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Important: It has been pointed out to the authors that the bounds on #EN given in this
paper were already proved in [3] (the upper bound in a stronger form).

We plan to update further this article at a later stage.

COUNTING EGYPTIAN FRACTIONS

SANDRO BETTIN, LOÏC GRENIÉ, GIUSEPPE MOLTENI, AND CARLO SANNA

Abstract. For any integer N ≥ 1, let EN be the set of all Egyptian fractions employing
denominators less than or equal to N . We give upper and lower bounds for the cardinality of
EN , proving that

N

logN

k∏

j=3

logj N < log(#EN) < 0.421N,

for any fixed integer k ≥ 3 and every sufficiently large N , where logj x denotes the j-th iterated
logarithm of x.

1. Introduction

Every positive rational number a/b can be written in the form of an Egyptian fraction,
that is, as a sum of distinct unit fractions: a/b = 1/n1 + · · · + 1/nr with n1, . . . , nr ∈ N
distinct. Several properties of these representations have been investigated. For example,
it is known that all rationals a/b ∈ (0, 1) are representable using only denominators which
are O(b(log b)1+ε) [11, 12] (see also [9]) or that O(

√
log b) different denominators are always

sufficient [10]. It is also well understood which integers can be represented using denominators
up to a bound x [4], and Martin [5, 6] showed that any rational can be represented as a “dense
Egyptian fraction”. In this paper we take a different direction, and study the cardinality of
the set of rational numbers representable using denominators up to N ,

EN :=

{ N
∑

n=1

tn
n
: t1, . . . , tN ∈ {0, 1}

}

, N ∈ N,

as N → +∞.
Another motivation for studying the cardinality of EN comes from the recent work of three

of the authors [2] (see also [1]), where the question of how well a real number τ can be approx-

imated by sums of the form
∑N

n=1 sn/n, where s1, . . . , sN ∈ {−1,+1}, is studied. Precisely,
let

SN :=

{

N
∑

n=1

sn
n

: s1, . . . , sN ∈ {−1,+1}
}

and mN (τ) := min {|τ − σ| : σ ∈ SN} ,

for every positive integer N . Note that SN and EN have the same cardinality, since x 7→
2x−∑N

n=1 1/n is a bijection EN → SN .
It has been proved that mN (τ) < exp

(

− ( 1
log 4 − ε)(logN)2

)

for every τ ∈ R, ε > 0, and

for all sufficiently large positive integers N , depending on τ and ε [2, Theorem 1.1]; and that
for any f : N → R+, there exists τf ∈ R such that mN (τf ) < f(N) for infinitely many N [1,
Proposition 5.9]. On the other hand, it is possible to obtain lower bounds for mN (τ) holding
for almost all τ by giving upper bounds for the cardinality of EN . Indeed, defining

α := lim sup
N→+∞

log(#EN )

N
,
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by a Borel-Cantelli argument one obtains the following lower bound.

Lemma 1.1. Fix ε > 0. For almost all τ ∈ R we have

mN (τ) > exp(−(α+ ε)N)

for all sufficiently large N , depending on τ and ε.

In [2, Proposition 2.7] we proved that α < 0.6649 with a simple argument, improving upon
the trivial α ≤ log 2 = 0.69314 . . . In this paper, we improve this bound even further, thus
producing a better lower bound for mN (τ).

Theorem 1.2. We have α < 0.421, that is, log(#EN ) < 0.421N for all N large enough.

In the opposite direction, it is not difficult to show that log(#EN ) ≫ N/ logN . In the
following theorem we show that one can slightly improve over this lower bound.

Theorem 1.3. For every integer k ≥ 3 we have

(1) log(#EN ) >
N

logN

k
∏

j=3

logj N

for all sufficiently large N , depending on k.

Theorem 1.3 is proved by showing that the set of integers N for which the quotient #EN/#EN−1

attains its maximum value 2 is quite large. With some more effort it is possible to give an
explicit sequence of positive integers (Nk)k≥1 such that (1) holds for every N ≥ Nk.

Upper and lower bounds in Theorems 1.2 and 1.3 have different orders and it is not clear
whether one of them seizes the true behavior of the sequence #EN . Only a few of these
numbers can be computed, since the algorithms devised for this purpose have an exponential
behavior (in time or in memory). The ones which are known are in Table 1 and partially
appear as sequence A072207 of [8]. A graph of log(#EN )/N and of log(#EN )/(N/ logN) is
in Figure 1. As the range of N for which #EN is known is very small, the data do not make
it clear whether log(#EN )/N might converge to 0 or to any other real number.

N EN N EN N EN N EN

1 2 12 1856 23 896512 34 224129024
2 4 13 3712 24 936832 35 231010304
3 8 14 7424 25 1873664 36 237031424
4 16 15 9664 26 3747328 37 474062848
5 32 16 19328 27 7494656 38 948125696
6 52 17 38656 28 7771136 39 1896251392
7 104 18 59264 29 15542272 40 1928593408
8 208 19 118528 30 15886336 41 3857186816
9 416 20 126976 31 31772672 42 3925999616
10 832 21 224128 32 63545344 43 7851999232
11 1664 22 448256 33 112064512

Table 1. The first values of #EN .
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Figure 1. Graph of log(#EN )/N (dots) and of log(#EN )/(N/ logN) (trian-
gles) for N ≤ 43.
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Notation. We employ the Landau–Bachmann “Big Oh” notation O as well as the associated
Vinogradov symbols ≪ and ≫. We reserve the letter p for prime numbers. We put log1 x :=
log x and logk+1 x := log(logk x) for every integer k ≥ 1 and every sufficiently large x.

2. Proof of Lemma 1.1

The definition of α implies that we have an upper bound #SN ≤ e(α+ε/2)N , for all large
enough N . The claim follows by the Borel–Cantelli lemma. We have

E := {τ ∈ R : mN (τ) ≤ e−(α+ε)N for infinitely many N}

=

∞
⋂

M=1

⋃

N≥M

{τ ∈ R : mN (τ) ≤ e−(α+ε)N}.

Hence, the Lebesgue measure of E is estimated by

meas(E) ≤ inf
M

∑

N≥M

2e−(α+ε)N#SN ≤ inf
M

∑

N≥M

2e−εN/2 = inf
M

2e−εM/2

1− e−ε/2
= 0.

This implies that, for almost every τ , the lower bound mN (τ) > e−(α+ε)N holds for all suffi-
ciently large N .

3. Proof of Theorem 1.2

For each prime number p and for every positive integer n, let νp(n) denote the p-adic
valuation of n. We begin with the following easy lemma.

Lemma 3.1. For each prime number p, let µp be a positive integer, and suppose that µp = 1
for all but finitely many primes p. Then, the natural density of the set

D := {n ∈ N : µp | νp(n) for every prime p}
is equal to

δ :=
∏

p

1− p−1

1− p−µp
,
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where we note that only finitely many prime numbers contribute to the product. The formula

can also be written as

δ =
(

∑

d|M

1

d

)−1
=M

(

∑

d|M
d
)−1

,

where M :=
∏

p p
µp−1.

Proof. This is a standard argument, we reproduce it here for completeness. Let δD(n) := 1
when n ∈ D and δD(n) := 0 otherwise. Note that δD is a multiplicative function, so that

F (s) :=

∞
∑

n=1

δD(n)

ns
=
∏

p

(

1 +

∞
∑

b=1

δD(p
b)

pbs

)

=
∏

p

(

1 +

∞
∑

b=1

1

pµpbs

)

=
∏

p

(

1− 1

pµps

)−1

= ζ(s)
∏

p

1− p−s

1− p−µps
=: ζ(s)H(s).

Note that H(s) is a finite Euler product (because µp = 1 for a.e. prime), which is analytic for
ℜ(s) > 0. Set h : N → R, with H(s) =:

∑∞
n=1 h(n)n

−s. Then

∑

n≤x

δD(n) =
∑

n≤x

∑

d|n
h(d) =

∑

d≤x

h(d)
∑

n≤x/d

1 =
∑

d≤x

h(d)
⌊x

d

⌋

= x
∑

d≤x

h(d)

d
+O





∑

d≤x

|h(d)|





= xH(1) +O

(

x
∑

d>x

|h(d)|
d

)

+O





∑

d≤x

|h(d)|



 = xH(1) +Oε(x
ε)

and δ = H(1). (A more careful analysis shows that the error term has size ≪ (1ℓ log x)
ℓ,

uniformly in ℓ ≥ 1 and x ≥ 2.) The alternative representation of δ as a sum of divisors of M
follows immediately by the unique factorization of integers as a product of prime powers. �

The next lemma is our key tool to provide numerical upper bounds for α.

Lemma 3.2. Let a1 ⊂ · · · ⊂ aℓ =: a be finite nonempty sets of natural numbers. We have

α ≤ log 2− δ

ℓ
∑

i=1

(

1

max(ai)
− 1

max(ai+1)

)

log

(

2#ai

ri

)

,

where 1/max(aℓ+1) := 0,

δ :=
(

∑

d|M

1

d

)−1
with M := lcm{a : a ∈ a},

and, for i = 1, . . . , ℓ,

ri := #Ri with Ri :=

{

∑

a∈ai

ta
a
: ta ∈ {0, 1}

}

.

Proof. For any any prime p let µp := 1 + max{νp(a) : a ∈ a} and

D := {n ∈ N : µp | νp(n) for every prime p}.
Let ka := {ka : a ∈ a} for every integer k. Note that k1a ∩ k2a = ∅ for all k1, k2 ∈ D with
k1 6= k2. Indeed, suppose that k1a1 = k2a2 for some k1, k2 ∈ D and a1, a2 ∈ a. Then, for every
prime number p, we have

νp(a1)− νp(a2) ≡ νp(k2)− νp(k1) ≡ 0 (mod µp),

which in turn implies that νp(a1) = νp(a2). Hence, a1 = a2 and k1 = k2.
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Clearly µp is 1 for all but finitely many prime numbers p. Hence, Lemma 3.1 applies, and
the natural density of the set D is

δ =
∏

p

1− p−1

1− p−µp
=
(

∑

d|M

1

d

)−1
,

with M =
∏

p p
µp−1 = lcm{a : a ∈ a}. Let N be a positive integer. Since a1, . . . , aℓ are con-

tained in a, we have that the sets kai, with i ∈ {1, . . . , ℓ} and k ∈ D∩(N/max(ai+1), N/max(ai)]
are pairwise disjoint. Let FN be their union. Clearly, FN ⊆ {1, . . . , N}. Also, we have

#FN =

ℓ
∑

i=1

#

(

D ∩
(

N

max(ai+1)
,

N

max(ai)

])

#ai(2)

= (δ + o(1))N
ℓ
∑

i=1

(

1

max(ai)
− 1

max(ai+1)

)

#ai,

as N → +∞.
We are finally ready to give an upper bound for #EN . Every element of EN is of the form

ℓ
∑

i=1

∑

k∈D∩
(

N
k∈max(ai+1)

, N
max(ai)

]

∑

a∈kai

ta
a

+
∑

b∈F ′

N

tb
b
,

where tn ∈ {0, 1} for all n ∈ {1, . . . , N}, and F ′
N := {1, . . . , N} \ FN . Therefore, we have

logEN ≤
ℓ
∑

i=1

#

(

D ∩
(

N

max(ai+1)
,

N

max(ai)

])

log ri + log(2N−#FN )

= N

(

log 2 + (δ + o(1))

ℓ
∑

i=1

(

1

max(ai)
− 1

max(ai+1)

)

log ri

)

−#FN log 2

= N

(

log 2− (δ + o(1))

ℓ
∑

i=1

(

1

max(ai)
− 1

max(ai+1)

)

log

(

2#ai

ri

)

)

,

as N → +∞, where we used (2). Consequently,

α ≤ log 2− δ

ℓ
∑

i=1

(

1

max(ai)
− 1

max(ai+1)

)

log

(

2#ai

ri

)

,

as claimed. �

Lemma 3.2 gives non-trivial bounds for α already when applied in the simplest case ℓ = 1.
Table 2 displays, for some choices of a = a1, the value of the parameter r = r1 (obtained
numerically) and the corresponding bound α ≤ log 2− δ

max(a) log(2
#a/r).

a r δ/max(a) α ≤
{1, 2, 3, 6} 13 1/12 0.67584390
{1, 2, 3, 4, 6, 12} 29 1/28 0.66487620
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15} 302 1/45 0.66601285
{1, 2, 3, 4, 5, 6, 10, 12, 15, 20} 162 1/56 0.66022083
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30} 694 1/93 0.65915160
{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30} 1061 2/195 0.65796522
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30} 7757 7/780 0.65533420

Table 2. Upper bounds for α in the case ℓ = 1.
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Notice that it is always convenient to include 1 in a since its presence does not affect the
fraction δ/max(a) whereas it typically increases the value of log(2#a/r). The result in [2,
Proposition 2.7] corresponds to the above construction with a = {1, 2, 3, 4, 6, 12}. A judicious
choice of a larger a improves the result, but the gain in log(2#a/r) is considerably tempered by
the size of δ/max(a), which becomes smaller and smaller. The last entry in Table 2 represents
the best bound we were able to obtain with this approach.

Better results can be attained by taking ℓ > 1. Given 1 ≤ a1 < a2 < · · · < aℓ, one can take
the collection a1 ⊂ a2 ⊂ . . . ⊂ aℓ =: a with ai = {a1, . . . , ai} for i = 1, . . . , ℓ. In this case the
bound in Lemma 3.2 simplifies to

α ≤ α1 := log 2− δ

ℓ
∑

i=1

(

1

ai
− 1

ai+1

)

log

(

2i

ri

)

,

with 1/aℓ+1 := 0. A first naive choice is to take ai := {1, . . . , i} for 1 ≤ i ≤ ℓ. Notice that with
this choice ri = #Ei. Now, for some I ≤ ℓ let β > 0 be such that ri ≤ eβi for I ≤ i ≤ ℓ. Then

α1 = log 2− δ
ℓ
∑

i=I

(1

i
− 1

i+ 1

)

i(log 2− β) +O(δ log(1 + |I|))

≤ log 2− δ(log 2− β)

ℓ
∑

i=1

1

i
+O(δ log(1 + |I|)).

Now

δ =
∏

p≤ℓ

1− p−1

1− p−µp,ℓ

with µp,ℓ = 1 +max{t : pt ≤ ℓ} = 1 + [ log ℓlog p ] ≥
log ℓ
log p . Thus, by Merten’s theorem and since

∑

p≤ℓ

log(1− p−µp,ℓ) =
∑

p≤ℓ

log(1− ℓ−1) ≪ 1/ log(ℓ+ 1),

one obtains δ ∼ e−γ/ log ℓ as ℓ→ ∞. In particular, taking for example I = [e
√
log ℓ], we get

α1 ≤ log 2− e−γ(log 2− β) + o(1)

as ℓ→ ∞ and so for any ε > 0 we obtain α1 < log 2−e−γ(log 2−β)+ε if ℓ is large enough. By
the definition of α we have that for all ε > 0 one has β ≤ α+ ε for large enough ℓ, thus giving
α1 < log 2 − e−γ(log 2 − α − ε). Notice that due to the loss of the factor e−γ this argument
fails to recover an upper bound of the type α+ ε for α1, and for example it would only gives
α1 ≤ (1 − e−γ) log 2 + ε = 0.3039 · · · + ε if α = 0. However, it shows that by taking ℓ large
enough one can surely get arbitrarily close to the upper bound log 2 − e−γ(log 2 − α) just by
performing a finite numerical computation.

An alternative and more effective approach arises from the observation that the density δ
depends only on the valuations µp, and so it is the same for different a sharing the same least
common multiple. In particular, it is convenient to select the numbers in a as the full collection
of divisors of a given integer M . In this case the bound further simplifies to

(3) α ≤ α1 with α1 = δ

ℓ
∑

i=1

(

1

ai
− 1

ai+1

)

log ri.

Indeed, if a1 < · · · < aℓ are all the divisors of M , then we get

log 2− δ
ℓ
∑

i=1

(

1

ai
− 1

ai+1

)

log(2i) =

(

1− δ
ℓ
∑

i=1

(

1

ai
− 1

ai+1

)

i

)

log 2

=

(

1− δ

ℓ
∑

i=1

1

ai

)

log 2 =



1− δ
∑

d|M

1

d



 log 2 = 0.
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Numerically it seems that best results come from taking M with only “small” prime divisors
(say, for example, M = lcm{1, . . . ,m}, for some m, or some small variations of it) and this
could be explained by the observation that with numbers of this shape an argument analogous
to the above does not have a loss of e−γ (notice however that in this case ri is not equal to
#Ei, so the argument is not fully recursive as in the previous case). Table 3 collects some
bounds one gets in this way. Most likely further improvements could be obtained by taking
larger numbers. However, the quantity of time and memory one needs to compute ri for large i
prevented us to any significant improvement on the value appearing at the bottom of Table 3.

M α ≤
5040 = 24 · 32 · 5 · 7 0.56731289
529200 = 24 · 33 · 52 · 72 0.55084208
55440 = 24 · 32 · 5 · 7 · 11 0.54939823
2116800 = 26 · 33 · 52 · 72 0.54552567
4233600 = 27 · 33 · 52 · 72 0.54465996
1441440 = 25 · 32 · 5 · 7 · 11 · 13 0.53020542
2162160 = 24 · 33 · 5 · 7 · 11 · 13 0.52779949
4324320 = 25 · 33 · 5 · 7 · 11 · 13 0.52405384
43243200 = 26 · 33 · 52 · 7 · 11 · 13 0.51452256
147026880 = 26 · 33 · 5 · 7 · 11 · 13 · 17 0.51032288
2793510720 = 25 · 33 · 5 · 7 · 11 · 13 · 17 · 19 0.49944226
13967553600 = 26 · 33 · 52 · 7 · 11 · 13 · 17 · 19 0.49153796
41902660800 = 26 · 34 · 52 · 7 · 11 · 13 · 17 · 19 0.48948987

Table 3. Upper bounds for α using increasing collections aj := {a1, . . . , aj}
for j = 1, . . . , ℓ and a = {d : d|M} for different M .

The search of a good way to store the huge vectors containing the numbers in Ri led us to
consider the following upper bound for ri.

Lemma 3.3. Let a := {a1 < a2 < · · · < aℓ} be the full set of divisors of an integer M , let

ai := {a1, . . . , ai}, and let Ri and ri as in Lemma 3.2. Then

ri ≤ 1 + lcm{a1, . . . , ai}
i
∑

k=1

1

ak

Proof. Let Li := lcm{a1, . . . , ai}. Hence, Li/ak ∈ Z for k = 1, . . . , i. Consequently, LiRi =

{∑i
k=1±Li/ak} ⊆ Z. Moreover, max{LiRi} = −min{LiRi} = Mi :=

∑i
k=1 Li/ak, so that

#(LiRi) ≤ 1+2Mi. We can improve this bound by a factor 2 since ±1 ≡ 1 (mod 2), so that all
numbers in LiRi have the same parity ofMi. As a consequence, ri = #Ri = #(LiRi) ≤ 1+Mi,
as desired. �

At this point, we are ready to explain the method that we used to prove the bound of
Theorem 1.2. The main idea is to use the upper bound given by (3), but computing the exact
value of ri only for small i. Precisely, let M be a (very large) positive integer and let a1 <
· · · < aℓ be all its divisors. Also, let M ′ be a (small) divisor of M and let a′1 < · · · < a′m be all

its divisors. For each divisor a′j ofM
′ we pre-compute the value r′j :=

{

∑

a∈a′j
ta
a : ta ∈ {0, 1}

}

,

where a′j := {a′1, . . . , a′j}. Then, for each divisor ai of M we look for the largest a′j dividing ai,
and we estimate ri with the minimum between what we get from Lemma 3.3 and the number

r′j · 2#ai−#a′j . This is a correct bound since, by the assumption on j, we have a
′
j ⊆ ai and

consequently ri is at most r′j multiplied by the power of two elevated to the difference of the

cardinalities of ai and a
′
j .
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Table 4 collects some results we get in this way for suitable choices of M ′ and M . The last
entry gives our best result, which proves Theorem 1.2. Its computation needed approximatively
40 hours and 200GB.

M M ′ α ≤
lcm{1, . . . , 17} lcm{1, . . . , 10} 0.52408774
lcm{1, . . . , 31} lcm{1, . . . , 17} 0.47705355
lcm{1, . . . , 41} lcm{1, . . . , 17} 0.46441548
lcm{1, . . . , 53} lcm{1, . . . , 17} 0.44930098
lcm{1, . . . , 79} lcm{1, . . . , 19} 0.43238142
lcm{1, . . . , 89} lcm{1, . . . , 19} 0.42691423
lcm{1, . . . , 97} lcm{1, . . . , 23} 0.42447521
lcm{1, . . . , 97} 2 · 3 · lcm{1, . . . , 19} 0.42310594
lcm{1, . . . , 97} 22 · 32 · lcm{1, . . . , 19} 0.42286665
lcm{1, . . . , 97} 22 · 32 · 5 · lcm{1, . . . , 19} 0.42099405

Table 4. Upper bounds for α mixing the computation of the true value of ri
for small divisors, and estimating its value with Lemma 3.3 for large divisors.
The relevant parameters are M and M ′.

4. Proof of Theorem 1.3

Define the set

U :=

{

N ≥ 1:

N−1
∑

n=1

wn

n
6= 1

N
: ∀w1, . . . , wN−1 ∈ {−1, 0,+1}

}

,

and let U(x) := U ∩ [1, x] for every x ≥ 1.

Lemma 4.1. If N ∈ U then #EN = 2#EN−1. Consequently, #EN ≥ 2#U(N).

Proof. On the one hand, N ∈ U implies that EN−1 ∩ (EN−1 + 1/N) = ∅. On the other hand,
EN = EN−1 ∪ (EN−1 + 1/N). Hence, we have #EN = #EN−1 +#(EN−1 + 1/N) = 2#EN−1,
as claimed. �

In light of Lemma 4.1, to produce a lower bound for #EN it is sufficient to give a lower
bound for #U(N).

Lemma 4.2. U contains 1 and all prime numbers.

Proof. The fact that 1 ∈ U follows immediately from the definition of U . Furthermore, for
every prime number p and for every w1, . . . , wp−1 ∈ {−1, 0,+1}, the identity

p−1
∑

n=1

wn

n
=

1

p

is impossible, since the left-hand side has nonnegative p-adic valuation (all denominators are
not divisible by p) while the right-hand side has negative p-adic valuation. Hence, p ∈ U . �

For each positive integer m, let dm := lcm{1, . . . ,m} and gm := dm
∑m

j=1 1/j.

Lemma 4.3. If m ∈ U and p > gm is a prime number, then mp ∈ U .
Proof. Suppose by contradiction that N := mp /∈ U . Hence, there exist w1, . . . , wN−1 ∈
{−1, 0,+1} such that

N−1
∑

n=1

wn

n
=

1

N
.
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Consequently, splitting the sum according to whether p|n and multiplying by p we obtain

p

N−1
∑

n=1
p∤n

wn

n
+

m−1
∑

j=1

wpj

j
=

1

m
,

which in turn implies that

(4)

m−1
∑

j=1

wpj

j
− 1

m
≡ 0 (mod p).

Since m ∈ U , the number on the left hand side is non-zero. Moreover, the absolute value of
its numerator is at most gm, which by hypothesis is strictly smaller than p. But then (4) is
impossible. �

Remark 4.1. The proofs of Lemma 4.2 and Lemma 4.4 can be easily adapted to show that if
m ∈ U and p > gm is a prime number then mpk ∈ U for every positive integer k. However,
this generalization does not lead to an improvement of our final result.

Lemma 4.4. If m ∈ U and p > 3m is a prime number, then mp ∈ U .

Proof. In light of Lemma 4.3, it is enough to prove that gm < 3m for every positive integer m.
On the one hand, from [7, p. 228] we know that dm = exp(ψ(m)) ≤ exp(1.04m). On the other
hand,

m
∑

j=1

1

j
≤ 1 +

∫ m

1

dt

t
= log(em).

Hence, gm ≤ exp(1.04m) log(em) < 3m for every integer m ≥ 25. A direct computation shows
that the gm < 3m holds also for m = 1, . . . , 24. �

As usual, let π(x) denote the number of prime numbers not exceeding x. The next lemma
gives a recursive lower bound for #U(x).

Lemma 4.5. Let y ≥ 1 and x ≥ 3y. Then

#U(x) ≥
∑

m∈U(y)

π
( x

m

)

− 2 · 3y.

Proof. Let us consider the natural numbers of the form mp, where p is a prime number satisfy-
ing 3y < p ≤ x/m and m ∈ U(y). Thanks to Lemma 4.4, we have that mp ∈ U(x). Moreover,
these numbers can be written in the form mp in a unique way. Indeed, for the sake of contra-
diction, suppose that mp = m′p′ for some m′, p′ satisfying the same conditions as m, p, with
p 6= p′. Then, p′ | m, so that 3y < p′ ≤ m ≤ y, which is impossible. At this point, counting
the choices for m and p, we get

#U(x) ≥
∑

m∈U(y)

(

π
( x

m

)

− π(3y)
)

≥
∑

m∈U(y)

π
( x

m

)

− π(3y)y.

The desired claim follows by applying the inequality π(3y)y ≤ 2 ·3y , which in turn follows from
the estimate π(x) ≤ 2x/ log x valid for all x ≥ 2. �

We need the following technical lemma. Let e1 := 1 and ek+1 := eek for all integers k ≥ 2.

Lemma 4.6. For any fixed integer k ≥ 2, we have

∫ x

ek

1

t log t

k
∏

j=3

logj t dt ∼
k
∏

j=2

logj x,

as x→ +∞.
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Proof. For k = 2 the empty product appearing on the left hand side is set to 1, by definition,
and the claim is clear in this case. Assume k ≥ 3. We have





k
∏

j=2

logj x





′

=





k
∏

j=2

logj x





k
∑

j=2

j
∏

i=0

1

logi x

=
1

x log x





k
∏

j=3

logj x







1 +
k
∑

j=3

j
∏

i=3

1

logj x



 ∼ 1

x log x





k
∏

j=3

logj x



 ,

as x→ +∞. The claim then follows from de l’Hôpital’s rule. �

Lemma 4.7. For every integer k ≥ 2, we have

#U(x) ≫k
x

log x

k
∏

j=3

logj x,

for all sufficiently large x, depending on k.

Proof. We proceed by induction on k. By Lemma 4.2 and by Chebyshev’s estimate, we have

#U(x) > π(x) ≫ x

log x
,

for all sufficiently large x. This proves the claim for k = 2. Suppose k ≥ 3 and that we have
already proved the claim for k− 1. Put y := 1

2 log x and assume that x is sufficiently large. By
Lemma 4.5 and by Chebyshev’s estimate, we have

(5) #U(x) ≥
∑

m∈U(y)

π
( x

m

)

− 2 · 3y ≫
∑

m∈U(y)
m≥2

x

m log(x/m)
>

x

log x

∑

m∈U(y)
m≥2

1

m
.

Furthermore, by partial summation and by the induction hypothesis, we get

∑

m∈U(y)
m≥2

1

m
≫
∫ y

ek−1

#U(t)
t2

dt≫k

∫ y

ek−1

1

t log t

k−1
∏

j=3

logj t dt≫
k−1
∏

j=2

logj y ≫
k
∏

j=3

logj x,(6)

for all sufficiently large x, depending on k, where we employed Lemma 4.6. Putting together
(5) and (6) we obtain the desired claim. �

Theorem 1.3 follows easily by Lemma 4.1 and 4.7.
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Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

E-mail address: bettin@dima.unige.it

Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di
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