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Abstract

O(N) invariants are the observables of real tensor models. We use regular colored
graphs to represent these invariants, the valence of the vertices of the graphs relates to
the tensor rank. We enumerate O(N) invariants as d-regular graphs, using permutation
group techniques. We also list their generating functions and give (software) algorithms
computing their number at an arbitrary rank and an arbitrary number of vertices. As
an interesting property, we reveal that the algebraic structure which organizes these
invariants differs from that of the unitary invariants. The underlying topological field
theory formulation of the rank d counting shows that it corresponds to counting of
coverings of the d − 1 cylinders sharing the same boundary circle and with d defects.
At fixed rank and fixed number of vertices, an associative semi-simple algebra with
dimension the number of invariants naturally emerges from the formulation. Using
the representation theory of the symmetric group, we enlighten a few crucial facts: the
enumeration of O(N) invariants gives a sum of constrained Kronecker coefficients; there
is a representation theoretic orthogonal base of the algebra that reflects its dimension;
normal ordered 2-pt correlators of the Gaussian models evaluate using permutation
group language, and further, via representation theory, these functions provide other
representation theoretic orthogonal bases of the algebra.
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1 Introduction
intro

Since their inception [1, 2, 3], random tensor models offer a framework for studying random
discrete geometries as they aim at extending the success of matrix models [4] in describing
2D quantum gravity, to higher dimensions. The main goal of this approach is to devise
a transition of discrete geometries to continuum geometries in any dimension. It is how-
ever only recently that random tensor models have witnessed significant progress [5] with
the advent of a new large N expansion generalizing ‘t Hooft genus expansion [6] for higher
dimensional pseudo-manifolds. The existence of a large N expansion for tensors [7] natu-
rally unveiled several analytical results, among which the discovery of their critical behavior
(branched polymers [8, 9]), the universality property of random tensors [10], and the dis-
covery of new families of renormalizable non-local quantum field theories with interesting
UV [11, 12, 13] and nonperturbative behaviors supporting the discovery of new universality
classes for gravity [14, 15, 16].

More recently, and quite unexpectedly, tensor models become the center of new attention
in condensed matter physics: the dominant contributions of the so-called Sachdev-Ye-Kitaev
(SYK) model [17, 18] in the large mode expansion of the disorder match with the large
N expansion of a quantum mechanical tensor model without disorder [19]. For its deep
connections with black hole physics and AdS/CFT correspondence, the SYK model embodies
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a vibrant topic of research. The conjunction of tensor and SYK models has incidentally
produced a new fast-evolving field on which a growing community is working.

Several, if not all of these studies, heavily rest on the understanding of the combinatorics
of Feynman graphs and observables of tensor models. To that extent, the investigations of
tensor models have produced a wealth of results. We will focus on two particular contribu-
tions on tensor model graphs that the present work extends.

In [20], the authors worked out the enumeration of the unitary invariants, as observables
in complex tensor models. One way of comprehending the theory space of rank d complex
tensor models is to specify its set of observables. The latter are merely U(N)⊗d invariants
(at time, we simply call them U(N) or complex tensor invariants). A convenient manner
to represent U(N) invariants defines as a canonical mapping to d-regular bipartite colored
graphs [21]. Stated in this way, the inventory of tensor invariants formulates by uniquely
using permutation groups. One should record that these symmetry group techniques and its
representation theory have been developed during the last years [22]–[33]. They turned out
to be powerful, flexible and versatile enough to address diverse enumeration problems and
bijections from scalar field theory, matrix models, to gauge (QED, 2D and 4D Yang-Mills)
and string theories. In physics, for instance, they brighten the half-BPS sector of N = 4
SYM [22]–[27]. Moreover, unforeseen correspondences arise from these studies, for instance,
counting Feynman graphs in φ4 scalar field theory relates to string theory on a cylinder
or listing Feynman graphs of QED relates to the counting of ribbon graphs [26]. These
correspondences emerge from another interface playing a hinge role between enumeration
problems: via the Burnside lemma, with each enumeration problem using the symmetric
group (and its subgroups), we can associate a Topological Field Theory on a 2-complex
(named TFT2) with gauge group given by the symmetric group (and its subgroups). Such
a formulation also unfolds multiple interpretations of the counting formulae with links with
the theory of covering spaces in algebraic and complex geometry (see references in [26]).

The reference [20] establishes several enumeration formulae pertaining to observables of
complex tensor models. Using the Burnside lemma, one recasts that the enumeration of
U(N) invariants into a partition of a permutation lattice gauge field theory, a TFT2. It is
via this mapping that one elucidates that counting unitary invariants corresponds to counting
branched covers of the 2-sphere. Branched covers are well known objects in algebraic and
complex geometry [34], in topological string theory, and in dimension 2, they correspond to
complex maps [25]. Thus, there is an underlying geometry inherited by tensor models from
the TFT2 formulation that still needs to be understood. There is however a proviso: the
counting formulae are valid when the size N of the tensor indices are larger than the number
of tensors convoluted. More generally, one should resort to a more careful study [32, 33].

The study of tensor invariants has a follow-up in [35]. Their equivalent classes are viewed
as the base elements of a vector space Kd(n), a subspace of C(Sn)⊗d, the rank d group al-
gebra of the symmetric group Sn. Kd(n) shows stability under an associative product, and
it is endowed with a non-degenerate pairing. Therefore, at a fixed rank d and fixed number
of vertices n, tensor invariants span a semi-simple algebra. (Note that, importantly, other
algebraic structures could set up on tensor invariants [36, 37, 38]. The above structure is
however unique, up to isomorphism.) As a consequence of the Wedderburn-Artin theorem,
any semi-simple algebra decomposes as a sum of irreducible matrix subalgebras. The rep-
resentation theory of the symmetric group sheds more light on the remaining analysis as
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it enables to reach the Wedderburn-Artin matrix decomposition of the algebra of tensor
observables: the dimension of the algebra is a sum of squares of the Kronecker coefficients
(these are multiplicity dimensions in the decomposition of a tensor product of representa-
tions in irreps; Kronecker coefficients are still under active investigation in Combinatorics and
Computational Complexity Theory, see, for instance, [39, 40] and more references therein),
each square matching exactly the dimension of a matrix subalgebra. The orthogonal bases
of the algebra and its matrix subalgebras have been worked out, meanwhile the Gaussian
2pt-correlators also provide new representation theoretic orthogonal bases.

In this paper, we consider O(N) tensor models and their observables and investigate if
they support the same previous enumeration and algebraic analysis. Fleshed out the first
time in [41], such models extended the large N expansion to real tensors. The graphs that
determine the O(N) invariants keep the edge coloring but are not bipartite. This naturally
leads to a class of observables, wider than that of the U(N) tensor models, by including
those that are not orientable. To enumerate O(N) invariants, we use a standard counting
recipe: we use tuples of permutations on which act permutation (sub)groups that define
equivalence classes. We then count the points in the resulting a double coset space. The
equivalence relation in the present setting is radically different from the U(N) situation and
requires more work to obtain a valuable counting formula. With their generating functions
in hand, we provide software (Mathematica, Sage) codes to achieve the counting of O(N)
observables for any tensor rank. We emphasize that our results match the seminal work of
Read in [42] that dealt with the enumeration k-regular graphs with 2n vertices with k edge
coloring. However, Read’s formula was only evaluated for the k = 3-regular graphs with
2n = 2, 4, 6 vertices with edges of 3 different colors. Our code extends this counting for any
k and any n. We produce integer sequences that are new (un-reported yet) to the On-Line
Encyclopedia of Integer Sequences [43].

Moreover, seeking other correspondences, we address the TFT formulation of our counting
and show that to count O(N) observables amounts to count covers of glued cylinders with
defects (the rank of tensor relates to the number cylinders and defects). After introducing
the algebra of O(N) invariants, we show that it is semi-simple, and as such, it admits a
Wedderburn-Artin decomposition. An invariant orthogonal base of the algebra transpires in
our analysis but, it does not yield the decomposition of the algebra in matrix subalgebras. We
proceed to the representation theoretic formulation of the counting and its consequences. As
to be distinguished from the U(N) case, the dimension of the algebra is a sum of constrained
Kronecker coefficients restricted to partitions will all even length rows. The representation
theoretic tools exhibit a base of the algebra the dimension of which directly reflects the sums
of constrained Kronecker’s. The Gaussian 2pt and 1pt-correlators also compute in terms of
permutation group formulae. A corollary of that analysis is that 2pt-functions, in the normal
order, select a representation theoretic orthogonal base of the algebra. In that sense, the
Gaussian integration in the representation Fourier space performs as a pairing of observables.

This paper’s structure follows. Section 2 sets up our notations for real tensor models
and their O(N) invariants. The following section 3 develops the double coset counting using
permutation group formalism. We also discuss therein the TFT formulation of the counting
and its consequences, introduce the basics of the representation theory of the symmetric
group, and re-interpret the counting in that language. Section 4 discusses the double coset
algebra built out of the O(N) invariants and lists its properties. Next, section 5 details the
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2pt- and 1pt-correlators of the Gaussian tensor models and their representation theoretic
consequences. Section 6 briefly lists a few remarks on the counting of invariants of the
real symplectic group Sp(2N). The counting principle here is similar to that of the O(N)
models, but with subtleties that one should pay attention to. Section 7 summarizes this
work and draws some of its perspectives. Finally, the paper closes with an appendix that
divides into two main parts: an appendix that collects identities of the representation theory
of the symmetric group that are useful in the text, and another appendix that details the
software codes that generate the sequences of numbers of invariants at sundry tensor ranks
d = 3, 4, ....

2 O(N) invariants and real tensor models
sect:oninv

We first set up our notations in this part.
Consider d ≥ 2 real vector spaces Va, a = 1, . . . , d, of respective dimensions Na, and the

group action ⊗da=1O(Na) on ⊗da=1Va. Let T be a tensor of rank d with components Ti1,··· ,id
transforming under the tensor product of d fundamental representations of the groups O(Na).
Each group O(Na) acts independently on a tensor index ia and we can write

TOi1,··· ,id =
∑

j1,··· ,jd

O
(1)
i1j1
O

(2)
i2j2

. . . O
(d)
idjd

Tj1j2...jd . (1)

The observables in this model are the contractions of an even number, say 2n with n ∈ N, of
tensors T which are obviously invariant under ⊗da=1O(Na) transformations. We simply name
them O(N) invariants. Such invariants generalize real matrix traces and will be denoted
likewise:

OK(T ) = Tr(T 2n) =
∑
j
(k)
l

T
j
(1)
1 j

(1)
2 ...j

(1)
d
T
j
(2)
1 j

(2)
2 ...j

(2)
d
. . . T

j
(2n)
1 j

(2n)
2 ...j

(2n)
d

K({j(1)l }; {j
(2)
l }; . . . ; {j

(2n)
l }) ,

(2)
where the kernel K(·) factors in Kronecker delta’s and identifies the indices of the tensors in
a particular pattern; the sole contractions permitted involve the tensor indices with identical
color labels i = 1 . . . d. An elegant way of encoding the contraction pattern of tensors
consists in a d-regular graph with edge coloring with d different colors, and one of each color
at every vertex (representing each tensor). Calling b the colored graph, the invariant denotes
equivalently OK(T ) = Ob(T ). We will detail this in the next section.

We build a physical model by introducing a partition function

Z =

∫
dν(T ) exp(−SN(T )) , (3)

where the action SN(T ) =
∑

b λbN
−ρ(b)Ob(T ) is defined as a finite sum over some O(N)

tensor invariants representing the model interactions each with coupling λb and ρ(b) scaling
parameter; dν(T ) is a tensor field measure.

In this work, we will consider only correlators that are Gaussian. This means that the
field measure will be Gaussian and of the form

dν(T ) =
∏
jl

dTj1j2...jd e
−O2(T ) , O2(T ) =

∑
jk

(Tj1j2...jd)
2 . (4) gauss
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In other terms, O2(T ) plays the role of a quadratic mass term. The free propagator of the
Gaussian measure is given by

〈Ti1i2...idTj1j2...jd〉 =

∫
dν(T )Ti1i2...idTj1j2...jd = δi1j1δi2j2 . . . δidjd , (5) propag

and will be used in the Wick theorem for computing Gaussian correlators. We will be
interested in the mean values of observables that are defined by

〈Ob(T )〉 =
1∫
dν(T )

∫
dν(T )Ob(T ) ,

〈Ob(T )Ob′(T )〉 =
1∫
dν(T )

∫
dν(T )Ob(T )Ob′(T ) . (6)

The second correlator will be restricted to normal order allowing only Wick contractions
from Ob(T ) to Ob′(T ). In section 5, enlightened by the symmetric group formulation of the
O(N) invariants, we will reformulate (6) and analyse the representation algebraic structure
brought by the 2pt-correlator. The first correlator is sketched as it evaluates by modifying
the previous calculation method.

3 Counting O(N) invariants
section:counting

Counting the number of invariants based on the contractions of 2n copies of tensors Ti1,··· ,id ,
starts by a symmetric group construction. Actually, this enumeration problem expresses as
a permutation-TFT that we also discuss. Finally, switching to representation theory, we
derive the same counting formula in terms of the famous Kronecker coefficients.

3.1 Enumeration of rank d ≥ 3 tensor invariants

Orthogonal invariants are in one-to-one in correspondence with d-regular colored graphs (see
for instance [41]). Contrary to the graphs corresponding to unitary invariants [7, 20], the
present graphs are not bipartite and, so, might be non-orientable. It is always possible
to make a graph bipartite by inserting another type of vertex of valence 2 called “black”
(henceforth the initial vertices are called “white”) on each edge of the graph. We therefore
perform that transformation and the new vertices are denoted vji , i = 1, · · · , 2n (recall that
2n is the number of tensors) and j = 1, · · · , d. The resulting graph is neither regular,
nor properly edge-colored. It is however bipartite as illustrated in Figure 1. This property
concedes a description of a colored graph in symmetric groups language.

We shall focus on d = 3. The general case d will follow from this case. We denote S2n

the symmetric group of order (2n)!. Counting possible graphs consists of enumerating the
triples

(σ1, σ2, σ3) ∈ S2n × S2n × S2n (7)

subjected to the equivalence

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ) , (8)
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Figure 1: Rank d = 3 orthogonal tensor contractions.fig:coloredgraphs

where γ ∈ S2n and the γi belong to the so-called wreath product subgroup ∈ Sn[S2] ⊂ S2n.
We intend to count the points in the double coset

(Sn[S2]× Sn[S2]× Sn[S2])\(S2n × S2n × S2n)/Diag(S2n) . (9)

Let us denote Z3(2n) the cardinality of this double coset.
In a broader setting [42], for two subgroups H1 ⊂ G and H2 ⊂ G, the cardinality of the

double coset |H1\G/H2| is given by

|H1\G/H2| =
1

|H1||H2|
∑
C

ZH1→G
C ZH2→G

C Sym(C) . (10)

The sum is over conjugacy classes of G, and ZH→G
C is the number of elements of H in the

conjugacy class C of G.
The conjugacy classes of S2n×S2n×S2n are determined by triples (p1, p2, p3), where each

pi is a partition of 2n. The presence of the subgroup Diag(S2n) implies that only conjugacy
classes determined by a triple (p, p, p) should be conserved in the above sum.

Applying (10), we get

Z3(2n) =
1

[n!(2!)n]3(2n)!

∑
p`2n

Z
(Sn[S2])×3→(S2n)×3

(p,p,p) ×
( (2n)!

Sym(p)

)
(Sym(p))3

=
1

[n!(2!)n]3

∑
p`2n

Z
(Sn[S2])×3→(S2n)×3

(p,p,p) × (Sym(p))2

with Sym(p) :=
n∏
i=1

(ipi)(pi!) , (11)

and where the sum over p = (p`)` is performed over all partitions of 2n =
∑

i ipi. The
cardinality of a conjugacy class Tp of S2n with cycle structure determined by a partition p is

given by |Tp| = (2n)!/Sym(p). Next, we must determine the size of Z
(Sn[S2])×3→(S2n)×3

(p,p,p) which
is

Z
(Sn[S2])×3→(S2n)×3

(p,p,p) = (ZSn[S2]→S2n
p )3 . (12)
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We can get a single factor in this product as

1

n!(2!)n
ZSn[S2]→S2n
p = Coefficient [ZS∞[S2]

2 (t, ~x), tnxp11 x
p2
2 . . . xp2n2n ] , (13)

where appears the generating function of the number of wreath product elements in a certain
conjugacy class p ` 2n, namely

ZS∞[Sd]
d (t, ~x) =

∑
n

tnZSn[Sd](~x) = e

∑∞
i=1

ti

i

[∑
q`d

∏d
`=1

(
xi`
`

)ν` 1
ν`!

]
, (14)

where ~x = (x1, x2, . . . ), and q = (ν`)` is a partition of d, such that
∑

` `ν` = d.
The expression (11) finally computes to

Z3(2n) =
∑
p`2n

(
Coefficient [ZS∞[S2]

2 (t, ~x), tnxp11 x
p2
2 . . . xp2n2n ]

)3
(Sym(p))2 . (15)

In general, for arbirtrary d, the above calculation is straightforward and yields, for any d ≥ 2,

Zd(2n) =
∑
p`2n

(
Coefficient [ZS∞[S2]

2 (t, ~x), tnxp11 x
p2
2 . . . xp2n2n ]

)d
(Sym(p))d−1 . (16)

We can generate the sequences Z3(2n) and Z4(2n) (both with n = 1, · · · , 10) using a Math-
ematica program in Appendix B and obtain, respectively,

1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330 (17)

and

1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,
220685007519070, 75649235368772418 . (18)

Following Read [42], the number Zd(2n) of d-regular colored graphs made with 2n vertices
is the coefficient of tn in

∏
m Φm(t), with m sufficiently large to collect all such coefficients,

and where

Φm(t) =


∑∞

j=0

(Am/2(j))
d

j!mj
tmj/2 if k = 1,

∑∞
j=0

(2j)d−1

j!d

(
md−2

2k

)j
tmj if m is odd,

(19)

and the function Ak(j) is related to the j-th Hermite polynomial by Ak(j) = (i
√
k)jHj(

1
2i
√
k
).

We generate the corresponding sequences Z3(2n), n = 1, · · · , 10, and Z4(2n), n =
1, · · · , 10, using a Mathematica program (in Appendix B) and the results match with (17)
and (18), respectively. Hence, both methods yield the same results. The sequence (17) nat-
urally corresponds to the OEIS sequence A002830 (number of 3-regular edge colored graphs
with 2n nodes) [43]. The sequence (18) is not yet reported on the OEIS. Hence, the formula
(16) generates arbitrary new sequences for each d > 3.
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We must underline that the above counting of observables concerns connected and discon-
nected graphs (generalized multi-matrix invariants). To obtain only connnected invariants,
we use the plethystic logarithm (Plog) transform on the generating series of the disconnected
invariants. Such a generating function also easily programs with the Möbius µ-function. We
obtain the enumeration of connected invariants (see Appendix B) for rank d = 3 and 4,
respectively, up to order n = 10 as,

1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138 , (20)

and

1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991, 219822379032704,
75417509926065404 . (21)

As an illustration, Figure 2 depicts the rank 3 connected orthogonal invariants up to valence
6. The colors ci = 1, 2, 3, should be permuted to generate the full set of connected invariants.
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Figure 2: Connected colored graphs associated with rank 3 orthogonal tensor invariants with
up to 6 vertices.fig:coloredgraphs2
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3.2 TFT formulation

From the above symmetric group formulation of the counting of tensor invariants, one ex-
tracts more information via other correspondences. In particular, the enumeration reformu-
lates as a partition function of a Topological Field Theory on a 2-complex (in short TFT2)
with S2n and its subgroup Sn[S2] as gauge groups. For a review of TFT’s, see [44, 45] and,
in notation closer to what we aim at, see [26, 25].

Consider the counting of classes in the double coset (9), denote it as Z3(2n), and then
consider the relation (10). Using Burnside’s lemma, we have in standard notations:

Z3(2n) =
1

[n!(2!)n]3(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

∑
γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 ) , (22) BL

where δ is the Kronecker symbol on S2n. This counting interprets as a partition function of
a TFT2 on a cellular complex given by Figure 3. On that lattice, we use two gauge groups
S2n and Sn[S2]. The topology of that 2-complex is that of three cylinders sharing the same
end circle. Thus, enumerating orthogonal invariant corresponds to a S2n–TFT2 on 3 glued
cylinders along one circle, with a restriction of the gauge group to be Sn[S2] at the opposite
boundary circle. This TFT2 has boundary holonomies endowed with Sn[S2] group elements.

1

1

1

2 2

3

3

3

1

3

1

2

3

2

Figure 3: TFT2 associated with the counting of orthogonal invariants.fig:tft2Orth

By successively integrating some delta functions, the TFT2 formulation produces alter-
native interpretations of the same counting. We extract γ from (22) and get γ = σ−13 γ−13 σ3
such that

Z3(2n) =
1

[n!(2!)n]3(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

δ(γ1σ1(σ
−1
3 γ−13 σ3)σ

−1
1 )×

δ(γ2σ2(σ
−1
3 γ−13 σ3)σ

−1
2 ) . (23)

A change of variables σ1,2 → σ1,2σ
−1
3 leads us to

Z3(2n) =
1

[n!(2!)n]3

∑
γi∈Sn[S2]

∑
σ1,2∈S2n

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) . (24) eq:gamma

This integration illustrates, in Figure 4, as the removal of a 1-cell associated with the variable
γ in the 2-complex. The partition function therefore shows two types of invariances: the
extraction of γ corresponds to one type of topological invariance, and then, it is followed by
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Figure 4: Topological transformations of the 2-complex leaving the partition function

stable.fig:toptrf

the change of variables σ1,2 → σ1,2σ
−1
3 corresponding to a topological invariance of a second

kind.
Thus, the partition function (24) can also be written as

Z3(2n) = Z(S1 × I; (DSn[S2])
×3) , (25) eq:heffect

where Z(S1× I; (DSn[S2])
×3) is the partition function obtained by inserting 3 Sn[S2]-defects,

one at each end of the cylinder S1 × I, and another one at finite time t0 ∈ I, see Figure 5.
A defect defines as a closed non-intersecting loop with a marked point. The relation (25)
shows that orthogonal invariants are in one-to-one correspondence with n-fold covers of the
cylinder with 3 defects, up to a (symmetry) factor, the stabilizer subgroup of the graph that
we denote Aut(Gσ1,σ2,σ3).

1

2
3 1

2

Figure 5: Cylinder with 3 defects.fig:defects

The order of the stabilizer infers from

Sym(σ1, σ2) =
∑

γi∈Sn[S2]

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) = Aut(Gσ1,σ2,σ3) (26)

which also relates to the number of equivalences (Sn[S2] × Sn[S2])\(Sn × Sn)/Diag(Sn[S2])
corresponding to a fixed (σ1, σ2).

The TFT formulation of the counting could enrich it with a geometrical picture. Most of
the time, the base space of the TFT is viewed as a string worldsheet. The counting becomes
now counting of worldsheet maps over a cylinder with defects. As noticed elsewhere [20, 35],
this once again shows that a link may exist between tensor models and string theory, which
could be elucidated via the TFT formalism. Such link may be worth investigating in the
future.
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Rank d counting and TFT2 – More generally, for rank d ≥ 3, the counting Zd(2n) has a
TFT2 formulation that generalizes what we discuss above in a straightforward manner:

Zd(2n) =
1

[n!(2!)n]d(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

∑
γ∈S2n

d∏
i=1

δ(γiσiγσ
−1
i )

=
1

[n!(2!)n]d

∑
γi∈Sn[S2]

∑
σi∈S2n

d−1∏
i=1

δ(γiσiγdσ
−1
i ) . (27)

The first equation of (27) shows that, in rank d, the TFT2-formulation of the counting
extends Figure 3 as the gluing of d cylinders along one circle. After integration, the second
equations reveals that the counting orthogonal invariants amounts therefore counting of
weighted covers of d − 1 cylinders with d defects, with one of the defects shared by all
cylinders. In formula, we have Zd(2n) = Z(S1 × I; (DSn[S2])

×d).

3.3 The counting as a Kronecker sum
rev

We now revisit the counting (22) under a different light, that of the representation theory
of the symmetric group (Appendix A reviews the main identities used in this section and
the following). Irreducible representations (irreps) of the symmetric group S2n are labeled
by partitions R ` 2n, that are also Young diagrams.

Starting from the Burnside lemma formulation of the counting (22), consider the following
expansion of the counting of rank 3 invariants using the representation theory of S2n:

Z3(2n) =
1

[n!(2!)n]3(2n)!

∑
γl∈Sn[S2]

∑
σl∈S2n

∑
γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 )

=
1

[n!(2!)n]3(2n)!

∑
γl∈Sn[S2]

∑
γ∈S2n

∑
Rl ` 2n

χR1(γ1)χ
R1(γ)χR2(γ2)χ

R2(γ)χR3(γ3)χ
R3(γ)

=
1

[n!(2!)n]3

∑
Rl ` 2n

C(R1, R2, R3)
[ ∑
γ1∈Sn[S2]

χR1(γ1)
][ ∑

γ2∈Sn[S2]

χR2(γ2)
]

(28)

where χR(·) denotes the character in the representation R; we used the identity (A.4) in
Appendix A.1 to compute the delta’s, and the Kronecker coefficient is defined as

C(R1, R2, R3) =
1

2n!

∑
γ∈S2n

χR1(γ)χR2(γ)χR3(γ) . (29)

The Kronecker defines the multiplicity of the representation R3 in the tensor product R1⊗R2,
or the multiplicity of the trivial representation in R1⊗R2⊗R3 when expanded back in irreps.

Above, the sums over the subgroup Sn[S2] have been not yet performed. To proceed
with these sums, we will use a useful result by Howe [46] (see also a result by Mizukawa,
proposition 4.1 in [47], and also [48, 49] or a more recent use of it in [30]):∑

γ∈Sn[S2]

χR(γ) = |Sn[S2]|mR (30)

12



where mR = 1 if R is an “even” partition, that is, all its row lengths are even, and mR =
0 otherwise. This result is derived from a more general formula

∑
γ∈Sn[S2]

χA(γ)χR(γ) =

|Sn[S2]|mA|R, where A is an irreps of Sn[S2] subduced by R irreps of S2n, and then inserting
A as the trivial representation [2n] of Sn[S2].

Then, we obtain, inserting this in (28)

Z3(2n) =
∑

Rl ` 2n/Rl is even

C(R1, R2, R3) . (31) kroneven

Comparing this sequence and (17), we produce a Sage code (see Appendix B) showing that
the numbers generated by (31) match with (17).

In the next section, we will show that, this number is also the dimension of an algebra
K3(n). It is an interesting problem to investigate how the counting of colored graphs could
contribute to the famous problem of giving a combinatorial interpretation to the Kronecker
coefficients [39, 40] (in the same way that Littlewood-Richardson coefficient have found a
combinatorial description). From previous work [35], we know that the sum of squares of
Kronecker coefficients associated with Sn equals the number of d-regular bipartite colored
graphs made with n black and n white vertices. Here the interpretation is the following,
the number of d-regular colored graphs (not necessarily bipartite) equals the sum of all
Kronecker’s precluded those that are defined with partitions with odd rows. An idea to
contribute to the above problem is to refine the counting of graphs in a way to boil down to
a single Kronecker coefficient. In other words, given a non vanishing Kronecker coefficient is
it possible to list all graphs contributing to that Kronecker coefficient? This is certainly a
difficult problem that will require new tools in representation theory.

Counting rank-d tensor invariants - The above counting generalize quite naturally at
any rank d as

Zd(2n) =
1

[n!(2!)n]d(2n)!

∑
γl∈Sn[S2]

∑
σl∈S2n

∑
γ∈S2n

d∏
i=1

δ(γiσiγσ
−1
i )

=
1

[n!(2!)n]d

∑
Rl ` 2n

∑
γl∈Sn[S2]

Cd(R1, . . . , Rd)χ
R1(γ1) . . . χ

Rd(γd)

=
∑

Rl ` 2n/Rl is even

∑
γl∈Sn[S2]

Cd(R1, . . . , Rd)

(32) countingZ3n

where we introduced the notation

Ck(R1, . . . , Rk) =
1

(2n)!

∑
γ∈S2n

χR1(γ) . . . χRk(γ) . (33)

This counts the multiplicity of the one dimensional trivial S2n irrep in the tensor product of
irreps R1 ⊗ . . .⊗Rk. It expresses as a convoluted product of Kronecker coefficients as

Ck(R1, . . . , Rk) =
∑
Sl`2n

C(R1, R2, S1)

[
k−4∏
i=1

C(Si, Ri+2, Si+1)

]
C(Sk−3, Rk−1, Rk) . (34)
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4 Double coset algebra
sect:doublcoset

We now discuss the underlying structure, an algebra, determined by the counting of the
O(N) invariants. The rank 3 case is first addressed for the sake of simplicity, and from that,
we will infer the general rank-d case whenever possible.

Consider C[S2n], the group algebra of S2n. Our construction depends on tensor products
of that space.

Kd(2n) as a double coset algebra in C[S2n]⊗d - We fix d = 3. Consider σ1 ⊗ σ2 ⊗ σ3 as
an element of the group algebra C[S2n]⊗3, and three left actions of the subgroup Sn[S2] and
the diagonal right action Diag(C(S2n)) on this triple as:

σ1 ⊗ σ2 ⊗ σ3 →
∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ . (35)

K3(2n) is the vector subspace of C[S2n]⊗3 which is invariant under these subgroup actions:

K3(2n) = SpanC

 ∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ, σ1, σ2, σ3 ∈ S2n

 (36) Kunalg

It is obvious that dimK3(2n) = Z3(2n), since each base element represents the graph equiv-
alent class counted once in Z3(2n). Pick two base elements, called henceforth graph base
elements, and consider their product[ ∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′2τ ⊗ τ3σ′3τ

]
=

∑
γi,τi∈Sn[S2]

∑
γ,τ∈S2n

γ1σ1γτ1σ
′
1τ ⊗ γ2σ2γτ2σ′2τ ⊗ γ3σ3γτ3σ′3τ

=
∑

τi∈Sn[S2]

∑
γ∈S2n

[ ∑
γi∈Sn[S2]

∑
τ∈S2n

γ1(σ1γτ1σ
′
1)τ ⊗ γ2(σ2γτ2σ′2)τ ⊗ γ3(σ3γτ3σ′3)τ

]
(37)

This shows that the multiplication remains in the vector space. Hence, K3(2n) is an algebra
and (37) defines a graph multiplication. The proof is totally similar for Kd(2n) (considering
d factors in the tensor product) which is thus an algebra of dimension Zd(2n).

The product of graphs in the algebra K3(2n) illustrates as in Figure 6.

Gauge fixing - There is a gauge fixing procedure in the construction of orthogonal invari-
ants. One initially fixes a permutation σi but is still able to generate all invariants. Consider
ξ = (12)(34) . . . (2n − 1, 2n), and we fix σ1 to belong to the stabilizer of ξ, i.e. σ−11 ξσ1 = ξ.
Since the Stabξ = Sn[S2], we simply mean that we choose σ1 to be in that subgroup. We
already observe a difference with the unitary case [35]. Indeed, while the gauge fixing in the
unitary case leads to the definition of a permutation centralizer algebra, the gauge fixing
here will not bring such an algebra. The main difference with the unitary case also rests on
the fact that the left and right invariances on the triple (σ1, σ2, σ3) in this case are radically
different.
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Figure 6: Product of two graph base elements (on the left) gives a sum of graphs (on the

right).fig:graphcompo

Associativity - In the graph base, we can check the associativity of the product of elements
of K3(2n):([ ∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′2τ ⊗ τ3σ′3τ

])
×
[ ∑
αi∈Sn[S2]

∑
α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
]

=
∑
τi, αi

∑
γ, τ

[∑
γ,α

γ1σ1γτ1σ
′
1τα1σ

′′
1α⊗ γ2σ2γτ2σ′2τα2σ

′′
2α⊗ γ3σ3γτ3σ′3τα3σ

′′
3α
]

=
[ ∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
]

×

[ ∑
τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′2τ ⊗ τ3σ′3τ

][ ∑
αi∈Sn[S2]

∑
α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
]
(38)

The proof easily extends to any d, and we therefore claim the following:

Proposition 4.1 Kd(2n) is an associative unital sub-algebra of C[S2n]⊗3.

The unity is given by the equivalence class of (id, id, id). Such element corresponds to the
disconnected graph made with n connected components with full contraction of n pairs of
tensors.

Pairing - There is an inner product (that we will call pairing) on Kd(2n) defined from the
linear extension of the delta function from the symmetric group to the tensor product group

15



algebra (see (A.22) in Appendix A.3 for details pertaining to the following notation). Take
two base elements (in obvious notation) and evaluate using proper change of variables:

δ
(∑
γi,γ

⊗di γiσiγ;
∑
τi,τ

⊗di τiσ′iτ
)

=
∑
γi,γ

∑
τi,τ

d∏
i

δ(γiσiγ(τiσ
′
iτ)−1)

= [(2n)!(n!2n)]
∑
γi,γ

d∏
i

δ(γiσiγ(σ′i)
−1) . (39)

Thus, either the tuples (σ1, σ2, . . . , σd) and (σ′1, σ
′
2, . . . , σ

′
d) define equivalent graphs Gσ1,σ2,...,σd

andGσ′1,σ
′
2,...,σ

′
d
, respectively, or the result is 0. This precisely tells us that the graph base forms

an orthogonal system. The above computes further using the order of the automorphism
group of the graph

δ
(∑
γi,γ

⊗di γiσiγ;
∑
τi,τ

⊗di τiσ′iτ
)

= [(2n)!(n!2n)]δ(Gσ1,σ2,...,σd ;Gσ′1,σ
′
2,...,σ

′
d
)Aut(Gσ1,σ2,...,σd) . (40)

Therefore, there exists a non degenerate bilinear pairing on Kd(2n) and the following holds:

theosemisimple Theorem 4.2 Kd(2n) is an associative unital semi-simple algebra.

As a corollary of Theorem 4.2, the Wedderburn-Artin theorem guarantees that Kd(2n)
decomposes in matrix subalgebras. It might be interesting to investigate a base of such a
decomposition of Kd(2n) in irreducible matrix subalgebras. One could be tempted to think
that, at d = 3, restricting to K3(2n), the Kronecker coefficients for even partitions could be
themselves squares, and therefore define the dimensions of the irreducible subalgebras. This
is not the case as this can be easily shown using the same Sage code given in Appendix B
(by printing the Kronecker). This point is postponed for future investigations. In the mean
time, it is legitimate to ask a representation base with labels that reflect the dimension (31).
This is the purpose of the next paragraph.

Constructing a representation theoretic base Q of K3(2n) - Let us introduce the
representation base of C[S2n] given by the elements

QR
ij =

κR
(2n)!

∑
σ∈S2n

DR
ij(σ)σ , with κ2R = (2n)!d(R) , (41) Foub

that obey the orthogonality relation δ(QR
ij;Q

R′

i′j′) = δRR′δii′δjj′ . The base {QR
ij} counts∑

R`2n(d(R))2 = (2n)! elements and forms the Fourier theoretic base of C[S2n]. Appendix
A.3 collects a few other properties of this base for a general permutation group.

We fix d = 3 and build now the invariant representation theoretic (Fourier for short)
base of the algebra K3(2n) (36). Consider the right diagonal action ρR(·) and the three left
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actions %i(·) on the tensor product C[S2n]⊗3. Then we write:∑
γ1, γ2, γ3∈Sn[S2]

∑
γ∈S2n

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
∑
γa

∑
γ

γ1Q
R1
i1j1
γ ⊗ γ2QR2

i2j2
γ ⊗ γ3QR3

i3j3
γ

=
∑
γa

∑
γ

∑
pl ,ql

DR1
p1i1

(γ1)Q
R1
p1q1

DR1
j1q1

(γ)⊗DR2
p2i2

(γ2)Q
R2
p2q2

DR2
j2q2

(γ)⊗DR3
p3i3

(γ3)Q
R3
p3q3

DR3
j3q3

(γ)

=
(2n)!

d(R3)

∑
γa

∑
pl ,ql

∑
τ

CR1,R2;R3,τ
j1,j2;j3

CR1,R2;R3,τ
q1,q2;q3

DR1
p1i1

(γ1)D
R2
p2i2

(γ2)D
R3
p3i3

(γ3)Q
R1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(42)
We used (A.20) to multiply group elements with the Q base, see Appendix A.3; then use
(A.16) to sum over γ the 3 representation matrices, see in Appendix A.2.

We couple this last result with a Clebsch-Gordan coefficient, in order to get, using (A.14):∑
jl

CR1,R2;R3,τ
j1,j2;j3

∑
γa

∑
γ

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!
∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

∑
γ1

DR1
p1i1

(γ1)
∑
γ2

DR2
p2i2

(γ2)
∑
γ3

DR3
p3i3

(γ3)Q
R1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(43) sumddd

Once again, we should stress the fact that
∑

γ∈Sn[S2]
DR
pq(γ) 6= 0, if and only if R is a partition

of 2n with even rows. This condition will be always assumed in the next calculations. Now,
we can split the Wigner matrix element using branching coefficients of Sn[S2] in S2n. Consider
V R a irreps S2n (see Appendix A listing a few basic facts on representation theory of Sn and
our notations), and the subgroup inclusion Sn[S2] ⊂ S2n, we can decompose V R in irreps V r

of Sn[S2] as

V R = ⊕rV r ⊗ VR,r (44)

where VR,r is a vector space of dimension the multiplicity of the irreps r in R. A state in this
decomposition denotes |r,mr, νr〉, where mr labels the states of V r and νr = 1, . . . , dimVR,r.

The branching coefficients that are of interest are the coefficients of |r,mr, νr〉 when
decomposed in an orthonormal base of the irreps R:

BR; r,νr
i;mr

= 〈R, i |r,mr, νr〉 = 〈r,mr, νr |R, i〉 . (45)

The last relation is deduced from the fact that we use real representations. Using the
decomposition of the identity, the branching coefficients satisfy the following identities∑

i

BR; r,νr
i;mr

BR; s,νs
i;ms

= δrsδνrνsδmrms (46)∑
r,mr,νr

BR; r,νr
i;mr

BR′; r,νr
i′;mr

= δRR′δii′ . (47)

We have the following useful relation, for σ ∈ Sn[S2],∑
j

DR
ij(σ)BR; r,νr

j;mr
=
∑
m′r

Dr
mrm′r

(σ)BR; r,νr
i;m′r

, (48)
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where Dr
mrm′r

(σ) is the representation matrix of σ as an element of Sn[S2]. Restricting this

to r = [2n], the trivial representation of Sn[S2] that is one dimensional and with multiplicity
always 1 for all R, we obtain:∑

j

DR
ij(σ)B

R;[2n],1
j;1 = D

[2n]
11 (σ)B

R;[2n],1
i;1 = B

R;[2n],1
i;1 . (49)

We now treat the sum over the representation matrices in (43). Inserting twice a complete
set of states therein, we get∑

σ∈Sn[S2]

DR
ij(σ) =

∑
σ∈Sn[S2]

∑
r,νr,mr;s,νs,ms

BR; r,νr
i;mr

BR; s,νs
j;ms

〈r, νr,mr|σ|s, νs,ms〉 . (50)

Noting that
∑

s∈Sn[S2]
σ =

∑
s∈Sn[S2]

σχ[2n](σ) is, up to the factor 1/[n!2n], nothing but the

projector onto the trivial [2n] representation of Sn[S2], the overlap computes to∑
σ∈Sn[S2]

〈r, νr,mr|σ|s, νs,ms〉 = (2nn!)δr,[2n]δs,[2n]δ1mrδ1msδ1νsδ1νr , (51)

since we have∑
σ∈Sn[S2]

σ|s, νs,ms〉 =
∑

σ∈Sn[S2]

χ[2n](σ)
∑
k

Ds
msk(σ)|s, νs, k〉

=
∑

σ∈Sn[S2]

D
[2n]
11 (σ)

∑
k

Ds
msk(σ)|s, νs, k〉 =

2nn!

d([2n])

∑
k

δ[2n],sδ1msδ1νsδ1k|s, νs, k〉

= (2nn!)δ[2n],sδ1msδ1νs|[2n], 1, 1〉 . (52)

Hence, ∑
σ∈Sn[S2]

DR
ij(σ) = (2nn!)BR; tr

i BR; tr
j , (53) DSS

where we have defined BR; tr
i = 〈R, i |[2n], 1, 1〉.

From the above calculation, we finally get from (43):∑
jl

CR1,R2;R3,τ
j1,j2;j3

∑
γa

∑
γ

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!(n!2n)3BR1;tr
i1

BR2;tr
i2

BR3;tr
i3

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3

(54)
We now define an element

QR1,R2,R3,τ = κ~R

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3

= κ~R
κR1κR2κR3

((2n)!)3

∑
σi

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏
i=1

BRi; tr
pi

DRi
piqi

(σi)
]
σ1 ⊗ σ2 ⊗ σ3 (55)
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where κ~R is a normalization constant to be fixed later and the notation ~R stands for
(R1, R2, R3). The set {QR1,R2,R3,τ} is of cardinality the counting of orthogonal invariants
given by (31).

Invariance - Let us check that the element QR1,R2,R3,τ is invariant under left multiplication
on each factor and diagonal right multiplication:

(γ1 ⊗ γ2 ⊗ γ3)QR1,R2,R3,τ (γ ⊗ γ ⊗ γ) = κ~R

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

×
∑
`1,j1

DR1
`1p1

(γ1)Q
R1
`1j1

DR1
q1j1

(γ)⊗
∑
`2,j2

DR2
`2p2

(γ2)Q
R2
`2j2

DR2
q2j2

(γ)⊗
∑
`3,j3

DR3
`3p3

(γ3)Q
R3
`3j3

DR3
q3j3

(γ)

= κ~R

∑
jl

CR1,R2;R3,τ
j1,j2;j3

∑
pl,`l

DR1
`1p1

(γ1)B
R1; tr
p1

DR2
`2p2

(γ2)B
R2; tr
p2

DR3
`3p3

(γ3)B
R3; tr
p3

QR1
`1j1
⊗QR2

`2j2
⊗QR3

`3j3

= κ~R

∑
jl,`l

CR1,R2;R3,τ
j1,j2;j3

BR1; tr
`1

BR2; tr
`2

BR3; tr
`3

QR1
`1j1
⊗QR2

`2j2
⊗QR3

`3j3
= QR1,R2,R3,τ , (56)

where we used once again (A.20) and (A.14) at intermediate step and the identity (49) to
get the last line.

We check a few properties of the product of elements of K3(2n).

Product - The elements (41) of the Fourier base of C[S2n] multiply as follows (see Appendix
A.3.)

QR
ijQ

R′

kl =
κR
d(R)

δRR′δjkQ
R′

il . (57)

The definition (55) and relation (57) allow us to compute the product

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′

=
κ~Rκ ~R′κR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

∑
pl ql al bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

b1,b2;b3

×BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′1; tr
a1

BR′2; tr
a2

BR′3; tr
a3

Q
R′1
p1b1
⊗QR′2

p2b2
⊗QR′3

p3b3
δq1a1δq2a2δq3a3

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑
ql

CR′1,R
′
2;R
′
3,τ

q1,q2;q3
BR′1; tr
q1

BR′2; tr
q2

BR′3; tr
q3

]
QR′1,R

′
2,R
′
3,τ
′
.

(58)

Hence, the product of two base elements expands in terms of QR1,R2,R3,τ . In a compact
notation, we write

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′
= δ~R ~R′k( ~R′, τ)QR′1,R

′
2,R
′
3,τ
′
. (59)

which shows that the product is almost orthogonal. Still it cannot represent the base
of Wedderburn-Artin matrix decomposition. The base {QR1,R2,R3,τ} therefore decomposes
K3(2n) in blocks mutually orthogonals in the labels R1, R2, R3. Still in each block the de-
composition remains unachieved.
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Associativity - We check the associativity of the product in the Q-base. On the one hand,
we have (

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′
)
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑
ql

CR′1,R
′
2;R
′
3,τ

q1,q2;q3
BR′1; tr
q1

BR′2; tr
q2

BR′3; tr
q3

]
×

κ ~R′κR′1κR′2κR′3
d(R′1)d(R′2)d(R′3)

δ ~R′ ~R′′
[∑

ql

CR′′1 ,R
′′
2 ;R
′′
3 ,τ
′

q1,q2;q3
BR′′1 ; tr
q1

BR′′2 ; tr
q2

BR′′3 ; tr
q3

]
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′

(60)

and on the other,

QR1,R2,R3,τ
(
QR′1,R

′
2,R
′
3,τ
′
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′
)

=
κ ~R′κR′1κR′2κR′3

d(R′1)d(R′2)d(R′3)
δ ~R′ ~R′′

[∑
ql

CR′′1 ,R
′′
2 ;R
′′
3 ,τ
′

q1,q2;q3
BR′′1 ; tr
q1

BR′′2 ; tr
q2

BR′′3 ; tr
q3

]
×

κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′′

[∑
ql

CR′′1 ,R
′′
2 ;R
′′
3 ,τ

q1,q2;q3
BR′′1 ; tr
q1

BR′′2 ; tr
q2

BR′′3 ; tr
q3

]
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′
.

(61)

The two expressions are identical.

Pairing - We use the pairing on C[S2n]⊗3 along the lines (A.24) and evaluate:

δ(QR1,R2,R3,τ ;QR′1,R
′
2,R
′
3,τ
′
)

= κ~Rκ ~R′
∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

b1,b2;b3
BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′1; tr
a1

BR′2; tr
a2

BR′3; tr
a3

× δ(QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
;Q

R′1
a1b1
⊗QR′2

a2b2
⊗QR′3

a3b3
)

= κ~Rκ ~R′
∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

b1,b2;b3
BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′1; tr
a1

BR′2; tr
a2

BR′3; tr
a3

× δ~R ~R′δp1a1δp2a2δp3a3δq1b1δq2b2δq3b3

= κ2~R d(R3)
∑
pl

[ 3∏
i=1

BRi; tr
pi

]2
δ~R ~R′δττ ′ = κ2~R d(R3)δ~R ~R′δττ ′

(62)

where, in the first line, we used (A.24), in the last, (A.11), and the fact that, by (46), the
following holds

∑
p[B

R; tr
p ]2 =

∑
p〈[2n], 1, 1|R, p〉〈R, p |[2n], 1, 1〉 = 1, for all R ` 2n. We

could therefore fix the normalization κ2~R = 1/d(R3).
The following statement holds:

Proposition 4.3 {QR1,R2,R3,τ} is an invariant orthonormal base of K3(2n).

Proof. It is sufficient to show that the graph base expands in terms of the Q-base.
We hold the non degenerate pairing δ and express any graph base element Gσ1,σ2,σ3 =∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ as

Gσ1,σ2,σ3 =
∑
Rl,τ

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3)Q
R1,R2,R3,τ (63)
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The definition of QR1,R2,R3,τ calls a linear combination of triples (τ1⊗ τ2⊗ τ3) that must have
a non trivial overlap with Gσ1,σ2,σ3 . Let us compute the overlap between the bases. Start
with (55) and then write (using (A.14) and then (49))

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3) = κ~R
κR1κR2κR3

((2n)!)3
((2nn!))3(2n!)

∑
al ,bl

CR1,R2;R3,τ
b1,b2;b3

[ 3∏
i=1

BRi; tr
ai

DRi
aibi

(σi)
]
.

(64)

This number is, up to the normalization ((2nn!))3(2n!), the coefficient of the triple (σ1⊗σ2⊗
σ3) in QR1,R2,R3,τ .

�

We note that the base {QR1,R2,R3,τ} is of the correct cardinality, that of Z3(2n) as we
sought.

Finding of the Wedderburn-Artin matrix base ofK3(2n) means that Z3(2n) can be written
as a sum of squares. Interestingly, within the TFT2 formulation of the counting, we note
that the partition function (24) computes further using (A.4) as

Z3(2n) =
1

[n!(2!)n]3

∑
Rl`2n

(∑
γ1

χR1(γ1)
)(∑

γ2

χR2(γ2)
)(∑

γ3

χR1(γ3)χ
R2(γ3)

)
=

1

n!(2!)n

∑
Rl`2n / Rl even

∑
γ3

χR1(γ3)χ
R2(γ3)

=
1

n!(2!)n

∑
γ3

( ∑
R`2n / R even

χR(γ3)
)2
, (65)

thus, as a normalized sum of squares. This shows that Z3(2n) could admit several decompo-

sitions in squares. If
(∑

R`2n / R even χ
R(γ3)

)2
is the dimension of a subalgebra (given that

the characters are integers via the Munurghan-Nakayama rule), this would mean that this
decomposition in sub-algebras would be labeled by γ3 and will be even different from the
Wedderburn-Artin decomposition. This decomposition deserves further clarification in the
present O(N) setting.

About projectors – Let us define the normalized projectors as

P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 P S2n

R =
1

[n!(2!)n]3(2n)!

∑
γl∈Sn[S2]

∑
γ∈S2n

%1(γ1)%2(γ2)%3(γ3)ρR(γ) , (66)

and check that the trace of their product yields the dimension of the algebra K3(2n):

dimK3(2n) = trC[S2n]⊗3(P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 P S2n

R ) = trK3(2n)(1) . (67)

We have ∑
γa∈Sn[S2]

∑
γ∈S2n

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
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=
∑
γa

∑
γ

∑
pl ql

DR1
p1i1

(γ1)D
R1
j1q1

(γ)DR2
p2i2

(γ2)D
R2
j2q2

(γ)DR3
p3i3

(γ3)D
R3
j3q3

(γ)

×QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
. (68)

To compute the trace, pair this with QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
using the orthonormality property

δ(QR
ij;Q

S
kl) = δRSδikδjl and sum over Rl, il, jl yielding∑

Rl`S2n

∑
γa

∑
γ

∑
pl ql,il,jl

DR1
p1i1

(γ1)D
R1
j1q1

(γ)DR2
p2i2

(γ2)D
R2
j2q2

(γ)DR3
p3i3

(γ3)D
R3
j3q3

(γ)

× δi1p1δj1q1δi2p2δj2q2δi3p3δj3q3
=
∑

Rl`S2n

∑
γa

∑
γ

∑
il,jl

DR1
i1i1

(γ1)D
R1
j1j1

(γ)DR2
i2i2

(γ2)D
R2
j2j2

(γ)DR3
i3i3

(γ3)D
R3
j3j3

(γ)

= (2n)!
∑

Rl`S2n

∑
γa

C(R1, R2, R3)χ
R1(γ1)χ

R2(γ2)χ
R3(γ3) . (69)

Hence we find (28) using Burnside’s lemma, and we have Z3(n) = dimK3(2n).

5 Correlators
sect:correl

Let us analyze Gaussian correlators, starting with d = 3 and then extending it at any d.
We consider the normal ordered correlator of two observables Ob(T )Ob′(T ) in the Gaussian
measure dν(T ) (4). Normal order means that we only allow contraction from Ob(T ) to
Ob′(T ).

Rank d = 3 correlator - Before computing the correlators, a few remarks must be done.
A 3-tuple of permutations labels the observables: Ob(T ) = Oσ1,σ2,σ3(T ) and Ob′(T ) =
Oτ1,τ2,τ3(T ). Recall that an observable Oσ1,σ2,σ3(T ) is in fact defined by a contraction of
tensor indices. This contraction pattern, that gives in return the color edges of the graph
associated with the observable, is not defined by the triple (σ1, σ2, σ3) but by the following
triple

(σ̃1, σ̃2, σ̃3) = (σ−11 ξσ1, σ
−1
2 ξσ2, σ

−1
3 ξσ3), (70)

where we recall that ξ is the fixed permutation (12)(34) . . . (2n− 1, 2n). The justification of
this is immediate: each swop in ξ corresponds to a label of the half-lines of the vertex vij, see
Figure 1. Consider the l-th edge of color i from the l-th tensor. The vertex links vij the image
of σi(l) and the pre-image through σi of ξ(σi(l)). We need the following convenient notation
for tensors: Tai1ai2ai3 , the index i = 1, . . . , 2n stands for the label of the tensor which at the
end will not matter in the definition of the observable. Using this, an observable made of
the contraction of 2n tensors can be expressed as:

Oσ1,σ2,σ3(T ) =
∑
aij

2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j

2n∏
i=1

Tai1ai2ai3 (71)
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where aij = 1, . . . , N . There are many redundant Kroneckers δ in the previous expression.
However, the calculus here is discrete and so there are no particular issues. When we will
compute the correlator using the Wick theorem, it is the triple (σ̃1, σ̃2, σ̃3) that is concerned.

The Wick contraction between two observables, in the normal order, introduces a per-
mutation µ ∈ S2n. A correlator simply counts cycles of a convolution of permutations. Let
us determine which convolution is that, using twice (71) and the free propagator (5):

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
1∫
dν(T )

∫
dν(T )Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )

=
∑
µ

∑
aij ,bkl

[ 2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j
δ
bij
bτ̃j(i)j

][ 2n∏
i=1

3∏
j=1

δ
aij
bµ(i)j

]
. (72)

Summing over the bl variables and using a change of variable, bij = aµ−1(i)j, lead us to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ

∑
aij

[ 2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j
δ
aµ−1(i)j
aµ−1τ̃j(i)j

]
=
∑
µ

∑
aij

[ 2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j
δaijaµ−1τ̃jµ(i)j

]
=
∑
µ

∑
aij

[ 2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j
δaijaµ−1τ̃jµσ̃(i)j

]
, (73)

where we also used σ̃−1j = σ̃j. We already guess that the correlator expresses as a power
of N in a number of cycles of µ−1τ̃jµσ̃j. However, the proof is not obvious because of the
redundancy of the δ introduced in the definition of the observable, see (71).

The following statement holds

lem1 Lemma 5.1 Let ai be an integer, ai = 1, . . . , N , for i = 1, . . . , 2n. Then, (at fixed color j
that we will omit in the ensuing notation)

∑
ai

[ 2n∏
i=1

δaiaσ̃(i)δ
ai
aµ−1τ̃µσ̃(i)

]
= Nc(µ−1τ̃µσ̃) , (74)

where c(σ) is the number of cycles of the permutation σ.

Proof. The sole issue here is the redundancy of the Kronecker’s. In fact, there is enough
information in the above sum to withdraw the correct number of cycles. Call “vertex δ’s”
those appearing in the product

∏2n
i=1 δ

ai
aσ̃(i)

, and (Wick) “contraction δ’s” the remaining ones

coming from the resolution of the Wick contraction. Note there are redundancies in each
product of δ’s.

Consider a fixed index i: to make things easy, we start by the simple case given by
µ−1τ̃µσ̃(i) = i. If µ−1τ̃µσ̃−1(i) = i, then (i) is a 1-cycle of µ−1τ̃µσ̃ and we also have
σ̃(i) = µ−1τ̃µ(i). Thus, we have, among the contraction δ’s , 2 distinct δ’s which become
trivial δaiai and δ

aσ̃(i)
aσ̃(i) . The sums over ai and aσ̃(i) boil down to a single sum precisely because

of the vertex δaiaσ̃(i) . Hence that cycle is counted once.

Let us inspect the general case. For an arbitrary i, call qi ≥ 1 the smallest integer such
that (µ−1τ̃µσ̃)qi(i) = i, and which defines a qi-cycle of µ−1τ̃µσ̃. (The case qi = 1 has been
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dealt above.) In the product (74), we collect all contraction δ’s involved in the cycle starting
at some fixed i

qi∏
l=1

δ
a
(µ−1τ̃µσ̃)l−1(i)
a
(µ−1τ̃µσ̃)l(i)

. (75)

Since this product is at arbitrary i, we have a companion and distinct product of contraction

δ’s that starts at σ̃(i):
∏qi

l=1 δ
a
(µ−1τ̃µσ̃)l−1(σ̃(i))
a
(µ−1τ̃µσ̃)l(σ̃(i))

. Hence, we combine both products and multiply
by one vertex δ

δaiaσ̃(i)

qi∏
l=1

δ
a
(µ−1τ̃µσ̃)l−1(i)
a
(µ−1τ̃µσ̃)l(i)

δ
a
(µ−1τ̃µσ̃)l−1(σ̃(i))
a
(µ−1τ̃µσ̃)l(σ̃(i))

(76)

which evaluates to N after performing the sum over the corresponding aj’s. Again, the
qi-cycle is counted once. It just remains to observe that the cycles, each defined by a subset
of indices aj, define partitions of the entire set of indices ai (once an index is used in a cycle
it cannot appear in another one). Thus, the sum over ai factorizes along cycles and this
complete the proof.

�
Note that there may be alternative ways of defining real tensor observables using pairings

and without introducing the gauge redundancy. In any case, we could work in this setting,
keeping track of the necessary information.

From Lemma 5.1 applied to each color i = 1, 2, 3, we finally come to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ

N
∑3
i=1 c(µ

−1τ̃iµσ̃i) . (77)

The 1pt-correlator can be recovered from the above discussion. First, the 1pt-correlator
cannot be normal ordered. Introduce the Wick contraction µ that belongs to S∗2n the subset
defined by the pairings of S2n (a permutation pairing is made only of transpositions). Then,
we obtain

〈Oσ1,σ2,σ3(T )〉 =
∑
µ∈S∗2n

∑
aij

[ 2n∏
i=1

3∏
j=1

δaijaσ̃j(i)j

][ 2n∏
i=1

3∏
j=1

δaijaµ(i)j

]
. (78)

Next, we adapt Lemma 5.1 to
∑

ai

[∏2n
i=1 δ

ai
aσ̃(i)

δaiaσ̃µ(i)

]
= Nc(σ̃µ), and then we obtain

〈Oσ1,σ2,σ3(T )〉 =
∑
µ∈S∗2n

N
∑3
i=1 c(µσ̃i) . (79)

Representation theoretic base and orthogonality - We re-express the 2pt-function in
order to make explicit some of its properties. Inserting 3 auxiliary permutations αi ∈ S2n,
the above sum (77) reads as

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ

∑
αi

N
∑3
i=1 c(αi)

3∏
i=1

δ(µ−1τ̃iµσ̃iαi) = N6n
∑
µ

3∏
i=1

δ(µ−1τ̃iµσ̃iΩi),

(80) correl0
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where we introduced the central element Ωi =
∑

αi∈S2n
Nc(αi)−2nαi. The proof of that rests

on the equality c(α−1i ) = c(αi) and that holds because each cycle has an inverse, a cycle of
the same length. Then, we can re-express (80) as

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉

= N6n
∑
µ

δ[(µ−1)⊗3(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(Ω1 ⊗ Ω2 ⊗ Ω3)]

= N6n
∑
µ

δ[(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)] , (81)

where in the last equation we use the fact the Ωi are central. We introduce the representation
theoretic element by pairing a base element QR1,R2,R3,τ (55) and an observable Oσ1,σ2,σ3 as

OR1,R2,R3,τ =
∑
σl

δ(QR1,R2,R3,τσ−11 ⊗ σ−12 ⊗ σ−13 )Oσ1,σ2,σ3

= κ~R

[ 3∏
i=1

κRi
2n!

]∑
σl

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏
i=1

BRi; tr
pi

DRi
piqi

(σi)
]
Oσ1,σ2,σ3 (82)

As a linear combination of observables, we can calculate their correlators:

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 = N6nκ~Rκ~R′

[ 3∏
i=1

κRi
2n!

κR′i
2n!

]
×
∑
µ

δ

[∑
σl,σ

′
l

∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

q′1,q
′
2;q
′
3

[ 3∏
i=1

BRi; tr
pi

DRi
piqi

(σi)B
R′i; tr

p′i
D
R′i
p′iq
′
i
(σ′i)

]
×(σ̃′1 ⊗ σ̃′2 ⊗ σ̃′3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6nκ~Rκ~R′
[ 3∏
i=1

κRi
2n!

κR′i
2n!

]∑
µ

δ

[ ∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

q′1,q
′
2;q
′
3[

⊗3
i=1 B

R′i; tr

p′i

∑
σ′i

(σ′i)
−1ξD

R′i
p′iq
′
i
(σ′i)σ

′
i

]
µ⊗3
[
⊗3
i=1 B

Ri; tr
pi

∑
σi

(σi)
−1ξDRi

piqi
(σi)σi

]
(µ−1)⊗3

×(Ω1 ⊗ Ω2 ⊗ Ω3)

]
. (83)

Next, we introduce the operator Tξ : S2n → S2n that acts on S2n as Tξ(σ) = σ−1ξσ = σ̃
and extends by linearity on C(S2n). The operator Tξ actually maps any permutation to a
pairing. Its image in C(S2n) is the vector subspace generated by all pairings (more properties
are derived in Appendix A.3). We re-express the above correlator as

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉

= N6nκ~Rκ~R′
∑
µ

δ

[ ∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

q′1,q
′
2;q
′
3
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×
[
⊗3
i=1 B

R′i; tr

p′i
TξQ

R′i
p′iq
′
i

]
µ⊗3
[
⊗3
i=1 B

Ri; tr
pi

TξQ
Ri
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑
µ

δ

[[
T⊗3ξ

∑
p′l,q
′
l

C
R′1,R

′
2;R
′
3,τ
′

q′1,q
′
2;q
′
3

⊗3
i=1 B

R′i; tr

p′i
Q
R′i
p′iq
′
i

]
µ⊗3

[
T⊗3ξ

∑
pl,ql

CR1,R2;R3,τ
q1,q2;q3

⊗3
i=1 B

Ri; tr
pi

QRi
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑
µ

δ

[
(T⊗3ξ QR′1,R

′
2,R
′
3,τ
′
)µ⊗3(T⊗3ξ QR1,R2,R3,τ )(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]
= N6n(2n!) δ

[
(T⊗3ξ QR′1,R

′
2,R
′
3,τ
′
)(T⊗3ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]
, (84)

where we used the right diagonal invariance of the base QR′1,R
′
2,R
′
3,τ
′

to achieve the last stage
of the calculation. Hence, this correlator computed with the Gaussian measure of O(N)
tensor models in the normal order, regarded as an inner product on the space of observables,
corresponds to the group theoretic inner product of the algebra K3(2n) calculated on a
product of the transformed base T⊗3ξ QR1,R2,R3,τ with an insertion of the factor Ω1⊗Ω2⊗Ω3.

The action T⊗3ξ on QR1,R2,R3,τ reflects the fact that it is the triple (σ̃1, σ̃2, σ̃3) which plays
a major role for computing the cycles associated with Feynman amplitudes in this theory
(meanwhile the triple (σ1, σ2, σ3) was associated with the class counting of the double coset
space and its resulting algebra). In U(N) models [20], there is a correspondence between
Gaussian 2pt-correlators in normal order and the inner product on the algebra of observables
but without the presence of the operator T⊗3ξ . The presence of T⊗3ξ determines therefore a
feature proper to O(N) tensor models.

We can further evaluate the above inner product as in Appendix A.4 and find:

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 =

[ 3∏
i=1

δR′iRi

]
δτ ′τF (R1, R2, R3, τ)

F (R1, R2, R3, τ) =
∑
Si,τi

[ 3∏
i=1

DimN(Si)
][ ∑

bi,ci,pi

DSi
bici

(ξ)CSi,Si;Ri,τi
bi,ci;pi

BRi; tr
pi

]2
(85)

which expresses the orthogonality of the representation theoretic base {OR1,R2,R3,τ} (corre-
sponding to normal ordered Gaussian correlators) of K3(2n). Note also that the pairing
between base elements is a representation translation of the Gaussian integration.

Rank d 2pt-correlator - We obtain the 2pt-correlator at rank d in a straightforward
manner from the above derivation. We generalize (71) and (72) by extending the product
over j up to d ≥ 3 and considering a tensor Tai1ai2...aid . The calculations are direct: we
get (77) and (79) by changing the sum over i running over the colored cycles up to d.
Meanwhile, the orthogonality of the 2pt-function is a property specific to the rank 3 and
cannot be reproduced easily at any rank.
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6 On Sp(2N) tensor invariants
spn

We provide a few remarks on the counting of real Sp(2N) tensor invariants. Carrozza and
Pozsgay recently addressed symplectic complex tensor models in the context of tensor-like
SYK models [50]. The authors focused on the complex group U(N)∩Sp(2N,C) (its quantum
mechanical tensor model admits a largeN expansion and shares similar properties of the SYK
model) and, at the combinatorial level, on the improvement of the numerical computations of
the number of its singlets in rank 3. We could ask, in the same vein as discussed above using
symmetric group formulae, how to enumerate real symplectic invariants in the pure tensor
model setting, i.e. with no spacetime attached to the tensor. We stress that, unlike in [50],
we are interested in real and Bosonic fields and address in the following the symplectic group
itself Sp(2N,R) = Sp(2N) and its - symplectic - invariants in any rank. We show below
that they follow an enumeration principle with the same diagrammatics of that of the O(N)
invariants but some changes occur at the level of the coset equivalence relation. Interestingly
in this Sp(2N) setting, the “virtual” vertices vij, in Figure 1, find an interpretation: their
correspond precisely to symplectic matrix J insertions in the Sp(2N) invariants.

Let us recall the usual notation and introduce the real 2N × 2N symplectic matrix J
which writes in blocks

J =

(
0 IN
−IN 0

)
, J2 = −I2N , (86)

where IN , for all N , is the identity matrix of MN(R). A matrix K ∈ Sp(2N) obeys KJKT =
J, and KTJK = J .

A rank d real tensor T , with components Tp1,...,pd , pj = 1, . . . , 2N , transforms under the
fundamental representation of ⊗da=1Sp(2Na) for fixed Na, if each group Sp(2Na) acts on the
index pa such that the transformed tensor satisfies:

TKq1,...,qd =
∑
p1,...pd

K(1)
q1p1

. . . K(d)
q1p1

Tp1,...,pd , (87)

where K(a) ∈ Sp(2Na), a = 1, . . . , d.
Observables in Sp(2N) tensor models are the contractions of an even number of tensors T .

They are invariant under ⊗da=1Sp(2Na) transformations and we call them Sp(2N) invariants.
In understood notation, we define a new trace on two rank d tensors as

Tr(T Jd T ) =
∑
pi,qi

J (1)
p1q1

J (2)
p2q2

. . . J (d)
pdqd

Tp1,...,pdTq1,...,qd . (88) traJ

Thus, the tensor indices that are contracted couple with J . This is the generalization of
the symplectic form over matrices which is defined as ωJ(M,W ) = tr(MTJW ), and that is
invariant under symplectomorphisms.

We check that Tr(T Jd T ) is invariant under symplectic transformations:

Tr(TK Jd TK) =∑
ri,si

∑
pi,qi

(
Kp1,r1Kq1,s1J

(1)
p1q1

)
. . .
(
Kpd,rdKqd,sdJ

(d)
pdqd

)
Tr1,...,rdTs1,...,sd = Tr(TJdT ) . (89)
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Now, we extend the trace (88) to arbitrary number of tensors. Still the contraction
obtained is an Sp(2N) invariant. We can easily observe that the Sp(2N) invariants can be
viewed once again in terms of ‘d-regular colored graphs with a decoration on each edge. The
decoration seals the symplectic matrix J on each pair of contracted tensor indices. Therefore,
J can be represented by a new vertex on each edge which precisely plays the same role of a
black vertex vij in Figure 1.

The counting of Sp(2N) invariants is more subtle than that of O(N) invariants. Indeed,
for simplicity, let us consider in rank 3 (generalizing the following argument at any rank d
is straightforward), 2n tensors and count the possible triples (σ1, σ2, σ3) ∈ S2n × S2n × S2n

subjected to the following invariance:

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ) (90)

where, on the right, we have the ordinary diagonal action of Diag(S2n) on the triple. Mean-
while, on the left, the γi belong to an identical subgroup Gi = G′ but that is not any more
Sn[S2]. Switching the half-edges of the vertices vij produces a sign. This hints the fact that
we should switch to the group algebra C(S2n) × C(S2n) × C(S2n) to perform the coset. At
this point, note that nothing excludes that the number of Sp(2N) invariants matches the
number of orthogonal invariants. Such interesting questions require much more work and is
left for future investigations.

Let us make a final small remark. At this moment, we can give a precision about the
complete graph, namely K4, that is identically vanishing in the complex Bosonic model with
U(N) ∩ Sp(2N,C) invariance, as shown in [50]. In the present setting, we can show that it
remains a nontrivial rank 3 symplectic invariant. We have developed a code proving this fact
for Sp(2N = 4). See the last code of Appendix B. Of course here 2N = 4 is not large and
rather fixed, and one may question its physical interest. However, it is encouraging to see
that it is not identically zero as its counterpart described above. Such a K4 invariant plays a
central role in the study of the large N and IR spectrum of the so-called ladder operators in
the tensor-like SYK models. Hence, working with real Bosonic fields but with real Sp(2N)
invariance might become an important axis of research in that direction.

7 Conclusion
concl

This paper paves the way to a new formulation of real tensor models, their observables and
correlators in terms of symmetric groups and its representation theory. The formulation is
particularly convenient for implementing heavy computations using software resources, thus,
leading to a gain of confidence in the computational process. Furthermore, with its multiple
facets, the formalism elaborated here may shed a different light on the same results since it
bridges theories, combinatorics, TFT and physics through observables and correlators, which
from the outset may look rather different.

We have enumerated O(N) or rank d real tensor invariants as d-regular colored graphs
using a permutation group formalism. These invariants define the points of a double coset
of S×d2n . We use Mathematica and Sage codes to generate the sequences associated with
the number of these invariants from their generating functions. The sequences obtained
at d ≥ 4 are new according to the OEIS. Translated in the TFT2 formulation, the same
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counting delivers the number of covers of gluing of cylinders with defects. Such covers have
been also observed while counting Feynman graphs of scalar field theory [26] and relate to
a string theory on cylinders. Thus, there should be an equivalent way of describing tensor
observables in purely string theory language. Moreover, this link with covers must be made
precise: covers in 2D are related to holomorphic maps and may, in return, give a geometry
to the space of orthogonal invariants. This point fully deserves further investigation.

Another piece of information reveals itself with the representation theoretic formulation
of the counting: the number of orthogonal invariants is a sum of constrained Kronecker
coefficients. The Kronecker coefficient is a core object in Computational Complexity the-
ory: either finding a combinatorial rule describing it (finding which combinatorial objects it
counts), or its vanishing property or otherwise remain under active investigation (see refer-
ences in [39, 40]). It concentrates a lot of research efforts since one expects that, roughly
speaking, an understanding that object could lead to a separation of complexity classes P vs
NP. In our present work (and in a similar way in [35]), we show that the number of tensor
model observables - represented by colored graphs and thus combinatorial structures - links
to a sum of Kronecker coefficients (in [35], it is a sum of square of these coefficients). It
remains of course the question: how this would help with one of the famous problems stated
above? Perhaps a refined counting of colored graphs (endowed with specific properties) could
boil down the sum to a single Kronecker element. Such a study could bring some progress
in the field.

The equivalence classes associated with the colored graphs are mapped in the tensor
product of the group algebra C[S2n]⊗d. They form the base vectors of a subspace, namely
Kd(2n), that is in fact a semi-simple algebra. We call it a double coset algebra. Note also
that, as element of an the algebra, d-regular colored graphs multiply in a specific way, and
yield back a combination of d-regular colored graphs. In rank 3, we have found “natural”
representation theoretic base, {QR,S,T,τ}, of K3(2n), that means invariant and orthonormal.
Unlike the unitary case [35], this base decomposes in blocks the algebra but does not pro-
vide its Wedderburn-Artin (WA) decomposition in matrix subalgebras. This brings other
questions: in which base the WA decomposition is made explicit? Is there a simple enough
combination starting from QR,S,T,τ that produces that WA decomposition? A starting point
of that analysis might be given by the work by Bremner [51] that constructs the WA base of
a finite dimensional unital algebra over rationals. Finally, is there a way to understand why
the sum of constrained Kronecker coefficients is actually a sum of squares (each of which
is the dimension of a matrix subalgebra entering in the WA decomposition)? Such points
deserve future clarifications.

We also addressed normal ordered Gaussian 2pt correlators in this work and show that,
they formulate completely as a function of the size N of the tensor indices and permutation
cycles. We generate an orthogonal representation base from these 2pt correlators. This
result is similar to what is observed in the unitary case, with the following distinction:
there is an operator acting on the triple defining the observables. We show that computing
Gaussian correlators in representation theory space is actually computing an inner product.
Finally, we briefly sketch the main feature of Sp(2N) invariants: although they obey the
same diagrammatics of the O(N) invariants, they satisfy a different rule concerning their
equivalence classes. Thus, for the symplectic group and its invariants, the story could be
radically different from the orthogonal case and will require need more work.
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Appendix

A Symmetric group and its representation theory
app:SRT

This appendix gathers useful identities and notations about the symmetric group Sn and its
representation theory. The presentation here is a summary of Appendix A, withdrawn from
[35], and the textbook by Hammermesh [52].

A.1 Representation theory of the symmetric group
app:reptheor

Let n be a positive integer and Sn, the group of permutation of n elements. The Young
diagrams or partitions R of n, denoted R ` n, label the irreducible representations (irreps)
of Sn. Consider VR a space of dimension d(R) (that will be made explicit below). An irreps

%R : Sn → End(VR) is given by a matrix DR with entries %R(σ)|R, i〉 =
∑d(R)

l=1 DR
li (σ)|R, l〉

with σ ∈ Sn and with |R, i〉, i = 1, . . . , d(R), an orthogonal base of states for VR (this base
obeys 〈R, j|R, i〉 = δij).

We write in short %R(σ) = σ and then 〈R, j|σ|R, i〉 = DR
ji(σ). It is common to assimilate

the irreducible representation %R and the carrier space VR with their label R.
From the commuting action of the unitary group U(N) and Sn on a tensor product space

V ⊗n, the Schur-Weyl duality teaches us that we associate an irreps R of Sn with an irreps
of U(N), provided N bounds the length l(R) of the first column of R, in symbol l(R) ≤ N .

Let us denote d(R) the dimension of R and DimN(R) the dimension of an irreps of U(N),
then those are given by

d(R) = n!/h(R) , DimN(R) = fN(R)/h(R) , (A.1) dims

where h(R) is the product of the hook lengths and fN(R) is the products of box weights
given by h(R) =

∏
i,j(cj − j + ri − i+ 1) and fN(R) =

∏
i,j(N − i+ j); the pairs (i, j) label

the boxes of the Young diagram with i the row label and j is the column label. The i’th row
length is ri and cj is the column length of the j’th column.

We now restrict to real representations and so DR
ij(σ) must be real matrices. The matrix

satisfies the following properties:∑
i

DR
ai(σ)DR

ib(σ
′) = DR

ab(σσ
′) , DR

ab(id) = δab , DR
ij(σ

−1) = DR
ji(σ) , (A.2)
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∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl (orthogonality) . (A.3)

The character of a given irreps R is simply the trace of DR(σ), χR(σ) = Tr(DR(σ)) =∑
iD

R
ii (σ). The Kronecker delta δ(σ) of the symmetric group (defined to be equal 1 when

σ = id and 0 otherwise) decomposes as δ(σ) =
∑

R`n
d(R)
n!

χR(σ).
The following identities are easily proved using the orthogonality relations of the repre-

sentation matrices:∑
γ∈Sn

δ(γσγ−1τ−1) =
∑
R`n

χR(σ)χR(τ) ,
∑
σ∈Sn

χR(σ)χS(σ) = n! δRS (orthogonality)

(A.4)∑
γ∈Sn

χR(AγBγ−1) =
n!

d(R)
χR(A)χR(B)

If B is a central element
= n!χR(AB) (A.5)

Also a useful identity expresses as

1

n!

∑
σ

χR(σ)Nc(σ) = DimN(R) ,
∑
σ∈Sn

DR
ij(σ)Nc(σ) = δijfN(R) , (A.6) chiN

where c(σ) is the number of cycles of σ.
Defining the central element Ω ∈ C(Sn), as Ω =

∑
σ∈Sn N

n−c(σ)σ, the first relation in
(A.6) can be also written as

Nn

n!
χR(Ω) = DimN(R) . (A.7) chiN2

A.2 Clebsch-Gordan coefficients
app:cgc

Consider two carrier spaces VR1 and VR2 of two irreps of Sn labeled by two Young diagrams
R1, and R2, respectively. The tensor product representation VR1 ⊗ VR2 can be decomposed
into a direct sum of irreps VR3 with multiplicities

VR1 ⊗ VR2 =
⊕
R3`n

VR3 ⊗ V m
R3
. (A.8)

The tensor product space is spanned by a tensor product of the base |R1, i1〉 ⊗ |R2, i2〉 =:
|R1, i1;R2, i2〉. On the right hand side, the direct sum corresponds to a base set |R3, i3, τR3〉.
The label i3 runs over states of R3, and τR3 , the so-called multiplicity, runs over an orthogonal
base in the multiplicity space V m

R3
.

The Clebsch-Gordan coefficients are the branching coefficients between these bases:

C
R1,R2;R3, τR3
i1,i2; i3

:= 〈R1, i1;R2, i2|R3, τR3 , i3〉 = 〈R3, τR3 , i3|R1, i1;R2, i2〉 (A.9)

Note that they are real.
The following relations are detailed in Appendix A.2 in [35]:∑

j1,j2

DR1
i1j1

(γ)DR2
i2j2

(γ)CR1,R2;R3, τ
j1,j2; j3

=
∑
i3

CR1,R2;R3, τ
i1,i2; i3

DR
i3j3

(γ) ; (A.10)
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∑
i1,i2

CR1,R2;R3, τ
i1,i2; i3

C
R1,R2;R′3, τ

′

i1,i2; j3
= δR3R′3

δττ ′ δi3j3 ; (A.11)∑
R3,i3,τ

CR1,R2;R3, τ
i1,i2; i3

CR1,R2;R3, τ
j1,j2; i3

= δi1j1 δi2j2 ; (A.12)∑
R3,τ ; i3,j3

CR1,R2;R3, τ
i1,i2; i3

DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= DR1
i1j1

(γ)DR2
i2j2

(γ) ; (A.13)∑
j1,j2,j3

DR1
i1j1

(γ)DR2
i2j2

(γ)DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= CR1,R2;R3, τ
i1,i2;i3

; (A.14)∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(γ1σ1γ2)D
R2
i2j2

(γ1σ2γ2)D
R3
i3j3

(γ1σ3γ2) =∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)D
R2
i2j2

(σ2)D
R3
i3j3

(σ3) ; (A.15)

∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

. (A.16)

Furthermore, we can generalize the second relation (A.6) as follows: given two permuta-
tions A and B, we have∑

σ∈Sn

DR
ij(σ)Nc(σ−1AσB) =

∑
γ,σ∈Sn

DR
ij(σ)δ(γ−1σ−1AσB)Nc(γ)

=
∑
S,a

d(S)

n!

∑
γ,σ

DR
ij(σ)DS

aa(γ
−1σ−1AσB)Nc(γ) (A.17)

=
∑
S,a

d(S)

n!

∑
m,n,o,p

[∑
γ

DS
ma(γ)Nc(γ)

][∑
σ

DS
nm(σ)DS

op(σ)DR
ij(σ)

]
DS
no(A)DS

pa(B) ,

with the property c(γ) = c(γ−1). We now use (A.6) and (A.16) to write∑
σ∈Sn

DR
ij(σ)Nc(σ−1AσB) =

∑
S,a

d(S)

n!

∑
m,n,o,p

δmafN(S)
( n!

d(R)

∑
τ

CS,S;R,τ
n,o;i CS,S;R,τ

m,p;j

)
DS
no(A)DS

pa(B)

=
∑
S,τ

d(S)

d(R)
fN(S)

(∑
n,o

CS,S;R,τ
n,o;i DS

no(A)
)(∑

a,p

CS,S;R,τ
a,p;j DS

pa(B)
)
. (A.18)

A.3 Base of the group algebra C(Sn)
app:groualg

The matrix base of the group algebra C(Sn) is defined by the elements

QR
ij =

κR
n!

∑
σ∈Sn

DR
ij(σ)σ , (A.19)

where the constant κ2R = n!d(R) is a fixed by a normalization. The base set {QR
ij} is of

cardinality
∑

R`n(d(R))2 = n!. The elements QR
ij form a representation theoretic Fourier

base for C(Sn).
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The left and right multiplication by group elements on QR
ij expand as

τ QR
ij =

∑
l

DR
li (τ)QR

lj , QR
ij τ =

∑
l

QR
il D

R
jl(τ) . (A.20) tauq

Using the definition of the base and (A.20), one gets

QR
ijQ

R′

kl =
κRκR′

(n!)2

∑
σ∈Sn

∑
τ∈Sn

DR
ij(σ)σDR′

kl (τ)τ =
κR
n!

∑
σ∈Sn

DR
ij(σ)σQR′

kl

=
κR
n!

∑
σ∈Sn

DR
ij(σ)

∑
m

DR′

mk(σ)QR′

ml =
κR
n!

∑
m

n!

d(R)
δRR′δimδjkQ

R′

ml

=
κR
d(R)

δRR′δjkQ
R′

il .

(A.21)

We consider the Kronecker δ on Sn, and extend it (by linearity) as a pairing denoted
again δ on C(Sn), and then once again extend the result to C(Sn)⊗d, d > 1, such that

δ(σ1 ⊗ · · · ⊗ σd;σ′1 ⊗ · · · ⊗ σ′d) = δ(σ1σ
′−1
1 ) . . . δ(σ−1d σ′−1d ) . (A.22)

Calculating the inner product δ(QR
ij;Q

R′

i′j′), we obtain

δ(QR
ij;Q

R′

i′j′) =
κ2R

n!d(R)
δRR′δii′δjj′ = δRR′δii′δjj′ . (A.23)

Then, for multiple tensor factors, we obtain

δ(QR1
i1j1
⊗ · · · ⊗QRd

idjd
; Q

R′1
i′1j
′
1
⊗ · · · ⊗QR′d

i′dj
′
d
) = δR1R′1

δi1i′1δj1j′1 . . . δRdR′dδidi′dδjdj′d . (A.24) pairing

Hence, the base {QR1
i1j1
⊗ · · · ⊗QRd

idjd
} is an Fourier theoretic orthonormal base for C(Sn)⊗d.

In the text, we focus on S2n and we introduce the operator Tξ : S2n → S2n that acts on
S2n as Tξ(σ) = σ−1ξσ. In a natural way, Tξ extends by linearity on C(S2n). Then, without
any possible confusion with the tensor notation T itself, Tξ ∈ End(C(S2n)) is the image of
a mapping T : S2n → End(C(S2n)), such that ξ 7→ Tξ. We then extend T by linearity over
T : C(S2n)→ End(C(S2n)), such that λξ + ρ 7→ Tλξ+ρ = λTξ + Tρ, λ ∈ C.

We are interested in the properties of the transformed base TξQ
R
ij which is nothing but

the Fourier transformed of the pairing σ−1ξσ. First, let us see how they multiply:

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

DR
ij(σ)DR′

i′j′(ρ)σ−1ξσρ−1ξρ . (A.25)

Note that the group order is now 2n!. Introduce a change of variable σ → σρ−1, and

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

∑
k

DR
ik(σ)DR

kj(ρ)DR′

i′j′(ρ)ρ−1σ−1ξσξρ

=
κR′

(2n!)

∑
ρ∈S2n

DR′

i′j′(ρ)
∑
k

DR
kj(ρ)T(TξQRik)ξ(ρ)
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=
κR′

(2n!)

∑
ρ∈S2n

DR′

i′j′(ρ)T∑
kD

R
kj(ρ)(TξQ

R
ik)ξ

(ρ) . (A.26)

Thus, the product of the transformed base elements does not re-express easily in terms of
the transformed base elements. The left and right multiplications of fixed permutations on
the elements TξQ

R
ij, counterparts of (A.20), are given by:

τ(TξQ
R
ij) =

∑
a

(TξQ
R
ia)D

R
aj(τ)τ , (TξQ

R
ij)τ =

∑
a

(TξQ
R
ia)D

R
ja(τ)τ . (A.27)

The inner product of these elements expresses as:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

DR
ij(σ)DR′

i′j′(ρ) δ(Tξ(σ), Tξ(ρ)) . (A.28)

This is simply the Fourier transform of the delta δ(σ−1ξσρ−1ξρ) which tells us that the sole
terms remaining in this sum are those which define the same pairing. A closer look shows
that δ(σ−1ξσρ−1ξρ) = δ(ξσρ−1ξρσ−1). Then, this means that the elements that contribute
to the sum are those σρ−1 that belong to the stabilizer of ξ, that is σρ−1 ∈ Sn[S2]. Hence,
we change variable as σ → σ̄ = σρ−1, rename again σ̄ as σ and then rewrite, using the
orthogonality of the representation matrices:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
ρ∈S2n

∑
σ∈Sn[S2]

DR
ij(σρ)DR′

i′j′(ρ)

=
κRκR′

(2n!)2

∑
a

∑
σ∈Sn[S2]

DR
ia(σ)

∑
ρ∈S2n

DR
aj(ρ)DR′

i′j′(ρ)

= δRR′δjj′
κ2R

(2n!)2
2n!

d(R)

∑
a

∑
σ∈Sn[S2]

DR
ia(σ)δai′

= δRR′δjj′
∑

σ∈Sn[S2]

DR
ii′(σ) . (A.29)

In the text, we compute a formula for that sum in terms of branching coefficients, see (53).
It turns out that the sum is nonvanishing only if the partition R is even, meaning that the
length of each of its rows is even. Hence, from the above relation, (A.29), the set of the
transformed base elements does not form an orthogonal system.

It is instructive to perform the same evaluation in an alternative way to discover new
identities satisfied by the Clebsch-Gordan coefficients. Consider the expansion of the above
inner product as follows:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
S

d(S)

2n!

∑
σ,ρ∈Sn

DR
ij(σ)DR′

i′j′(ρ)χS(σ−1ξσρ−1ξρ)

=
κRκR′

(2n!)2

∑
S

d(S)

2n!

∑
a,b,c,d,e,f

DS
bc(ξ)D

S
ef (ξ)

∑
σ,ρ

DS
ba(σ)DS

cd(σ)DR
ij(σ)DS

fa(ρ)DS
ed(ρ)DR′

i′j′(ρ)

=
κRκR′

(2n!)2

∑
S

d(S)

2n!

∑
b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

(2n!)2

d(R)d(R′)

∑
τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′

∑
a,d

CS,S;R,τ
a,d;j CS,S;R′,τ ′

a,d;j′
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=
κRκR′

d(R)d(R′)

∑
S

d(S)

2n!

∑
b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

∑
τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′ δRR′δττ ′δjj′

= δRR′δjj′
κ2R

d(R)2

∑
S,τ

d(S)

2n!

∑
b,c,e,f

DS
bc(ξ)D

S
ef (ξ)C

S,S;R,τ
b,c;i CS,S;R,τ

f,e;i′

= δRR′δjj′
1

d(R)

∑
S,τ

d(S)F (S,R, τ ; i)F (S,R, τ ; i′) , (A.30)

where, at some intermediate steps, we used successively (A.16) and (A.11), and where
F (S,R, τ ; i) =

∑
b,cD

S
bc(ξ)C

S,S;R,τ
b,c;i . Using

∑
σ∈Sn[S2]

DR
ij(σ) = (2nn!)BR; tr

i BR; tr
j (see (53)),

we arrive to a new identity:∑
S,τ

d(S)
(∑

b,c

DS
bc(ξ)C

S,S;R,τ
b,c;i

)(∑
e,f

DS
ef (ξ)C

S,S;R,τ
e,f ;j

)
=

(2nn!)

d(R)
BR; tr
i BR; tr

j . (A.31) sumbb

Note the similarity of the left-hand-side member with (A.18) (adjusted for the symmetric
group S2n).

There exist graphical ways of representing identities in representation theory in general.
For the permutation group, Appendix A2 of [35] lists such graphical representations for most
of the identities given above. For instance, we use the graphical representation of the repre-

sentation matrix DR
ij(σ) as σi j , the Clebsch-Gordan coefficient CR2,R2;R3,τ

i1,i2;i3
represents as

follows
τ

i1

i2

i3
R3

R1

R2

and the branching coefficient BR; r,νr
i;mr

looks like i
νr

mr
R r

.

Then the convolution given by (A.31) translates as the factorization:

∑
S,τ

d(S)
τ τ

ξ ξi j

S

S S

S

R R
= (2nn!)

d(R)

i
1

0
R tr

j
1

0
R tr

, (A.32)

hence, a new identity satisfied by the Clebsch-Gordan of the symmetric group.

A.4 2pt-correlator evaluation
app:correlator

We prove in this part (85). To proceed, we will make use of (A.6), (A.11) and (A.16), or
alternatively (A.18), of Appendix A.2. Introducing k~R = κ~R

κR1
κR2

κR3

((2n)!)3
, then from (84), we

focus on the δ function:

δ
[
(T⊗3ξ QR′1,R

′
2,R
′
3,τ
′
)(T⊗3ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]
= k~Rk

′
~R

∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R
′
3,τ
′

q′1,q
′
2;q
′
3

[ 3∏
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B
R′i; tr
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BRi; tr
pi

]
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∑
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∑
αi
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i=1

Nc(αi)−2n
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D
R′i
p′iq
′
i
(σ′i)D

Ri
piqi

(σi)δ((σ
′
i)
−1ξσ′i(σi)

−1ξσiαi)
]
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= k~Rk
′
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∑
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′
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′
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∑
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. (A.33)

It is the moment to use (A.16) to integrate the representation matrices and get:

k~Rk
′
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×
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[ ∑
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[ 3∏
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. (A.34)

The evaluation finally yields

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 =

[ 3∏
i=1

δR′iRi

]
δτ ′τF (R1, R2, R3, τ)

F (R1, R2, R3, τ) =
∑
Si,τi

[ 3∏
i=1

DimN(Si)
][ ∑

bi,ci,pi

DSi
bici

(ξ)CSi,Si;Ri,τi
bi,ci;pi

BRi; tr
pi

]2
. (A.35)

This is (85) and implies the orthogonality of the representation theoretic base {OR1,R2,R3,τ}.

B Codes
app:mathsage

We list here some algorithms which count the number of orthogonal invariants as given in
the text. We use Mathematica and Sage softwares in the following.

Mathematica code for Zd(t). We wish to compute the number Zd(2n) of rank d orthog-
onal invariants made with 2n tensors. In order to obtain that number, we first code the
generating function, denoted Z[X, t], of the counting of the number of elements of the
wreath product Sn[S2] in a certain conjugacy class of S2n. Doing this, we use the built-in
function Count[list, pattern] which counts the number of elements in a list matching
a pattern. Then, we extract a coefficient of tn in Z[X, t] that is involved in Zd[X, n, d] that
encodes Zd(2n). We finally give the counting for ranks 3 and 4, successively, for n = 1, . . . , 10.

X = Array[x, 20];

PP[n_] := IntegerPartitions[n]

Sym[q_, n_] := Product[i^(Count[q, i]) Count[q, i]!, {i, 1, n}]

Symd[X_, k_, q_] := Product[(X[[k*l]]/l)^(Count[q, l])/(Count[q, l]!), {l, 1, 2}]

Z[X_, t_] := Product[Exp[(t^i/i)*Sum[Symd[X, i, PP[2][[j]]], {j, 1, Length[PP[2]]}]],

{i, 1, 15}]

Zprim[X_, n_] := Coefficient[Series[Z[X, t], {t, 0, n}], t^n]

CC[X_, n_, q_] := Coefficient[Zprim[X, n], Product[X[[i]]^(Count[q, i]), {i, 1, 2*n}]]

Zd[X_, n_, d_] := Sum[(CC[X, n, PP[2*n][[i]]])^d*(Sym[PP[2*n][[i]], 2*n])^(d - 1),

{i, 1, Length[PP[2*n]]}]
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Table[Zd[X, i, 3], {i, 1, 10}]

(out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[Zd[X, i, 4], {i, 1, 10}]

(out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,

75649235368772418}

Mathematica code: Counting with Hermite polynomials. This part is dedicated to
the implementation of an algorithm realizing Read’s enumeration of k-regular graphs on 2n
vertices with edges of k different colors where one of each color is at every vertex. We want
to compare Read’s results with the previous sequences.

Read’s generating function that encodes the above enumeration denotes ZR[t, d, n], in
the following program. Then, ZR[d, n] yields the counting at rank d with 2n vertices and
that is given by the coefficient of tn in ZR[t, d, n]. We evaluate Z3(2n) and Z4(2n) for the
ranks 3 and 4, respectively, and confirm that the results of Read match with the previous
results.

Next, the number of connected rank d tensor invariants made with 2n tensors, written
below ZRc[d, n], can be obtained using the plethystic logarithm (Plog) function. The Plog
function PlogZd(t), denoted Plog[ZR, t, d, n], is defined with the MoebiusMu implement-
ing the Möbius function.

A[p_, v_] := (I Sqrt[p])^v HermiteH[v, 1/(2 I Sqrt[p])]

ZR[t_, d_, n_] = 1;

For[m = 0, m <= 20, m++

{If[OddQ[m],

Phi[m, t_, d_, n_] := (Sum[((2 v)!)^(d - 1)/(v!)^(d)*(m^(d - 2)/2^d)^

v t^(m v), {v, 0, n}]),

Phi[m, t_, d_, n_] := (Sum[(A[m/2, v])^d/(v! m^v) t^(m v/2), {v, 0, n}])]

};

ZR[t_, d_, n_] = ZR[t, d, n]*Phi[m, t, d, n]

]

ZR[d_, n_] := Coefficient[Series[ZR[t, d, n], {t, 0, n}], t^n]

Plog[F_, t_, d_, n_] := Sum[MoebiusMu[i]/i Log[F[t^i, d, n]], {i, 1, n}]

ZRc[d_, n_] := Coefficient[Series[Plog[ZR, t, d, n], {t, 0, n}], t^n]

Table[ZR[3, i], {i, 1, 10}]

(Out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[ZR[4, i], {i, 1, 10}]

(Out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,

75649235368772418}

Table[ZRc[3, i], {i, 1, 10}]
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(Out) {1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138}

Table[ZRc[4, i], {i, 1, 10}]

(Out) {1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991, 219822379032704,

75417509926065404}

Sage code: Counting from the sum of Kroneckers in rank d = 3. We provide here
a Sage code that recovers the same counting through the sum of constrained Kronecker
coefficients with even partitions (31).

We need the library SymmetricFunctions(QQ) which introduces symmetric functions.
The Kronecker coefficient associated with three partitions R, S and T deduces as the usual
Hall scalar product of Schur symmetric functions. In the following, s(S) is the Schur function
associated with the partition S.

s = SymmetricFunctions(QQ).s()

for n in range(1,4) :

Total=0

for R in Partitions(2*n) :

i=0

rep=0

while ( (i < R.length()) & (rep==0) ):

if ( (R.get_part(i)%2) !=0 ):

rep = 1

i=i+1

if (rep ==0) :

for S in Partitions (2*n) :

j=0

rep2=0

while ( (j < S.length()) & (rep2==0) ):

if ( (S.get_part(j)%2) !=0 ):

rep2 = 1

j=j+1

if (rep2 ==0) :

for T in Partitions (2*n) :

k=0

rep3=0

while ( (k < T.length()) & (rep3==0) ):

if ( (T.get_part(k)%2) !=0 ):

rep3 = 1

k=k+1

if (rep3 ==0) :

a = ( s(S).itensor(s(T)) ).scalar ( s(R) )

Total =Total+a

print "Number of invariants at 2n =", 2*n, "is", Total

(out) Number of invariants at 2n = 2 is 1

Number of invariants at 2n = 4 is 5

Number of invariants at 2n = 6 is 16

Number of invariants at 2n = 8 is 86
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Sage code: The symplectic K4 invariant is not vanishing at d = 3. The present Sage
code computes a specific invariant, given by complete graph K4 with colored edges. The
tensor rank is d = 3 and the symplectic group Sp(2N = 4). We then extract a coefficient of
the resulting polynomial which does not vanish. Thus this Sp(4) invariant exists.

The list T of variables denoted T−ijk represents the rank 3 tensor. We then need bijec-
tions to map T[l]↔ T−ijk. This is the work of f and f−inv. J4 is the symplectic matrix of
size 2N = 4. To speed up the computation, whenever possible, we perform multiplications
outside the cascade of internal loops when the factors multiplied do not involve the variable
of that loop.

T =[]

N = 4

for i in range(N):

for j in range(N):

for k in range(N):

T.append(var(’T_’+str(i)+str(j)+str(k)))

J4 = [ [0, 0, 1, 0], [0, 0, 0, 1], [-1, 0, 0, 0], [0, -1, 0, 0] ]

def f(x,N):

a,b,c = var (’a’,’b’,’c’)

a = x % N

b = (x//N) % N

c = (x//(N^2)) % N

return c, b, a

def f_inv(x,y,z,N):

return x*N^2 + y*N + z

N,t,A,TAB,TABB,TABC = var (’N’,’t’,’A’,’TAB’,’TABB’,’TABC’)

TABCC,TABCD,TABCDD = var (’TABCC’,’TABCD’,’TABCDD’)

t = 0

N = 4

for a1 in range(N) :

for a2 in range(N) :

for a3 in range(N) :

A = f_inv(a1,a2,a3,N)

for b1 in range(N) :

TAB = J4[a1][b1]

for b2 in range(N) :

for b3 in range(N) :

TABB= TAB*T[A]*T[f_inv(b1,b2,b3,N)]

for c1 in range(N) :

for c2 in range(N) :

TABC = TABB*J4[a2][c2]

for c3 in range(n) :

TABCC = TABC*T[f_inv(c1,c2,c3,N)]*J4[b3][c3]

for d1 in range(N) :
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TABCD = TABCC*J4[c1][d1]

for d2 in range(N) :

TABCDD = TABCD*J4[b2][d2]

for d3 in range(N) :

t = t + TABCDD*T[f_inv(d1,d2,d3,N)]*J4[a3][d3]

t.coefficient(T_000*T_000)

(Out) 0

t.coefficient(T_000)

(Out) 4*T_032*T_212*T_220 - 4*T_023*T_202*T_221 + 4*T_022*T_203*T_221 +

4*T_032*T_213*T_221 + 4*T_023*T_201*T_222 - 4*T_021*T_203*T_222 - 4*T_032*T_210*T_222

- 4*T_022*T_201*T_223 + 4*T_021*T_202*T_223 - 4*T_032*T_211*T_223 - 4*T_022*T_212*T_230

+ 4*T_012*T_222*T_230 - 4*T_023*T_212*T_231 + 4*T_012*T_223*T_231 + 4*T_022*T_210*T_232

+ 4*T_023*T_211*T_232 - 4*T_021*T_213*T_232 - 4*T_012*T_220*T_232 + 4*T_021*T_212*T_233

- 4*T_012*T_221*T_233 - 4*T_122*T_220*T_302 - 4*T_123*T_221*T_302 + 4*T_120*T_222*T_302

+ 4*T_121*T_223*T_302 - 4*T_122*T_230*T_312 - 4*T_123*T_231*T_312 + 4*T_120*T_232*T_312

+ 4*T_121*T_233*T_312 + 4*T_122*T_202*T_320 + 4*T_132*T_212*T_320 - 4*T_102*T_222*T_320

- 4*T_112*T_232*T_320 + 4*T_122*T_203*T_321 + 4*T_132*T_213*T_321 - 4*T_102*T_223*T_321

- 4*T_112*T_233*T_321 + 4*T_123*T_201*T_322 - 4*T_120*T_202*T_322 - 4*T_121*T_203*T_322

- 4*T_132*T_210*T_322 + 4*T_102*T_220*T_322 + 4*T_112*T_230*T_322 - 4*T_122*T_201*T_323

- 4*T_132*T_211*T_323 + 4*T_102*T_221*T_323 + 4*T_112*T_231*T_323 + 4*T_122*T_210*T_332

+ 4*T_123*T_211*T_332 - 4*T_120*T_212*T_332 - 4*T_121*T_213*T_332

t.coefficient(T_032*T_212*T_220)

(Out) 4*T_000
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