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On the number of even roots of permutations

Lev Glebsky, Melany Licón, Luis Manuel Rivera

Abstract

Let σ be a permutation on n letters. We say that a permutation τ is an even
(resp. odd) kth root of σ if τk = σ and τ is an even (resp. odd) permutation. In this
article we obtain generating functions for the number of even and odd kth roots of
permutations. Our result implies know generating functions of Moser and Wyman and
also some generating functions for sequences in The On-line Encyclopedia of Integer
Sequences (OEIS).

Keywords: Roots of permutations; even permutations; generating functions.
AMS Subject Classification Numbers: 05A05; 05A15.

1 Introduction

The study of problems related to the solutions of equation xk = a, with k a fixed positive
integer, in groups and another structures is a classical problem and has been studied for
several year and by different authors (see, e.g., [4, 6, 11, 12, 13, 19, 20, 23]).

One of the most studied cases is when the group is the symmetric group Sn. For
example, there are characterizations that said when a given permutation has a kth root in
Sn (see, e.g., [1, 3, 7]). Also, there are several results about the probability that a random
permutation of length n has a kth root (see, e.g., [2, 5, 13, 14, 15]). For the case of the
alternating group, there are a characterization due to Annin, Jansen and Smith [1] about
the even permutations that have kth roots in An, and it seems that the unique result about
the probability that a random even permutation has a kth root in An is due to Pournaki
[17] for the case k = 2.

Another type of problem is about the number of solutions in Sn of the equation xk = σ.
This problem was studied for several authors and with different points of view. For example
Pavlov [16] gave an explicit formula for such a number. Some years later, Leaños, Moreno
and the third author of this article gave another explicit formula and a multivariable
exponential generating function [10], and Roichman [18] gave a formula expressed as an
alternating sum of µ-unimodal kth roots of the identity permutation.

In this article we are interested in the number of even (resp. odd) permutations that
are kth roots of a given permutation. To our knowledge, there are only few results in this
direction and only for the case of the identity permutation. In OEIS [21] there are only few
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sequences for the number of even kth roots of the identity permutation: A000704 (k = 2),
A061129 (k = 4), A061130 (k = 6), A061131 (k = 8) and A061132 (k = 10). For the case
of the number of odd kth roots of the identity permutation we found sequences A001465
(k = 2), A061136 (k = 4) and A061137 (k = 6). The case k = 2 was studied by Moser and
Wyman [13].

In order to formulate our main result we need some definitions. The cycle type of an
n-permutation is a vector c = (c1, . . . , cn) that indicates that the permutation has ci cycles
of length i for every i ∈ [n], with ci ≥ 0. Also, we say that a permutation σ is of cycle
type (ℓ1)

a1 . . . (ℓm)am , with ai > 0, if σ has exactly ai cycles of length ℓi in its disjoint cycle
factorization and does not have any cycles of another length. Let k, ℓ be positive integers
and c a non-negative integer. Let

Gk(ℓ) = {g ∈ N : mcd (gℓ, k) = g}.

The main result of this paper is the following

Theorem 1.1. Let n, k be positive integers and let c1, . . . , cn be non-negative integers. For

n = c1 + 2c2 + · · ·+ ncn, the coefficient of
t
c1
1

...tcnn
c1!...cn!

in the expansion of

1

2
exp





∑

ℓ≥1

∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



+
1

2
exp





∑

ℓ≥1

∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ





is the number of even kth roots of a permutation of cycle type c, and in the expansion of

1

2
exp





∑

ℓ≥1

∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



−
1

2
exp





∑

ℓ≥1

∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ



 .

is the number of odd kth roots of a permutation of cycle type c.

This theorem implies the known results for the identity permutation. The outline of
this paper is as follows. In Section 2 we present some notation and definitions. Also we
present a sketch of the proof of our main result. In Section 3 we prove several propositions
and lemas that are used in the proof of our main result. The proof itself is at the end of
this section. In Section 4 we present several particular cases of Theorem 1.1 that allows
some nice simplifications.

2 Preliminares

First some notation and definitions. We use N (respectively N0) to denote the set of
positive (respectively, non-negative) integers. The elements of Sn are called permutations
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or n-permutations and are bijections σ : {1, . . . , n} → {1, . . . , n}. The support of an n-
permutation σ is defined as supp(σ) = {a ∈ {1, . . . , n} : σ(a) 6= a}. The set Gk(ℓ) was
defined in [10]. Note that if k = pa11 · · · p

aj
j , where p1, . . . , pj are distinct primes and ai > 0,

for any i ∈ {1, . . . , j}, then

Gk(ℓ) =
{

pb11 · · · p
bj
j : bi = ai if pi|ℓ and bi ∈ {0, 1, . . . , ai} if pi 6 |ℓ

}

The following observation will be useful in Section 4.

Observation 2.1. Let k be an even integer.

1. if ℓ is even, then Gk(ℓ) is a set of even integers,

2. if ℓ is odd, then Gk(ℓ) can have even and odd integers.

The importance of the set Gk(ℓ) is given by the following proposition that was proved
in [10].

Proposition 2.2. A permutation of cycle type (ℓ)c has a kth root if and only if equation

g1x1 + · · · + ghxh = c

has non-negative integer solutions, where Gk(ℓ) = {g1, . . . , gh}, with g1 < · · · < gh.

For the number of kth roots, the following result was obtained by Leaños, Moreno and
the third author of this paper.

Theorem 2.3. Let k, n be positive integers and let c1, . . . , cn be non-negative integers. For

n = c1 + 2c2 + · · ·+ ncn, the coefficient of
t
c1
1

···tcnn
c1!···cn!

in the expansion of

exp





∑

ℓ≥1

∑

g∈Gm(ℓ)

ℓg−1

g
tgℓ



 ,

is the number of kth roots of an n-permutation of cycle type c = (c1, . . . , cn).

In the proof of previous theorem the authors used the following well-known result: if a
permutation σ has a kth root, then all the roots of σ can by obtained by working with the
cycles of different lengths of σ separately (see, e.g., [8] and [10]). However, for the case of
even kth roots, the above does not work directly because the product of two permutations
of equal parity is an even permutation. We have solve this difficult by working with the
difference between the number of even kth roots and the number of odd kth roots of
a permutation (Lemma 3.3). The next step was to obtain a multivariable exponential
generating function for such a difference (Lemma 3.8). In order to make this, we assign a
sign to the number of kth roots, of certain type, of permutations with all its cycles of the
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same length (Proposition 3.5), and using this we obtain an exponential generating function
for the difference between the number of even kth roots and odd kth roots of permutations
with all its cycles of the same length (Lemma 3.7). Finally, the proof of Theorem 1.1 is
obtained as a consequence of Theorem 2.3 and Lema 3.8.

For the proof of Lemma 3.7 we will use the following result, that is Proposition 5.1.3
in Stanley’s book [22]

Theorem 2.4. Let K be a field of characteristic zero. Fix m ∈ N and functions fi : N → K,
1 ≤ i ≤ m. Define a new function h : N0 → K by

h(|A|) =
∑

f1(|A1|)f2(|A2|) · · · fm(|Am|),

where the sum ranges over all weak partitions (A1, . . . , Am) of A into m blocks, i.e.,
A1, . . . Am are subsets of A satisfying: (i) Ai ∩Aj = ∅ if i 6= j, and (ii) A1 ∪ · · · ∪Am = A.
Let Fi(x) and H(x) be the exponential generating functions for the series fi(n) and h(n),
respectively. Then

H(x) = F1(x) . . . Fm(x).

3 Proof of the main result

We need the following almost obvious proposition

Proposition 3.1. Let G be a group and K be a field. Let φ : G → (K, ·) (g 7→ φg) be a
homomorphism to the multiplicative group of K and X,Y ⊆ G be finite. Then





∑

g∈X

φg





(

∑

h∈Y

φh

)

=
∑

g∈X
h∈Y

φgh.

Let rpk(σ) (resp. rik(σ)) denote the number of even (resp. odd) kth roots of permuta-
tion σ.

Corollary 3.2. Let σ be a permutation such that σ = σ1σ2 and supp(σ1) ∩ supp(σ2) = ∅.
Let rp′k(σ) (resp. ri′k(σ)) be the number of even (resp. odd) kth roots τ of σ such that
τ = τ1τ2 with τk1 = σ1 and τk2 = σ2. Then

rp′k(σ)− ri′k(σ) = (rpk(σ1)− rik(σ1)) (rpk(σ2)− rik(σ2)) .

Proof. Consider the parity of permutations as a homomorphism φ to {−1, 1} and define
the sets X = {τ1 ∈ Sn : τ

k
1 = σ1} and Y = {τ2 ∈ Sn : τ

k
2 = σ2}. Then

∑

τ1∈X

φτ1 = rpk(σ1)− rik(σ1),
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∑

τ2∈Y

φτ2 = rpk(σ2)− rik(σ2)

and
∑

τ1∈X
τ2∈Y

φτ1τ2 = rp′k(σ) − ri′k(σ).

The following result shows that for a given permutation σ we can obtain the difference
rpk(σ)− rik(σ) by working with the different lengths in the cycles of σ separately.

Lemma 3.3. Let σ be a permutation that has kth roots. Suppose that the disjoint cycle
factorization of σ ∈ Sn can be expressed as the product σ1σ2 · · · σm where σi is the product
of all the disjoint ℓi-cycles of σ, for every i. Then

rpk(σ)− rik(σ) =

m
∏

i=1

(rpk(σi)− rik(σi)) .

Proof. It is well-know that every kth root of σ can be written as τ1 · · · τm with τki = σi, for
every i (see, e.g., [10, §3]). The proof is by induction on m. The case m = 1 is obvious.
If m = 2, then all the kth roots of σ are of the form τ1τ2, with τk1 = σ1 and τk2 = σ2, and
hence rpk(σ) = rp′k(σ), rik(σ) = ri′k(σ) and the result follows from Corollary 3.2. Now
if σ = σ1 . . . σm−1σm, m > 2, then every kth root τ of σ is of the form ατm with αk =
σ1 . . . σm−1 and τkm = σm. Therefore rpk(σ) = rp′k(σ), rik(σ) = ri′k(σ). By Corollay 3.2
and by the induction hypothesis we have that

rpk(σ)− rik(σ) = (rpk(α) − rik(α))(rpk(τm)− rik(τm))

=
m−1
∏

i=1

(rpk(σi)− rik(σi)) (rpk(τm)− rik(τm))

=

m
∏

i=1

(rpk(σi)− rik(σi))

Let g, k, ℓ be fixed positive integers and p be a fixed non-negative integer. We use
fk,ℓ,g,p(c) to denote the number of permutations of cycle type (gℓ)p that are kth roots of a
permutation of cycle type (ℓ)c, c ∈ N0. The following proposition was essentially proved in
[10].

Proposition 3.4. Let g, k, ℓ be fixed positive integers and p be a fixed non-negative integer.
Let c ∈ N0. If g ∈ Gk(ℓ) and c = gp, then

fk,ℓ,g,p(c) =
(gp)!ℓp(g−1)

gpp!
,
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and fk,ℓ,g,p(c) = 0 in any other case.

In view of previous proposition, for g ∈ Gk(ℓ) we define

fk,ℓ,g(c) =

{

fk,ℓ,g,p(c) c = gp
0 other case

Now we assign a sign to the number fk,ℓ,g(c) that is useful to known if the roots of cycle
type (gℓ)p of a permutation of cycle type (ℓ)c are even.

Proposition 3.5. Let k, ℓ be fixed positive integers. Let g ∈ Gk(ℓ), c ∈ N0 and

a(c) = (−1)c/g(ℓg+1)fk,ℓ,g(c).

If σ is a permutation of cycle type (ℓ)c and c = gp, then a(c) 6= 0 and the kth roots of σ of
cycle type (gℓ)p are even permutations if and only if a(c) > 0.

Proof. As c = gp, we have that a(c) = (−1)p(ℓg+1)fk,ℓ,g,p(c) and Proposition 3.4 implies
that a(c) 6= 0. We have the following cases.

1. p even. In this case the kth roots of σ of cycle type (ℓg)p are even and by direct
calculations we obtain that a(c) > 0.

2. p odd.

2.1. ℓg even. In this case the kth roots of σ of cycle type (ℓg)p are odd. By direct
calculations we obtain a(c) < 0.

2.2. ℓg odd. In this case the kth roots of σ of cycle type (ℓg)p are even and by direct
calculations we obtain that a(c) > 0.

The exponential generating function, in the variable tℓ, for the number a(c) in previous
proposition is given in the following result.

Proposition 3.6. Let ℓ, k ∈ N. Let g ∈ Gk(ℓ) fixed. Then

∑

c≥0

(−1)c/g(ℓg+1)fk,ℓ,g(c)
tcℓ
c!

= exp

(

(−1)ℓg+1 ℓ
(g−1)

g
tgℓ

)

.
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Proof. From Proposition 3.4 we have that fk,ℓ,g(c) 6= 0 if and only if c = gp, for some
p ∈ N0. Therefore

∑

c≥0

(−1)c/g(ℓg+1)fk,ℓ,g(c)
tcℓ
c!

=
∑

p≥0

(−1)p(ℓg+1)fk,ℓ,g,p(gp)
tgpℓ
(gp)!

=
∑

p≥0

(−1)p(ℓg+1) (gp)!ℓ
p(g−1)

gpp!

tgpℓ
(gp)!

=
∑

p≥0

(−1)p(ℓg+1) ℓ
p(g−1)

gp
tgpℓ
(p)!

=
∑

p≥0

(

(−1)(ℓg+1) ℓ
(g−1)

g
tgℓ

)p
1

(p)!

= exp

(

(−1)ℓg+1 ℓ
(g−1)

g
tgℓ

)

.

Let rpk(ℓ, c) (resp. rik(ℓ, c)) denote the number of even (resp. odd) kth-roots of any
permutation of cycle type (ℓ)c.

Lemma 3.7. Let ℓ ∈ N. Then

∑

c≥0

(rpk(ℓ, c) − rik(ℓ, c))
tcℓ
c!

= exp





∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ



 .

Proof. Let σ be any permutation of cycle type (ℓ)c and S the set of all disjoint cycles in
σ. Let Gk(ℓ) = {g1, . . . , gm}, with g1 < · · · < gm. By Corollary 2.2 we have that σ has kth
roots if and only if the equation

g1x1 + · · ·+ gmxm = c

has non-negative integer solutions, where a solution (p1, . . . , pm) of previos equation means
that σ has kth roots of cycle type (g1ℓ)

p1 . . . (gmℓ)pm . We can obtain all these roots by
running over all the weak ordered partitions (A1, . . . , Am) of S. Indeed, if (A1, . . . , Am)
is such a partition, the number of kth of roots associated to this partition is given by
fk,ℓ,g1(|A1|) · · · fk,ℓ,gm(|Am|), where this product is different to cero if |Ai| is a multiple of
gi, for every i. Let A be the set of all weak ordered partitions of S into m blocks. The
number of all kth roots of σ is equal to

∑

(A1,...,Am)∈A

fk,ℓ,g1(|A1|) · · · fk,ℓ,gm(|Am|).
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Now, for a given partition (A1, . . . , Am) with

fk,ℓ,g1(|A1|) · · · fk,ℓ,gm(|Am|) 6= 0,

the sign of

(−1)|A1|/g1(ℓg1+1)fk,ℓ,g1(|A1|) · · · (−1)|Am|/gm(ℓgm+1)fk,ℓ,gm(|Am|),

determine the parity of the kth roots of σ of cycle type (g1ℓ)
p1 . . . (gmℓ)pm , where

pi = |Ai|/gi. Therefore, the number rpk (ℓ, c)− rik (ℓ, c) is equal to

∑

(A1,...,Am)∈A

(−1)|A1|/g1(ℓg1+1)fk,ℓ,g1(|A1|) · · · (−1)|Am|/gm(ℓgm+1)fk,ℓ,gm(|Am|),

and the desired exponential generating function is obtained by Theorem 2.4 and Propo-
sition 3.6.

Let rpk(c) (resp. rpk(c)) denote the number of even (resp. odd) kth roots of a per-
mutation of cycle type c. The following multivariable exponential generating function, in
the variables t1, t2, . . . , for the difference between the number of even kth roots and the
number of odd kth roots of permutations of any cycle type follows from Lemmas 3.3 and
3.7.

Lemma 3.8. Let n, k be a positive integers and let c1, . . . , cn be non-negative integers. For

n = c1 + 2c2 + · · ·+ ncn, the coefficient of
t
c1
1

...tcnn
c1!...cn!

in the expansion of

exp





∑

ℓ≥1

∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ





is equal to the number rpk(c)− rik(c).

Proof of Theorem 1.1.
Let rk(σ) denote the number of kth roots of a permutation σ. For any permutation σ,

we have that

2rpk(σ) = rpk(σ) + rik(σ) + rpk(σ)− rik(σ)

= rk(σ) + (rpk(σ)− rik(σ)).

Similarly

2rik(σ) = rk(σ)− (rpk(σ)− rik(σ)).

Therefore, Theorem 1.1 follows immediately from Theorem 2.3 and Lemma 3.8.
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4 Particular cases

If k is odd, then any solution of equation xk = σ should have the same parity that σ, and
hence the generating function is the same that the given in Theorem 2.3. Therefore in this
section k is a fixed even integer.

Permutations of cycle type (ℓ)c

For a fixed positive integers ℓ, the exponential generating function for the number of even
kth roots of permutations of cycle type (ℓ)c, c ∈ N, becomes

∑

c≥0

rpk(ℓ, c)
tcℓ
c!

=
1

2
exp





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



+
1

2
exp





∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ



 (1)

and

∑

c≥0

rik(ℓ, c)
tcℓ
c!

=
1

2
exp





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



−
1

2
exp





∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ



 . (2)

With this expressions, we can obtain the exponential generating functions that ap-
pear in the following sequences in OEIS: A000704, A061129, A061130, A061131, A061132,
A001465, A061136 and A061137.

For example, sequence A061131 in OEIS correspond to the number of even 8th roots
of the identity permutation. In this case ℓ = 1 and G8(1) = {1, 2, 4, 8}. Therefore

∑

c≥0

rp8(1, c)
xc

c!
=

1

2
exp

(

x+
1

2
x2 +

1

4
x4 +

1

8
x8
)

+
1

2
exp

(

x−
1

2
x2 −

1

4
x4 −

1

8
x8
)

= exp (x) cosh

(

1

2
x2 +

1

4
x4 +

1

8
x8
)

.

For another example, sequence A061132 is the number of even 10th root of the identity
permutation. In this case, G10(1) = {1, 2, 5, 10} and hence

∑

c≥0

rp10(1, c)
xc

c!
=

1

2
exp

(

x+
1

2
x2 +

1

5
x5 +

1

10
x10
)

+
1

2
exp

(

x−
1

2
x2 +

1

5
x5 −

1

10
x10
)

= exp

(

x+
1

5
x5
)

cosh

(

1

2
x2 +

1

10
x10
)

.

This examples shows that we can make further simplifications to equations (1) and (2).
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First we consider the case when ℓ is even. By Observation 2.1 we have that

∑

c≥0

rpk(ℓ, c)
tcℓ
c!

= cosh





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ





and

∑

c≥0

rik(ℓ, c)
tcℓ
c!

= sinh





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



 .

For ℓ odd, let Gk(ℓ)
′ = {g ∈ Gk(ℓ) : g is odd } and Gk(ℓ)

′′ = Gk(ℓ)−Gk(ℓ)
′. Then

∑

c≥0

rpk(ℓ, c)
tcℓ
c!

=
1

2
exp





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



+
1

2
exp





∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ



 ,

=
1

2
exp





∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ



+
1

2
exp





∑

g∈G′

k
(ℓ)

ℓg−1

g
tgℓ −

∑

g∈G′′

k
(ℓ)

ℓg−1

g
tgℓ



 ,

= exp





∑

g∈G′

k
(ℓ)

ℓg−1

g
tgℓ



 cosh





∑

g∈G′′

k
(1)

ℓg−1

g
tgℓ



 .

Similarly, for the case of odd kth roots we obtain

∑

c≥0

rik(ℓ, c)
xc

c!
= exp





∑

g∈G′

k
(ℓ)

ℓg−1

g
tgℓ



 sinh





∑

g∈G′′

k
(1)

ℓg−1

g
tgℓ



 .

For the case k = 2 and permutations of cycle type (ℓ)c we have the following

Corollary 4.1. Let ℓ be a fixed positive integer. Then

∑

c≥0

rp2(ℓ, c)
tcℓ
c!

= exp ((ℓ mod 2)tℓ) cosh

(

ℓ

2
t2ℓ

)

and

∑

c≥0

ri2(ℓ, c)
tcℓ
c!

= exp ((ℓ mod 2)tℓ) sinh

(

ℓ

2
t2ℓ

)

.
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The case of the identity permutation

Now, we can do more simplifications for the case of the identity permutation (ℓ = 1). Let
k = 2a1 · · · p

aj
j , where 2, p2, . . . , pj are distinct primes and ai > 0, for any i ∈ {1, . . . , j}.

Then
Gk(1) = {m : m|k}

and hence

∑

c≥0

rpk(1, c)
xc

c!
=

1

2
exp





∑

d|k

xd

d



+
1

2
exp





∑

d|k

(−1)d−1x
d

d



 .

For the case k = 2m, we have

∑

c≥0

rp2m(1, c)
xc

c!
=

1

2
exp

(

m
∑

i=0

1

2i
x2

i

)

+
1

2
exp

(

x−
m
∑

i=1

1

2i
x2

i

)

.

This generating function was used in the work of Koda, Sato and Tskegahara [9]. For the
case of odd roots

∑

c≥0

ri2m(1, c)
xc

c!
= exp(x)sinh

(

1

2
x2 + · · · +

1

2m
x2

m

)

Square roots of any permutation

For the case of even square roots we have the following

Corollary 4.2. The coefficient of tc11 . . . tcnn /(c1! . . . cn!) in the expansion of

∏

j≥1

exp (t2j−1) cosh





∑

j≥1

(

2j − 1

2
t22j−1 + jt22j

)





is the number of even square roots of any permutation of cycle type c = (c1, . . . , cn).

Proof. We rewrite Theorem 1.1 for the case of even square roots. When k = 2, G2(ℓ) ⊆
{1, 2}. Now we work with the parity of ℓ. If ℓ = 2j − 1, for some integer j ≥ 1, then
G2(2j − 1) = {1, 2} and hence

∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ = t2j−1 −

2j − 1

2
t22j−1

and
∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ = t2j−1 +

2j − 1

2
t22j−1.

11



If ℓ = 2j, for some integerj ≥ 1, then G2(2j) = {2} and hence

∑

g∈Gk(ℓ)

(−1)ℓg+1 ℓ
g−1

g
tgℓ = −jt22j

and
∑

g∈Gk(ℓ)

ℓg−1

g
tgℓ = jt22j .

Therefore, the exponential generating for the number of even square roots of permuta-
tions becomes

1

2



exp





∑

j≥1

(

t2j−1 +
2j − 1

2
t2
2j−1

+ jt2
2j

)



+ exp





∑

j≥1

(

t2j−1 −
2j − 1

2
t2
2j−1

− jt2
2j

)







 ,

from which we obtain

1

2

∏

j≥1

exp (t2j−1)





∏

j≥1

exp

(

2j − 1

2
t2
2j−1

+ jt2
2j

)

+
∏

j≥1

exp

(

−
2j − 1

2
t2
2j−1

− jt2
2j

)



 ,

that is equal to

∏

j≥1

exp (t2j−1) cosh





∑

j≥1

(

2j − 1

2
t22j−1 + jt22j

)





In a similar way we obtain the following

Corollary 4.3. The coefficient of tc11 . . . tcnn /(c1! . . . cn!) in the expansion of

∏

j≥1

exp (t2j−1) sinh





∑

j≥1

(

2j − 1

2
t22j−1 + jt22j

)





is the number of odd square roots of any permutation of cycle type c = (c1, . . . , cn).

We finish this paper by showing the case of even and odd square roots of involutions.

Corollary 4.4. Let rp2(c1, c2) (resp. rp2(c1, c2)) denote the number of even (resp. odd)
square roots of an involution with exactly c1 cycles of length 1 and exactly c2 cycles of
length 2. Then

∑

c1,c2≥0

rp2(c1, c2)
tc11 tc22
c1!c2!

= exp (t1) cosh

(

t21 + 2t22
2

)

12



and

∑

c1,c2≥0

ri2(c1, c2)
tc11 tc22
c1!c2!

= exp (t1) sinh

(

t21 + 2t22
2

)

.
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