
ON THE GENERATION OF RANK 3 SIMPLE MATROIDS
WITH AN APPLICATION TO TERAO’S FREENESS CONJECTURE

MOHAMED BARAKAT, REIMER BEHRENDS, CHRISTOPHER JEFFERSON, LUKAS KÜHNE,
AND MARTIN LEUNER

ABSTRACT. In this paper we describe a parallel algorithm for generating all non-isomorphic
rank 3 simple matroids with a given multiplicity vector. We apply our implementation in the
HPC version of GAP to generate all rank 3 simple matroids with at most 14 atoms and
a splitting characteristic polynomial. We have stored the resulting matroids alongside with
various useful invariants in a publicly available, ArangoDB-powered database. As a byprod-
uct we show that the smallest divisionally free rank 3 arrangement which is not inductively
free has 14 hyperplanes and exists in all characteristics distinct from 2 and 5. Another data-
base query proves that Terao’s freeness conjecture is true for rank 3 arrangements with 14
hyperplanes in any characteristic.

1. INTRODUCTION

In computational mathematics one often encounters the problem of scanning (finite but)
large sets of certain objects. Here are two typical scenarios:
• Searching for a counter-example of an open conjecture among these objects.
• Building a database of such objects alongside with some of their invariants.

A database is particularly useful when the questions asked are relational, i.e., involve more
than one object (see Remark 2.11). Recognized patterns and questions which a database
answers affirmatively may lead to working hypotheses (see Example 1.1) or even proofs by
inspection (see Theorem 1.4).

In any such scenario there is no need to simultaneously hold the entire set in RAM. It is
hence important to quickly iterate over such sets in a memory efficient way rather than to
enumerate them.

The central idea is to represent each such set T as the set of leaves of a rooted tree
T• and to describe an iterator of T as the so-called leaf-iterator `(t) of a tree-iterator t
(cf. Definition B.1). In other words, we embed T in the bigger set of vertices V (T•) as
the set of leaves. We then say that T• classifies T . The internal vertices of the tree T• are
usually of different nature than the elements of T . Their sole purpose is to encode common
pre-stages of the leaves.

In Section 3 we will describe how to use tree iterators to generate all non-isomorphic rank
3 simple matroids with up to 14 atoms and integrally splitting characteristic polynomial.

A simple matroid M of rank 3 on n labeled points corresponds to a bipartite graph GM

(cf. Remark 3.2). We denote by (m2, . . . ,mn−1) the multiplicity vector of M where mk is
the number of coatoms of multiplicity k, i.e., the degree in the bipartite graph corresponding
to M (cf. Definition 3.3). The multiplicity vector determines the characteristic polynomial

2010 Mathematics Subject Classification. 05B35, 52C35, 32S22, 68R05, 68W10.
Key words and phrases. rank 3 simple matroids, integrally splitting characteristic polynomial, Terao’s free-

ness conjecture, recursive iterator, tree-iterator, leaf-iterator, iterator of leaves of rooted tree, priority queue,
parallel evaluation of recursive iterator, noSQL database, ArangoDB.

This work is a contribution to Project II.1 of SFB-TRR 195 ’Symbolic Tools in Mathematics and their
Application’. The fourth author is supported by ERC StG 716424 - CASe and a Minerva Fellowship of the
Max Planck Society.

1

ar
X

iv
:1

90
7.

01
07

3v
1

 [
m

at
h.

C
O

]
 1

 J
ul

 2
01

9

2 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

of M :

(*)
χM(t)

t− 1
= t2 − (n− 1)t+ (b2 − (n− 1)) with b2 :=

n−1∑
k=2

mk(k − 1).

In fact, two rank 3 simple matroids (or more generally, two paving matroids) have the same
multiplicity vector (m2, . . . ,mn−1) iff their Tutte polynomials coincide [Bry72].

After extending the notions of inductive and divisional freeness from arrangements to
matroids (see Definitions 2.8 and 2.9) we get the following table of cardinalities1 of certain
classes of non-isomorphic rank 3 simple matroids. A matroid is called Tutte-unique or T-
unique if it is determined up to isomorphism by its Tutte polynomial2 (see [dMN05] for
a survey on T-unique matroids). The content of the table can be reconstructed using the
database [BK19].

number of atoms 3 4 5 6 7 8 9 10 11 12 13 14
rank 3, simple matroids

simple matroids 1 2 4 9 23 68 383 5 249 232 928 28 872 972 ? ?

integral roots 1 1 2 3 7 7 17 35 163 867 30 724 783 280
divisionally free 1 1 2 3 6 7 15 33 147 857 28 287 781 795
inductively free 1 1 2 3 6 7 15 33 147 839 27 931 750 305

supersolvable 1 1 2 3 5 7 11 20 41 118 518 4 820
representable, rank 3, simple matroids

rep. integral roots 1 1 2 3 7 7 17 30 86 208 999 1 574
rep. divisionally free 1 1 2 3 6 7 15 28 75 198 631 1 401
rep. inductively free 1 1 2 3 6 7 15 28 75 198 631 1 400

rep. supersolvable 1 1 2 3 5 7 11 20 35 82 223 649
Tutte-unique, rank 3, simple matroids

T.-u. integral roots 1 1 2 3 7 5 11 10 17 17 18 23
T.-u. divisionally free 1 1 2 3 6 5 9 10 14 16 17 21
T.-u. inductively free 1 1 2 3 6 5 9 10 14 16 17 21

T.-u. supersolvable 1 1 2 3 5 5 8 10 12 14 15 19
representable, Tutte-unique, rank 3, simple matroids

rep. T.-u. int. roots 1 1 2 3 7 5 11 10 16 17 17 22
rep. T.-u. div. free 1 1 2 3 6 5 9 10 13 16 16 20
rep. T.-u. ind. free 1 1 2 3 6 5 9 10 13 16 16 20

rep. T.-u. supersolv. 1 1 2 3 5 5 8 10 12 14 15 19

Table 1. Cardinalities of certain classes of non-isomorphic rank 3 simple matroids.

The total number of rank 3 simple matroids with n ≤ 12 (unlabeled) atoms3 is taken
from [MMIB12b]. This number also coincides with minus one plus the number of linear
geometries with n ≤ 12 (unlabeled) points4 and has been determined earlier in [BB99].

Using our algorithm in HPC-GAP we directly computed all 815107 rank 3 simple ma-
troids with integrally splitting characteristic polynomial with up to n = 14 atoms, stored
them in the database [BK19], and verified the previous counting for n ≤ 11 in [MMIB12a].

Example 1.1. The database [BK19] enables us to ask questions on the role of the Tutte
polynomial such as:

1Apart from the number of simple matroids, we were unable to find any of the sequences in the above table in
the OEIS database.
2The Tutte polynomial of all rank 3 integrally split matroids with up to 13 atoms was computed using the GAP
package alcove [Leu19].
3http://oeis.org/A058731
4http://oeis.org/A001200

http://oeis.org/A058731
http://oeis.org/A001200

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 3

• Is being divisionally or inductively free a property determined by the Tutte polyno-
mial?
We answer this question negatively in Example 1.2.
• Is the corresponding question (for rank 3 matroids) true for the stricter notion of

supersolvability?
Answer: In this case, we found that for any pair of rank 3 matroids M1,M2 up to 14
atoms having the same Tutte polynomialM1 is supersolvable iffM2 is supersolvable.
Hence, we formulate this question as a working hypotheses found through inspection
of our database.

For such questions we need to construct all matroids with the corresponding number of
atoms first, demonstrating the usefulness of a database.

Example 1.2. Consider the rank 3 matroids M1 and M2 of size 11 given below by the
adjacency lists A1 and A2 of their corresponding bipartite graph respectively.
A1 :={{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 8, 11}, {3, 6, 9, 11}, {2, 6, 10}, {2, 7, 9}, {3, 5, 10}, {4, 5, 9}, {4, 7, 11},

{1, 11}, {3, 7}, {3, 8}, {4, 6}, {4, 8}, {4, 10}, {6, 8}, {7, 8}, {7, 10}, {10, 11}},

A2 :={{1, 2, 3, 4}, {1, 5, 6, 7}, {2, 5, 8, 9}, {3, 6, 8, 10}, {4, 7, 9, 10}, {1, 8, 11}, {2, 7, 11}, {3, 9, 11}, {4, 6, 11}, {5, 10, 11},

{1, 9}, {1, 10}, {2, 6}, {2, 10}, {3, 5}, {3, 7}, {4, 5}, {4, 8}, {6, 9}, {7, 8}}.

The matroids M1 and M2 are representable over Q and Q(
√

5), respectively. Their repre-
sentation matrices are given by

R1 :=

1 · 1 1 · 1 1 · 1 1 ·
· 1 1 1

2
· · · 1 1

2
1 1

· · · · 1 1 1
2

1 1
2

1 −1

 ,

R2 :=

1 · 1 1 · 1 1 · · 1 1
· 1 1 ϕ+ 1 · · · 1 1 −ϕ −ϕ
· · · · 1 1 ϕ −1 −ϕ+ 1 ϕ+ 1 ϕ

 ,

where ϕ = 1+
√
5

2
denotes the golden ratio. Their multiplicity vectors agree and are given

by (mk) = (m2,m3,m4) = (10, 5, 5). Hence, their Tutte polynomials also agree:
TM1 (x, y) = TM2 (x, y) = y8 + 3y7 + 6y6 + 10y5 + 15y4 + x3 + 5xy2 + 21y3 + 8x2 + 15xy + 23y2 + 16x+ 16y.

The characteristic polynomials of M1 and M2 factor completely over the integers

χM1(t) = χM2(t) = (t− 1)(t− 5)2.

Using the database we found thatM1 is inductively free and hence divisionally free whereas
M2 is not even divisionally free. We checked with GAP that any representation of M2 is a
free arrangement. Both are not supersolvable.

The database also shows that for rank 3 matroids this example is minimal with respect to
the number of elements.

Example 1.3. Inspecting the table (resp. the database) we can also answer the following
Question: What is the smallest number of atoms of a representable rank 3 matroid which is
divisionally free but not inductively free?5

Answer: Among the rank 3 matroids with up to 14 atoms there is a unique representable
matroid M with 14 atoms which is divisionally free but not inductively:1 0 1 1 1 0 1 1 1 0 1 1 0 1

0 1 1 2a− 1 2a 0 0 0 0 1 −2a+ 2 1 1 1
0 0 0 0 0 1 1 −2a+ 1 −a+ 1 a 1 a 2a− 1 1

 ,

5It is already know that such a matroid exists, namely the rank 3 reflection arrangement A(G24) (with 21 hy-
perplanes) of the exceptional complex reflection group W = G24 is recursively free [Mü17] but not induc-
tively free [HR15]. Hence, an addition ofA(G24) is easily seen to be divisionally free but not inductively free.
Therefore, the sequences of representable divisionally free and inductively free matroids differ at n = 22 at
the latest.

4 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

where a satisfies the equality 2a2 − 2a+ 1 = 0 and the inequation (3a− 1)(a+ 1) 6= 0. In
particular M is representable in any characteristic distinct from 2 and 5.

Its characteristic polynomial is χM(t) = (t− 1)(t− 6)(t− 7). The restriction M ′′ of M
to its third atom (resp. hyperplane) has characteristic polynomial χM(t) = (t − 1)(t − 6)
which shows that any arrangement representing M is divisionally free (cf. Definition 2.9).
Furthermore, the Tutte polynomial of M is
y11 + 3y10 + 6y9 + 10y8 + 15y7 + 21y6 + 28y5 + 2xy3 + 36y4 + x3 + 10xy2 + 43y3 + 11x2 + 24xy + 43y2 + 30x+ 30y.

A central notion in the study of hyperplane arrangements is freeness. A central arrange-
ment of hyperplanes A is called free if the derivation module D(A) is a free module over
the polynomial ring. An important open question in this field is Terao’s conjecture which
asserts that the freeness of an arrangement over a field k only depends on its underlying ma-
troid and the characteristic of k. It is known that Terao’s conjecture holds for arrangements
with up to 12 hyperplanes in characteristic 0 (cf. [FV14, ACKN16]). Recently, Dimca,
Ibadula, and Macinic confirmed Terao’s conjecture for arrangements in C3 with up to 13
hyperplanes [DIM17].

Inspecting our database we obtain the following result:

Theorem 1.4. Terao’s freeness conjecture is true for rank 3 arrangements with 14 hyper-
planes in any characteristic.

This article is organized as follows: In Section 2 we recall the notion of a matroid and
introduce several subclasses of rank 3 simple matroids. In Section 3 with discuss the Algo-
rithm used to construct tree-iterators generating all non-isomorphic rank 3 simple matroids
with up to n = 14 atoms having an integrally splitting characteristic polynomial. In Sec-
tion 4 we briefly point out how to use Gröbner bases to compute the moduli space of repre-
sentations (over some unspecified field F) of a matroid as an affine variety over SpecZ. In
Section 5 we finally prove Theorem 1.4. In Appendix A we collect some terminology about
rooted trees. In Appendix B we define recursive and tree-iterators and introduce algorithms
to parallely evaluate them. Appendix C summarizes the merits of the high performance
computing (HPC) version of GAP, which we used to implement the above mentioned algo-
rithms. We conclude by giving some timings in Appendix D to demonstrate the significance
of our parallelized algorithms in the generation of (certain classes) of rank 3 simple ma-
troids.

ACKNOWLEDGMENTS

We would like to thank Rudi Pendavingh for pointing us to the paper [DW89] and provid-
ing us with his SageMath code to compute the Dress-Wenzel condition for representability
of matroids established in loc. cit. Using his code we could avoid computing the empty
moduli spaces of ca. 400.000 non-representable matroids with 14 atoms.

2. SIMPLE MATROIDS

2.1. Basic definitions. Finite simple matroids have many equivalent descriptions. For our
purposes we prefer the one describing the lattice of flats.

Definition 2.1. A matroidM = (E,F) consists of a finite ground set E and a collection
F of subsets of E, called flats (of M), satisfying the following properties:

(a) The ground set E is a flat;
(b) The intersection F1 ∩ F2 is a flat, if F1 and F2 are flats;
(c) If F is a flat, then any element in E \ F is contained in exactly one flat covering F .

Here, a flat is said to cover another flat F if it is minimal among the flats properly containing
F . A matroid is called simple if

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 5

(d) it is loopless, i.e., ∅ is a flat;
(e) it contains no parallel elements, i.e., the singletons are flats, which are called atoms.

For a matroid M = (E,F) and S ⊆ E we denote by rk(S) the rank of S which is the
maximal length of chains of flats in F all contained in S. The rank of the matroid M is
defined to be rk(E). A subset S ⊆ E is called independent if |S| = rk(S) and otherwise
dependent. A maximal independent set is called a basis of M . Hence, the cardinality of
any basis equals the rank of the matroid.

Remark 2.2 (Basis Extension Theorem). Any independent subset of a matroid can be ex-
tended to a basis.

The flats form a poset6F by inclusion. Dually, a coatom is a maximal element inF\{E}.
An isomorphism between the matroids (E,F) and (E ′,F ′) is a bijective map E → E ′

which induces an isomorphism F → F ′ of posets.
Originally, matroids were introduced as an abstraction of the notion of linear (in)dependence

in linear algebra.

Example 2.3. A central arrangement over a field F is a finite setA of (n−1)-dimensional
subspaces of an n-dimensional F-vector space V . The intersection lattice L(A) is the set of
intersections of subsets of A, partially ordered by reverse inclusion, where the empty (set-
theoretic) intersection is defined as V . The arrangementA is called essential if {0} ∈ L(A).

The pair (A, L(A)) is a matroid of rank n−dim
⋂

H∈AH , i.e., of rank n iffA is essential.
We call such a pair a vector matroid over F.

This example motivates the following definition:

Definition 2.4. A matroid is called representable over the field F if it is isomorphic to
a vector matroid over F. A matroid is called representable if it is representable over some
field F.

The following matroid invariant and its specialization play an important role in our study
of simple rank 3 matroids.

Definition 2.5. The Tutte Polynomial TM(x, y) of a matroid M = (E,F) is defined by

TM(x, y) :=
∑

S∈P(E)

(x− 1)r(M)−r(S)(y − 1)|S|−r(S).

A matroid is called Tutte-unique, if it is determined by its Tutte polynomial, i.e. any
matroid with the same Tutte polynomial is isomorphic to the given one. An important
evaluation of the Tutte polynomial is the characteristic polynomial

χM(t) := (−1)r(M)TM(1− t, 0) =
∑

S∈P(E)

(−1)|S|tr(M)−r(S).

There is a simpler definition of the monic characteristic polynomial of a simple matroid
using the Möbius function µ : F → Z, which is defined as follows:
• µ(∅) = 1;
•
∑

F⊃F ′∈F µ(F ′) = 0 for all F ∈ F \ {∅}.
One can then show that

χM(t) =
∑
F∈F

µ(F)tr(M)−r(F).

6The poset of flats is a geometric lattice, i.e., a finite atomic semimodular lattice. Conversely, finite atomic
semimodular lattices give rise to matroids.

6 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

The main application of this article is the enumeration of matroids whose characteris-
tic polynomial completely factors over the integers. We will denote the class of rank r
matroids with integrally splitting characteristic polynomial by ISMr. Such a factor-
ization of χM(t) is often implied by stronger combinatorial or (in the representable case)
algebraic/geometric properties. The only known converse statement is that χM(t) factors
completely over the integers for a graphic or cographic matroid M induced by a planar
graph G if and only if G is chordal as shown in [DK98] for graphic and in [KR11] for co-
graphic matroids respectively. In both cases, the splitting of χM(t) over Z even implies that
M is supersolvable. However, it is still safe to say that these rather small classes of matroids
are not yet well understood when r ≥ 3.

2.2. Rank 3 simple matroids. For simplicity we will restrict ourselves to the case of rank
3 matroids in the following definitions. The smallest class we will consider is that of super-
solvable matroids introduced by Stanley in [Sta72]. In the rank 3 case the definition can be
given as follows:

Definition 2.6. A matroid M = (E,F) of rank 3 is supersolvable if there exists a flat
F0 ∈ F of rank 2 such that every intersection with other flats of rank 2 is non-trivial. In this
case the characteristic polynomial splits over the integers with roots

χM(t) = (t− 1) (t− (|F0| − 1)) (t− (|E| − |F0|)) .

Define SSM3 to be the class of all supersolvable rank 3 matroids.

To introduce the next combinatorial classes of matroids we need the notions of deletion
and reduced contraction of a matroid with respect to an element H of the ground set E.

Definition 2.7. Let M = (E,F) be a matroid and H ∈ E. Define the deletion of H to
be the matroid M ′ := M \H := (E ′,F ′) where

E ′ :=E \H := E \ {H},
F ′ :=F \H := {F \ {H} | F ∈ F}.

The reduced contraction7 of H is the matroid M ′′ := MH := (E ′′,F ′′) where

F ′′ := FH := {F ∈ F | {H} ⊆ F},
and its atoms E ′′ = EH are identified with the flats of rank 1 in FH . If {H} is a flat in M
then MH is a simple matroid. In particular, if M is simple then so are M \H and MH .

The following two classes stem from the notion of freeness of hyperplane arrangements.

Definition 2.8. We define the class IFM3 of inductively free rank 3 matroids to be
the smallest class of rank 3 simple matroids containing
• the boolean matroid M3 := ({1, 2, 3},P({1, 2, 3})) and
• M = (E,F) with |E| > 3 if there exists an H ∈ E such that χMH (t)|χM(t) and
M \H ∈ IFM3.

Recently, Abe introduced a larger class of combinatorially free arrangements in [Abe16].

Definition 2.9. The class DFM3 of divisionally free rank 3 matroids is the smallest
class of rank 3 simple matroids containing
• the boolean matroid M3 := ({1, 2, 3},P({1, 2, 3})) and
• M = (E,F) with |E| > 3 if there exists an H ∈ E such that χMH (t)|χM(t).

7This definitions mimics the usual notion of restriction for hyperplane arrangements. Note that it differs from
the matroid-theoretic contraction since it does not contain loops and parallel elements.

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 7

Remark 2.10. The following strict inclusions hold

SSM3 (IFM3 (DFM3 (ISM3,

where the first strict inclusion is shown in [JT84] and the second inclusion in [Abe16] (for
strictness of the inclusion in rank 3 cf. Example 1.3 and for vector matroids of rank at least
4 cf. loc. cit.). The last inclusion holds by the definition of divisional freeness and since
χM(t) = (t−1)(t− (|E|−1)) for any simple matroid M = (E,F) of rank 2 (for strictness
see the table in Table 1, for example).

Remark 2.11. Due to the recursive nature of the definition of inductive freeness, a database
containing the rank 3 simple matroids with up to n atoms is extremely useful when deciding
the inductive freeness of those with n + 1 atoms. This is how we determined the subclass
IFM3 in our database.

3. GENERATING RANK 3 MATROIDS WITH INTEGRALLY SPLITTING CHARACTERISTIC
POLYNOMIALS

Since we will focus on the rank 3 case we prefer to describe them as special instances
of bipartite graphs. And as already mentioned in the introduction, the description of tree
iterators T• generating rank 3 simple matroids will rely on the language of bipartite graphs.

Definition 3.1 ([Oxl11]). A 2-partition of a finite set E is a set E of subsets of E such
that

(a) |F | ≥ 2 for all F ∈ E;
(b) {Pot2(F) | F ∈ E} is a partition of Pot2(E),

where Pot2(E) denotes the set of two-element subsets of E. We call the elements of E
atoms and those of E coatoms.

Remark 3.2. Let (E, E) be a 2-partition.

•
⋃
E = E.

• |F ∩ F ′| ≤ 1 for all F, F ′ ∈ E with F 6= F ′.
• The union E ∪ E defines the vertices of a bipartite graph with adjacency given by

membership. We call bipartite graphs admitting such a description matroidal. Con-
necting, as in Figure 1, the atoms with an initial element and the coatoms with a
terminal element we obtain a geometric lattice of flats of a rank 3 simple matroid.
Hence, there is a bijective correspondence between rank 3 simple matroids with
ground set E and 2-partitions of E.
•
∑

F∈E
(|F |

2

)
=
(|E|

2

)
.

In words, each pair of atoms is contained in exactly one coatom. Hence, the left hand side
of the last equation counts the number of pairs of atoms which are joined by the coatoms.
This count must be equal to the number of all pairs of atoms which is the right hand side of
the equation.

Remark 3.2 gives rise to the following definition:

Definition 3.3. For n ∈ N we call (mk) := (mk)k=2,...,n−1 := (m2, . . . ,mn−1) a multi-
plicity vector of size n if

∑n−1
k=2 mk

(
k
2

)
=
(
n
2

)
.

An example of such a matroidal bipartite graph corresponding to the rank 3 braid ar-
rangement A3 is given in Figure 1. It has the multiplicity vector (m2,m3) = (3, 4) and the
characteristic polynomial χA3(t) = (t− 1)(t− 2)(t− 3).

8 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

Figure 1. The bipartite graph of theA3 braid arrangement. The
linear forms depicted next to the atoms are a possible represen-
tations of the matroid. The numbers denoted in blue are the
multiplicities of the coatoms.

To generate the multiplicity vectors of all simple rank 3 matroids of fixed size n we can
naively iterate over all vectors in {1, . . . , n−1}n−2 satisfying the equation in Definition 3.3.
Furthermore, we are only considering those multiplicity vectors (mk) such that the corre-
sponding characteristic polynomial as in (*) factors completely over the integers.

In what follows we will use the language of rooted trees which will be summarized in
Appendix A.

We will now describe a rooted tree T (mk)
• classifying the set T (mk) of simple matroids

of rank 3 on n labeled atoms8, for n ∈ N>0 and fixed multiplicity vector (mk): We set
T

(mk)
0 := {∗} a singleton. For i ∈ N>0 the set T (mk)

i is an approximation of T (mk): If
GM ∈ T (mk) is a bipartite graph, then its image in T (mk)

i is the full subgraph containing the∑
`≥km` coatoms of cardinality at least k = n − i together with their adjacent atoms. All

maps T (mk)
i−1

ϕ←− T
(mk)
i are evident.

The family of these trees T (mk)
• forms a forest which can be turned into a tree T̃• in the

obvious way.
The non-isomorphic simple matroids of rank 3 on n unlabeled atoms9 are then classified

by T̃•/Sn. Since the multiplicity vector of a rank 3 matroid M determines the characteristic
polynomial χM by (*) we can restrict to the subtree T• ⊂ T̃• consisting of the sub-forest of
those T (mk) with integrally splitting characteristic polynomial, i.e., where the character-
istic polynomial has only integral roots.

Definition 3.4. We call a set A = {Ai} of subsets of {1, . . . , n} an admissible partial
2-partition of level k0 ∈ {1, . . . , n − 1} for a multiplicity vector (mk) = (m2, . . . ,mn−1)
of size n if

• |{i | |Ai| = k}| = mk for all k with n− 1 ≥ k > k0;
• |Ai ∩ Aj| ≤ 1 for all i < j.

8Cf. (http://oeis.org/A058720, for k = 3).
9Cf. (http://oeis.org/A058731).

http://oeis.org/A058720
http://oeis.org/A058731

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 9

To generate all simple rank 3 simple matroids of a fixed multiplicity vector (mk) we
propose an algorithm that takes as input an admissible partial 2-partition A of some level
k0 and iterates over all possible extensions to admissible partial 2-partition of the next non-
trivial smaller level k1 with k1 < k0 as a tree-iterator. In this computation we only consider
lexicographically minimal extensions with respect to the stabilizer of A under the action of
the symmetric group Sn to avoid iterating over isomorphic matroids multiple times. The
details of this procedure are given in Algorithm 1.

Finally, to build the tree-iterator of all rank 3 simple matroids with n atoms and multi-
plicity vector (mk) (as bipartite graphs) we apply IteratorFromState to the initial state

s(mk) :=
(
n, (mk), k0 := max{k | mk > 0}, A := ()

)
.

We have implemented the four algorithms

(1) IteratorFromState (Algorithm 1)
(2) ParallelyEvaluateRecursiveIterator (Algorithm 2);
(3) EvaluateRecursiveIterator (Algorithm 3)
(4) LeafIterator (Algorithm 4)

in the HPC version10 of GAP 4.9.2 [GAP18]. The last three of them are independent of the
specific recursive iterator defined by IteratorFromState (Algorithm 1) and can be viewed
as part of a general parallelization scheme for recursive iterators. Their detailed description
is therefore deferred to Appendix B.

Algorithm 4 is executed in the main thread with an initial tree-iterator of all rank 3 ma-
troids corresponding to a given multiplicity vector as input. This initial tree-iterator is con-
structed using Algorithm 1. Algorithm 4 then initializes a global FIFO L of leaves and in-
vokes Algorithm 2. The latter creates a shared priority queue P , launches as much workers
(threads) as specified by the user, triggers Algorithm 3 in each of them, and then terminates.

The shared priority queue stores the list of tree-iterators still to be searched along with
their priority, which in our case is the depth at which they were created. Tree-iterators can
be added to the priority queue, and when a thread requests a new tree-iterator to work on, the
priority queue returns one of the tree-iterators with highest priority currently in the queue.

Each thread then searches the highest priority tree-iterator given by the priority queue P
and moves the resulting tree-iterator with priority increased by one back to P or the resulting
matroids into the FIFO L of leaves. The latter is constantly monitored by Algorithm 4
and the included matroids (the leaves) are read and stored into the database [BK19]. In
particular, our use of a priority queue avoids the need for a central process supervising the
workers.

Implementations of priority queues exist both for shared memory and distributed oper-
ation. We have chosen to use a simple shared memory implementation, as contention for
our workloads is very low, so we do not have to worry about the priority queue becoming a
serialization bottleneck.

10Since version 4.9.1 GAP can be compiled with the option --enable-hpcgap.

10 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

Algorithm 1: IteratorFromState
Input: state s consisting of
• a number n of atoms
• a multiplicity vector (mk) = (m2, . . . ,mn−1) of size n // cf. Section 1

• an integer n− 1 ≥ k0 ≥ 2 with mk0 > 0
• an admissible partial 2-partition A of level k0 for (mk) // cf. Definition 3.4

Output: tree-iterator iter for which Next(iter) returns one of the following:
• IteratorFromState(state satisfying above specifications for k1 defined in line 3),
• adjacency list, or
• fail

IteratorFromState (s := (n, (mk), k0, A), S)
1 Initialize an iterator iter and equip it with
2 • an empty list H to store the produced admissible partial 2-partitions,
3 • an integer k1 := max({1} ∪ {k′ < k0 | mk′ > 0}) ≥ 1, and
4 • a function Next as defined in line 5
5 Next (iter)

/* find the next block of coatoms of multiplicity k0: */

6 if next A′ = {A′1, . . . , A′mk0
} exists with // find mk0

new coatoms

7 • A ∪ A′ admissible partial 2-partition of level k1
/* the following line guarantees the generation of pairwise

non-isomorphic bipartite graphs, the justification will be

provided in Remark 3.5 */

8 • the lexicographically minimal element A′′ in the orbit of A′ under
StabSn(A) is not contained in H
/* Lines 6,7,8 can again be realized by an iterator which

returns the next A′ or fail if no such A′ exits. */

then
9 save A′′ in H

10 A′′ := A ∪ A′′ // augment the current partial 2-partition

11 if k1 ≥ 2 then
12 s′ := (n, (mk), k1, A

′′) // define the new state

/* return IteratorFromState applied to the new state s′ */

13 return IteratorFromState(s′)
14 else
15 return A′′ // return the complete adjacency list

16 else
17 return fail

return iter

Remark 3.5. Line 8 in Algorithm 1 ensures that the iterator iter instantiated by the state
s does not create two isomorphic adjacency lists A′′ and A′′2 with a common sublist A.
Furthermore, the lexicographically minimal element of the orbit of11A∪A′ under StabSn(A)
is nothing but A∪A′′, namely the union of A and the lexicographically minimal element A′′

of the orbit of A′ under StabSn(A) (considered in line 8). This is due to the fact that sets in
A′ are of different cardinality than those in A.

11A ∪A′ is considered in line 7

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 11

Remark 3.6. A rank 3 simple matroid M (of size n) is weakly atom balanced on dependent
flats, i.e., every atom is contained in at most n−1

2
rank 2 flats of cardinality at least 3 (these

are all dependent in M).

Proof. Let M be a simple rank 3 matroid of size n and consider a fixed atom k. Let
F1, . . . , Fl be the rank 2 flats of size at least 3 containing the atom k. This implies |Fi \
{k}| ≥ 2 for all 1 ≤ i ≤ l. Furthermore, by definition of a simple matroid it holds that
Fi ∩ Fj = {k} for all pairs 1 ≤ i < j ≤ l. This means that the flats F1, . . . , Fl contain
each at least two atoms of the n − 1 atoms which are different from k and moreover these
additional atoms are all pairwise distinct. This immediately yields l ≤ n−1

2
which proves

the claim. �

Remark 3.7. The computationally difficult part of Algorithm 1 is to find admissible com-
pletions of partial 2-partitions in Line 6. To speed up this part of the computation we use
the restriction imposed by Remark 3.6. This means that we can discard atoms in computa-
tions of multiplicity k0 ≥ 3 if they are already contained in n−1

2
flats. This speeds up the

generation of rank 3 matroids drastically.

Remark 3.8. To calculate lexicographically minimal elements of orbits we use the Ferret
and Images packages, by the third author:

• Ferret is a reimplementation of Jeffrey Leon’s Partition Backtrack Algorithm
[Leo91], with a number of extensions [JPW18].
• Images provides algorithms which, given a permutation group G on a set Ω and

a set S ⊆ Ω, find the lexicographically minimal image of S under G, or a canon-
ical image of the orbit of S under G. Images uses the algorithms of Jefferson et
al. [JJPW18].

For this project, both Ferret and Images were extended to be compatible with HPC-
GAP.

Remark 3.9. The computations to generate all rank 3 simple matroids with integrally split-
ting roots terminated on all 695 possible multiplicities vectors except for the two vectors
(m3,m4,m5) = (21, 3, 1) and (m2,m3,m4,m5,m6) = (1, 23, 1, 0, 1). The latter multi-
plicity vector is in any case not relevant for Terao’s conjecture as any matroid with this
multiplicity vector would not be flat balanced (cf. Definition 5.1). In Proposition 3.10, we
prove that there are no matroids with one of the above multiplicities vectors. Hence, these
computations which did not terminate yet do not impose any restrictions on Theorem 1.4 or
Table 1.

Proposition 3.10. Let v1 and v2 be the multiplicity vectors (m3,m4,m5) = (21, 3, 1)
and (m2,m3,m4,m5,m6) = (1, 23, 1, 0, 1) respectively. Then, there exists no simple rank
3 matroid of size 14 having either one of these two multiplicities vectors as multiplicities of
its coatoms.

Proof. Given an admissible partial 2-partition A and an atom e we denote by dA(e) the
deficiency of e in A which is the number of atoms that are not contained in a common
coatom with e in A.

For both multiplicity vectors we start our parallel matroid generation algorithm but termi-
nate after completing all levels of size greater than 3. In this way we obtain the admissible
partial 2-partitions A1,1 . . . A1,22 and A2,1, A2,2 for v1 and v2 respectively which are given in
Table 2 below. We will argue based on the parity of their deficiencies that all of them cannot
be completed to a matroid with the remaining coatoms of size 3 (and one coatom of size 2
in the case of v2) which completes the proof.

12 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

First consider the case of the multiplicity vector v1. In this case we can only add coatoms
of size 3 to the lists A1,1 . . . A1,22 to obtain a matroid. Consider the step that we add the
coatom C := {e1, e2, e3} to a list A and obtain a new list A′. Then we have dA′(ei) =
dA(ei)− 2 for 1 ≤ i ≤ 3 and the remaining deficiencies remain constant. In particular, the
parity of all deficiencies is constant in this step. Since a matroid M has dM(e) = 0 for all
atoms e, the deficiencies dA1,i

(e) need to be even for all atoms e. However, by inspection of
Table 2 we find that for each partial 2-partitions A1,1 . . . A1,22 there is an atom with an odd
deficiency which proves that there exists no matroid with multiplicity vector v1.

In the case of the multiplicity vector v2 we need to add coatoms of size 3 and exactly one
coatom of size 2 to the admissible partial 2-partitions A2,1, A2,2. An analogous argument as
in the first case shows that number of atoms with odd deficiency of the lists A2,1, A2,2 must
be exactly two. Again by inspection of Table 2 we find that the listsA2,1, A2,2 have one and
zero atoms with odd deficiency respectively which proves that there exists no matroid with
multiplicity vector v2.

admissible partial 2-partition atoms with odd deficiencies
A1,1 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [1, 12, 13, 14]] 2, 3, 4, 5
A1,2 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [2, 6, 9, 12]] 1, 3, 4, 5, 6, 9
A1,3 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [2, 6, 12, 13]] 1, 3, 4, 5, 6
A1,4 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [2, 12, 13, 14]] 1, 3, 4, 5
A1,5 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [6, 9, 12, 13]] 1, 2, 3, 4, 5, 6, 9
A1,6 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [1, 9, 10, 11], [6, 12, 13, 14]] 1, 2, 3, 4, 5, 6
A1,7 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [3, 6, 11, 12]] 4, 5
A1,8 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [3, 7, 9, 11]] 4, 5, 6, 7, 9
A1,9 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [3, 7, 11, 12]] 4, 5, 6, 7
A1,10 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [3, 11, 12, 13]] 4, 5, 6
A1,11 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [6, 11, 12, 13]] 3, 4, 5
A1,12 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [7, 9, 11, 12]] 3, 4, 5, 6, 7, 9
A1,13 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [7, 11, 12, 13]] 3, 4, 5, 6, 7
A1,14 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 6, 9, 10], [11, 12, 13, 14]] 3, 4, 5, 6
A1,15 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 9, 10, 11], [3, 12, 13, 14]] 4, 5
A1,16 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 9, 10, 11], [6, 9, 12, 13]] 3, 4, 5, 6, 9
A1,17 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [2, 9, 10, 11], [6, 12, 13, 14]] 3, 4, 5, 6
A1,18 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [6, 9, 10, 11], [6, 12, 13, 14]] 2, 3, 4, 5
A1,19 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [6, 9, 10, 11], [7, 9, 12, 13]] 2, 3, 4, 5, 6, 7, 9
A1,20 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [6, 9, 10, 11], [7, 12, 13, 14]] 2, 3, 4, 5, 6, 7
A1,21 [[1, 2, 3, 4, 5], [1, 6, 7, 8], [6, 9, 10, 11], [9, 12, 13, 14]] 2, 3, 4, 5, 6, 9
A1,22 [[1, 2, 3, 4, 5], [6, 7, 8, 9], [6, 10, 11, 12], [7, 10, 13, 14]] 1, 2, 3, 4, 5, 6, 7, 10
A2,1 [[1, 2, 3, 4, 5, 6], [1, 7, 8, 9]] 1
A2,2 [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10]]

Table 2. The partial 2-partitions considered in the proof of Proposition 3.10.

�

4. HOW TO DECIDE REPRESENTABILITY OF A MATROID?

The Basis Extension Theorem for matroids (cf. Remark 2.2) implies that the (possibly
empty) space R(M) of all representations (over some unspecified field F) of a matroid
M = (E,F) is an affine, namely an affine subvariety V (I ′) = Arn+1

Z , where r the rank of
M and n its number of atoms.

More precisely, let Arn+1
Z := SpecR[d], where R := Z[aij | i = 1, . . . , r, j = 1, . . . , n].

To describe the ideal I ′ set A := (aij) ∈ Rr×n. For a subset S ⊂ E denote by AS the
submatrix of A with columns in S. Further, let B(M) = {B1, . . . , Bb} be the set of bases

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 13

of M . Then

I ′ = 〈det(AD) | D ⊂ E dependent, |D| = r〉+

〈
1− d

∏
B∈B(M)

det(AB)

〉
�R[d].

It follows that the M is representable (over some field F) if and only if 1 /∈ I ′. This ideal
membership problem can be decided by computing a Gröbner basis of I ′. This is basically
the algorithm suggested in [Oxl11].

If the ideal I ′ is a maximal ideal in R[d] the moduli space of representations SpecR[d]/I ′

of the matroid M contains only one point. In this case, the matroid M has only a unique
representation (up to equivalence) and we call M uniquely representable over Z.

However, it is computationally more efficient to represent R(M) as a quasi-affine set
V (I) \ V (J) ⊂ Arn = SpecR, where J is a principal ideal. Denote by JS := 〈det(AS)〉
the principal ideal generated by the maximal minor corresponding to S, provided |S| = r.
Then

I =
∑
{JD | D ⊂ E dependent, |D| = r},

J =
∏
{JB | B ∈ B(M)}.

In particular, J is a principal ideal. It follows that M is representable (over some field F) iff
det(AS) /∈

√
I for all S ⊂ E basis. The ideal I can be replaced by the saturation

Ĩ := I :

(∏
B⊂E basis

det(AB)

)∞
= I : det(AB1)

∞ : · · · : det(ABb
)∞.

Then M is representable iff 1 /∈ Ĩ .
We used a more efficient approach which does not involve working over Arn+1

Z but fixes
certain values of the matrix A to 0 or 1 as described in [Oxl11, p. 184]. Firstly, we choose
a basis B ∈ B(M) and fix the corresponding submatrix AB to be the unit matrix. Without
loss of generality, we can for simplicity assume B = {1, . . . , r}. Secondly, we consider the
fundamental circuits with respect to this basis B, i. e. for each k ∈ E \ B let C(k,B) be
the unique circuit of the matroid M contained in B ∪ k. The entries of A in the column
k ∈ E \ B which do not appear in C(k,B) can be fixed to 0. Lastly, the first entry in every
column and the first entry in every row of A can be taken as 1 by column and row scaling
respectively. We have added this algorithm to alcove [Leu19].

For another approach to the rational moduli space cf. [Cun11].

5. PROOF OF THEOREM 1.4

Before proving Theorem 1.4 we need the following definition.

Definition 5.1. Let M be a simple matroid of rank 3 and assume χM(t) = (t − 1)(t −
a)(t− b) for some integers a, b ∈ Z such that a ≤ b.
• We call M atom balanced if any atom is contained in at most a-many flats.
• We call M flat balanced if any flat contains strictly less than a-many atoms.
• If M is both atom and flat balanced we call it strongly balanced.

The importance of balancedness in our context stems from the next proposition.

Proposition 5.2. Let M be a simple matroid of rank 3 and assume χM(t) = (t− 1)(t−
a)(t − b) for some integers a, b ∈ Z such that a ≤ b. If M is not strongly balanced then
the freeness of any arrangement of hyperplanes representing M can be decided combinato-
rially. These representations therefore satisfy Terao’s freeness conjecture.

14 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

Proof. To begin assume that M is not atom balanced for some atom A which is contained
in nM,A many flats with nM,A > a. Then, Theorem 1.1 and Corollary 1.2 in [Abe14] show
that any representation of M is free if and only if nM,A ∈ {a+ 1, b+ 1}.

Instead assume thatM is not flat balanced. In this case, Lemma 2.10 in [ACKN16] shows
that M cannot be atom balanced either which finishes the proof by the first part. �

Now we have all ingredients to prove Theorem 1.4.

Proof of Theorem 1.4. It suffices to check Terao’s conjecture for all representations of ma-
troids of size 14 which do not fall into any of the following classes of arrangements for
which Terao’s conjecture is known to be true:
• If the characteristic polynomial of the arrangement does not factor over the inte-

gers the arrangement is combinatorially non-free by Terao’s Factorization Theo-
rem [Ter81].
• Representations of non-strongly balanced simple rank 3 matroids satisfy Terao’s con-

jecture by Proposition 5.2.
• Any representation of an inductively free matroid is a free arrangement.
• If a matroid has a unique representation over the integers12 it trivially satisfies Terao’s

conjecture.
The query of the database [BK19] of integrally split, rank 3 matroids of size 14 which
are strongly balanced, not inductively free, and representable but not uniquely representable
over the integers does not return any matroid. This completes the proof of Terao’s conjecture
for arrangements of rank 3 with 14 hyperplane. �

Remark 5.3. The situation of matroids of size 14 is surprisingly simple in that respect. This
is not the case for matroids of smaller size since there are examples which avoid all of the
above classes and exhibit a non-trivial moduli space of representations (among them the
example of a free but not rigid arrangement of size 13 described in [ACKN16]). We will
describe their moduli spaces over SpecZ and the free locus therein in a subsequent article
which will establish Terao’s conjecture for arrangements of rank 3 with up to 14 hyperplanes
in any characteristic.

12i.e., the moduli space SpecR/Ĩ → SpecZ of representations is SpecFp → SpecZ, a singleton.

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 15

APPENDIX A. ROOTED TREES

A finite rooted forest (or set of rooted trees) can be understood as a finite sequential
inverse system (in the category) of finite sets, i.e., a sequence of the form

T• : T0
ϕ1←− T1

ϕ2←− T2
ϕ3←− · · · ϕd←− Td,

where Ti is the finite set of vertices of depth i. We call d then depth of T•. In particular, T0
is the set of roots. The (inverse) limit T := limT• can be naturally identified with the set of
leaves of T•, i.e., the set of non-images in T•. As mentioned in the introduction we then say
that T• classifies T .

Convention. Without loss of generality13 we will henceforth assume T• to be a rooted
tree of depth d, i.e., T0 = {∗} a singleton.

If all maps in the inverse system are surjective then the natural map Td ← T (which is
part of the limit datum) is bijective and the set leaves T = Td. In this case all leaves have
the same depth n and we call T• uniform (of depth d).

More generally, we call a tree T• locally uniform if each vertex that has a leaf as a
child only has leaves as children, i.e., if for each vertex v of depth i the following holds:
ϕ−1i (v) ∩ T 6= ∅ =⇒ ϕ−1i (v) ⊂ T .

Many inequivalent representations of such rooted trees classifying the same set T might
exist: Examples A.1 and A.2 are inequivalent families of rooted trees T (n)

• (indexed by a
natural number n) classifying the same family of sets T n of cardinality Cn, the n-th Catalan
number.

Example A.1 (Matched parentheses). For i ∈ N denote by Ti the set containing i + 1
pairs of correctly matched parentheses:

T0 := {()}, T1 := {(()), ()()}, T2 := {()(()), (()()), ((())), (())(), ()()()}, . . .

Define Ti−1
ϕi←− Ti to be the map removing the left most14 pair of parentheses containing no

other ones. For a fixed n ∈ N the sequence T• : T0
ϕ1←− T1

ϕ2←− T2
ϕ3←− · · · ϕn−1←−−− Tn−1 is a

finite rooted tree of uniform depth n− 1. The cardinality of the set of leaves limT• = Tn−1
is the n-th Catalan number15 Cn =

(
2n
n

)
−
(

2n
n+1

)
= 1

n+1

(
2n
n

)
.

Example A.2 (Magma evaluation). For n ∈ N>0 denote by T (n) the set of all possible
ways to evaluate the product of the sorted list of free generators of a free magma Mn =
〈a0, . . . , an〉 of rank n+ 1:

n 1 2 3

Mn 〈a, b〉 〈a, b, c〉 〈a, b, c, d〉
T (n) {ab} {(ab)c, a(bc)} {((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd))}

13A forest of rooted trees can be understood as a single rooted tree by adding a constant map T−1 := {∗} ← T0

and then increase all indices by 1.
14or right most, ...
15Cf. (http://oeis.org/A000108).

http://oeis.org/A000108

16 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

The set T (n)
i for i ∈ N arises from T (n) by deleting all pairs of parentheses of depth higher

than i. The maps T (n)
i−1

ϕi←− T
(n)
i are evident.

n 1 2 3

T
(n)
0 {ab} {abc} {abcd}
T

(n)
1 {(ab)c, a(bc)} {(abc)d, (ab)(cd), a(bcd)}
T

(n)
2 {((ab)c)d, (a(bc))d, a((bc)d), a(b(cd))}

The gray entries in the above table are the internal nodes of the rooted tree T (n)
• . The

latter is not locally uniform for n ≥ 3. The set of leaves limT
(n)
• coincides with T (n), by

construction. The cardinality of T (n) is again the n-th Catalan number Cn.

In the following example the sets of leaves are themselves sets of rooted trees. We hope
this does not cause confusion.

Example A.3 (Phylogenetic trees with labeled leaves). A phylogenetic tree is a labeled
rooted tree. A phylogenetic tree with n ∈ N>0 leaves corresponds to a total partition of n.
Let T (n) be the set of phylogenetic trees with n (labeled) leaves.16

n 1 2 3

T (n)
{
{1}

} {
{{1}, {2}}

} {
{{1}, {2}, {3}}; {{1}, {{2}, {3}}}; {{2}, {{1}, {3}}}; {{3}, {{1}, {2}}}

}
Truncating a phylogenetic tree at depth i means to contract all edges below depth i and

multi-label the new leaves at depth i by all their child leaves. For i ∈ N denote by T (n)
i the

set of all truncations of trees in T (n) at depth i. Again, all maps T (n)
i−1

ϕ←− T
(n)
i are evident.

n 1 2 3

T
(n)
0

{
{1}
} {

{1, 2}
} {

{1, 2, 3}
}

T
(n)
1

{
{{1}, {2}}

} {
{{1}, {2}, {3}}; {{1}, {2, 3}}; {{2}, {1, 3}}; {{3}, {1, 2}}

}
T
(n)
2

{
{{1}, {{2}, {3}}}; {{2}, {{1}, {3}}}; {{3}, {{1}, {2}}}

}
The rooted tree T (n)

• is not locally uniform for n ≥ 3. The set of leaves limT
(n)
• coincides

with T (n), by construction.

Factoring out symmetries of rooted trees again yields rooted trees:

Remark A.4 (Rooted trees of group orbits). Let G be a group. A rooted tree T• is called a
rootedG-tree if each Ti is aG-set and all maps ϕi areG-equivariant. A rootedG-tree limT•
induces a rooted tree of orbits T•/G. Furthermore lim(T•/G) = lim(T•)/G, naturally.

Example A.5 (Phylogenetic trees with nonlabeled leaves). Applying Remark A.4 to the
previous Example A.3 yields a rooted tree classifying phylogenetic trees with unlabeled
leaves. More precisely, the action of Sn on {1, . . . , n} turns the rooted tree T• in Exam-
ple A.3 into a rooted Sn-tree. The rooted tree of orbits T•/Sn then classifies T/Sn which is
the set of phylogenetic trees with unlabeled leaves.17

Our primary family of examples of rooted tree was discussed in Section 2. They have
rank 3 matroids as their set of leaves.

16Cf. (http://oeis.org/A000311).
17Cf. (http://oeis.org/A000669).

http://oeis.org/A000311
http://oeis.org/A000669

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 17

APPENDIX B. RECURSIVE ITERATORS, TREE-ITERATORS: DEFINITIONS AND
PARALLELIZED EVALUATION

Definition B.1. Let T be a set.
• A recursive iterator t in T is an iterator which upon popping produces a descendent
Next(t) which is either
(a) a new recursive iterator in T ,
(b) an element of T , or
(c) fail /∈ T .

If the pop result Next(t) is fail then any subsequent pop result of t remains fail.
• A full evaluation of a recursive iterator recursively pops all recursive iterators until

each of them pops fail.
• If t is a recursive iterator then the subset of elements T (t) ⊂ T produced upon full

evaluation is called the set of leaves of t.
• A recursive iterator is called locally uniform if every descendent either pops recur-

sive iterators or leaves, exclusively (if not fail).
• A recursive iterator t in T is called a tree-iterator if upon full evaluation each ele-

ment of T (t) is the pop result of exactly one descendent of t.

Algorithm 2 gets as input a recursive iterator, a number n of workers, and a global FIFO
L. It initializes a shared priority queue18 P , adds P as the only job with priority 0, triggers
n workers (running in threads) each executing Algorithm 3. If a worker produces a leaf it
writes it to the FIFO L.

We use a priority queue to schedule units of work in our algorithm. Unlike regular queues,
having a computable priority (which can be drawn from any partially or totally ordered set)
to govern order of processing allows us to easily define for each job when it is to be executed
in relation to other jobs without requiring a more complex scheduler, as long as we can
compute a priority as a function from the set of jobs to the set of priorities that encodes the
necessary relation between jobs. As discussed in Section 3, we use a simple shared memory
implementation for our shared priority queue.

Algorithm 2: ParallelyEvaluateRecursiveIterator
Input:
• A recursive iterator t
• a number n ∈ N>0 of workers
• a global FIFO L = (), accessible by the subprocesses of the workers

Output: no return value; the side effect is to fill the FIFO L with the leaves in T (t)
ParallelyEvaluateRecursiveIterator (t, n, L)

1 Initialize a farm w of n workers w1, . . . , wn

2 Initialize a shared priority queue P of iterators and set P = ()
3 Initialize a shared counter j of jobs in process and pending and set j = 1
4 Initialize a shared semaphore s ≥ 0 and set s = 0
5 P := ((t, 0))
6 for i = 1, . . . , n do
7 EvaluateRecursiveIterator(n, L, P, s, j) within worker wi

8 SignalSemaphore(s)
9 return none

18The priority queue P stores recursive iterators. We define their priority in P to be their nesting level with
respect to the first recursive iterator t.

18 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

Algorithm 3 is the one executed by each worker. It gets the global state consisting of
the number n of workers, the FIFO L of leaves, the priority queue P , the semaphore s,
and the counter j of jobs in process or pending. A semaphore is a globally shared variable
with nonnegative integers as admissible values, which we use to tell workers when to start
looking for jobs to process. The command SignalSemaphore(s) increases s by 1. The
command WaitSemaphore(s) halts until s > 0 and then decreases s by 1.

Algorithm 3: EvaluateRecursiveIterator
Input:
• a number n ∈ N>0 of all workers
• a global FIFO L = (), accessible by the other n− 1 workers
• a shared priority queue P
• a shared semaphore s
• a shared counter j of jobs in process or pending

Output: no return value; the side effect is to evaluate the recursive iterators in the
priority queue which get processed by this worker and save the eventually
leaves in the FIFO L

EvaluateRecursiveIterator (n, L, P , s, j)
1 while true do
2 WaitSemaphore(s) // wait until the semaphore s > 0

3 if P = () then // if the priority queue is empty

4 return none // terminate the worker

5 (ti, pti) := Pop(P) // get the highest priority job from P

6 ri := Next(ti) // pop the recursive iterator ti

7 if ri ∈ T then // the result ri is a leaf

8 Add(L, ri) // add the leaf ri to the FIFO L of leaves

9 Add(P, (ti, pti)) // return the recursive iterator ti back to P

10 elif ri 6= fail then // the result ri is a recursive iterator

11 Add(P, (ti, pti)) // return the recursive iterator ti back to P

12 SignalSemaphore(s) // increase the semaphore by 1

13 Add(P, (ri, pti + 1)) // add the new recursive operator ri to P

14 SignalSemaphore(s) // increase the semaphore by 1

15 j := j + 1 // increase the job counter j by 1

16 else // the result ri is fail

17 j := j − 1 // decrease the job counter j by 1

18 if j = 0 then // no recursive iterator is in in process or pending

19 Add(L, fail) // add fail to the FIFO L of leaves

20 for i = 1, . . . , n do // for each worker

21 SignalSemaphore(s) // increase the semaphore by 1

/* the first worker who realizes that there are no jobs

left writes fail in the FIFO L of leaves and increases

the semaphore by n to enable all workers to bypass

line 2, reach line 4 and terminate */

Algorithm 3 could be refined for locally uniform recursive iterators as follows: Whenever
a recursive iterator starts to evaluate leaves then do not add it back to the priority queue
(line 9) but evaluate it fully (by repeating lines 6 and 8).

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 19

In Algorithms 2 and 3 the FIFOL can be equipped with a capacity k. Once this capacity is
reached line 8 of Algorithm 3 will automatically pause the worker until some other process,
e.g. Algorithm 4, pops the FIFO L.

Algorithm 4 turns a tree-iterator t in T into a single iterator `(t) which enumerates T (t).
Whenever t is a tree-iterator then we call `(t) the associated leaf-iterator.

Algorithm 4: LeafIterator (Leaf-iterator of a tree-iterator)
Input:
• A tree-iterator t
• a number n ∈ N>0 of workers

Output: The associated leaf-iterator `(t)
LeafIterator (t, n, k)

1 Initialize a FIFO L := ()
2 Trigger ParallelyEvaluateRecursiveIterator(t, n, L)
3 Initialize the leaf-iterator `:
4 Define IsDone(`) to check if first entry of L is faila

5 Define Next(`) to return the first entry of L which is an element of T (t)
6 return `

aRecall, fail /∈ T .

APPENDIX C. WHY HPC-GAP?

We list some advantages of our implementation HPC-GAP:
(a) More threads can be added on the fly; they simply start to pull jobs from the priority

queue (if non-empty);
(b) One can even notify single threads to terminate once they finish evaluating a recursive-

iterator;
(c) HPC-GAP supports global shared memory and therefore allows us to use a sim-

ple and efficient shared memory implementation for priority queues, as described in
Section B;

(d) HPC-GAP allows for objects to be moved efficiently from one thread to another by
reassigning ownership of those objects to the new thread, rather than inefficiently
performing a full structural copy or using serialization.

The most obvious drawback of our implementation is the following: The state of eval-
uation of a recursive iterator is defined by the priority queue (residing in a shared region)
and by the iterators that are being evaluated in the threads. So if a thread dies or hangs19

while evaluating a recursive-iterator then the latter (which was adopted by the thread from
the priority queue) with all its leaves (e.g., matroids) are lost. In particular, it is impossible
to terminate the running HPC-GAP process without losing the state of evaluation.

A second drawback is that it is currently impossible to use a distributed computational
model since in our implementation the state of evaluation of a recursive iterator can only be
defined and managed by a single HPC-GAP process.

One way to avoid these drawbacks is to store the state of evaluation into a (temporary)
database. In particular all yet non-fully evaluated recursive-iterators should be stored in the
database, while those in process should be marked as such using a unique fingerprint of the
evaluating process. This allows a distributed access on the one side. On the other side an

19either manually terminated or due to an instability of HPC-GAP, which rarely happens in the current version

20 M. BARAKAT, R. BEHERNDS, C. JEFFERSON, L. KÜHNE, AND M. LEUNER

iterator with a deadlock can be manually (or maybe even automatically by a watchdog) be
freed for evaluation by other threads searching for jobs.

Our implementation performs best for recursive-iterators where the evaluation time of
each produced iterator is considerably longer than the organizational overhead in HPC-
GAP caused by by redefining regions, etcetera.

APPENDIX D. TIMINGS

It is worth noting that 97% of the 404 tree iterators of the different multiplicity vectors for
n = 13 atoms can be evaluated in less than a day of CPU time. For n = 14 the corresponding
number are still 93% of 695.

Remark D.1. While processing all relevant multiplicity vectors is an “embarrassingly paral-
lel” problem, the reader may have noticed that the parallel evaluation of a single tree-iterator
corresponding to one such multiplicity vector is much more involved.

The gain of the parallelized evaluation of tree iterators of rank 3 matroids with given
multiplicity vector depends on the number n of atoms. The longest CPU time of an eval-
uation of a tree iterator with n = 13 atoms was that of the one with multiplicity vector
(m3,m4) = (18, 4) which took 16.2 CPU days but finished in 5.59 days using 8 work-
ers, a factor of 2.9. The gain for n = 14 was more significant. The multiplicity vec-
tor with the largest number of matroids is (m2,m3,m4,m5) = (14, 9, 5, 2). It generates
168352 matroids (45 of them are representable) in about 22.8 hours of CPU time but fin-
ished in 112 minutes using 24 workers, a factor of 12.2. The longest CPU time of an
evaluation of a tree iterator with n = 14 atoms was that of the one with multiplicity vector
(m2,m3,m4,m5) = (3, 18, 4, 1) which took 495.7 CPU days but finished in 74.3 days using
8 workers, a factor of 6.7.

REFERENCES

[Abe14] Takuro Abe, Roots of characteristic polynomials and intersection points of line arrangements, J.
Singul. 8 (2014), 100–116. MR 3395241 14

[Abe16] Takuro Abe, Divisionally free arrangements of hyperplanes, Invent. Math. 204 (2016), no. 1,
317–346. MR 3480558 6, 7

[ACKN16] T. Abe, M. Cuntz, H. Kawanoue, and T. Nozawa, Non-recursive freeness and non-rigidity, Dis-
crete Math. 339 (2016), no. 5, 1430–1449. MR 3475556 4, 14

[BB99] Anton Betten and Dieter Betten, Linear spaces with at most 12 points, J. Combin. Des. 7 (1999),
no. 2, 119–145. MR 1670277 2

[BK19] Mohamed Barakat and Lukas Kühne, matroids_split_public – a database collec-
tion for rank 3 integrally split simple matroids, 2014–2019, (https://github.com/
homalg-project/MatroidGeneration/blob/master/README.md). 2, 9, 14

[Bry72] Thomas H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc.
171 (1972), 235–282. MR 0309764 2

[Cun11] Michael Cuntz, Minimal fields of definition for simplicial arrangements in the real projective
plane, Innov. Incidence Geom. 12 (2011), 12. MR 2942717 13

[DIM17] A. Dimca, D. Ibadula, and A. Macinic, Freeness and near freeness are combinatorial for line
arrangements in small degrees, ArXiv e-prints (2017). 4

[DK98] F. M. Dong and K. M. Koh, Non-chordal graphs having integral-root chromatic polynomials,
Bull. Inst. Combin. Appl. 22 (1998), 67–77. MR 1489869 6

[dMN05] Anna de Mier and Marc Noy, On matroids determined by their Tutte polynomials, Discrete Math.
302 (2005), no. 1-3, 52–76. MR 2179636 2

[DW89] Andreas W. M. Dress and Walter Wenzel, Geometric algebra for combinatorial geometries, Adv.
Math. 77 (1989), no. 1, 1–36. MR 1014071 4

[FV14] Daniele Faenzi and Jean Vallès, Logarithmic bundles and line arrangements, an approach via
the standard construction, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 675–694. MR 3291795 4

[GAP18] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.9.2, 2018, (http:
//www.gap-system.org). 9

https://github.com/homalg-project/MatroidGeneration/blob/master/README.md
https://github.com/homalg-project/MatroidGeneration/blob/master/README.md
http://www.gap-system.org
http://www.gap-system.org

ON THE GENERATION OF RANK 3 SIMPLE MATROIDS 21

[HR15] Torsten Hoge and Gerhard Röhrle, On inductively free reflection arrangements, J. Reine Angew.
Math. 701 (2015), 205–220. MR 3331732 3

[JJPW18] Christopher Jefferson, Eliza Jonauskyte, Markus Pfeiffer, and Rebecca Waldecker, Minimal and
canonical images, Journal of Algebra (2018). 11

[JPW18] Christopher Jefferson, Markus Pfeiffer, and Rebecca Waldecker, New refiners for permutation
group search, Journal of Symbolic Computation (2018). 11

[JT84] Michel Jambu and Hiroaki Terao, Free arrangements of hyperplanes and supersolvable lattices,
Adv. in Math. 52 (1984), no. 3, 248–258. MR 744859 7

[KR11] Joseph P. S. Kung and Gordon F. Royle, Graphs whose flow polynomials have only integral
roots, European J. Combin. 32 (2011), no. 6, 831–840. MR 2821554 6

[Leo91] Jeffrey S. Leon, Permutation group algorithms based on partitions. I. Theory and algorithms,
J. Symbolic Comput. 12 (1991), no. 4-5, 533–583, Computational group theory, Part 2.
MR 1146516 11

[Leu19] Martin Leuner, alcove – algebraic combinatorics package for GAP, 2013–2019, (https:
//github.com/martin-leuner/alcove). 2, 13

[MMIB12a] Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai, and David Bremner, Database of
matroids, 2012, (http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/
index.html). 2

[MMIB12b] Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai, and David Bremner, Matroid enumer-
ation for incidence geometry, Discrete Comput. Geom. 47 (2012), no. 1, 17–43. MR 2886089
2

[Mü17] Paul Mücksch, Recursively free reflection arrangements, J. Algebra 474 (2017), 24–48.
MR 3595783 3

[Oxl11] James Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Ox-
ford University Press, Oxford, 2011. MR 2849819 7, 13

[Sta72] R. P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197–217. MR 0309815 6
[Ter81] Hiroaki Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-

Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159–179. MR 608532 14

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SIEGEN, 57068 SIEGEN, GERMANY
E-mail address: mohamed.barakat@uni-siegen.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KAISERSLAUTERN, 67653 KAISERSLAUTERN, GER-
MANY

E-mail address: behrends@gmail.com

SCHOOL OF COMPUTER SCIENCE, UNIVERSITY OF ST ANDREWS, KY16 9SX ST ANDREWS, UNITED
KINGDOM

E-mail address: aj21@st-andrews.ac.uk

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, 9190401 JERUSALEM,
ISRAEL

E-mail address: lf.kuehne@gmail.com

LEHRSTUHL B FÜR MATHEMATIK, RWTH AACHEN UNIVERSITY, GERMANY
E-mail address: martin.leuner@rwth-aachen.de

https://github.com/martin-leuner/alcove
https://github.com/martin-leuner/alcove
http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/index.html
http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/index.html
mailto:Mohamed Barakat <mohamed.barakat@uni-siegen.de>
mailto:Reimer Behrends <behrends@gmail.com>
mailto:Christopher Jefferson <aj21@st-andrews.ac.uk>
mailto:Lukas Kuehne <lf.kuehne@gmail.com>
mailto:Martin Leune <martin.leuner@rwth-aachen.de>

	1. Introduction
	Acknowledgments
	2. Simple matroids
	2.1. Basic definitions
	2.2. Rank 3 simple matroids

	3. Generating rank 3 matroids with integrally splitting characteristic polynomials
	4. How to decide representability of a matroid?
	5. Proof of thm:terao
	Appendix A. Rooted trees
	Appendix B. Recursive iterators, tree-iterators: definitions and parallelized evaluation
	Appendix C. Why HPC-GAP?
	Appendix D. Timings
	References

