On duplicate representations as $2^{x}+3^{y}$ for nonnegative integers \boldsymbol{x} and \boldsymbol{y}

Douglas Edward Iannucci

Abstract

We prove a conjecture posted in the Online Encyclopedia of Integer Sequences, namely that there are exactly five positive integers that can be written in more than one way as the sum of a nonnegative power of 2 and a nonnegative power of 3 . The case for both powers being positive follows from a theorem of Bennett. We use elementary methods to prove the case where zero exponents are allowed.

1 Introduction

In the Online Encyclopedia of Integer Sequences (OEIS, Sloane [3]), sequence A004050 comprises the integers of the form $2^{x}+3^{y}$ for nonegative integers x and y. On this sequence's entry in the $O E I S$, it was remarked as a conjecture in September 2012 that only five of these integers can be so expressed in two different ways.

In fact, sequence A085634 lists those very integers representable both as $2^{x}+3^{y}$ and $2^{a}+3^{b}$, with x, y, a, and b nonnegative integers and $x>a$. The five elements listed are

$$
\begin{array}{lllll}
5=2^{2}+3^{0}, & 11=2^{3}+3^{1}, & 17=2^{4}+3^{0}, & 35=2^{5}+3^{1}, & 259=2^{8}+3^{1}, \\
5=2^{1}+3^{1}, & 11=2^{1}+3^{2}, & 17=2^{3}+3^{2}, & 35=2^{3}+3^{3}, & 259=2^{4}+3^{5} .
\end{array}
$$

On the entry in the OEIS for sequence A085634, it was remarked in February 2005 that if n is in the sequence and $n>259$, then $n>10^{4000}$. In this note, we render this lower bound vacuously true by proving the conjecture: indeed, the five numbers listed above are the only elements of A085634.

We thus assume that

$$
\begin{equation*}
2^{x}+3^{y}=2^{a}+3^{b} \tag{1}
\end{equation*}
$$

where x, y, a, and b are nonnegative integers, such that (without loss of generality) $x>a$ (whence $y<b$).

Equivalently,

$$
\begin{equation*}
2^{x}-3^{b}=2^{a}-3^{y} \tag{2}
\end{equation*}
$$

This brings us to sequence A207079 in the OEIS, which is described in its entry as "the only nonunique differences between powers of 3 and 2." It is given as a finite sequence of five elements, namely $1,5,7,13$, and 23 . It is commented that the finiteness of this sequence is due to Bennett [1], who, in fact, proved a more general result, from which the finiteness of A207079 follows directly. In his article, he gives a clear, precise history of the general problem of determining the number of solutions to the exponential Diophantine equation $\left|a^{x}-b^{y}\right|=c$, and we learn that the finiteness of the specific sequence A207079 was first proved in 1982. We state here, as a lemma, the special case of Bennett's result that applies most directly to (2).

Lemma 1. (Bennett) There are precisely three integers of the form $2^{x}-3^{b}$, with x and b natural numbers, that are also expressible as $2^{a}-3^{y}$, with a and y natural numbers such that $x>a$. They are

$$
-1=2^{3}-3^{2}=2-3, \quad 5=2^{5}-3^{3}=2^{3}-3, \quad 13=2^{8}-3^{5}=2^{4}-3
$$

These are, respectively, the only two such representations for these three integers. All other integers have either a unique such representation, or none at all.

We apply Bennett's result to the cases of (1) and (2) where x, y, a, and b are all positive integers. This leaves us with the special case when $y=0$; clearly (11) and (2) are impossible if $a=0$. We prove the special case $y=0$ by elementary methods, except for the one instance where we apply Lemma 1 to deduce that 1 has only the single representation $1=2^{2}-3$ (although it is not difficult to prove this fact independently).

2 The case when $y>0$

Theorem 2. There are precisely three solutions to (1) when $y>0$. They are
$11=2^{3}+3=2+3^{2}, \quad 35=2^{5}+3=2^{3}+3^{3}, \quad 259=2^{8}+3=2^{4}+3^{5}$.

Proof. Let $c=2^{a}-3^{y}$ in (21). By Lemma 1, if $c \notin\{-1,5,13\}$, then $x=a$, which contradicts the hypothesis $x>a$. Otherwise, $c \in\{-1,5,13\}$.

Suppose $c=-1$. By Lemma 11, we have the two representations, as in (2),

$$
-1=2^{3}-3^{2}=2-3
$$

Thus, $x=3, b=2, a=1$, and $y=1$. This produces

$$
2^{3}+3=2+3^{2}=11
$$

Suppose $c=5$. Similarly,

$$
5=2^{5}-3^{3}=2^{3}-3
$$

thus producing

$$
2^{5}+3=2^{3}+3^{3}=35 .
$$

Suppose $c=13$. Similarly,

$$
13=2^{8}-3^{5}=2^{4}-3
$$

produces

$$
2^{8}+3=2^{4}+3^{5}=259
$$

3 The case when $\boldsymbol{y}=0$

For a prime p and a natural number n, we write $p \| n$ if $p \mid n$ but $p^{2} \nmid n$. We denote the p-valuation of n by $v_{p}(n)$: i.e., $v_{p}(n)=k$ if $p^{k} \| n$.

Lemma 3. If n is a natural number then

$$
v_{2}\left(3^{n}-1\right)= \begin{cases}1, & \text { if } 2 \nmid n ; \\ 2+v_{2}(n), & \text { if } 2 \mid n\end{cases}
$$

Lemma 4. If n is a natural number then

$$
v_{3}\left(2^{n}-1\right)= \begin{cases}0, & \text { if } 2 \nmid n ; \\ 1+v_{3}(n), & \text { if } 2 \mid n\end{cases}
$$

Lemmata 3 and 4 follow easily from Theorems 94 and 95, Nagell [2].
Theorem 5. There are precisely two solutions to (1) when $y=0$. They are

$$
5=2^{2}+1=2+3, \quad 17=2^{4}+1=2^{3}+3^{2} .
$$

Proof. We are given

$$
\begin{equation*}
2^{x}+1=2^{a}+3^{b}, \tag{3}
\end{equation*}
$$

where x, a, and b are natural numbers, where $x>a$. Let $s=x-a$. Thus,

$$
\begin{equation*}
2^{a}\left(2^{s}-1\right)=3^{b}-1 \tag{4}
\end{equation*}
$$

It is necessary by Lemma 4 that s is odd, as, by (4), $3 \nmid 2^{s}-1$.
First, suppose b is odd. Then Lemma 3 implies $2 \| 3^{b}-1$, hence, by (4), $a=1$. Thus, by (3),

$$
2^{x}-3^{b}=1
$$

Thus, by Lemma 1 , $x=2$ and $b=1$. This produces the equation

$$
2^{2}+1=2+3=5 .
$$

It remains to let b be even. Then $a=2+v_{2}(b)$ by Lemma 3. Suppose $2^{2} \mid b$. Then $3^{4}-1 \mid 3^{b}-1$, hence $5 \mid 3^{b}-1$. Then (4) implies $5 \mid 2^{s}-1$, hence $4 \mid s$, a contradiction as s is odd. Therefore $2 \| b$ and $a=3$. Writing $b=2 c$ for an odd natural number c, we have by (4)

$$
2^{s}-1=\frac{3^{c}-1}{2} \cdot \frac{3^{c}+1}{4} .
$$

Letting

$$
z=\frac{3^{c}+1}{4},
$$

then z is a natural number by Lemma 3, and we obtain the quadratic in z,

$$
2^{s}-1=2 z^{2}-z .
$$

Completing the square yields

$$
(4 z-1)^{2}=2^{s+3}-7
$$

Writing $s=2 t+1$ yields the difference of squares factorization

$$
\left(2^{t+2}-4 z+1\right)\left(2^{t+2}+4 z-1\right)=7 .
$$

Therefore

$$
2^{t+2}-4 z+1=1, \quad 2^{t+2}+4 z-1=7
$$

thus,

$$
2^{t+2}=4 z=4
$$

Therefore $t=0, z=1$; thus, $c=1$. Hence $s=1$ and $b=2$. Recalling $a=3$, we have $x=4$. This produces the equation

$$
2^{4}+1=2^{3}+3^{2}=17
$$

References

[1] M. A. Bennett, "Pillai's conjecture revisited," J. Number Theory 98 (2003) 228-235.
[2] T. Nagell, Introduction to Number Theory, Wiley Publishers, New York, 1951.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

Director, Center for Numerology
University of the Virgin Islands
2 John Brewers Bay
St. Thomas VI 00802
USA
diannuc@uvi.edu
diannuc@gmail.com

