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Abstract

Suppose one has a collection of disks of various sizes with disjoint interiors, a packing, in the
plane, and suppose the ratio of the smallest radius divided by the largest radius lies between 1
and ¢. In his 1964 book Regular Figures [6], Laszlé Fejes T6th found a series of packings that
were his best guess for the maximum density for any 1 > g > 0.2. Meanwhile Gerd Blind in
[3, @] proved that for 1 > ¢ > 0.72, the most dense packing possible is 7/v/12, which is when
all the disks are the same size. In [6], the upper bound of the ratio ¢ such that the density of
his packings greater than 7/4/12 that Fejes Téth found was 0.6457072159... Here we improve
that upper bound to 0.6585340820... Both bounds were obtained by perturbing a packing that
has the property that the graph of the packing is a triangulation, which L. Fejes Té6th called a
compact packing, and we call a triangulated packing. Previously all of L. Fejes Téth’s packings
that had a density greater than 7/+/12 and ¢ > 0.35 were based on perturbations of packings
with just two sizes of disks, where the graphs of the packings were triangulations. Our new
packings are based on a triangulated packing that have three distinct sizes of disks, found by
Fernique, Hashemi, and Sizova, [9], which is something of a surprise.

We also point out how the symmetries of a triangulated doubly periodic packing can by used
to create the actual packing that is guaranteed by a famous result of Thurston, Andreev, and
Andreeson [16].

Keywords: Compact packing, triangulated packing, disc packing, density, symme-
try, orbifold.

1 Introduction

A disc packing is called compact or triangulated if its contact graph is triangulated, i.e. the graph
formed by connecting the centers of every adjacent disc consists only of triangular faces. We are
interested in packings on the flat torus, which are equivalent to doubly periodic packings in the
plane. The problem is to find and classify all compact packings of order n on the torus, meaning
the packing uses n different sized discs. For n = 1, only a single triangulated packing exists, the
hexagonal lattice, where each disk touches six others of the same size. For n = 2, nine packings
exist, found by Kennedy [13]. For n = 3, there are 164 such packings, found by Fernique, Hashemi,
and Sizova [9]. (This is much less than the upper bound of 11,462 packings given by Messerschmidt
[14].)

In 1890, Thue gave the first proof that the hexagonal lattice is the densest single size disc
packing. However, some considered his proof to be incomplete. In 1940, L. Fejes Téth provided the
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first rigorous proof. This caused Fejes Téth to wonder about the densest possible packings with
multiple disc sizes. The density of any such packing must be strictly greater than 7/1/12, which is
the density of the hexagonal lattice. Here, in Theorem we provide a simple proof.

For any disc packing, let 0 < ¢ < 1 be the ratio between the radii of the smallest and largest
circles used. Florian derived a formula for an upper bound for the density of a packing depending
on its value of g:

B 7q® +2(1 — ¢%)sin~! (fqu)
s(q) = e (11)

Theorem 1.1 (Florian [10]). If 0 is the density of a packing in the plane with radii between 1 and
q, then § < s(q).

This function tends to one as ¢ tends to zero, since arbitrarily small discs can fill up any gaps
in a packing. As g approaches one, the bound decreases monotonically to 7/v/12, recovering the
hexagonal lattice.

This formula is mentioned in Fejes Téth’s 1964 book Regular Figures. Additionally, Fejes Té6th
provides guesses for the densest possible packings with radius ratio greater than or equal to a given
q (Figure 1.1). Although none of the guesses exactly reach Florian’s bound, some of them come
quite close, while others are noticeably lower.
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Figure 1.1: Florian’s bound s(gq) along with 6(g), the density of Fejes Téth’s best
guess as a function of ¢ reproduced from page 189 of Fejes T6th’s book [6]. The
final three piecewise sections of §(¢) will be defined exactly in Section [

The problem of finding all triangulated packings of order with n different radii is interesting
because we can scour these packings for ones which improve Fejes T6th’s guesses and come closer
to Florian’s bound. In fact, with Fernique’s recently-discovered three disc packings in [9] we can
do exactly that, which we explain in Section [3] A knowledge of how close we can get to Florian’s
bound is important because it helps us with a more general question: Given an arbitrary set of
discs with radii between ¢ and 1, what is the densest possible way to arrange them into a periodic
packing?

Another interesting thing to do with these newly-found packings is to find out which plane sym-
metry groups each of them belong to. This is important because the orbifold of a given symmetry



group can allow us to systematically construct new packings of any order, although the methods
of Kennedy [13] and Fernique [9] are sufficient to find all examples for two sizes and three sizes of
disks, respectively.

2 Multiple Size Packings

If the graph of a packing is a triangulation of the plane, the density of the packing can be calculated
by taking an appropriate weighted average of the densities of the packing restricted to each triangle.
Florian’s bound is the density of a packing of three circular disks in mutual contact, one of
radius 71 and two of radius ro < 71, where ¢ = r9/r1, in a triangle formed by their centers. In
general, the density of a packing of 3 disks of radius r; = tan(6;), for i = 1,2,3 in the triangle
formed by the centers normalizes so that the incenter of the triangle is 1, is the following function
5(61,062,63),

(/2 — 61) tan?(0;) + (/2 — 02) tan?(62) + (7/2 — 63) tan?(6s)
tan(61) + tan(f2) + tan(6fs3)

3(61,02,03) = (2.1)

!
\

Figure 2.1: Diagram of three mutually tangent circles (dashed green) and the
triangle with vertices at their centers (solid blue). There are also the triangle’s
angle bisectors (dashed blue) and its inscribed circle (solid green).

The diagram is normalized so that the radius of the incircle is 1. The red segments are radii of
the incircle which are orthogonal to the sides of the triangle. 61, 82, and 63 are each angles between
one of the angle bisectors and an adjacent red segment and each tanf; = r;, the i-th radius. The
density of the packing in the triangle, 6(61, 02, 03), is the ratio of the yellow area to the area of the
entire triangle. We will show that ¢ is minimized when the radii of the three dashed circles are
equal.

One can check that when ¢ = ro/ry = r3/r1 = tan(fz)/tan(6y) = tan(f3)/tan(f;), then

s(q) = 0(61,02,603). In this case 6 = 71—205 = sin_l(%q) and tan(6;) = 1/%, tan(f2) = /1 + 2q.

2.1 Triangulated Packing’s Minimum Density

Here we show that the minimum density of all triangulated packings is when all the radii of all the
disks are equal.

Let the area of the union of the yellow sectors be A(61, 62, 62) as in Figure So



A(gl, 05, (93) = a(91) + a(92) + a(93)
= (71'/2 — 91) tan2(91) + (71'/2 - (92) tan2(92) + (71'/2 — (93) tan2(93). (2.2)

Let t(0) be twice the area of a right triangle of side length 1, and angle 6 adjacent to that unit
length. Then
t(0) = tan(0)

Let T'(01,02,02) be the area of the triangle as in Figure Its area is the sum of the areas of
the six smaller right triangles, so

T(Ql, 0o, 03) = t(@l) + t(92) + t(@g) = tan(@l) + tan(ﬁg) + tan(93). (2.3)

Thus overall the density of the covered portion of the triangle as in Figure [2.1] is

0(61,02,03) = A(0:1,62,03)/T(61,02,63)

_ (m/2—061) tan?(01) + (7/2 — 0) tan?(0s) + (7/2 — 03) tan?(3) (2.4)
B tan(f;) + tan(f2) + tan(f3) ’

Here we assume that 61 + 02 + 03 = 7 and each 0 < 6; < m/2 so that the angles come from the
situation of Figure [2.1
We are mainly interested in the following:

Theorem 2.1. The minimum value of 0 is w/\/12, and is achieved only when 0; = 6y = 03 = /3.

In other words, this is achieved only when the radii of the touching circles, the tan(6;) for our
normalization are equal. In order to simplify the calculations, instead of calculating the critical
minimum density directly, we will compute the complimentary maximum density

5=1-6=(T(61,0,05) — A6y, 0,05))/T (61,0, 05.

This is the ratio of the curvilinear triangle in the unit circle over the area of the larger triangle
that contains the unit circle. This result follows from the next theorem.

Theorem 2.2. Subject to 01 + 03 + 03 = 7 and each 0 < 0; < 7/2 the maximum value of
T(01,02,03) — A(01,602,03) is achieved only when 01 = 02 = 03 = 7/3 and the minimum value
of T'(01, 62, 03) is achieved only when 01 = 0y = 03 = /3.

To do this fix one of the angles, say 3, and then regard 05 as a function of 61, where o =
m — 01 — 03. Since t(03) and 3 are constant, we have the following:

Lemma 2.3. The mazimum of t(6) — a(61) + t(m — 01 — 03) — a(m — 61 — 63) and the minimum of
t(6h) + t(m — 01 — 63) occur only when 61 = 03 = 7 — 61 — 0s.

Proof. First the t(0) case. For 03 fixed, it is clear that 6; = 0y = m — 26, is a critical point. We
calculate the derivatives for 0 < 6 < 7/2,

t(0) = 14 tan?()
t"(0) = 2tan(#)(1+ tan®(d) > 0.



Thus (61, 01, 7—2601) is the unique minimum point for 7" when 6462463 = 7™ and each 0 < 0; < 7/2.
For a(f) the argument is similar.

d(0) = 1+2tan’(h) — (7 — 26) tan(#)(1 + tan(0)?)
J(6) = (27 — 40) cos?(0) + 6sin(f) cos() — 37 + 60 .

cos*(0) 0.

The last inequality is verified by Maple. Applying this to each pair of 0; at a time, we get that the
only overall minimum point for ¢ is when 6; = 0 = 03 = /3. O

Theorem 2.4. The density of a triangulated/compact doubly periodic disc packing, with at least
two distinct sizes of disks, is strictly greater than w/+/12 = 0.9068996821...

By Theorem the density of any packing, restricted to any triangle in that packing is at least
7/+/12 and is strictly greater unless all the radii of the triangle are the same. Since the density of
the whole packing is a weighted average of the densities of each triangle, when at least two radii
are used, the overall density is strictly greater than m/v/12.

2.2 Density in Terms of Radii

Expression for the density of three disks in a triangle is in terms of the angles of the bounding
triangle which useful for Theorem but it is also useful to write the same density in terms of
the three radii that determine the triangle. From Heron’s formula for a triangle, the area of the
triangle is

T, = T, (r1,72,73) = \/r1rars(r1 + 72 +13) = R(r1 + 72 + 13),

where R is the inradius (that was assumed to be 1 in Figure [2.1)). Thus the inradius is

R = R(r1,r2,73) = \/r1rar3/(r1 + 2 + 13).

Thus the density of three disks in a triangle as in Figure ([2.1)) from Equation (2.4)) is

(/2 —tan=t(r1/R))r? + (7/2 — tan~L(ro/R))r3 + (7/2 — tan~ 1 (r3/R))r3
T

Op(1r1,m2,73) =

Then one can check that Florian’s bound Equation ([1.1]) for 0 < ¢ <1 is

s(q) = 6-(1,4,9).

2.3 Comments about the Florian Bound

Part of Florian’s bound is that if there are two sizes of disks, large and small, and one puts three
disks in contact as in Figure there are three ways to do it, all the same size, which has density,
7/4/12, or large-large-small, or large-small-small. Theorem shows that when all three have the
same size, the density is the smallest of the three cases. The large-small-small case always has the
largest density. Figure shows a typical case for the density in a triangle of d,(rg,r, 1), where
0<r<r<l.
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Figure 2.2: This shows the density 0,(ro,7,1) of a packing in a triangle, where the
smallest radius rg = 0.4 and largest 1 are fixed, with the intermediate radius rg =
0.4 < r <1 varying between the two. Note that the ends of the interval r = rg and
r = 1 have the largest density locally, with the large-small-small case 1,7y, 79 having
the largest density globally.

On the other hand, if one compares the density of the two ends of the interval in Figure
the ratio of the two densities is very close to 1.
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Figure 2.3: This shows the ratio of §,(1,r,7)/d,(1,1,r), for 0 < r < 1, and it appears
that for all r, the ratio is less than 1.00372119. Although, the large-small-small case
always has higher density, the density d,(1,1,7) is quite close to d,(1,r,r).

2.4 The Florian Bound in Never Achieved

In [12] Aladar Heppes said “The upper bounds given by L. Fejes Toth and Molndr [FM] for the least
upper bound 6(1,7) of the density of a packing of unit discs and discs of radius r < 1 have been
sharpened by Florian [Fl1], who proved that the density cannot exceed the packing density within a
triangle determined by the centers of mutually touching circles of radius 1,7 and r. Unfortunately,
such packings do not tile the plane for any value of r, thus this general bound is never sharp.” We
explain that last statement here.

Here we assume that the packing is periodic with a finite number of packing disks per fun-
damental region, say. Equivalently, this means that the packing is a collection of circular disks



with disjoint interiors in a flat torus, which is determined by some lattice with two independent
generators. For any such packing, normalize the largest radius of a packing to be 1, and suppose
that the smallest radius of the packing is 79 < 1. Let the other radii of any triangle that contains
the radius 1 be 71 < ry <1 and r¢ < ry of course. Then

Op(r1,m2,1) < p(r1,m1,1) = s(r1) < 6(ro,70,1) = s(ro), (2.6)

from Figure 2.2] and the monotone decreasing property of Florian’s bound Figure Furthermore
if either of the inequalities in ([2.6]) is strict, Florian’s overall bound for the packing will never be
equality for a doubly periodic packing, say. We prove the following:

Theorem 2.5. If § is the density of a doubly periodic triangulated packing in the plane with radii
between 1 and q, then § < s(q).

Proof. Assume that Florian’s bound in Theorem is attained, and we look for a contradiction.
Let rp be the smallest radius of a disk, and 1 the largest radius. Choose any disk of radius 1.
From the discussion above, each of its adjacent disks must have radius rg as well. Similarly, the
disks in order around any rg, must be alternately 1,rg,1,rg,..., for an even number of adjacent
disks. Otherwise, we would have three adjacent disks with radii rq,r, 1, with rg < r < 1, where
the triangle of centers would have density strictly less than s(rg) contradicting our assumption.
Continuing this way, we see that all the triangles of the triangulation correspond to packing disks
with radii, rg, 79, 1. Not only that, but the number of disks of size 1 will be adjacent to exactly, say
n > 3 other disks of radius rg, and each disk of radius r¢ will be adjacent to exactly 2m > 4 other
disks, m with radius 1, m with radius rqg. In particular, there will only be two sizes of disks. All
triangulated packings with just two sizes of disks have been found by Kennedy [13], see Figure
and they all have at least one triangle that is either equilateral or that corresponds to the 1,1, rq.
Alternatively, one can use the following Lemma that finds all triangulated packings with two
sizes of disks, where each disk has radii of size a, b, b, where a # b are positive radii, and the large,
small, small case never appears. O

Lemma 2.6. Suppose we have a triangulated packing of a flat torus, where the disks corresponding
to each triangle have radii a,b,b. Then the only possible packings are Packings 4,8 in Figure
and the equal radius packing when a = b.

Proof. Because the shape of each triangle in the triangulation is the same, the number of disks
adjacent to disk with the a radius is the same, say n > 3, and similarly the number of disks adjacent
to one with the b radius is the same even number, say 2m for m > 2, because the neighbors have to
alternate as in the proof of Theorem Let a be the half angle at the center of the a radius disk
in one of its triangles as in Figure 2.4 Then the angle for the b radius disk in the same triangle is
m/2—a. So 2an =21 = 2m(w/2 — «). Then 7/n+ 7/m = m/2, or more simply 1/n+1/m =1/2.
Thus the only solutions are n = 3, m = 6, corresponding Packing 8; n = 4, m = 4 corresponding to
Packing 4; n=6, m=3 corresponding to when a = b, all in Kennedy’s list, Figure from [13]. O



Figure 2.4: If there is a triangulated packing with only two sizes of disks, this shows
how the angles in the triangle must be so the triangulation fits together.

Notice that the packings of Lemma [2.6] are of the big, big, small type, which does not have the
maximum density for given radius ratio, nevertheless have densities that are very close to Florian’s
bound in Theorem Interestingly, Aladar Heppes in [12] proved that for two sizes of disks in
the ratio /2 — 1, as in Packing 4 in Figure that its density (2 —/2)/2 = .9201511858.. is the
maximum possible, while Florian’s bound is 0.9208355993...

3 Fejes To6th’s Packings

Let g1 = 0.6375559772 ... be the radius ratio of the packing in Fejes Téth’s book [6], (Figure
left here), which is the same as Kennedy’s first two-disc packing in Figure

Let g2 = 0.6457072159. .. be defined such that dp7(q2) = 7/v/12, where 6pr(q) is defined in
Equation coming from the middle packing of Figure

For ¢1 < q < ¢o, Fejes T6th’s guess is a version of Kennedy’s packing with the radius of the
smaller circle increased slightly so that the new ratio is equal to ¢q. This, however, causes the
packing to no longer be triangulated /compact.

With some work (See the Appendix), it is possible to write the density of this packing in terms
of ¢:

5pr(q) = m(@®+ D@+ 1)'VT+2g (3.1)

49(2¢2 + 59 + /263 + 5% + 2q + 2)(q + /263 + 5¢% + 2q)

This is exactly the second-to-last piece of §(g) shown in Figure So dpr(q1) = 0.9106832003 . ..
recovers the density of the unaltered packing, and the density function dpr(q) strictly decreases to
Srr(g2) = 0.9068996827 ... = 7//12.

This is shown in Figure with the piece-wise linear blue line.

For g2 < ¢ < 1, Fejes Téth’s guess is simply the hexagonal lattice, with density §pr(q) = 7/v/12
(Figure right). Note that the packing with ratio ¢ is distinct from the hexagonal lattice, despite
having the same density.
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Figure 3.1: This graph is a magnified version of the one shown in Figure 1.1, with
s(q) in red and dpp(q) in blue. The green function A(q) shows the improvement
to drpr(q) = d(q). The important values of g are marked by the vertical dashed

lines.

Let

V12— Ttan(n/7)

qB

~ | 5tan(n/5) — V12

= (.7429909632 . . .

For qp < ¢ <1, it is known that the hexagonal lattice is the best possible guess. This was shown
by Blind in the 1960s. [3} [4]

Figure 3.2: Fejes To6th’s best guesses, photographed directly from a copy of Reg-
ular Figures. (Left: ¢ < q1, Center: ¢1 < ¢ < go, Right: g2 < ¢ <1) [6]



4 Fernique’s Packings

Packing number 53 in Fernique’s list [9], (Figure left), is of special interest because it has the
highest radius ratio of all triangulated/compact disc packings known, aside from the hexagonal
lattice. More importantly, Packing 53 improves Fejes T6th’s guess for the densest packing with
radius ratio ¢ for 0.6404568491 ... < g < 0.6585340820. . ..

Let d53 = 0.9093065016 . .. be the density of Packing 53 in Fernique’s list, (Figure left).

Let go = 0.6404568491 ... be defined such that drr(qo) = d53, where dpr is the density of the
class of packings defined by Fejes Téth as above.

Let g53 = 0.6510501858.. .. be the radius ratio of Packing 53 (Figure left).

Define A(q) = d53 for o < q¢ < gs3. Since A(q) > d(q) for those values of g, Packing 53 is an
improvement on Fejes Téth’s guesses for this range.

For ¢53 < q < qp, Packing 53 is no longer a valid guess because one of the disks in Packing 53 is
smaller tha q. However, it is possible to create an altered version of Packing 53 using Fejes T6th’s
technique in order to make an improved guess for some ¢ > g53. We will modify it by increasing
the medium radius p and the small radius ¢ according to the following constraint which is satisfied
by the unaltered packing (See the Appendix for a derivation):

o2 + (4g+ 3)p> + (2¢* — 20+ 1)p? — 5> +69)p+ > =0 (4.1)

This is to ensure that the medium sized discs remain in contact with each other (Figure (4.1)),
right). Using the quartic formula to solve for p, we can write the density of the altered packing
entirely in terms of ¢ (Again this will be explained in the Appendix):

0 = T+ p*+¢*)(p+a)* (1 +p)*(1 +9)°
32pq(1+p+q)(8p?¢> — (P? — 6pg + ¢*)(1 +p+ ¢ — pq))/pa(1 + p + q)

(4.2)

Also, ¢ is the radius ratio of this packing since the largest disc is normalized to have radius 1.
A(gs3) = 053, and the function A strictly decreases for ¢ > gs3.

Let grr = 0.6585340820... be defined such that A(grr) = 7/v12. For ¢s3 < q¢ < qrr,
A(q) > 0pr(q). Therefore, the altered Packing 53 is an improvement on the guess of the hexagonal
lattice in this range.

These packings and their densities are shown as the green line in Figure
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Figure 4.1: Packing 53 (left) and its altered version (right), along with their con-
tact graphs. The rectangular borders of each packing are also their fundamental
regions.

For grr < q < g¢p, the altered packing is no longer a valid guess because A(q) goes below
w/v/12. More packings will need to be discovered and studied, if they exist, in order to make
improvements in this range.

5 Symmetry Groups

Any periodic structure in the plane is guaranteed to be represented by one of 17 symmetry groups,
known as the wallpaper groups. This fact was proven by Fedorov in 1891 and again by Pdlya
in 1924. The wallpaper group of a two-dimensional pattern can be determined by identifying
its rotational, reflectional, and glide reflectional symmetries. For example, the hexagonal lattice
belongs to the group p6m, as it is the only group with both reflectional and six-fold rotational
symmetry. Griilnbaum and Shephard give an excellent treatment of the wallpaper groups in their
book Tilings and Patterns. [11]

Definition 1. A fundamental region of a two-dimensional pattern is a smallest area of it that
can be replicated to produce the entire pattern using only translations.

Definition 2. An orbifold of a two-dimensional pattern is a smallest area of it that can be repli-
cated to produce the entire pattern using translations, reflections, and rotations.

The more symmetries a pattern has, the smaller its orbifold is relative to its fundamental region.
For example, for the group p1, the orbifold and fundamental region are the same size. On the other
hand, for the group p6m, the orbifold is one-twelfth the size of the fundamental region.

It is possible to use the orbifolds of some symmetry groups to construct disc packings belonging
to those groups. For example, to create an order n disc packing with p6m symmetry, simply place
n discs onto the 30-60-90 triangle orbifold. One must decide whether to place the center of each
disc on a vertex, an edge, or the face of the orbifold.

However, this method may not generate every order n disc packing with a given symmetry. It
may be necessary to place more than one disc of the same size in different locations on the orbifold.
This is the case when a packing has two or more discs of the same size that cannot be mapped to
each other through translations, reflections, and rotations.
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For example, the hexagonal lattice has one unique disc, and so its orbifold also contains a single
disc (Figure 4.1, left). On the other hand, Kennedy’s fifth packing is the only two disc packing
with two distinct discs of the same size. As a result, its orbifold is the only one out of the two disc
packings which contains three different discs (Figure 4.1, right).

Figure 5.1: The hexagonal lattice (left) and Kennedy’s fifth packing (right). Both
packings belong to the symmetry group p6m. The rhombi are the fundamental
regions, and the 30-60-90 triangles are the orbifolds. [§]

Many of Fernique’s three disc packings have a similar property. However, two of them are
especially noteworthy. Packing 154 is the only one with two sets of two distinct discs of the same
size, while Packing 159 is the only one with three distinct discs of the same size.

Figure 5.2: Packing 154 (left) and Packing 159 (right). Both packings belong
to the symmetry group p6. The rhombi are the fundamental regions, and the
isosceles triangles are the orbifolds. [9]
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5.1 Wallpaper Groups of Compact Two Disc Packings

1 2 3 4 5 6 7 8 9
cmm | p81m | ecmm | p4m | pbm | pbm | cmm | pbm | pbm

1 1111r 2 111rr 3

11rlr

Figure 5.3: All 9 triangulated/compact 2-disc packings on the torus. The table
above indicates the symmetry type for each of the packings in Figure. The large
shapes in each picture are the fundamental regions, while the smaller shapes are
the orbifolds. Notice that the more symmetric packings have smaller orbifolds
relative to their fundamental regions.  [13]




5.2 Wallpaper Groups of Compact Three Disc Packings

The numbering scheme for these packings is taken from Fernique, Hashemi, and Sizova. [9]

1 2 3 4 ) 6 7| 8 9 10
pmm | cmm | pSIm | pmg | pmm | pmm | p2 | p2 | p2 | pdml

11 12 13 14 15 16 17 | 18 19 20
pmm | cmm | p3Im | pmg | pmm | pmm | p6 | ¢cm | pbm | cmm

21 22 23 24 25 26 27 28 29 30

cmm | cmm | pbm | p31m | pbm | pbm | p4m | cmm | p3Im | cmm

31 32 33 34 35 36 37 38 39 40
pbm | pbm | cmm | pbm | pbm | pbm | p3Im | pbm | pbm | pbm

41 42 43 44 45 46 | 47 48 49 50
p3im | pbm | pbm | pbm | cmm | p2 | pmg | p3Im | p6 | p3Im

51 52 | 53 54 55 | 56 | 57 | 58 59 60
cmm | p6 | pgg | p3Im | p2 | p2 | p6 | p6 | cmm | p3Im

61 62 63 64 65 66 67 68 | 69 | 70
pmm | cmm | p3Im | pmm | p6bm | cmm | cmm | cm | p2

pmg

71 72 73 74 75 76 7T T8 79 80
cmm | p8im | p6 | p3lm | cmm | cmm | p2 | pbm | pmm | cmm

81 82 83 | 84 85 86 87 88 89 90
cmm | pmm | p2 | p6 | cmm | cmm | cmm | cmm | pbm | pbm

91 92 93 94 95 96 97 98 99 | 100
pbm | clmm | p4 | cmm | cmm | pmm | p2 | cmm | p6 | cmm

101 102 103 104 | 105 | 106 | 107 | 108 | 109 | 110
cmm | emm | emm | cmm | pbm | pbm | pbm | p4m | cmm | pbm

111 | 112 | 113 114 115 116 | 117 | 118 119 120
p6 | p& | p3Im | p6bm | pdml | cmm | pbm | pmm | pmm | pbm
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121 | 122 | 123 124 125 | 126 | 127 | 128 | 129 | 130
cmm | p6 | pmg | p3Im | cmm | p6 | p2 | p6 | pmg | p2

131 132 133 134 135 | 136 | 137 | 138 139 140
cmm | emm | emm | pmm | cmm | p2 | p6 | cmm | cmm | cmm

141 | 142 | 143 | 144 | 145 146 | 147 | 148 | 149 150
pbm | pbm | pbm | pmg | cmm | cmm | pbm | p6 | p3Im | pbm

151 152 153 | 1564 | 155 156 157 158 | 159 | 160
pdml1 | p3Im | p3Im | p6 | p3Im | pbm | pSm1 | pbm | p6 | p4im

161 | 162 | 163 | 164
p4m | pbm | cmm | pbm

Thirteen of the seventeen wallpaper groups are represented by the three disc packings. p1, pg, pm,
and p4g are the only ones missing. The lack of the first three is not too surprising, as they each
have very few symmetries. However, the fact that no packing belongs to p4g is rather interesting.

cm | p2 | pgg | pmg | pmm | cmm | p8 | p3Im | pSml1 | p4 | p4m | p6 | p6m | Total
2 13| 1 7 14 46 1 19 4 1 4 16 | 36 164

Additionally, three of the groups are represented only once each: pgg (Packing 53), p3 (Packing
112), and p4 (Packing 93). Packing 53 will be discussed in further detail in the next section.

Figure 5.4: Packing 112 (left) and Packing 93 (right). The large shapes are the
fundamental regions, while the smaller shapes are the orbifolds. [9]

15



6 Conjecture

Presented here is a far-fetched conjecture that the number of compact disc packings of order k is
equal to the (k + 1)** term in the OEIS sequence A086759:

0,1,9,164,5050,227508, 14064519, 1146668608, 119249333028, 15400125776000... [15]

This sequence is the permanent of the Cayley addition table of Z,.
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7 Appendix

7.1 Laszlé Fejes Té6th’s Packings

This is a derivation of Formula [3.1] for L. Fejes Téth’s middle packing in Figure [3.2] Figure [7.1
shows a displaced version of L. Fejes T'6th’s packing, concentrating on the upper right trapezoid,
which is a fourth of the whole fundamental region and which reflects into the whole fundamental
region. The coordinates of the vertices of trapezoid are shown.

Figure 7.1: Diagram of fundamental region of at packing, with the corner trape-
zoid, constituting one-fourth of the fundamental region.

There are two circles of radius 1, and two circles of radius ¢ per fundamental region in this
Figure The following equations show the edge length constraints:

[(z,y) — (0,v/1+2q)] = 2
which translates to 22 + y? = 2y/T +2¢ — (1 +2q) +4 = 2zq + 1 + 2¢.

2+ (y—1+29° = 4
(z—q’+y* = (1+q)>

So we get:
22+ =291 +2¢— (1+2¢) +4=2zq+1+2q.
Solving these two equations for z and y in terms of g we get:
s V2¢3 +5¢% +2¢
(¢ +1)?
23+ 7% +49+/2¢3 + 5¢% + 2¢q) — 1
Y VI+2q¢(q+1)2
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Then the density of this packing in terms of ¢ is

m(q* +1)
(VI+2q¢+y(q)z(q)

Note that y(0.6375559772...) = 1 which means that the configuration is as in Fejes Téth’s
Figure [3.2] on the left, and Kennedy’s Figure 1 of Figure the triangulated packing. In Section
q1 = 0.6375559772.... Note also that when the ratio ¢ = 1, y(1) = /3, and x(1) = 2, showing
that the configuration is the ordinaty hexagonal packing, where two radius g disks come together
and touch. Note that §(0.6375559772) = 0.9106832003 ... > 7/y/12. When the ¢ disk radius is
expanded to ¢ = 0.6457072159... = qo, then §(q + 2) = 7/v/12. So ¢ = 0.6457072159... is the
limit of the largest g radius for Fejes T6th’s packings.

q1 = 0.6375559772. .. is the root of the following polynomial:

6 =0(q) =

2t =102 —8x+9=0  [13]
g2 = 0.6457072159. .. is the root of the following polynomial:
921 + 812 + 3692 + 116122 + 27572 + 4749210 + 58052° + 544528

+36432" + 123525 + 2432° — 10292* — 96923 — 36922 — 812 —9 =0
This was calculated by solving d(¢q) = 7/v/12 in Wolfram Alpha.

7.2 Fernique’s Packing

For the evaluation of ¢s3 and qrpr we have the following:
g53 = 0.6510501858.. .. is the root of the following polynomial:

8928 + 134427 + 40082° — 4642 — 24102 + 17623 + 2962> — 96z +1=0  [1]
grT = 0.6585340820 . .. is the root of the following polynomial:
82944231 + 207360020 + 2544998422° + 204553728228 4 1214611776227 + 567407750422

+215957174402% + 6844106937622* + 18372578049622% + 4236195131042:2% + 8469001834082
+14749172423522%°+22396642780282194-29593146403322: 18 +33842427248442' T +-33138032411962: 6
+271945257115921° 4 1783910866439 + 8155143008472 + 88889109343x12 — 2798830895652

—346836129933210 — 2562746788532 — 1384355980052 — 5715733197927 — 182839677392°
—45716556512° — 892845459z — 1322016752 — 1415234722 — 9856352 — 33075 = 0

This was calculated by solving A(q) = 7/4/12 in Wolfram Alpha.
For the calculation of the density of the perturbed (and unperturbed) Fernique packing 53, we
consider the following portion of the packing as follows:

18



Figure 7.2: Diagram of a portion of Fernique’s Packing 53.The center point is
surrounded symmetrically by four circles with radii, r1, ra, 71, 72 in order with the
two r; disks moved apart slightly.

The distance from the r; disks to the center of symmetry is defined to be y, and the distance
from the center of the r1 disk to the center of symmetry is x. The distance d is the distance between
the centers of the r; disks and perpendicular to the line through the ro, r3 disk centers as shown.

As before the area of the triangle formed by the centers of the rq, 7y, rg disks is

Ap = \/?"1?”27“3(7‘1 + 72+ 13).

The distance d can be calculated because of the symmetry about the line through the centers
of the r9 and r3 disks.

d 1
5(7‘2 + Tg)i = ARj.
So d can be calculated in terms of the radii.

2 16717ar3(ry + 12 + 713)
(ro +13)?

Then using the right triangle formed by the two 7 circle centers and the center of symmetry,

167’17"27‘3(7'1 + 7o+ 7‘3)
(7“2 + T3)2

(z+r+m)+yi=d= (7.1)

Similarly using the using the right triangle formed by the r1,r3 circle centers and the center of
symimetry,

? +y = (r1 +713)% (7.2)
Substituting this into Equation ([7.1)) we get:

167’17‘27'3(7‘1 + 79+ 7‘3)

2(r1 +73)% + 22(r +13) = (ra + 73)?
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Solving for x as the following explicit rational function of the radii, we get:

87’17"27’3(7’1 +7ro + 7“3)

, T2, = — +1r3). 7.3
x(r1,72,73) (2 + 13)2(r £ 73) (r1+73) (7.3)
Using Equation (7.2]) we find y as a function of the radii:

y(r1,72,73) = \/(r1 +73)2 — 2(r1, 72, 73)2. (7.4)

Note that to get a packing (i.e. without overlap we must have y > 1 and = > r3, and we can
switch the roles of ro and 73 with the disks switching in Figure Indeed as the yellow disks move
apart and the red disk move together and touch, the packing deforms to the standard hexagonal
packing.

Assume that 7 = 1,79 = p,r3 = ¢, and ¢ < p < 1. From Figure (4.1) we see that each
fundamental region has 4 disks of each size, so the total area covered by the disks is:

A(p,q) = 4n(1+p* + ¢*).

This formula is independent of the relative sizes of the disks.
We know that area of one of the triangles determined by the centers of 3 different triangles is:

Ax(p,q) = vVpe(1+p+q).

The area of a quadrilateral (a rhombus) determined by 2 yellow disk centers and 2 red disk
centers in Figure [7.2] is:

QUAD(p,q) = 2z(1,p,q9)y(1,p,q).

And the area of a quadrilateral (a rhombus) determined by 2 yellow disk centers and 2 blue disk
centers in Figure is:

QUAD(q,p) = 2z(1,4,p)y(1,4,p).

From Figure , left that there are 4 triangles determined by 2 yellow disks and a red disk
corresponding to 2 QUAD regions. There are 4 triangles determined by 2 yellow disks and 2 blue
disks corresponding to 2 other QUAD regions. Then there are 16 triangles determined by 3 different
disks. Putting all these regions together we see that the total area of the torus is:

Ar(p,q) = 16Aa(p, q) +2QUAD(p, q) +2QUAD(q, p).
Altogether we get that overall density of the packing is:

_ Alp,q)
Ap,q) = m
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