
m

)
≈ nm

m!

=
z

n lnn
ln(zd/C1)

d

Γ
[
1− ln(d/znd )

ln(zd/C1)

]d−
lnn

ln(zd/C1) (36)

for m � n. Note that the logarithmic derivative of
N over d at the point dD (the highest degeneracy),
− lnn/ ln(z4d − 2), properly fits the two rightmost points
of the spectrum, namely dD(n) ∼= znd , N (dD) = 1 and
dD−1(n) ∼= znd /(z

4
d − 2), N (dD−1) = n.

VII. DEGENERACY DISTRIBUTIONS OF
OUTPUTS FOR RANDOMLY GENERATED

INPUT DATASETS

We observed that the outputs generated by complete
input data sets in the previous section do not produce
real power laws. One should note that in empirical stud-
ies, input data sets, typically, are not complete. Usually,
when inputs (input size n) are sufficiently large, the in-
put data set sizes, N , are much smaller than of complete
data sets, N � Cn, C > 1. Based on the sets of outputs
of complete data sets, which we obtained in the previous
section (listed in the Supplementary Material [11]), here
we find and explore the distribution of outputs of ran-
domly generated data sets of various sizes. (In principle,
these sizes can be also bigger than or equal to that of
complete data sets.)

Let the size of a randomly generated input data set be
N , i.e., we apply filtering to N randomly generated rings
of n zeroes and ones. We assume that all degeneracies of
the outputs of the corresponding complete input data set
are known, namely the full set of pairs {di,N (di)}, where
i = 1, 2, ..., D, D is the total number of degeneracies for
this n in the case of a complete input data set. Then
for the randomly generated input data set we obtain the
following expected number of outputs of degeneracy d:

〈N〉(d) =

(
N

d

) D∑

i=1

N (di)
( di

2n

)d(
1− di

2n

)N−d
. (37)

The probability that a randomly generated input string
produces a given output is simply di/2

n, where di is the
degeneracy of the output with respect to the total input
set. The probability that d of the N inputs produce this
output is then simply given by a binomial expression.
Summing over all total degeneracies (multiplying by the
number of instances of a given degeneracy di and sum-
ming over i) gives the above expression. Here outputs
of any degeneracy within the interval 1 ≤ d ≤ dD are
present with nonzero probability, in contrast to the case
of the complete input data set. The results of application
of this formula coincide with those obtained by record-
ing statistics of outputs directly filtered from randomly
generated inputs. Equation (37) leads to the following
equality:

∑

d

d 〈N〉(d) = N. (38)

Let us apply Eq. (37), for instance, to the cases n = 21
[see Fig. 2(a) above for the complete input data set con-
sisting of all 221 configurations] and n = 120, and inspect
the distributions of outputs of uniformly randomly gen-
erated input sets of different sizes. The results are shown
in Fig. 7. For each size of the random input data set we
present the degeneracy distribution and its cumulative
counterpart. These figures demonstrate that for N � 2n,
the distributions indeed resemble a power law. The rea-
son is that for sufficiently small N , the distribution does
not approach the large values of d for which the varia-

tion of the exponent c lnα−1 d in Ncum(d) ∝ d−c ln
α−1 d,

[see Eq. (25)], becomes noticeable. As N approaches 2n,
the distributions become closer to their counterparts for
the complete input data set. Clearly, the distributions
obtained in the limit N → ∞ will coincide with those
found for the complete input data set. Curiously, one
may obtain distributions with a very similar form for dif-
ferent values of n by choosing N in order to maintain the
scaling variable

s = (zd/2)nN (39)

constant. For example, compare the first with the third
row and the second with the fourth in Fig. 7. This com-
bination follows from the fact that the binomial prod-
uct in Eq. (37), as a function of d, forms a narrow peak
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centered at diN/2
n, which produces (zd/2)nN for the

largest degeneracy dD ∼= znd . This scaling disappears in
the region of small degeneracies. Note that if N � 2n,
Eq. (37) gives 〈N〉(1) ≈ N since

∑
i diN (di) = 2n.

Furthermore, let N � (4/c2)n, where c2 = 3.139...,∑
i d

2
iN (di) ∼= cn2 , see Appendix B. Then 〈N〉(1) ≈ N �

〈N〉(2) ≈ N(Ncn2/2
2n+1). Thus the vast majority of out-

puts have degeneracy 1 in this situation.

VIII. DISCUSSIONS AND CONCLUSIONS

Our straightforward, purely combinatorial treatment
reveals features of distributions of outputs hidden from
other approaches. For complete input data sets passed
through our filter, we have obtained degeneracy distribu-
tions markedly distinct from power laws. On the other
hand, these distributions decay as Ncum(d) ∝ e−c ln

αd,
α>1, much slower than exponentially, and in this sense
they can still be called “critical”. We have observed that
the entire form of these output distributions essentially
depends on the input size n, which strongly differs, for
example, from heavy tailed degree distributions of com-
plex networks having exponential cutoffs [23, 24].

For randomly generated input data sets, we found de-
generacy distributions which could easily be taken for
power laws in empirical studies, if the data set size N
is essentially smaller than 2n. As N → ∞, these distri-
butions approach the clearly non-power-law shape of the
distributions for the complete input data set. Thus we
show that the size of an input data set matters for these
problems.

Our model filter can be used as a convenient reference
filtering problem. We focused on simple input sets which
were uniformly random strings of zeroes and ones. Cor-
related inputs are more challenging for analytical treat-
ment. Exploring the simplest filter patterns, we showed
that the statistics of outputs is determined not by the
form of filter patterns but rather by what occurs in the
gaps of zeroes between them. The degeneracy corre-
sponding to each such gap can be found using recursion
relationships. We then used an integer partitions appara-
tus to aggregate the statistics of prime degeneracies from
these gaps, finding the exact full spectrum of output de-
generacies.

Considering the permutations of the integer partitions
allows us to calculate the resulting exact degeneracy
distribution N (d, n). Alternatively, using multiplicative
partitions we derive coupled linear recursions providing
the exact N (d, n) for any finite d and n and the explicit
large n asymptotics. Finally we developed a mean-field
theory which describes the approximate degeneracy spec-
trum, degeneracy distribution and their asymptotic be-
havior. Our mean-field theory of Sec. IV also derives from
the gaps between outputs. These results show that in fil-
ter problems of this kind, the statistics of outputs is de-
termined by the gaps between outputs, which are essen-
tially determined by the size of a filter pattern, and the

generalization of our results to larger patterns should be
straightforward. Therefore, more complex, larger filter
patterns than ours, Eq. (1), can be considered in a similar
way, and we expect similar distributions. For the sake of
simplicity, we studied inputs containing only zeroes and
ones. We expect that our approach and the mean-field
theory should be applicable to more rich inputs contain-
ing more degrees of freedom: larger sets of numbers, vec-
tors, etc., as well as to more general cooperative systems
with a large number of local minima. The next natu-
ral step after the mean field theory, namely a fluctuation
theory, should be based on accounting for small gaps be-
tween ones and the fluctuations of the lengths of these
gaps.

In summary, we suggest that our conclusions could be
generalized to other filtering and compression problems
involving more complex filter patterns and complex, not
necessary synthetic, higher dimensional inputs.
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Appendix A: Recursive relations

Here we present the derivations of the expression for
the number of different values of degeneracy of outputs
produced by complete input data sets, Eq. (2), and the
recursions for N (d, n) used in Sec. III.

1. Derivation of Eq. (2) for M(n)

The total number M(n) of different outputs in our
problem is the number of all possible periodic (period
n) combinations of zeroes and ones having no neighbor-
ing ones. Clearly, this number coincides with the total
number of different combinations of dimers in a ring of
length n. Then M(n) is a sum of combinations of dimers
in a string of length n− 2 or n, respectively.

To find the number of different outputs with k ones,
that is, the number of ways of placing k dimers in the
ring, it is convenient to consider the cases when the first
output digit is 1 and when it is 0 separately. This is
equivalent to fixing the state of two chosen neighboring
units: either there is a dimer connecting this pair or this
dimer is absent.

(i) When the first digit of an output is 1, both the
second and the last digits must be 0, and the number of
outputs in this case is given by the binomial coefficient(
n−k−1
k−1

)
, which corresponds to starting with the sequence

1, {0}n−k (where {0}n−m is a sequence of n−m zeroes),
and choosing k − 1 out of n− k − 1 distinct zeroes to be
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FIG. 7. Double logarithmic scale plots of (a,c,e,g) the degeneracy distributions and (b,d,f,h) the cumulative degeneracy
distributions obtained for a randomly generated input data sets of different sizes N for n = 21 and n = 120. The specific sizes
of input data sets for n = 120 are chosen to produce distributions similar to those for n = 21.

replaced by 01. Due to the periodic boundary condition,
the last 0 cannot be selected for replacement, hence the
number of zeroes that can be replaced is n− k − 1.

(ii) When the first digit of an output is 0, we start from
the sequence {0}n−k and replace k zeroes by 01. In this
case the replacement may be made at any of the n − k
zeroes, and the number of outputs is

(
n−k
k

)
.

The total number of different outputs is obtained by
summing these two contributions

N (k) =

(
n− k − 1

k − 1

)
+

(
n− k
k

)
=

n

n− k

(
n− k
k

)
,

(A1)
where we used the notation N (k) from Sec. VI.
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Summing over all possible values of k gives

M(n) = 1 +

[n/2]∑

k=1

[ (n− k − 1)!

(k − 1)!(n− 2k)!
+

(n− k)!

k!(n− k)!

]

= n

[n/2]∑

k=0

1

n− k

(
n− k
k

)
, (A2)

i.e., Eq. (2).

2. Recursions for N (d, n)

Input strings containing no strings of length greater
than one give outputs identical to the input. No other
input can produce the same output, so these outputs have
degeneracy 1. Such outputs, of degeneracy 1, contain no
chains of zeroes of length greater than 3. For the input
size n, the number of such outputs, N (1, n), can be ob-
tained recursively. Here we derive the recursive relation
for N (1, n) and indicate the recursions for N (d, n) for
higher degeneracy d.

Sequences of degeneracy 1 can be regarded as assort-
ments of three kinds of building blocks, 01, 001, and 0001,
put together in a ring of length n. All configurations of
blocks are allowed, as long as the total number of binary
digits is n. Let us consider a particular position i in the
ring and the block to which i belongs. If we add a block
01 between the block of i and one of its neighbor blocks
(say, the one to the right) to every possible configuration
of length n − 2, we get every possible configuration of
length n that has a block 01 to the right of the block of i.
Doing the same with configurations of length n − 3 and
blocks 001, we get all configurations with a block 001 to
the right of the block of i. Finally, repeating the proce-
dure for configurations of length n − 4 and blocks 0001,
gives all configurations with a block 0001 to the right of
the block of i. Since every block must be 01, 001, or
0001, the union of these three sets is the full set of con-
figurations of degeneracy 1 in system of n digits. Thus,
for the number of configurations in this set, N (1, n), we
can write

N (1, n) = N (1, n−2) +N (1, n−3) +N (1, n−4). (A3)

The explicit solution of this linear difference equation is
given in terms of the roots, z1, z2, z3, and z4, of the
characteristic equation z4 = z2 + z + 1:

N (1, n) = z1
n + z2

n + z3
n + z4

n, (A4)

where the coefficients of the powers of the roots zi are
found through the initial condition,

N (1, 1)=0, N (1, 2)=2, N (1, 3)=3, N (1, 4)=6, (A5)

and are equal to 1. The root z1 ≡ za = 1.46557... deter-
mines the large n asymptotics of N (1, n), Eq. (27).

We can expand the analysis to higher values of degen-
eracy. For example, the second smallest value, d2 = 2,
corresponds to the outputs with blocks of the types 01,
001, and 0001 and a single string 00001. Applying the
same reasoning as above, we get three terms similar to
the ones of Eq.(A3). We must, additionally, consider con-
figurations with degeneracy 1, to which we add a string
00001 in the same way, instead of one of the other blocks.
Then we get

N (2, n) = N (2, n−2) +N (2, n−3) +N (2, n−4)

+N (1, n−5) (A6)

with the initial condition

N (2, 1) = N (2, 2) = N (2, 3) = N (2, 4) = 0, N (2, 5) = 5.
(A7)

In a similar way, taking into account that the prime
degeneracy d̃(`) correspond to the inserted block of
` + 1 (chain of ` zeroes and 1 on the right),
i.e., 2, 4, 7, 12, 21, 37, 65, ... correspond to ` + 1 =
5, 6, 7, 8, 9, 10, 11, ..., respectively, we derive the recursion
relations for higher N (d, n) [here d 6= dD(n), for which,
clearly, N (dD(n), n) = 1],

N (4, n) = N (4, n−2) +N (4, n−3) +N (4, n−4)

+N (2, n−5) +N (1, n−6) (A8)

with the initial condition

N (4, 1)=...=N (4, 5)=0, N (4, 6)=6, (A9)

and so on. See the list of all recursive relations for d <
100 with initial conditions in the Supplementary Material
[11]. The corresponding large n asymptotics are

N (1, n) ∼= zna ,

N (2, n) ∼= 1

za(2z2a + 3za + 4)
nzna = 0.05376nzna ,

N (4, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]2
n2zna = 0.001445n2zna ,

(A10)

and so on. See the list of the resulting large n asymptotics
of N (d<100, n) in the Supplementary Material [11].

More generally, for any value of degeneracy d one can
write the recursion relation for N (d, n) in terms of the
multiplicative partition of d into prime degeneracies. Let
us present the full set of recursion relations for N (d, n).
The reasoning is as follows.

(i) The recursion relation for N (1, n) is given by
Eq. (A3) with the initial condition Eq. (A5).

(ii) For the largest degeneracies, N (dD(n), n) = 1.

(iii) All prime degeneracies d̃(`) except d̃(5) = 4 are
not multiplicatively separable into other prime degenera-
cies (primality property). The only exception is d̃(5) =

d̃2(4) = 22. See Sec. V above for more detail.
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(iv) Any degeneracy in the spectrum except dD (and
d = 1) is multiplicatively separable into the prime degen-

eracies d̃(`), namely,

d = d̃µ4(4)d̃µ5(5)d̃µ6(6)d̃ ν7(7)...

= 2µ44µ57µ612µ7 ...

= 2µ4+2µ57µ612µ7 ..., (A11)

where the powers µ` ≡ µ(`) are non-negative integers.

Due to the exception d̃(5) = d̃2(4) = 22 and the coin-

cidence d̃(5)d̃(8) = 4 × 21 = 7 × 12 = d̃(6)d̃(7), etc.,
the multiplicative partition into the prime degeneracies
d̃(`), Eq. (A11), may not be unique, see below. With all
possible integers µ(4) ≥ 0, µ(6) ≥ 0, µ(7) ≥ 0 ... we
generate the full list D of all degeneracies except 1 and
dD in the spectrum for n→∞. We place the generated
degeneracies in ascending order, ignoring repetitions for
some degeneracies. For a finite n, only some on the de-
generacies from this list are present in the spectrum. In
practice, we need degeneracies d only up to some, maybe,
large but finite value. So, generating this list, we use a fi-
nite set of non-negative integers µ4, µ6, µ7, ... respectively
restricted from above.

(v) For any degeneracy d in this list D we define the
vector L(d) ≡ (`1, `2, ..., `max), indicating that the prime

degeneracies (d̃(`1), d̃(`2), ..., d̃(`max)), given in ascending
order, are present in at least one of the partitions of d,
Eq. (A11). That is, if a prime partition d̃(`) is present in

L(d), then the ratio d/d̃(`) also belongs to D. Then the
recursion relation for N (d, n) has the form

N (d, n) = N (d, n−2) +N (d, n−3) +N (d, n−4)

+
∑

`∈L(d)

N (d/d̃(`), n−`−1), (A12)

where ` in the sum takes the values `1, `2, ..., `max, i.e., the
components of the vector L(d). This formula sums the

number of configurations N (d/d̃(`), n−`−1) of smaller
systems to which a block of ` zeros (followed by a one)
can be added in order to form a configuration of size n
and degeneracy d. We should not explicitly include in
this sum configurations that achieve degeneracy d by in-
serting more than one block of zeros. The insertion of
additional blocks besides a block of length l, say, into
smaller configurations are already accounted for in the
calculation of the degeneracy of the configuration of size
n−`−1 into which the block of length l will be inserted.
Note that the ratio d/d̃(`) in each of the terms in the
sum is one of the degeneracies, smaller than d, in the list
D with the degeneracy d = 1 added, so this set of recur-
sions together with the recursion for N (1, n), Eq. (A3),
is closed. The initial conditions for these recursions are

N (d, 1) = ... = N (d, `max) = 0,

N (d, `max+1) = (`max+1)δ(d, d̃(`max)), (A13)

where δ(i, j) is the Kronecker symbol. Note than when d

is a prime degeneracy d = d̃(`) = d̃(`max) except d = 4 =

d̃(5), the sum on the left-hand side of Eq. (A12) has only
one term, N (1, n−`max−1). If d = 4, Eqs. (A12) and
(A13) properly give the recursion for from Eq. (A8) with
the initial condition from Eq. (A9). Finally, for d = 1,
use Eq. (A3) with the initial condition Eq. (A5). [In fact,
if d = 1, the list L(d = 1) is empty, and Eq. (A12) is
reduced to Eq. (A3). We still need the initial condition,
Eq. (A5), for d = 1, since Eq. (A13) is not defined in this
case.]

(vi) Equations (A3), (A5) and (A12), (A13), in par-
ticular, provide all degeneracies present in the spectrum
for a given n. If some d is absent, these recursions pro-
duce N (d, n) = 0. For instance, let d = 64. The ini-
tial condition is N (64, 1)=...=N (64, 6)=0. The recur-
sions produce N (64, 7)=...=N (64, 17)=0, N (64, 18)=6,
N (64, 19)=0, N (64, 20)=20, and so on.

(vii) Our recursions, Eq. (A12), with their initial con-
ditions, Eq. (A13), lead to the following large n asymp-
totics of N (d, n):

N (d, n)

∼= 1∏
` 6=5 µ`!

[ n

za(2z2a + 3za + 4)

]∑
` 6=5 µ`

z
n−

∑
`≥6(`−4)µ`

a

(A14)

for d with the multiplicative partition into prime degen-
eracies, Eq. (A12), chosen in such a way that the power
of 2, µ4, in this partition is maximal.

Let us discuss this point in more detail. We stressed
above that a multiplicative partition of d ∈ D, Eq. (A12),
may not be unique. For large n, the contribution of each
of the possible multiplicative partitions of d to N (d, n)

is about n
∑
` µ`z

n−
∑
`(`−4)µ`

a . The leading asymptotics,
Eq. (A14), is with the maximal power of n, i.e., it orig-
inates from the partition with the maximal sum

∑
` µ`.

Let us check whether the multiplicative partition of d
with the maximal sum

∑
` µ` is unique and that this max-

imum corresponds to the maximal µ4. In other words, if
there exist a number of different multiplicative partitions
of d, that only one of them has the maximal µ4, and that
this partition has the maximal sum

∑
` µ`. We inspected

all products of prime degeneracies d̃(` ≤ 200) ≈ 1.7 1048

e focusing on the products producing non-unique multi-
plicative partitions. Apart from 22 = 4 discussed above,
we find only three such combinations with ` ≤ 200 (into
this number, we do not include the products of these com-
binations and arbitrary prime degeneracies). Namely,
22 × 21 = 7 × 12, 29 × 200 × 3512 = 126 × 652, and
22 × 122 × 170625 = 7 × 2002 × 351. For each of these
combinations we confirm that the left side of the equality
corresponds to the maximal

∑
` µ` and that this parti-

tions is unique. Clearly, the same is true for the products
of these combinations and arbitrary prime degeneracies.
Thus partitions contributing to the leading asymptotics
of N (d, n) are unique, and the gauge is fixed by demand-
ing µ4 = max, which leads to Eq. (A14). For grasping
the form of Eq. (A14), see also Eqs. (A10), especially the
asymptotics of N (84, n).
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Thus we have the chain of conveniently coupled linear
recursion relations that one can easily process starting
from d = 1. These recursions generate exact N (d, n)
for finite d and n, and in this sense provide the exact
solution of the problem. Moreover, the leading large n
asymptotics ofN (d, n) are found explicitly. Note that the
time of computing all N (d < d0, n), where d0 is fixed,
by using our recursions, is proportional to n, i.e. the
computation for each next size takes the same time.

Appendix B: Moments of N (d, n)

Here we list the large n asymptotics of the moments of
N (d, n). The leading asymptotics of the moments are of
the following form:

Mk(n) ≡
D∑

i=1

dkiN (di, n) ∼= cnk , (B1)

where

c0 = zg,

c1 = 2,

c2 = 3.13899009933542,

c3 = 5.41762864130976,

c4 = 9.48696631140060,

c5 = 16.6438119672308,

c6 = 29.2067717071942,

c7 = 51.2540583046806,

c8 = 89.9445429351823,

... (B2)

In their turn, the numbers ck have the following large k
asymptotics:

ck ∼= zkd [1 + (z4d − 2)−k + ...], (B3)

which is close to the numerical values listed above,
Eq. (B2), already for k = 2. The leading term zkd
results from the largest degeneracy in the spectrum,
N (dD∼=znd , n) = 1, the next term originates from the sec-
ond largest degeneracy, etc.
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SUPPLEMENTARY MATERIAL: 1. RECURSIONS AND ASYMPTOTICS FOR N (d < 100, n). 2. TABLES
OF EXACT RESULTS FOR COMPLETE INPUT DATA SETS

1. Recursions and asymptotics for N (d < 100, n)

Here we show the recursion relations for N (d, n) with degeneracy d up to 100, initial conditions for them, and their
large n asymptotics. These formulas are particular cases of Eqs. (A12), (A13), and (A10), respectively.

N (1, n) = N (1, n−2) +N (1, n−3) +N (1, n−4),

N (2, n) = N (2, n−2) +N (2, n−3) +N (2, n−4) +N (1, n−5),

N (4, n) = N (4, n−2) +N (4, n−3) +N (4, n−4) +N (2, n−5) +N (1, n−6),

N (7, n) = N (7, n−2) +N (7, n−3) +N (7, n−4) +N (1, n−7),

N (8, n) = N (8, n−2) +N (8, n−3) +N (8, n−4) +N (4, n−5) +N (2, n−6),

N (12, n) = N (12, n−2) +N (12, n−3) +N (12, n−4) +N (1, n−8),

N (14, n) = N (14, n−2) +N (14, n−3) +N (14, n−4) +N (7, n−5) +N (2, n−7),

N (16, n) = N (16, n−2) +N (16, n−3) +N (16, n−4) +N (8, n−5) +N (4, n−6),

N (21, n) = N (21, n−2) +N (21, n−3) +N (21, n−4) +N (1, n−9),

N (24, n) = N (24, n−2) +N (24, n−3) +N (24, n−4) +N (12, n−5) +N (2, n−8),

N (28, n) = N (28, n−2) +N (28, n−3) +N (28, n−4) +N (14, n−5) +N (7, n−6) +N (4, n−7),

N (32, n) = N (32, n−2) +N (32, n−3) +N (32, n−4) +N (16, n−5) +N (8, n−6),

N (37, n) = N (37, n−2) +N (37, n−3) +N (37, n−4) +N (1, n−10),

N (42, n) = N (42, n−2) +N (42, n−3) +N (42, n−4) +N (21, n−5) +N (2, n−9),

N (48, n) = N (48, n−2) +N (48, n−3) +N (48, n−4) +N (24, n−5) +N (12, n−6) +N (4, n−8),

N (49, n) = N (49, n−2) +N (49, n−3) +N (49, n−4) +N (7, n−7),

N (56, n) = N (56, n−2) +N (56, n−3) +N (56, n−4) +N (28, n−5) +N (14, n−6) +N (8, n−7),

N (64, n) = N (64, n−2) +N (64, n−3) +N (64, n−4) +N (32, n−5) +N (16, n−6),

N (65, n) = N (65, n−2) +N (65, n−3) +N (65, n−4) +N (1, n−11),

N (74, n) = N (74, n−2) +N (74, n−3) +N (74, n−4) +N (37, n−5) +N (2, n−10),

N (84, n) = N (84, n−2)+N (84, n−3)+N (84, n−4)+N (42, n−5)+N (21, n−6)+N (12, n−7)+N (7, n−8)+N (4, n−9),

N (96, n) = N (96, n−2) +N (96, n−3) +N (96, n−4) +N (48, n−5) +N (24, n−6) +N (8, n−8),

N (98, n) = N (98, n−2) +N (98, n−3) +N (98, n−4) +N (49, n−5) +N (14, n−7) (B4)
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with the initial conditions

N (1, 1)=0, N (1, 2)=2, N (1, 3)=3, N (1, 4)=6,

N (2, 1)=...=N (2, 4)=0, N (2, 5)=5,

N (4, 1)=...=N (4, 5)=0, N (4, 6)=6,

N (7, 1)=...=N (7, 6)=0, N (7, 7)=7,

N (8, 1)=...=N (8, 6)=0,

N (12, 1)=...=N (12, 7)=0, N (12, 8)=8,

N (14, 1)=...=N (14, 7)=0,

N (16, 1)=...=N (16, 6)=0,

N (21, 1)=...=N (21, 8)=0, N (21, 9)=9,

N (24, 1)=...=N (24, 8)=0,

N (28, 1)=...=N (28, 7)=0,

N (32, 1)=...=N (32, 6)=0,

N (37, 1)=...=N (37, 9)=0, N (37, 10)=10,

N (42, 1)=...=N (42, 9)=0,

N (48, 1)=...=N (48, 8)=0,

N (49, 1)=...=N (49, 7)=0,

N (56, 1)=...=N (56, 7)=0,

N (64, 1)=...=N (64, 6)=0,

N (65, 1)=...=N (65, 10)=0, N (65, 11)=11,

N (74, 1)=...=N (74, 10)=0,

N (84, 1)=...=N (84, 9)=0,

N (96, 1)=...=N (96, 8)=0,

N (98, 1)=...=N (98, 7)=0. (B5)
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The corresponding large n asymptotics are

N (1, n) ∼= zna ,

N (2, n) ∼= 1

za(2z2a + 3za + 4)
nzna = 0.05376nzna ,

N (4, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]2
n2zna = 0.001445n2zna ,

N (7, n) ∼= 1

za(2z2a + 3za + 4)
nzn−2a = 0.02503nzna ,

N (8, n) ∼= 1

3!

[ 1

za(2z2a + 3za + 4)

]3
n3zna = 0.00002589n3zna ,

N (12, n) ∼= 1

za(2z2a + 3za + 4)
nzn−3a = 0.01708nzna ,

N (14, n) ∼=
[ 1

za(2z2a + 3za + 4)

]2
n2zn−2a = 0.001345n2zna ,

N (16, n) ∼= 1

4!

[ 1

za(2z2a + 3za + 4)

]4
n4zna = 3.480×10−7n4zna ,

N (21, n) ∼= 1

za(2z2a + 3za + 4)
nzn−4a ,

N (24, n) ∼=
[ 1

za(2z2a + 3za + 4)

]2
n2zn−3a ,

N (28, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]3
n3zn−2a ,

N (32, n) ∼= 1

5!

[ 1

za(2z2a + 3za + 4)

]5
n5zna ,

N (37, n) ∼= 1

za(2z2a + 3za + 4)
nzn−5a ,

N (42, n) ∼=
[ 1

za(2z2a + 3za + 4)

]2
n2zn−4a ,

N (48, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]3
n3zn−3a ,

N (49, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]2
n2zn−4a ,

N (56, n) ∼= 1

3!

[ 1

za(2z2a + 3za + 4)

]4
n4zn−2a ,

N (64, n) ∼= 1

6!

[ 1

za(2z2a + 3za + 4)

]6
n6zna ,

N (65, n) ∼= 1

za(2z2a + 3za + 4)
nzn−6a ,

N (74, n) ∼=
[ 1

za(2z2a + 3za + 4)

]2
n2zn−5a ,

N (84, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]3
n3zn−4a ,

N (96, n) ∼= 1

3!

[ 1

za(2z2a + 3za + 4)

]4
n4zn−3a ,

N (98, n) ∼= 1

2!

[ 1

za(2z2a + 3za + 4)

]3
n3zn−4a ,

... . (B6)
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2. Tables of exact results for complete input data sets

Table I contains the complete data on the spectrum of degeneracy of outputs for complete input data sets of
length n up to n = 21, namely all pairs {di,Ni}, i = 1, ..., D, where di is the i-th value of degeneracy and Ni is
the corresponding number of outputs having this degeneracy. This data for n = 21 is presented in graphical form in
Fig. 2(a,b). Table II presents the total number of different values of degeneracy D for each input length n ≤ 120.

TABLE I. Spectrum of degeneracy produced by complete input data sets with input strings of length n, i.e., the pairs {di,Ni},
i = 1, ..., D, where di is the i-th value of degeneracy and Ni is the corresponding number of outputs having this degeneracy, D
is the total number of different values of degeneracy.

n
dj

Nj

3
1

3

5

1

4
1

6

10

1

5
1

5

2

5

17

1

6
1

11

4

6

29

1

7
1

14

2

7

7

7

51

1

8
1

22

2

8

4

8

12

8

90

1

9
1

30

2

18

4

9

7

9

21

9

158

1

10
1

47

2

20

4

25

7

10

12

10

37

10

277

1

11
1

66

2

44

4

22

7

22

8

11

12

11

21

11

65

11

486

1

12
1

99

2

60

4

60

7

24

12

24

14

12

16

6

21

12

37

12

114

12

853

1

13
1

143

2

104

4

78

7

52

8

26

12

26

21

26

24

13

28

13

37

13

65

13

200

13

1497

1

14
1

212

2

154

4

147

7

70

8

28

12

56

14

28

16

14

21

28

37

28

42

14

48

14

49

7

65

14

114

14

351

14

2627

1

15
1

308

2

255

4

210

7

120

8

80

12

75

14

30

16

15

21

60

24

30

28

30

37

30

65

30

74

15

84

30

114

15

200

15

616

15

4610

1

16
1

454

2

384

4

376

7

176

8

96

12

128

14

80

16

56

21

80

24

32

28

32

37

64

42

32

48

32

49

16

65

32

114

32

130

16

144

8

147

16

148

16

200

16

351

16

1081

16

8090

1

17
1

663

2

612

4

561

7

289

8

238

12

187

14

102

16

51

21

136

24

85

28

102

32

17

37

85

42

34

48

34

49

17

65

68

74

34

84

68

114

34

200

34

228

17

252

17

259

17

260

17

351

17

616

17

1897

17

14197

1

18
1

974

2

936

4

936

7

432

8

342

12

306

14

234

16

171

21

198

24

108

28

108

37

144

42

90

48

108

49

45

56

36

64

6

65

90

74

36

84

72

114

72

130

36

144

18

147

36

148

36

200

36

351

36

400

18

441

9

444

18

455

18

456

18

616

18

1081

18

3329

18

24914

1

19
1

1425

2

1463

4

1444

7

684

8

665

12

456

14

342

16

228

21

323

24

247

28

304

32

57

37

209

42

114

48

114

49

57

65

152

74

95

84

209

96

38

98

19

112

19

114

95

130

38

144

19

147

38

148

38

200

76

228

38

252

38

259

38

260

38

351

38

616

38

702

19

777

19

780

19

798

19

800

19

1081

19

1897

19

5842

19

43721

1

20
1

2091

2

2240

4

2340

7

1040

8

1040

12

720

14

640

16

505

21

480

24

360

28

420

32

60

37

340

42

260

48

320

49

130

56

120

64

20

65

220

74

120

84

240

114

160

130

100

144

50

147

100

148

120

168

80

192

20

196

20

200

100

228

40

252

40

259

40

260

40

351

80

400

40

441

20

444

40

455

40

456

40

616

40

1081

40

1232

20

1365

20

1368

20

1369

10

1400

20

1404

20

1897

20

3329

20

10252

20

76725

1

21
1

3062

2

3465

4

3633

7

1617

8

1876

12

1092

14

1008

16

756

21

756

24

672

28

861

32

210

37

504

42

378

48

441

49

189

56

126

64

21

65

357

74

273

84

609

96

126

98

63

112

63

114

231

130

126

144

63

147

126

148

126

200

168

228

105

252

105

259

105

260

126

288

21

294

42

296

42

336

63

343

7

351

105

400

42

441

21

444

42

455

42

456

42

616

84

702

42

777

42

780

42

798

42

800

42

1081

42

1897

42

2162

21

2394

21

2400

21

2405

21

2457

21

2464

21

3329

21

5842

21

17991

21

134643

1
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TABLE II. The total number of different values of degeneracy D for each input length n.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D 2 2 3 3 4 5 6 7 9 11 13 17 19 25

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30

D 29 36 43 52 63 75 90 108 128 153 181 215 253 300

n 31 32 33 34 35 36 37 38 39 40 41 42 43 44

D 351 415 485 569 665 777 904 1054 1223 1421 1645 1905 2200 2543

n 45 46 47 48 49 50 51 52 53 54 55 56 57 58

D 2929 3375 3879 4461 5114 5868 6716 7686 8782 10030 11437 13040 14841 16888

n 59 60 61 62 63 64 65 66 67 68 69 70 71 72

D 19190 21799 24727 28043 31761 35960 40667 45973 51913 58600 66080 74482 83876 94416

n 73 74 75 76 77 78 79 80 81 82 83 84 85 86

D 106179 119365 134072 150524 168868 189358 212176 237646 265977 297558 332666 371756 415165 463454

n 87 88 89 90 91 92 93 94 95 96 97 98 99 100

D 517032 576564 642571 715835 796997 887002 986631 1096998 1219086 1354211 1503550 1668712 1851106 2052643

n 101 102 103 104 105 106 107 108 109 110 111 112 113 114

D 2275056 2520605 2791384 3090106 3419284 3782133 4181719 4621841 5106175 5639272 6225525 6870327 7578971 8357846

n 115 116 117 118 119 120

D 9213269 10152854 11184127 12316088 13557775 14919808
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