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Abstract

An n-multiset of [k] = {1,2,...,k} consists of a set of n elements from [k]
where each element can be repeated. We present the bivariate generating function
for n-multisets of [k] with no consecutive elements. For n = k, these multisets
have the same enumeration as directed animals in the square lattice. Then we give
constructive bijections between directed animals, multisets with no consecutive
elements and Grand-Dyck paths avoiding the pattern DUD, and we show how
classical and novel statistics are transported by these bijections.
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1 Preliminaries

An n-multiset on [k] = {1,2,..., k} consists of a set of n elements from [k] where we per-
mit each element to be repeated [6, 10]. Throughout this paper, an n-multiset = will be
represented by the unique sequence w7y . .., of its elements ordered in non-decreasing
order, e.g. the multiset {1,1,2,2,3,3} will be written 112233. For n,k > 1, let M,
be the set of n-multisets of [k]. We set M,, = M,,, and M = J ., M,,. For instance,
we have Mzo = {111,112,122,222} and M3 = M3, U {113,123, 133,223,233, 333}.
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The graphical representation of a multiset m € M,, . is the set of points in the plane at
coordinates (i, ;) for ¢ € [n]. Whenever none of the points (i, ;) lie below the diagonal
y=w, ie,i<m foralli € [n], 7 will be called superdiagonal. Let M, (resp. M;)
be the set of superdiagonal n-multisets of [k] (resp. of [n]) and M*® =], -, M.

From a multiset 7 € M, , we consider the path of length n + k on its graphical
representation with up and right moves along the edges of the squares that goes from
the lower-left corner (0,0) to the upper-right corner (n, k) and leaving all the points
(i,7;), i € [n], to the right and remaining always as close to the line x = n as possible
(see the left part of Figure 1 for an example). Then, the number of n-multisets of [k]
is the number of possibilities to choose n right moves among k + n — 1 moves (the
first is necessary an up move), that is the binomial coefficient (k+2_1) (see for instance
[10]). Reading this path from left to right, we construct a lattice path of length n + &
from (0,0) to (n+ k,n — k) by replacing any up-move with up step U = (1,1) and any
right-move with down step D = (1, —1). Clearly, this path starts with U and consists
of n up steps and k£ down steps. As a byproduct whenever n = k, this construction
induces a bijection ® between M,, and the set GD,, of Grand-Dyck paths of semilength
n starting with an up-step, that is the set of paths from (0,0) to (2n,0) starting with
U and consisting of U and D steps. Moreover, the image by ® of M is the set D,
of Dyck paths of semilength n, i.e. the subset of paths in GD,, that do not cross the
z-axis. See Figure 1 for two examples of this construction.

Theorem 1. The map ® is a bijection from M,, to GD,,, and the image of M; is D,,.
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Figure 1: Illustration of the bijection ® between multisets and lattice paths

Now, let us define the set M;, , of n-multisets of [k] with no consecutive integers,

i.e., multisets 7 such that m;; # 7 + 1 for all # € [n — 1]. Then we set M}, = M
M = Mr N ME, M* =, M, and M5 =, M3*. On the other hand, if P
is a set of lattice paths consisting of U and D steps, then we denote by P* the subset
of P consisting of paths that do not contain any occurrence of the pattern DUD.

Considering these notations, it is straightforward to obtain the following theorem.
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Theorem 2. The map ® induces a bijection from M to GDy,, and from ME* to Dx.

It is well known (see for instance [7, 8, 11]) that the cardinality of D is given by
the general term of Motzkin sequence A001006 in [9]. Then, using Theorem 2 this also
is for the set M?*. Now, using combinatorial arguments we prove that the cardinality
of M? is given by the general term of the sequence A005773 in [9] which also counts
directed animals with a given area on the square lattice.

Let f(z,u) = 3, xs1 fas?"u" be the bivariate generating function for the set M ,,
i.e., the coefficient f, ; is the number of n-multisets of [k] with no consecutive integers.
We can build such a multiset by considering each integer from {1,...,k} in turn and
marking how many times it occurs in the multiset. First, we choose the (possibly
empty) initial sequence of integers not in the multiset, which corresponds to the term
Seq[u] = ﬁ Next, we choose the first integer in the multiset occurring one or more
times, which corresponds to the term u - Seq,[z] where Seq;[z] = 1%;. We choose
subsequent integers in the multiset, occurring one or more times, preceded each time
by a non-empty sequence of integers not in the multiset (to guarantee no consecutive
integers), which corresponds to the term Seq [Seq1 [u] - u - Seq [zH Finally, we choose
the (possibly empty) final sequence of integers not in the multiset, which corresponds
to the term Seq[u]. Thus, we obtain

f(z,u) = Seq[u] - u - Seqy [2] - Seq [ Seq; [u] - u - Seq, [2]] - Seq[u]
where Seq[z] = £ and Seq, [2] = £

So, we deduce
uz

f(zu) = (1—u)(1—2z—u+uz—u2z)
and we refer to Table 1 for small values of f, .

As a byproduct of the bijection @, the set of lattice paths of length n+ k starting at
(0,0), ending at (n + k,n — k) consisting of n up steps and k down steps and avoiding
the pattern DU D has a bivariate generating function given by f(zu, z/u).

In order to obtain the generating function for the set M; = My, we require the
diagonal of f: A(f)(z) = [u°]f(z/u,u). Extracting the constant term of a Laurent
series is a standard procedure (Stanley Vol 2, Section 6.3), and in this case it yields the
same algebraic generating function that counts directed animals (when a term for the

empty multiset is added):
3z—V1—-22—-322-1

The first terms of the Taylor expansion are 1 + z + 222 + 523 + 1324 + 3525 + 9625 +
26727 + 75028 + 21232 which correspond to the sequence A005773 in [9].
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Knll 2 3 4 5 6 7 8 9
1 1 1 1 1 1
2 2 2 2 2 2 2 2
4 5 6 7 8 9 10 11

7 10 13 16 19 22 25 28
11 18 26 35 45 56 68 &1
16 30 48 70 96 126 160 198

S T s W N =

Table 1: Coefficients f,x of f(z,u) for 1 <n <9and 1 <k <6.

2 From multisets to directed animals via Grand-
Dyck paths

A directed animal A of area n (or equivalently with n nodes) in the square (resp.
triangular) lattice is a subset of n points in the lattice containing (0,0) and where any
point in A can be reached from (0, 0) with up-moves (0, 1) and right-moves (1,0) (resp.
and diagonal moves (1, 1)) by staying always in A. See the left part of Figure 2 for an
example of directed animal in the triangular lattice, and we refer to [3, 4, 5] for several
combinatorial studies on these objects. Let Q,, (resp. 7,) be the set of directed animals
with 7 nodes in the square (resp. triangular) lattice, then its cardinality is given by the
nth term of the sequence A005773 in [9] (resp. by the binomial coefficient (*"')). We
set Q@ =U,>19Q,, T = U,>17, and obviously we have Q C T.

Figure 2: A directed animal and its associated heap

In the literature [3, 12, 13], directed animals are often viewed as heaps obtained by
dropping vertically dimers such that each dimer (except the first) touches the one below
by at least one of its extremities. Indeed, from A € T, we apply a counterclockwise
rotation of 45 degree of its graphical representation and we replace each point of A with
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a dimer of width v/2/2. See Figure 2 for an example of such a representation. Notice
that directed animals in Q correspond to heaps of dimers where no dimer has another
dimer directly above it (such a heap will be called strict). Let T* (resp. Q%) be the set
of all subdiagonal directed animals in T (resp. Q), i.e., directed animals where all its
points (1, j) satisfy j <.

Without losing accuracy, the sets T and Q will also be used to designate respectively
the set of heaps of dimers and the set of strict heaps of dimers. Then, any heap A € T°
has a unique factorization of one of the four following forms (see [3]):

where B € 7°and C € T.

The factorization of A € Q (resp. A € QF) is obtained after omitting the case
(771). Translating these factorizations using functional equations involving the generat-
ing functions T'(z) and T°(z) for 7 and T* (resp. Q(z) and Q*(z) for Q and Q°), we

obtain
< 1-2z—-+v1—-4z 1—42—+v1-4z
T°(z) = , T(2) = :
2z 8z —2
s 1—2—+v1—-2z—-322 1-32z—+vV1-22z—-322
Q*(2) = ; and Q(z) = :

2z 6z—2

The coefficients of 2™ in the Taylor expansion of Q*(z) (resp. Q(z), T%(z) and T'(2))
generate a shift of the Motzkin sequence A001006 (resp. A005773, the Catalan sequence
A000108 and A001700) in [9]).

Now, we construct a bijection from M, to the set 7, of directed animals in the
triangular lattice which transports M7 into Q,,. We proceed in two steps. Firstly, we
define a bijection from 7,° to M for n > 1, and secondly we extend it from 7, to M,,.
For the first step, and according to the above bijection ® from M to D,, it suffices to
define a one-to-one correspondence ¥ between 7,° and D,,. Let A be a directed animal
in 7%, we define W(A) with respect to its four possible factorizations:



o if A satisfies (i) then W(A) =UD,

o if A satisfies (i7) then W(A) = U¥(B)D,

o if A satisfies (i77) then W(A) = V(B)UD,

e if A satisfies (iv) then W(A) = ¥(C)U¥(B)D.

Due to the recursive definition, the image by ¥ of a directed animal in 7,° is a Dyck
path of semilength n, and the image of an element of QF is a Dyck path with no pattern
DUD, i.e. in Dj,.

Theorem 3. Forn > 1, the map -V is a bijection from T,* to M2, and the image
of Q> is M>*.

Proof. Since ®~! is a bijection from D,, to M2, it suffices to prove that ¥ is a bijection
from 7, to D,,. As these two last sets are both enumerated by the Catalan numbers,
it suffices to prove the injectivity of ¥. We proceed by induction on n. The case n =1
holds trivially. We assume that ¥ is injective for £ < n, and we prove the result for
n + 1. By definition, the image by ¥ of animals satisfying (i) and (iz) are Dyck paths
with only one return on the z-axis, i.e. with only one down step D that touches the
x-axis. Animals satisfying (ii7) are sent by W to Dyck paths ending with DU D and with
at least two return on the z-axis. Animals satisfying (iv) are sent to Dyck paths with at

least two down steps at the end, and with at least two returns. Then, for A, A" € 7% ,,

U(A) = W(A’) implies that A and A’ belong to the same case (i), (i), (i7i) or (iv). The
recurrence hypothesis induces A = A’ which completes the induction. Moreover, in the
case where A € Qf it does not satisfy (ii7) and this implies that W(A) is a Dyck path
avoiding DUD. Finally, a cardinality argument proves that ¥(Q?) = M5*. O

Now we extend the map ¥ from 7, to M,, as follows. Let A be a directed animal
in 7,\7, then A can be factorized as (v) with B € 7° and C' € T. In the subcase
where C' € T\T*, C satisfies the case (v), and let D € T*, E € T be the two parts of
its factorization. According to these two cases, we set:

B(A) = U(B)Y(C) it CeT?,

U(B)U(D)"W(FE) otherwise,
where P" is obtained from P by reading the Dyck path P from right to left (for instance,
if P=UUDUUDDD then P" = DDDUUDUU). Less formally, ¥ maps successive

components from 7° to Dyck paths alternalely above and below the z-axis. See Figure
3 for an illustration of the map W.



Theorem 4. Forn > 1, the map ®~' -V is a bijection from T, to M,,, and the image
of Q, is M.

Proof. Let us prove that W is a bijection from 7, to M,,. As these two sets have the
same cardinality, it suffices to prove the injectivity of ¥. Using Theorem 3, it remains
to prove that directed animals A € T,\7? are sent bijectively by ¥ to Grand-Dyck
paths in GD,\D,.. Due to the definition of ¥ whenever A € T,\7,?, we have either
VU(A) = ¥U(B)Y(C) or V(A) = ¥(B)Y(D)"¥(E) with B,C,D € T and E € T.
Then, the path W(A) starts with an up-step (the first step of the non-empty Dyck path
U(B)), and since the first step of W(C)" (resp. V(D)") is a down-step, W(A) crosses
the z-axis which ensures that W(B)¥(C)" (resp. W (B)¥(D)") belongs to GD,\D,.
We complete the proof with a simple induction on n. Whenever A € Q, Theorem 3
ensures that U(B), U(C) and ¥(D) avoid the pattern DUD. By symmetry, the paths
U (C)" and ¥(D) avoid DUD which implies that the Grand-Dyck paths ¥ (B)U(C)"

and ¥(B)¥(D)" do not contain DUD. By induction, W(A) belongs to M. O

R
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Figure 3: Bijection ® U between directed animals and multisets via Grand-Dyck
paths.

Now we define some statistics and parameters on 7,,, M, and GD,,, and we show
how the bijections ®, ¥ and ®~! - ¥ establish correspondences between them. Table 2
summarizes these correspondences.



For a directed animal A € 7T, we set:

e Area(A) = number of points in A,

o Lw(A) = left width, i.e. max{i > 0 such that the line y = x + i meets A},

e Rw(A) = right width, i.e. max{i > 1 such that the line y = x — i + 1 meets A},
e Width(A) = Lw(A) + Rw(A) = width,

.
e Diag(A) = number of e¢'x in A, where X means a site without point in A,

e Nbp(A,i) = number of points of A on the line y =z —i+ 1,

For a multiset m € M,,, we define d(m;) = 0 if m; < ¢ and 1 otherwise, and we set:
e Length(w) = n,
e Cross(m) = card{i € [n — 1],0(m;) # 6(mit1)},
e Adj(m) = number of adjacencies, i.e., card{i € [n — 1],such that m;1 = m + 1},
e Gap(m, i) = |m; —i| — ¢; where ¢; = card{j < i —1,6(nm;) # 6(mj11)},
e Gap(m) = max;cp, Gap(r,1).
For a Grand-Dyck path P € GD,,, the height h(a, b) of a point (a,b) € P is the ordinate
b, and h(P) = max{h(a,b), (a,b) € P}. Here we consider a new height function defined

by Height(a,b) = |b| — ¢, where ¢, is the number of the z-axis crossings before the line
r = a, and we set:

e Semilength(P) = number of up-steps U,

Cross(P) = number of crossings of the z-axis,

Height(P) = max,)cp Height(a,b),
Dud(P) = number of pattern DUD,

Nbu(P, i) = number of U having endpoint (a,b) satisfying Height(a,b) = + 1.

Theorem 5. The bijections ® and ¥ induce correspondences between statistics as sum-
marized in Table 2.



AeT, P=U(A) €GD, —(P) €

Area(A) Semilength(P) Length(ﬂ)

Lw(A) Cross(P) Cross(m)

Rw(A) Height(P) Gap(n)

Width(A) Cross(P) + Height(P) Cross(m) + Gap(n)
Diag(A) Dud(P) Adj(r)

Nbp(A,1) Nbu(P,1) Gap(m,1)

Table 2: Statistic correspondences by the bijections ¥ and .

Proof. The statistic correspondences induced by ® are easy to check. So, we only prove
the correspondences generated by ¥ from directed animals to Grand-Dyck paths.

When A € 7%, we have Lw(A) = Cross(¥(A)) = 0. When A € T\T*, A satisfies
(v) with B € T® and C' € T. Then Lw(A) = 1 + Lw(C). We assume the recurrence
hypothesis Lw(C') = Cross(¥(C')), which implies Lw(A) = 1 4+ Cross(¥(C)). Using
the recursive definition of ¥, we have Cross(V(A)) = 1+ Cross(¥(C')) which gives by
induction Lw(A) = Cross(¥(A)).

When A € 7%, it satisfies (i), (¢i), (#7) or (iv), and the recursive definition of ¥
implies that Rw(A) = h(V(A)) = Height(¥(A)). Otherwise, if A is factorized as (v)
with B € T® and C € T*, then

Rw(A4) = max{Rw(B),Rw(C) — 1}

= max{h(¥(B)),h(¥(C)) — 1}
= max{Height(a,b), (a,b) € ¥(B)¥(C)"},

which is equal to Height (¥ (A)). If A is factorized as (v) with B € T7° and C € T\T?,
then C can be factorized as (v) with D € T*° and E € T, and using an induction we
have:

Rw(A) = max{h(¥(B)),h(¥(D)) — 1,Height(¥(F)) — 2}
= max{Height(a,b), (a,b) € ¥(B)¥(D)"V(E)},
which gives exactly Height(W(A)).

When A € 7%, it satisfies (i), (i), (éii) or (iv), and the recursive definition of
U implies that Nbp(A,i) = Nbu(¥(A),i). Otherwise, if A is factorized as (v) with



B € T and C € T*, then Nbp(A,i) = Nbp(B,i) + Nbp(C,i + 1), and using the
recurrence hypothesis it is equal to

Nbu(¥(B),i) + Nbu(¥(C),i + 1) = Nbu(¥(B)¥(C)",i) = Nbu(¥(A),i).

Whenever A is factorized as (v) with D € T® and E € T, a similar argument completes
the proof. O

Due to the symmetry o about the diagonal y = x, the two statistics Lw(-) + 1 and
Rw(+) have the same distribution on directed animals in 7" and Q. Using Theorem 5 and
Table 2, this induces that Cross(-) + 1 and Height(-) also have the same distribution
in GD and GD*.
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