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Abstract

A d-dimensional polycube is a facet-connected set of cells (cubes) on the d-dimensional cubical
lattice Zd. Let Ad(n) denote the number of d-dimensional polycubes (distinct up to translations) with n
cubes, and λd denote the limit of the ratio Ad(n+1)/Ad(n) as n → ∞. The exact value of λd is still
unknown rigorously for any dimension d ≥ 2; the asymptotics of λd, as d→∞, also remained elusive as
of today. In this paper, we revisit and extend the approach presented by Klarner and Rivest in 1973 to
bound A2(n) from above. Our contributions are:

• Using available computing power, we prove that λ2 ≤ 4.5252. This is the first improvement of the
upper bound on λ2 in almost half a century;

• We prove that λd ≤ (2d− 2)e+ o(1) for any value of d ≥ 2, using a novel construction of a rational
generating function which dominates that of the sequence (Ad(n));

• For d = 3, this provides a subtantial improvement of the upper bound on λ3 from 12.2071 to 9.8073;

• However, we implement an iterative process in three dimensions, which improves further the upper
bound on λ3 to 9.3835;
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1 Introduction

Polyominoes are edge-connected sets of squares on the square lattice.

Figure 1: Polyominoes of
sizes 1 ≤ n ≤ 4

The size of a polyomino is the number of squares it contains. All poly-
ominoes of size up to 4 are shown in Figure 1. Likewise, polycubes are
facet-connected sets of d-dimensional unit cubes, where connectivity is
through (d−1)-dimensional faces. Two fixed polycubes are considered
identical if one can be obtained by a translation of the other. In this
paper, we consider only fixed polycubes. Polyominoes and polycubes are
specific types of lattice animals, the term used in the statistical physics
literature to refer to connected sets of cells on any lattice.

The fundamental combinatorial problem concerning polycubes is “How
many polycubes with n cubes are there?” This problem originated in
parallel in the theory of percolation [14, 29], in the analysis of chemical
graphs [10, 12, 20, 23], and in the graph-theoretic treatment of cell-growth problems [18] more than half
a century ago. However, despite much research in those areas, most of what is known relies primarily
on heuristics and empirical studies, and very little is known rigorously, even for the low-dimensional lat-
tices in 2 ≤ d ≤ 4 dimensions. The simplest instance of counting polyominoes is considered one of the
fundamental open problems in combinatorial geometry [2].

Let Ad(n) (sequence A001168 in the On-line Encyclopedia of Integer Sequences [1]) denote the number
of polycubes of size n. Since no analytic formula for Ad(n) is known for any dimension d>1, many re-
searchers have focused on efficient algorithms for counting polycubes by size, primarily the square lattice.
These methods are based on either explicitly enumerating all polycubes (e.g., by an efficient back-tracking
algorithm [25, 28]), or on implicit enumeration (e.g., by a transfer-matrix algorithm [9, 16]). The se-
quence A2(n) has been determined so far up to n = 56 [16]. Enumerating polycubes in higher dimensions
is an even more elusive problem. Most notably, Aleksandrowicz and Barequet [3, 4] extended polycube
counting by efficiently generalizing Redelmeier’s algorithm [28] to higher dimensions. The statistical-physics
literature provides extensive enumeration data of polycubes [14, 24, 23, 13], the most comprehensive being
by Luther and Mertens [21], in particular, listing A3(n) up to n=19.

One key fact that holds in all dimensions was discovered in 1967 by Klarner [18], showing that the
limit λ2 := limn→∞

n
√
A2(n) exists. This is a straightforward consequence of the fact that the se-

quence (logA2(n)) is supper-additive, i.e., A2(n)A2(m) ≤ A2(n + m). Since then, λ2 has been called
“Klarner’s constant.” Only in 1999, Madras [22] proved the existence of the asymptotic growth rate,
namely, limn→∞A2(n+ 1)/A2(n), which clearly equals λ2. Klerner’s and Madras’s results hold, in fact, in
any dimension.

A great deal of attention has been given to estimating the values of λd, especially for d=2, 3. Their
exact values are not known and have remained elusive for many years. Based on interpolation methods,
applied to the known values of the sequences (A2(n)) and (A3(n)), it is estimated (without a rigorous
proof), that λ2 ≈ 4.06 [16] and λ3 ≈ 8.34 [15]. There have been several attempts to bound λ2 from below,
with significant progress over the years [6, 7, 11, 17, 18, 26, 27], but almost nothing is known for higher
dimensions. For d = 2, it has been proven that λ2 ≥ 4.0025 [7]. For d > 2, the only known way to set a
lower bound on λd is by using the fact [18] that λd = limn→∞

n
√
Ad(n) = supn≥1

n
√
dAd(n). In particular,

for d=3, the value A3(19)=651, 459, 315, 795, 897 yields the lower bound λ3 ≥ 19
√

3A3(19) ≈ 6.3795, which
is quite far from the best estimate of λ3 mentioned above.

On the other hand, only one procedure (Eden [11]) is known for bounding λd from above.1 This

1Another method for bounding λ2 from above was presented elsewhere [5], but G. Rote (personal communication) discovered
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procedure (explained in detail in the next section) shows that λ2 ≤ 6.7500, λ3 ≤ 12.2071 and that λd ≤
(2d − 1)e. It was shown in [8] that λd ∼ 2ed − o(d) as d tends to infinity, and conjectured (based on an
unproven assumption) that λd is asymptotically equal to (2d−3)e+O(1/d).

As we detail in the next section, Klarner and Rivest [19] enhanced Eden’s method by using a more
sophisticated system of “twigs,” proving that λ2 ≤ 4.6496. In this paper, we extend this enhancement to
higher dimensions, and show that it results in the two-variable rational generating function

g(d)(x, y) =

∞∑
n,m=0

ld(n,m)xnym =

∞∑
n=0

xyn
(

(1 + x)2(d−1) + x2
)n

=
x

1− y
(
(1 + x)2(d−1) + x2

) ,
whose diagonal function

∑∞
n=0 ld(n, n)xnyn generates a sequence which dominates the sequence (Ad(n)).

Using elementary calculus, Klarner and Rivest [19] proved that for d = 2, l2(n, n) ≤ 4.8285n. Similarly, we
prove that for d = 3, we have that l3(n, n) ≤ 9.8073n, giving the first nontrivial upper bound on λ3. Finally,
we prove that λd ≤ (2d−2)e+1/(2d−2), by proving that ld(n, n) ≤ ((2d− 2)e+ 1/(2d− 2))n. To the best
of our knowledge, this is the first generalization of Klarner and Rivest’s method to higher dimensions, and
the first algorithmic approach for improving the upper bound on λd for any value of d > 2. An important
result of this enhancement for dimensions d ≥ 3 is an improved upper bound on the space complexity
required to encode polycubes, namely, a polycube of size n can be encoded with O(2d− 2)n) bits.

Lastly, we revisit the computer-assisted approach that Klarner and Rivest [19] used to further improve
the upper bound on λ2 to 4.6495. We are not aware of any published attempt to reproduce their result.
With the computing resources currently available to us, we improve the upper bound on λ2 to 4.5252. We
also extend the approach to d = 3, and prove that λ3 ≤ 9.3835.

2 Previous Works by Eden, and Klarner and Rivest

For two d-dimensional cubes with centers c1 =

e1

e2 e3 e4

e5 e6 e7

e8

Figure 2: Eden’s set of twigs [19, Figure 3]

(x1, . . . , xd) and c2 = (y1, . . . , yd), we say that c1
is lexicographically smaller than c2 if xi < yi for
the first value of i where they differ. Let P be
an n-cell polycube in d dimensions. P can be
uniquely encoded with a binary stringWP of length
(2d−1)n−1 [8, 11], as follows. Let G be the cell-
adjacency graph of P . (The vertices of G are the
centers of the cubes in P , and two vertices are con-
nected by an edge if their corresponding cubes are
adjacent.) Perform a breadth-first search on G, starting at cell 1 (the lexicographically smallest cell of P ).
In the course of this procedure, every cell c ∈ P is reached through an incoming edge e since P is connected.
(An imaginary edge incoming into cell 1 is fixed so as to supposedly originate from a cell that cannot belong
to P .) Clearly, the cell c is connected by edges of G to at most 2d−1 additional neighboring cells. The
procedure now traverses all these outgoing edges according to a fixed order determined by their orientations
relative to e. (For example, for polyominoes, the outgoing edges are traversed according to their clockwise
order relative to e.) Then, if such an edge leads to a cell of P which has not been labeled yet, this cell is
assigned the next unused number, and we update WP := WP · 1, where “·” is the concatenation operator.
Otherwise, if the cell does not belong to P , or it is already assigned a number, we set WP := WP · 0. Since
each cell can be assigned a number only once, this procedure maps polycubes in a one-to-one manner into

an error in the computations thereof. Fixing this error raised the obtained upper bound above the known bound [19].
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binary sequences with n−1 ones and (2d−2)n zeros. Hence, using Stirling’s formula,

Ad(n) ≤
(

(2d− 1)(n− 1)

n− 1

)
≤
(

(2d− 1)2d−1

(2d− 2)2d−2

)n

. (1)

For polyominoes, this procedure is equivalent to assigning an element of E = {e1, . . . , e8} (Figure 2) to
each square of P (in the same order).

In three dimensions, one obtains that λ3 ≤ 55/44 ≤ 12.2071. In general, since (2d−1)2d−1

(2d−2)2d−2 = (2d −

1)
(

1 + 1
2d−2

)2d−2
< (2d−1)e, it follows that λd ≤ (2d−1)e. (In fact, a more thorough analysis of the last

relation shows that λd ≤ (2d−1.5)e.) (The latter value is also known as the “Bethe approximation” of λd;
see Gaunt et al. [14, p. 1904, Eq. 3.9], and Gaunt and Peard [?, p. 7523, Eq. 4.9].)

Now refer to Figure 3. Around any square u on the
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Figure 3: L-contexts of [19, Figure 6]

square lattice, there are eight L-shaped 4-sets of squares,
called the “L-contexts” of u [19]. Let us use the term sta-
tus of a cell to refer to whether or not the cell belongs to a
given polyomino. In their beautiful paper [19], Klarner and
Rivest designed a set of twigs L (see Figure 4), which is more
compact than E. They showed that similarly to e1, . . . , e8,
L1, . . . , L5 can serve as building blocks for polyominoes: Ev-
ery n-cell polyomino P corresponds to a unique n-term se-
quence of elements of L, however, not every such sequence
represents a polyomino, immediately implying that λ2 <
|L| = 5, which is already a substantial improvement over
6.75.

The key idea behind the design of L is that one can per-
2
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Figure 4: Twig set L [19, Figure 7]

form a breadth-first search on the cell-adjacency graph of a
polyomino, such that at each step, each cell can be assigned
one of the eight L-contexts shown in Figure 3, such that the
statuses of all cells in this L-context are already encoded.
Therefore, while E encodes all 23 = 8 possible status config-
urations of three neighbors at every step of the traversal, L
encodes the statuses of just two neighbors at each step. The sequence Lp, encoding a polyomino P , can
be constructed algorithmically as follows. Assume, w.l.o.g., that in the lexicographic order defined over
the cells of P , the cells are ordered first according to their y-coordinate, and secondly according to their
x-coordinate. Maintain a queue (initially empty) of white (or open) cells. White cells are cells that have
not yet been visited by the algorithm. Start from the lexicographically-smallest cell of P , and put it in
the queue. The L-context of this cell is the one shown in Figure 3(a), since, by definition, the cells in this
L-context of the cell do not to belong to P . The addition of twigs to the configuration T constructed so
far proceeds as follows until the queue is empty. Let u be the oldest cell in the queue. Remove u from the
queue. Let a, b denote the cells connected to u (as shown in Figure 3), c (6= u) denote the cell connected
to a, b, and ` denote the last label assigned to a cell of P (initially ` = 0). Refer to Figure 4. The twig L
assigned to u is L1 if a, b, c /∈ P ; L2 if b, c /∈ P and a ∈ P ; L3 if b /∈ P and a, c ∈ P ; L4 if a /∈ P and b ∈ P ;
or L5 if a, b ∈ P . A new configuration T ∗ L is then constructed as follows:

1. The root cell of L (shown in black in Figure 4) is placed over u, such that the orientation (L-context)
of L and u coincide (this may require a reflection and/or rotation of L).

2. The white cell, where L has been added, is turned black (dead).
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3. The cells of L marked with an X (called forbidden) become forbidden in T , namely, they will never
become cells of T .

4. The white cells of L are added (in their indicated order) to the queue. Note that each white cell has
an assigned L-context (indicated by the shape L), and that the statuses of all cells in this L-context
are known (and thus, already encoded).

5. The white cell(s) of L are assigned the label `+1 (or `+1 and `+2, in order).

Note that when a ∈ P and b /∈ P , it is necessary to encode whether or not c is in P (twigs L3

and L2, resp.), so that when a is inserted to the queue, the statuses of all cells in its indicated L-
context are encoded. Note also that the linear order of the white cells in L3 and L5 is necessary to
ensure the uniqueness of the construction. For the second white cell in either L3 or L5, the statuses
of all cells in its indicated L-context are known only after assigning a twig to the first open cell. An
example of this process is shown in Fig. 5(b): Let ui be the cell visited at step i, and ai, bi be the
cells connected to ui (Figure 3). The cell u1 is assigned the label 1 and the twig L5 since a1, b1 ∈ P .
In order to assign a twig Li ∈ L to u2, Li is rotated by 90◦ and reflected around the x axis. Note
that a cell can be discovered and labeled only once. Therefore, u5 is assigned the twig L1 (not L4)
since the cell on its right was already discovered at the fourth iteration and assigned the label 8.

3

1 2

4

8

9

6

7

10

5

Figure 5: [19, Figure 8]
LP = (L5, L4, L3, L5, L1, L1, L2, L1, L4, L1).

Observation 2.1 Two different polyominoes are encoded
with different sequences of twigs.

With this construction, Klarner and Rivest reduced
the number of building blocks of polyominoes from 8
to 5. It is natural to ask if a more compact set of building
blocks exists. We can now answer this question on the
negative, since the existence of such set of size 4 would
imply that λ2 ≤ 4, while we already know that λ2 ≥
4.0025 [7].

2.1 Mathematical Formulation

The upper bound λ2 ≤ 5 can be improved by a more delicate analysis, which assigns different “weights” to
different elements of L, as follows. Each twig L ∈ L is assigned a weight w(L) = xayb, where a denotes the
number of cells in L minus 1, and b denotes the number of black cells in L. (Thus, w(L1) = y, w(L2) = xy,
w(L3) = x2y, w(L4) = xy, and w(L5) = x2y.) The weight of a sequence S = (`1, . . . , `k) ∈ Lk is defined as
W (S) = x · w(`1) · . . . · w(`k), and the weight of the empty sequence is defined to be x.

Let P be a polyomino of size n, and let Lp = {`1, . . . , `n} ∈ Ln denote the sequence of twigs encoding P .
For each `i ∈ L, we clearly have that w(`i) = xaiy, such that ai ∈ {0, 1, 2} equals the number of open cells
in `i. Thus, w(Lp) = x · x

∑n
i=1 aiyn. Moreover,

∑n
i=1 ai = n−1 because each cell of P (other than the

smallest cell) becomes open only once, and is thus accounted for by some aj in the sum. The smallest cell
is accounted for by the term x in w(Lp).

Corollary 2.2 w(Lp) = xnyn.

Now, let Lk denote the set of all sequences of k ≥ 0 elements of L. The sum of weights of all finite
sequences of elements of L is

∞∑
k=0

∑
S∈Lk

W (S) =

∞∑
k=0

x

(∑
`∈L

w(`)

)k

= x

(
1−

∑
`∈L

w(`)

)−1
. (2)
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Clearly,
∑

`∈Lw(`) = y(2x2 + 2x+ 1), thus, the generating function given by (2) is

∞∑
m,n=0

l(m,n)xmyn =
x

1− y(2x2 + 2x+ 1)
=
∞∑
n=0

xyn(2x2 + 2x+ 1)n, (3)

where l(m,n) is the coefficient of the term xmyn.

By Observation 2.1 and Corollary 2.2, there is an injection of the set of polyominoes of size n into
the set of finite sequences of elements of L having weight xnyn. Thus, the coefficient l(n, n) of xnyn in
Equation (3) is an upper bound on A2(n). In Section 3.3.1, we follow the proof of Klarner and Rivest [19]
for showing that l(n, n) ≤ 4.8285n. In the next two sections, we extend the concept of “L-context” to
higher dimensions.

3 Higher Dimensions

3.1 Three Dimensions

x2

x1
o

x3
*

*

*

*

*

*

Figure 6: The +L context (bold black lines) of a cell o on the 3D cubical lattice

We generalize the twigs idea to three dimensions as follows. Refer to Figure 6. Let o = (0, 0, 0) be the
lexicographically-smallest cell of the polycube. Thus, by definition, all cubes that lie in the planes x1 = −1
and x2 = 1 do not belong to the polycube. We define the “+L-context” of o (this name indicates a
composition of a “Plus” and an “Ell”) to be the six cells around o shown in asterisks in Figure 6. Observe
that the set of 2-dimensional twigs L (Figure 4) captures all possible occupancy configurations of the
neighbors of o that lie in the x1x2 plane. For the remaining neighbors of o (namely, cells (0, 0,−1)
and (0, 0, 1)), there are 22 = 4 possible encodings of whether or not they belong to the polycube. This
yields the set L(3) of seventeen 3-dimensional twigs, shown in Figure 7. Similarly to two dimensions, the
cells of a twig are either black or white, and the +L context and linear order of the open cells is indicated.
Similarly to L1, . . . , L5 (in Figure 2), it is easy to check that T1, . . . , T17 (in Figure 4) serve as complete
building blocks for polycubes since they cover all possible situations (a formal proof is given in the next
section). Every n-cell polycube P corresponds to a unique n-term sequence of elements of L(3), and different
polycubes are assigned different sequences. The sequence corresponding to a polycube can be constructed
algorithmically by a breadth-first search as in two dimensions. Every twig is assigned a weight in the same
manner, and we get that∑

`∈L(3)
w(`) = y(1 + 4x+ 7x2 + 4x3 + x4) = y

(
(x+ 1)4 + x2

)
.

Thus, the generating function given by Eq. (2) is

x

1− y(1 + 4x+ 7x2 + 4x3 + x4)
=

∞∑
n=0

xyn(1 + 4x+ 7x2 + 4x3 + x4)n. (4)

See Section 3.3 for the full analysis of this generating function.
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4

1
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T9 T10 T11 T12
2

1 2

1 1

2

T13 T14 T15 T16
3

12

T17

Figure 7: 3-dimensional twigs

3.2 d > 3

Our construction in three dimensions can be applied inductively for d > 3. The base of the induction
is d=2, where we fix a square in the x1x2 plane (as in Figure 6) together with its L-context. Going to d=3,
the square gains two new neighbors in the third dimension x3. In general, when we go from d−1 to d
dimensions, a cube gains two neighbors in the new dimension xd. Let o = (0, 0, . . . , 0) be a d-dimensional
cube (d > 2). We define the +dL-context of o in a recursive way. The base of the definition is +2L := L
and +L := +3L, and the recursion is +dL := +d−1L∪{c1, c2}, where c1,2 = (−1, 0, . . . , 0,±1). The geometric
interpretation of the +dL-context of o is an L-shape around o in the x1x2 plane, which intersects d−2 lines
in the x1 = −1 plane at the point (−1, 0, . . . , 0).

The set of twigs L(d) (where L(2) = L) is comprised of all 22d−2 occupancy options for the cells neighbor-
ing o (which are not in its +dL-context): In dimensions x3, . . . , xd, the construction simply covers all 22(d−2)

occupancy options for the two neighbors of o. In the x1x2 plane, the occupancies of the neighbors of o are
captured by L, as in Fig. 4, and the only “problematic” case is when the cube (1, 0, . . . , 0) is white and all
other neighbors of o are not (as is the case with the twigs L2, L3 in Figure 4, and T13, T14 in Figure 7). It
is, thus, necessary to encode the status of the cell (1,−1, 0, . . . , 0), since, by construction, it is contained
in the +dL context of the cell (1, 0, . . . , 0). This results in 22(d−2) · 22 + 1 = 22(d−1) + 1 twigs, and compares
favorably with the generalization of Eden’s construction, which contains about two times more (22d−1)
twigs.

In order to prove that our construction works better, all we need to show is that for any white cell u in
every twig in L(d), there is a set of 4+2(d−2) = 2d cells around u, which can be completely ignored by the
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construction when visiting u. Those cells can form its +dL-context. Note that except the second white cell
in the problematics case mentioned above, all white cells are neighbors of o. In case a new neighbor of o,
namely, (0, 0, . . . , 0,±1), is open, the L-shape in its +dL-context is formed by c1 (or c2), (−1, 0, . . . , 0), o,
and (1, 0, . . . , 0); the rest of the cells in its +dL-context are (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1, 0) (that is,
all coordinates are 0, except one coordinate in the range 2, . . . , (d−1), which is ±1). Note that the statuses
of these cells are known by construction. For the other possible white neighbors n = (0, . . . , 0,±1, 0, . . . , 0)
of o, +dL = +d−1L∪(0, . . . , 0,±1) since, by construction, o is where the ‘L’ and the ‘+’ in the +d−1L-context
of n intersect. Thus, the union +d−1L ∪ (0, . . . , 0,±1) forms its +dL-context; The statuses of the cells in
its +d−1L-context and of (0, . . . , 0,±1) are known by induction and construction, respectively. Finally, we
need to address the second white cell p = (1,−1, 0, . . . , 0) in the problematic twig mentioned above. This
cell will always be visited after the first open cell q = (0, 1, 0 . . . , 0) of the twig is visited and assigned a
twig. Once q is assigned a twig, the statuses of all its neighbors will be encoded. Then, it is easy to check
that the cells (1, 0, . . . , 0), o, (0, 1, 0 . . . , 0), and (0, 2, 0 . . . , 0) form the L-shape in the neighborhood of p,
and together with the remaining 2(d−1) neighbors of q, they form the +dL-context of p. The statuses of
these cells are already encoded by construction.

Finally, we need to compute the weight function W (d)(x, y) =
∑

t∈L(d) w(t). Since o has 2(d−1) neigh-

bors that are not in its +dL-context, there are
(
2(d−1)

i

)
twigs in L(d) with exactly i white cells and one

black cell (o), and the weight of each such twig is xiy. Recall the problematic case mentioned above, which
results in an additional twig with three cells—1 black and 2 white—whose weight is therefore x2y. Hence,

W (d)(x, y) =
∑
t∈L(d)

w(t) =

2(d−1)∑
i=0

[(
2(d− 1)

i

)
xiy

]
+ x2y = y((x+ 1)2(d−1) + x2).

Substituting W (d)(x, y) in the generating function from Equation (2), we obtain

g(d)(x, y) = ld(n,m)xmyn =

∞∑
n=0

xyn
(

(1 + x)2(d−1) + x2
)n

=
x

1− y
(
(1 + x)2(d−1) + x2

) ,
Similarly to polyominoes, polycubes of size n are mapped uniquely to sequences of elements of L(d)

having weight xnyn.

3.3 Analysis of the Generating Functions

It can be easily observed that ld(n, n), the coefficient of xnyn in g(d)(x, y), is the coefficient of xn−1

in
(
(1 + x)2(d−1)+x2

)n
. We now show how to compute ld(n, n). Let h(d)(x) =

(
(1 + x)2(d−1)+x2

)n
. We

start with the simple cases of d = 2, 3, and then generalize the calculation to any value of d.

3.3.1 d = 2

In two dimensions, h(2)(x) =
(
(1 + x)2 + x2

)n
= (1 + 2x + 2x2)n. By the Multinomial Theorem, we have

that

(1 + 2x+ 2x2)n =
∑
i1,i2

[(
n

n− i1 − i2, i1, i2

)
(2x)i1(2x2)i2

]
.

7



Since we want to compute the coefficient of xn−1, we require that i1+2i2 = n−1, i.e., i1 = n−2i2−1. Thus,

l2(n, n) =
∑
i2

[(
n

i2 + 1, n− 2i2 − 1, i2

)
2n−i2−1

]
=

2n

2

∑
i2

[(
n

i2 + 1, n− 2i2 − 1, i2

)(
1

2

)i2
]

=

2n√
2

∑
i2

[(
n

i2 + 1, n− 2i2 − 1, i2

)(
1√
2

)i2 ( 1√
2

)i2+1
]
<∗

2n√
2

(
1√
2

+
1√
2

+ 1

)n

=

(
2(
√

2 + 1)
)n

√
2

.

(The relation “<∗” is because the summation in its left-hand side contains only a subset of the terms whose
sum is equal to the exponential term on the right-hand side.) Hence, λ2 ≤ 2(

√
2 + 1) ≈ 4.82843.

3.3.2 d = 3

Theorem 3.1 λ3 ≤ 9.8073.

Proof: We repeat the calculation in the same manner as above.

h(3)(x) =
(
(1 + x)4 + x2

)n
= (1 + 4x+ 7x2 + 4x3 + x4)n =∑

i1,i2,i3,i4

[(
n

(n−
∑4

j=1 ij), i1, i2, i3, i4

)
4i17i24i3xi1+2i2+3i3+4i4

]
.

Similarly to the 2-dimensional case, we require that i1+2i2+3i3+4i4 = n−1, that is,
i1=n−1−2i2−3i3−4i4. Substituting i1 in the right-hand side of the equality above, we obtain

l3(n, n) =
∑[(

n

i2 + 2i3+3i4+1, n−1−2i2−3i3−4i4, i2, i3, i4

)
4n−1−2i2−3i3−4i47i24i3

]
.

Therefore, by the Multinomial Theorem, we have that

l3(n, n) =
4n

4

∑
i2,i3,i4

[(
n

i2 + 2i3+3i4+1, n−1−2i2−3i3−4i4, i2, i3, i4

)(
7

42

)i2 ( 4

43

)i3 ( 1

44

)i4
]
<

4n

4

(
7

42
+

1

42
+

1

44
+ 1 + 1

)n

=
1

4

(
641

64

)n

.

Thus, λ3 ≤ 641
64 ≈ 10.016, already improving significantly on the known upper bound of λ3 ≤ 12.2071 (see

Section 2). However, we can do better than that. Let b > 0 be some constant, whose value will be specified
later, and rewrite the multinomial expression above as

l3(n, n) =
4n

4

∑
i2,i3,i4


(

n

i2 + 2i3+3i4+1, n−1−2i2−3i3−4i4, i2, i3, i4

)(
7(
b4b
)2
)i2 (

4(
b4b
)3
)i3 (

1(
b4b
)4
)i4

︸ ︷︷ ︸
c(b)

 ,

and rearrange the three terms in c(b) as follows.
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c(b) =

(
1

b2

)i2
(

7(
4
b

)2
)i2 (

1

b3

)i3
(

4(
4
b

)3
)i3 (

1

b4

)i4
(

1(
4
b

)4
)i4

=

(
1

b

)i2 (1

b

)i2
(

7(
4
b

)2
)i2 (

1

b2

)i3 (1

b

)i3
(

4(
4
b

)3
)i3 (

1

b3

)i4 (1

b

)i4
(

1(
4
b

)4
)i4

=

(
1

b

)i2
(

7
16
b

)i2 (
1

b

)2i3
(

4
43

b2

)i3 (
1

b

)3i4
(

1
44

b3

)i4

=

(
1

b

)i2+2i3+3i4
(

7
16
b

)i2 (
4
43

b2

)i3 (
1
44

b3

)i4

.

Thus,

l3(n, n) =

4n

4

∑
i2,i3,i4

( n

i2+2i3+3i4+1, n−1−2i2−3i3−4i4, i2, i3, i4

)(
1

b

)i2+2i3+3i4
(

7
16
b

)i2 (
4
43

b2

)i3 (
1
44

b3

)i4


< 4n
(

1

b
+ 1 +

7b

16
+
b2

42
+
b3

44

)n

,

where the last relation is again due to the Multinomial Theorem and due to the partial summation.

The heart of our trick is that the partial summation allows us to choose the value of b that minimizes
the sum of the chosen summands (by assigning appropriate weights to the five components). Define

f(b) =
1

b
+ 1 +

7b

16
+
b2

42
+
b3

44
.

Our goal, then, is to choose b so as to minimize f(b). Elementary calculus shows that f(b) assumes its
minimum at b0 = 1.274306378 and that f(b0) = 2.451823893. Recall that l3(n, n) < 4nfn(b) for any b, in
particular, for b = b0. Hence, finally,

l3(n, n) < 4n · 2.451823893n = 9.807295572n.

(Had we chosen b = 1, we would have obtained again the bound λ3 ≤ 10.016.) The claim follows. �

3.3.3 General value of d

Theorem 3.2 λd ≤ (2d− 2)e+ 1/(2d− 2).

Proof: The proof for a general value of d > 3 is similar to that for d = 2, 3. For simplicity, let us
fix a = 2(d− 1). We have that

h(d)(x) =
(
(1 + x)a + x2

)n
=

1 + ax+

((
a

2

)
+ 1

)
x2 +

a∑
j=3

(
a

j

)
xj

n

=

∑
i1,...,ia

( n

(n−
∑a

j=1 ij), i1, . . . , ia

)
ai1
((

a

2

)
+ 1

)i2

 a∏
j=3

(
a

j

)ij

xi1+2i2+···+aia

 .
Again, we require that i1 + 2i2 + · · ·+ aia = n−1, that is, i1 = n− 1−

∑a
j=2(j · ij). Thus,
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ld(n, n)=
∑

i2,...,ia

( n

(
∑a

j=2(j − 1)ij+1), (n−1−
∑a

j=2(j·ij)), i2, . . ., ia

)
an−1−

∑a
j=2(j·ij)

((
a

2

)
+1

)i2

 a∏
j=3

(
a

j

)ij

 .
Therefore,

ld(n, n) =
an

a

∑
i2,...,ia

( n

(
∑a

j=2(j−1)ij+1), (n−1−
∑a

j=2(j · ij)), i2, . . . , ia

)((a
2

)
+ 1
)i2

a2i2

a∏
j=3

(
a
j

)ij
ajij

 =

an

a

∑
i2,...,ia

( n

(
∑a

j=2(j−1)ij+1), (n−1−
∑a

j=2(j · ij)), i2, . . . , ia

)((a
2

)
+ 1

a2

)i2 a∏
j=3

((
a
j

)
aj

)ij
 .

It is well-known that for all values of m and k, such that 1 ≤ k ≤ m, we have that
(
m
k

)
≤ mk

k! . Hence, for

j = 3, . . . , a, we have that
(aj)
aj
≤ 1

j! . It is also known that e =
∑∞

j=0
1
j! . Therefore,

ld(n, n) ≤ an

a

∑
i2,...,ia

( n

(
∑a

j=2(j−1)ij+1), (n−1−
∑a

j=2(j · ij)), i2, . . . , ia

)(
1

2
+

1

a2

)i2 a∏
j=3

(
1

j!

)ij


< an

1 + 1 +

(
1

2
+

1

a2

)
+

a∑
j=3

1

j!

n

= an

 1

a2
+

a∑
j=0

1

j!

n

< (ae+ 1/a)n

(The relation “<” above is again because the summation in its left-hand side contains only a subset of
the terms whose sum is equal to the exponential term on the right-hand side, and the factor 1/a in its
left-hand side.) Consequently, λd ≤ (2d− 2)e+ 1

2d−2 .

�

This compares well with the conjecture that λd ∼ (2d−3)e [8], and improves upon Eden’s upper bound
of (2d − 1)e (which can actually be shown to be (2d − 1.5)e; see Section 2). For example, for d = 4, we
obtain λ4 ≤ 15.1284, whereas the bound provided by the generalized Eden’s method is 17.6514.

4 Further Improvements of the Upper Bounds on λ2 and λ3

∗∗∗

∗

Figure 8: A twig with one open cell

Klarner and Rivest [19] developed their idea further, noting that it is possible to start with a con-
figuration containing a single open cell (as shown in Figure 8), and keep adding twigs and updating the
configuration, to construct from L increasingly larger sets C1,C2,C3, . . . , where the set Ci contains all pos-
sible twigs with i black cells (and possibly some white cells) or less than i black cells (and no white cells).
In particular, C1 = L. The process for building all twigs with i black cells is as follows:

1. Set Ci := ∅, B := {s̄} (the twig shown in Figure 8, and Wi(x, y) := 0;
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2. If B = ∅, then output Ci and halt;

3. Remove some twig T from B;

4. If T contains no open cells or exactly i dead cells, then add T to Ci, set W := W +w(T ), and goto

Step 2;

5. For j = 1, . . . , 5 do

Set Tj := T ∗ Lj ;
If Tj meets condition (∗) below, then add Tj to B;

od

6. Goto Step 2.

Condition (∗): None of the cells of Li (except of the black cell) overlap with any of the cells (black or
white) of T nor with any of the cells of T marked with X.

Condition (∗) guarantees that adding a new twig to the configuration will not cause cells to overlap.

Observation 4.1 A2(i) ≤ |Ci|

Indeed, this relation is trivially justified by the facts that every polyomino of size i can be built with
some sequence of i twigs, and the algorithm above constructs all valid sequences of i twigs.

The algorithm above can be viewed as a

T1 = L1

∗∗∗

∗

T2,1 T2,2 T2,3 T2,4 T2,5 T3,1 T3,2 T3,3 T3,4 T3,5 T4,2T4,1 T4,3 T4,4 T4,5 T5,2T5,1 T5,4T5,3

T4T2

T5,5

T3 T5

∗∗∗

∗

Figure 9: The tree modeling the algorithm that
generates Ci. The root r is a twig with one open cell; its
L-context is shown in Fig. 3(a). For i, j = 1, . . . , 5,
set Ti = Li = r ∗ Li, and Ti,j = Ti ∗ Lj . The twig T1 is a
leaf because it has no open cells.

breadth-first-search traversal on an infinite tree
(see Figure 9) rooted at the twig s̄ (Figure 8).
All other vertices of the tree are twigs that
can be “grown” from its root by repeatedly ap-
plying the operation ‘∗’ (defined in Section 2).
The tree contains an edge directed from a twig T1
to another twig T2 if T2 = T1∗Li (for some Li ∈
L). Hence, each vertex of the tree has at most
five outgoing edges, and its leaves are all twigs
which have no open cells.

The key idea is that, given a polyomino P ,
it is possible to encode P with a sequence of
elements of Ci, for any i ≥ 1, and any such sequence can be converted into a sequence of elements of L.

Observation 4.2 The set of converted sequences of elements of Ci+1 is a proper subset of the set of
converted sequences of elements of Ci, since the former contains less invalid sequences (those that do not
represent polyominoes) than the latter.

Similarly to L, every twig T ∈ Ci is assigned a weight w(T ) := xayb (where a denotes the num-
ber of cells in T minus 1, and b denotes the number of black cells in T ), and, thus, it can be shown
that every polyomino of size n gives rise to a unique sequence of elements of Ci of weight xnyn. Let-
ting Wi(x, y) =

∑
T∈Ci

w(T ), we can plug Wi(x, y) in the generating function in Equation (2) and ob-
tain

∑
m,n ci(m,n)xmyn=x/(1−Wi(x, y)). Again, we are interested in the diagonal term ci(n, n) of the

series expansion
∑

m,n ci(m,n)xmyn. Due to Observation 4.2, the sets C1,C2, . . . yield a sequence of im-
proving (decreasing) upper bounds on λ2. Thus, as i increases, the upper bound decreases. Therefore,
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the goal is to compute an upper bound on ci(n, n). The main computational challenge in this approach is
to construct algorithmically the sets Ci (in order to compute Wi(x, y)), as |Ci| is increasing exponentially
with i, like A2(i) does. Klarner and Rivest carried their approach to the limit of the resources they had
available at the time, and computed Ci up to i = 10. Their computations are summarized in Table 1.

4.1 Two Dimensions

Theorem 4.3 λ2 ≤ 4.5252.

We implemented the algorithm described in the previous section for constructing the sets Ci in a parallel
C++ program, using Maple (see Appendix D) to derive an upper bound on ci(x, y). Since the size of the
set Ci is growing exponentially with i, we did not keep it in memory. Instead, we accumulated the weights
of the twigs as in Step 4 in the algorithm. The “for loop” in Step 5 can be run in parallel since there are no
dependencies between the twigs T1, . . . , T5, as illustrated in Figure 9. We used OpenMP and OpenMPI to run
the program in parallel on a high-performance computer cluster at the Technion. We used 33 computing
nodes, each having 12 cores, for a total of 396 cores. The time for computing C10 was negligible even
without parallelizing the program. Results were systematically improved by increasing i, the number of
dead cells of the twigs. However, as the size of Ci increases roughly by a factor of 4 as i is incremented
by 1, constructing Ci+1 requires more than four times the computing power needed to construct Ci. The
improved upper bound λ2 ≤ 4.5252 was obtained by using twigs with 21 dead cells. Computing C21 took
roughly seven hours. Our results, alongside Klarner and Rivest’s results, are summarized in Table 1.
The two sets of results differ for i = 6, . . . , 10. We address these differences in Section A. The weight
functions W1(x, y), . . . ,W21(x, y) are provided in Appendix B.

For i ≥ 6, the number of twigs (|Ci|) we found is slightly (but consistently) larger than the number
reported by Klarner and Rivest [19] (see Table 1). As a result, the value of the upper bound we computed
for C10 is slightly higher than the value they reported. Since they provided neither the computer program
which generated the sets Ci, nor the functions W6(x, y), . . . ,W10(x, y) which they obtained, we had no
means for comparing our results to theirs.

4.2 Three Dimensions

We applied the process described in the previous section to construct sets C3
1,C

3
2, . . . of larger 3-dimensional

twigs. Again, we began with a single open cell on the cubical lattice, and constructed all twigs with i dead
cells or fewer dead cells and no open cells. We were able to reach twigs with i = 9 dead cells, obtaining
a set of about 17 · 109 twigs, by which we proved that λ3 ≤ 9.3835. Computing C3

9 took 3 hours on the
same cluster mentioned in Section 4.1. Our results (reported in Table 2), and W9(x, y) =

∑
`∈C3

8
w(`) are

provided in Appendix C.

4.3 Code

Our code is available at https://github.com/mshalah/polyominoes_polycubes_upperbounds.
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A Comparison of Results

|Ci| 1/σi Time (Hours)
i Ref. [19] Ours Ref. [19] Ours Ours

1 5 5 4.828428 4.828427124
2 21 21 4.828428 4.828427124
3 93 93 4.828428 4.828427124
4 409 409 4.796156 4.796155640
5 1,803 1,803 4.765534 4.765532996
6 7,929 7,937 4.738062 4.738743624
7 34,928 35,084 4.714292 4.716641912
8 151,897 153,458 4.690920 4.695386599
9 656,363 668,128 4.669409 4.676042980

10 2,821,227 2,899,941 4.649551 4.658412767
11 12,557,503 4.642235017
12 54,137,703 4.627069746
13 232,203,877 4.612780890
14 991,607,177 4.599355259
15 4,218,349,778 4.586741250
16 17,881,987,659 4.574877902
17 75,568,307,191 4.563716381
18 318,489,941,731 4.553209881 0:04
19 1,339,093,701,964 4.543308340 0:20
20 5,617,897,764,831 4.533962650 1:30
21 23,521,568,438,976 4.525128839 7:00

Table 1: Left: Results obtained by Klarner and Rivest [19, Table 1]; Right: Our results for d=2.

In fact, Klarner and Rivest claim to have used the following version of condition (∗):

Condition (∗):

• None of the cells of Li (except its root) overlap with any of the cells or forbidden cells of T ; and

• None of the forbidden cells of Li overlap with any cells of T .

However, although they did not state the following explicitly, they probably did not use the second
part of condition (∗) in their program. We motivate this claim by the two arguments provided below,
emphasizing that indeed using the second part of this condition as-is is incorrect, as we explain in the
second argument. Still, our results agree with those of Klarner and Rivest’s only up to i = 5, and we were
unable to trace further the causes for the differences for i ≥ 6.

Argument 1

Consider the set C4, which contains all twigs that have exactly 4 black cells, or fewer black cells and no
white cells. Let us enumerate the twigs that have one, two, or three black cells and no open cells. We can
easily observe the following.

1. There is only one twig (L1 ∈ L, shown in Figure 4) with one dead cell and no open cells.
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∗

∗∗∗

∗

∗∗∗
L2 ∗ L1 L4 ∗ L1

Figure 10: The only two twigs with two dead cells and no open cells

2. There are only two twigs (see Figure 10) with two dead cells and no open cells.

3. There are only six twigs with three dead cells and no open cells. The sequences corresponding to
these six twigs are L2 ∗L2 ∗L1, L2 ∗L4 ∗L1, L3 ∗L1 ∗L1, L4 ∗L2 ∗L1, L4 ∗L4 ∗L1, and L5 ∗L1 ∗L1.

We now show that there are 400 twigs with 4 dead cells. Each such twig T corresponds to a se-
quence (α, β, γ, δ) of four elements of L (Figure 4), such that T = α ∗ β ∗ γ ∗ δ. Trivially, in total, there
are |L|4 = 54 = 625 sequences of four elements of L. However, some of these sequences are invalid,
namely, they do not represent valid twigs. For example, the only valid sequence that starts with L1 is
of length 1 since L1 has no open cells. It is easy to verify that the following sequences are exactly those
that are invalid since their prefixes correspond to configurations with less than four dead cells and no open
cells: S1 = (L1, β, γ, δ), S2 = (L2, L1, γ, δ), S3 = (L4, L1, γ, δ), S4 = (L2, L4, L1, δ), S5 = (L4, L2, L1, δ),
S6 = (L2, L2, L1, δ), S7 = (L4, L4, L1, δ), S8 = (L3, L1, L1, δ), and S9 = (L5, L1, L1, δ).

Clearly, we have that |S1| = 53 = 125, |S2| = |S3| = 52 = 25, and |S4| = |S5| = |S6| = |S7| = |S8| =
|S9| = 5. There remain exactly twenty invalid sequences. Refer to Figure 4. The twigs L4 and L5 cannot
be concatenated to any of the configurations (a–j) (Figures 11 and 12) since this would violate the first
part of condition (∗), that is, a cell of L4 or L5 would overlap with an occupied cell of the configuration
or a cell marked as forbidden. This results in 2·10 = 20 more invalid sequences. Thus, we obtain that the
number of twigs with four dead cells is

|L|4 −
9∑

i=1

|Si| − 2 · 10 = 625− 125− 2 · 25− 6 · 5− 20 = 400.

Hence, adding items (1–3) above, we obtain that |C4| = 400+1+2+6 = 409, which is the number provided
for |C4| by Klarner and Rivest as well (see Table 1). On the other hand, restricting the construction
of C4 further with the second part of condition (∗) would imply that, for example, concatenating L1 to
configuration (d) is invalid, which would decrease the size of C4. Therefore, we conclude that Klarner and
Rivest most probably did not use the second part of condition (∗).

Argument 2

Consider the pentomino P shown in Figure 13. The spanning tree of P corresponds to the sequence L3∗L2∗L4∗L1∗L1

(which is equivalent to concatenating L1 twice to configuration (d) in Figure 11). In terms of elements
of C4, this is a sequence of length two: its first element T is the twig corresponding to adding L1 to
configuration (d), and its second element is L1. By definition, the two twigs T and L1 belong to C4.
However, if we were to use the second part of condition (∗), T would be discarded as an element of C4.
In such a situation, C4 would not be a complete set of building blocks for polyominoes, and P would have
no corresponding sequence of weight x5y5 of elements of C4. Therefore, the method would have failed to
provide an upper bound on λ2 if the second part of condition (∗) had been used, as some polyominoes
(such as P ) would be overlooked.
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1

(a) L3 ∗ L2 ∗ L1

1

2

(b) L3 ∗ L2 ∗ L2

21

2

1

31

2

L3 L3 ∗ L2 (c) L3 ∗ L2 ∗ L3

21

(d) = L3 ∗ L2 ∗ L4

3

1 2

(e) L3 ∗ L2 ∗ L5

Figure 11: Concatenation of L2 and L3.
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12

(f) L3 ∗ L3 ∗ L1

3

2 1

(g) L3 ∗ L3 ∗ L2

21

3 2

1

42 1

3

L3 L3 ∗ L3 (h) L3 ∗ L3 ∗ L3

32 1

(i) L3 ∗ L3 ∗ L4

4

2 1 3

(j) L3 ∗ L3 ∗ L5

Figure 12: Concatenation of L3 and L3.

Figure 13: A pentomino
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B The Functions Wi(x, y)

Here are the weight functions W1(x, y), . . . ,W21(x, y):

W1(x, y) = 2x2y + 2xy + y

W2(x, y) = 4x4y2 + 8x3y2 + 6x2y2 + 2xy2 + y

W3(x, y) = 8x6y3 + 24x5y3 + 32x4y3 + 20x3y3 + 6x2y3 + 2xy2 + y

W4(x, y) = 14x8y4+58x7y4+113x6y4−124x5y4+71x4y4+20x3y4+6x2y3+2xy2+y

W5(x, y) = 24x10y5 + 124x9y5 + 317x8y5 + 494x7y5 + 483x6y5 + 261x5y5 + 71x4y5 +
20x3y4 + 6x2y3 + 2xy2 + y

W6(x, y) = 36x12y6 + 240x11y6 + 772x10y6 + 1550x9y6 + 2099x8y6 + 1895x7y6 +
984x6y6 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W7(x, y) = 64x14y7 + 468x13y7 + 1750x12y7 + 4221x11y7 + 7177x10y7 + 8795x9y7 +
7489x8y7 + 3775x7y7 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W8(x, y) = 88x16y8+780x15y8+3487x14y8+10135x13y8+20921x12y8+32015x11y8+
36517x10y8 + 29738x9y8 + 14657x8y8 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 +
20x3y4 + 6x2y3 + 2xy2 + y

W9(x, y) = 96x18y9 + 1092x17 ∗ y9 + 6138x16y9 + 21679x15y9 + 53840x14y9 +
99208x13y9+139805x12y9+150644x11y9+118455x10∗y9+57394x9y9+14657x8y9+
3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W10(x, y) = 64x20y10 + 1288x19y10 + 9620x18y10 + 41940x17y10 + 124236x16y10 +
271585x15y10 + 455916x14y10 + 600672x13y10 + 618318x12y10 + 472966x11y10 +
226165x10y10 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 +
20x3y4 + 6x2y3 + 2xy2 + y

W11(x, y) = 32x22y11 + 1560x21y11 + 15116x20y11 + 77222x19y11 + 265528x18y11 +
671900x17y11 + 1315757x16y11 + 2043184x15y11 + 2547938x14y11 + 2528282x13y11 +
1892135x12y11+895513x11y11+226165x10y11+57394x9y10+14657x8y9+3775x7y8+
984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W12(x, y) = 32x24y12 + 2448x23y12 + 24984x22y12 + 140612x21y12 + 537148x20y12 +
1535243x19y12+3428784x18y12+6148920x17y12+8968766x16y12+10700784x15y12+
10309921x14y12 + 7582080x13y12 + 3559132x12y12 + 895513x11y12 + 226165x10y11 +
57394x9y10+14657x8y9+3775x7y8+984x6y7+261x5y6+71x4y5+20x3y4+6x2y3+
2xy2 + y

W13(x, y) = 64x26y13 + 3376x25y13 + 39052x24y13 + 242230x23y13 + 1029746x22y13 +
3276965x21y13 + 8225862x20y13 + 16714930x19y13 + 27959240x18y13 +
38764654x17y13 + 44612842x16y13 + 41963681x15y13 + 30425691x14y13 +
14187563x13y13 + 3559132x12y13 + 895513x11y12 + 226165x10y11 + 57394x9y10 +
14657x8y9 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y
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W14(x, y) = 3872x27y14 + 53860x26y14 + 388828x25y14 + 1856137x24y14 +
6593524x23y14 + 18410515x22y14 + 41847658x21y14 + 78846479x20y14 +
124566489x19y14 + 165600553x18y14 + 184977014x17y14 + 170581831x16y14 +
122243680x15y14 + 56691193x14y14 + 14187563x13y14 + 3559132x12y13 +
895513x11y12 + 226165x10y11 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 +
261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W15(x, y) = 4400x29y15 + 74688x28y15 + 598128x27y15 + 3182157x26y15 +
12522050x25y15 + 38772694x24y15 + 97650143x23y15 + 204840498x22y15 +
362613604x21y15 + 546205155x20y15 + 701024617x19y15 + 763765263x18y15 +
692808602x17y15 + 491675078x16y15 + 226975964x15y15 + 56691193x14y15 +
14187563x13y14 + 3559132x12y13 + 895513x11y12 + 226165x10y11 + 57394x9y10 +
14657x8y9 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W16(x, y) = 6912x31y16 + 106640x30y16 + 902716x29y16 + 5194974x28y16 +
22502316x27y16 + 76836395x26y16 + 213862804x25y16 + 495599251x24y16 +
972881530x23y16 + 1634495588x22y16 + 2365001740x21y16 + 2946546711x20y16 +
3143569000x19y16 + 2812205702x18y16 + 1979423214x17y16 + 910239465x16y16 +
226975964x15y16 + 56691193x14y15 + 14187563x13y14 + 3559132x12y13 +
895513x11y12 + 226165x10y11 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 +
261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W17(x, y) = 7488x33y17 + 136064x32y17 + 1260248x31y17 + 8008422x30y17 +
38155640x29y17 + 143730425x28y17 + 440598289x27y17 + 1124991218x26y17 +
2431711692x25y17 + 4512423641x24y17 + 7250819239x23y17 + 10138105194x22y17 +
12316094597x21y17+12907416312x20y17+11411126315x19y17+7975518589x18y17+
3655351652x17y17 + 910239465x16y17 + 226975964x15y16 + 56691193x14y15 +
14187563x13y14 + 3559132x12y13 + 895513x11y12 + 226165x10y11 + 57394x9y10 +
14657x8y9 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W18(x, y) = 6656x35y18 + 144624x34y18 + 1596016x33y18 + 11499558x32y18 +
61231243x31y18 + 254612673x30y18 + 859000063x29y18 + 2406743605x28y18 +
5707780042x27y18+11616872329x26y18+20533746813x25y18+31753025591x24y18+
43111962291x23y18+51254247441x22y18+52900498537x21y18+46293847405x20y18+
32158564611x19y18 + 14696358415x18y18 + 3655351652x17y18 + 910239465x16y17 +
226975964x15y16 + 56691193x14y15 + 14187563x13y14 + 3559132x12y13 +
895513x11y12 + 226165x10y11 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 +
261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W19(x, y) = 4160x37y19 + 132864x36y19 + 1806784x35y19 + 15379120x34y19 +
92764008x33y19 + 429323463x32y19 + 1592168897x31y19 + 4883567215x30y19 +
12646494275x29y19+28110031644x28y19+54277687090x27y19+91972916089x26y19+
137593335616x25y19 + 182153289931x24y19 + 212563199986x23y19 +
216507646418x22y19 + 187791339852x21y19 + 129752205674x20y19 +
59145846645x19y19 + 14696358415x18y19 + 3655351652x17y18 + 910239465x16y17 +
226975964x15y16 + 56691193x14y15 + 14187563x13y14 + 3559132x12y13 +
895513x11y12 + 226165x10y11 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 +
261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y
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i |C3
i | 1/σi

1 17 9.807295572
2 273 9.807295567
3 3,745 9.701430690
4 51113 9.631827042
5 693,725 9.573610717
6 9,047,959 9.517471577
7 114,736,608 9.467046484
8 1,428,690,351 9.422618063
9 17,538,443,750 9.383460515

Table 2: Our results in 3 dimensions

W20(x, y) = 2176x39y20 + 105984x38y20 + 1912912x37y20 + 19332440x36y20 +
133729026x35y20 + 690201840x34y20 + 2818499583x33y20 + 9436504653x32y20 +
26597729598x31y20 + 64253320144x30y20 + 134933108961x29y20 +
248868733815x28y20 + 406568926658x27y20 + 591104290770x26y20 +
765646007641x25y20 + 879150587033x24y20 + 885155570880x23y20 +
761751496919x22y20 + 523818188901x21y20 + 238239106019x20y20 +
59145846645x19y20 + 14696358415x18y19 + 3655351652x17y18 + 910239465x16y17 +
226975964x15y16 + 56691193x14y15 + 14187563x13y14 + 3559132x12y13 +
895513x11y12 + 226165x10y11 + 57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 +
261x5y6 + 71x4y5 + 20x3y4 + 6x2y3 + 2xy2 + y

W21(x, y) = 1152x41y21 + 96256x40y21 + 2056288x39y21 + 24172920x38y21 +
187337816x37y21 + 1070722580x36y21 + 4785628001x35y21 + 17443616434x34y21 +
53301072439x33y21 + 139441849789x32y21 + 316994896043x31y21 +
633630643451x30y21 + 1123186767205x29y21 + 1777867306642x28y21 +
2521701005541x27y21 + 3204911295924x26y21 + 3628247213386x25y21 +
3615763450791x24y21 + 3089960078272x23y21 + 2115755445262x22y21 +
960344267887x21y21 + 238239106019x20y21 + 59145846645x19y20 +
14696358415x18y19 + 3655351652x17y18 + 910239465x16y17 + 226975964x15y16 +
56691193x14y15 +14187563x13y14 +3559132x12y13 +895513x11y12 +226165x10y11 +
57394x9y10 + 14657x8y9 + 3775x7y8 + 984x6y7 + 261x5y6 + 71x4y5 + 20x3y4 +
6x2y3 + 2xy2 + y

C Three Dimensions

The following is the weight function for i = 8, from which we computed the upper bound λ3 ≤ 9.3835.

W8(x, y) = y + 4xy2 + 23x2y3 + 150x3y4 + 1051x4y5 + 7661x5y6 + 57337x6y7 +
437050x7y8 + 3376485x8y9 + 26352274x9y9 + 108757201x10y9 + 306714778x11y9 +
674917794x12y9 + 1222175063x13y9 + 1866911075x14y9 + 2434995919x15y9 +
2728046412x16y9 + 2631637304x17y9 + 2185885771x18y9 + 1560584567x19y9 +
954538066x20y9 + 497886496x21y9 + 220105634x22y9 + 81810253x23y9 +
25294655x24y9 + 6411687x25y9 + 1305352x26y9 + 207134x27y9 + 24462x28y9 +
1992x29y9 + 97x30y9 + 2x31y9);
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D Maple Code

Let f(x,y) be a rational two-variable generating function. Klarner and Rivest [19, §3] showed how to
obtain the the radius of convergence of the diagonal of f(x,y). This requires a change of variable in order
to apply the residue theorem. The diagonal function fD(z) =

∑
n l(n, n)zn could then be written as a sum

of residues. The following is our Maple implementation of this method.

g:=(x,y)->f(x,y)/x;

par := g(s,z/s);

d := denom(par);

with(Physics):

c := Coefficients(d,s,leading);

div := Coefficients(c,z,leading);

d := d / div;

dis := discrim(d,s);

sols := fsolve(dis=0,z);

maxroot := max(sols);

ub := evalf(1/maxroot);
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