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THE COHOMOLOGY RINGS OF HOMOGENEOUS SPACES

MATTHIAS FRANZ

Abstract. Let G be a compact connected Lie group and K a closed con-
nected subgroup. Assume that the order of any torsion element in the integral
cohomology of G and K is invertible in a given principal ideal domain k. It is
known that in this case the cohomology of the homogeneous space G/K with
coefficients in k and the torsion product of H∗(BK) and k over H∗(BG) are
isomorphic as k-modules. We show that this isomorphism is multiplicative and
natural in the pair (G, K) provided that 2 is invertible in k. The proof uses
homotopy Gerstenhaber algebras in an essential way. In particular, we show
that the normalized singular cochains on the classifying space of a torus are
formal as a homotopy Gerstenhaber algebra.
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2 MATTHIAS FRANZ

1. Introduction

In 1950, H. Cartan gave the first uniform description of the cohomology of ho-
mogeneous spaces of Lie groups. Using a differential-geometric approach, he es-
tablished the following result for a compact connected Lie group G and a closed
connected subgroup K ⊂ G [4, Thm. 5].

Theorem 1.1 (H. Cartan). There is an isomorphism of graded algebras

H∗(G/K;R) ∼= TorH∗(BG;R)
∗

(
R, H∗(BK;R)

)
.

A topological way to look at this formula is the following: One has a fibre bundle

(1.1) G/K →֒ EG/K = BK → BG,

and there is an associated Eilenberg–Moore spectral sequence

(1.2) E2 = TorH∗(BG;R)
∗

(
R, H∗(BK;R)

)
⇒ H∗(G/K).

In this language, Cartan’s result says that the spectral sequence collapses at the
second page and that the product on that page agrees with the one on H∗(G/K).

The real cohomology of the classifying space of a connected Lie group is a poly-
nomial algebra on even degree generators. An obvious question is whether a result
analogous to Cartan’s holds for other principal ideal domains k for which H∗(BG)
and H∗(BK) have this property. An equivalent condition is that the orders of the
torsion subgroups of H∗(G;Z) and H∗(K;Z) are invertible in k, and we assume
this throughout. It holds in many cases, for example for U(n), SU(n) and Sp(n)
over any k, and for SO(n) and Spin(n) if 2 is invertible in k.

A partial result in this direction was achieved in 1968 by Baum, who proved
that for field coefficients, the Eilenberg–Moore spectral sequence again collapses at
the second page under a certain ‘deficiency condition’ [2, Thm. 7.4]. This yields an
additive isomorphism

(1.3) H∗(G/K) ∼= TorH∗(BG)
∗

(
k, H∗(BK)

)
.

Baum’s result caused a flurry of activities in the early 1970’s: Wolf [26, Thm. B] re-
moved the deficiency condition, and Husemoller–Moore–Stasheff [13, Thm. IV.8.2]
proved the collapse of the Eilenberg–Moore spectral sequence for any k. Gugen-
heim–May [11, Thm. A] and Munkholm [17, Thm.] additionally solved the exten-
sion problem, which gives the following result.

Theorem 1.2. If H∗(BG) and H∗(BK) are polynomial algebras on even-degree
generators, then there is an isomorphism of graded k-modules

H∗(G/K) ∼= TorH∗(BG)
∗

(
k, H∗(BK)

)
.

Apart from one special case [2, Cor. 7.5], the product structure is not addressed
in any of the works mentioned. In their introduction [11, p. viii], Gugenheim and
May remark:

Multiplicatively, however, we are left with an extension problem; our
results will compute the associated graded algebra[ ] of H∗(G/K) [. . . ]
with respect to suitable filtrations. Refinements of our algebraic theory
could conceivably yield precise procedures for the computation of these
cohomology algebras. When k = Z2, there are examples where the ex-
tensions are non-trivial. There are no such examples known when k is a
field of characteristic 6= 2.1

1We have aligned the original notation with ours.
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The examples alluded to are the projective unitary groups P U(n) = U(n)/U(1)
for n ≡ 2 (mod 4), see Remark 12.7. To the author’s knowledge, no progress on
the multiplicative structure has been made since these words were written. In the
present paper we prove the following:

Theorem 1.3. Assume that 2 is invertible in k. If H∗(BG) and H∗(BK) are
polynomial algebras, then there is an isomorphism of graded k-algebras

H∗(G/K) ∼= TorH∗(BG)
∗

(
k, H∗(BK)

)
,

natural with respect to maps of pairs (G, K) → (G′, K ′).

The central difficulty one faces when proving an isomorphism of the form (1.3) is
the lack of commutativity of the singular cochain algebra. At some point one has to
pass from cochains to cohomology, and unlike in the case of differential forms, the
assignment of representatives ai ∈ C∗(BG) to generators xi ∈ H∗(BG) does not
extend to a morphism of differential graded algebras (dgas). To address this, all
approaches after Baum resorted to some ‘up to homotopy’ structure, as suggested
by Stasheff–Halperin [23, p. 575].

Munkholm for example further develops the idea of strongly homotopy commu-
tative algebras introduced by Stasheff–Halperin. The only additional ingredient he
then needs is that both BG and BK have polynomial cohomology, and his result
holds more generally for the fibre of bundles where both the total space and the
base have this property.

In contrast to this, Husemoller–Moore–Stasheff, Gugenheim–May and Wolf rely
on the existence of a maximal torus T ⊂ K to reduce the problem to that of a
homogeneous space G/T . This was already done by Baum [2], who observed that
H∗(G/K) injects into H∗(G/T ). A crucial result in this direction, also used by
Wolf, is the following [11, Thm. 4.1].

Theorem 1.4 (Gugenheim–May). There is a quasi-isomorphism of dgas C∗(BT ) →
H∗(BT ) annihilating all ∪1-products.

We are going to extend Theorem 1.4 to homotopy Gerstenhaber algebras (hgas),
which were introduced by Voronov–Gerstenhaber [25]. An hga structure on a dga A
is essentially a family of operations Ek : A⊗(k+1) → A that allow to define a product
on the bar construction BA compatible with the coalgebra structure. Based on a
result of Baues [1], the former authors also noted that singular cochain algebras are
endowed with this structure [8]. In this case, the first hga operation E1 is the usual
∪1-product, up to sign. We strengthen the Gugenheim–May result as follows.

Theorem 1.5. There is a quasi-isomorphism of dgas C∗(BT ) → H∗(BT ) annihi-
lating all hga operations. In particular, C∗(BT ) is formal as an hga.

See Theorem 9.6. This seems to be the first time that the hga formality of a
non-trivial space is established. The quasi-isomorphism from Theorem 1.5 actu-
ally annihilates even more operation, see Proposition 10.1. This includes the ones
identified by Kadeishvili [14] to construct a ∪1-product on BC∗(BT ). The only
exception is the ∪2-product on C∗(BT ), but we can show that also ∪2-products
of cocycles are in the kernel of the formality map provided that 2 is invertible
in k (Proposition 9.7). We call an hga having a ∪2-product as well as the other
additional operations “extended”.

The following result from the companion paper [7] allows us to combine Theo-
rem 1.5 with Munkholm’s techniques, see Theorem 6.3.
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Theorem 1.6. Any extended hga is canonically an shc algebra in the sense of
Munkholm.

In a nutshell, our strategy to prove Theorem 1.3 is the following: By the
Eilenberg–Moore theorem, H∗(G/K) is naturally isomorphic to the differential tor-
sion product

(1.4) TorC∗(BG)
(
k, C∗(BK)

)
.

Kadeishvili–Saneblidze [15] observed that the hga structure on cochains permits to
define a product on the one-sided bar construction underlying (1.4); the Eilenberg–
Moore isomorphism then becomes multiplicative. Imitating mostly Munkholm, we
first construct a k-module isomorphism

(1.5) H∗(Θ): TorH∗(BG)
(
k, H∗(BK)

)
→ TorC∗(BG)

(
k, C∗(BK)

)

where we use the shc algebra structure given by Theorem 1.6. In order to show
that our map is multiplicative and natural, we look at the composition

(1.6) TorC∗(HG)
(
k, H∗(BK)

) H∗(Θ)
−−−−→ TorC∗(BG)

(
k, C∗(BK)

)

−֒→ TorC∗(BG)
(
k, C∗(BT )

) ∼=
−→ TorC∗(BG)

(
k, H∗(BT )

)
.

The last map involves the quasi-isomorphism from Theorem 1.5 in the same way
as Wolf applied the formality map constructed by Gugenheim–May. This leads to
a dramatic simplification of the formulas and allows us to complete the proof of
Theorem 1.3, see Section 12.

Along the way we exhibit an explicit homotopy between the two possible defini-
tions of a tensor product of two A∞-maps (Proposition 4.1).

Acknowledgements. Maple and Sage [18] were used to derive the formulas in Sec-
tions 4 and 9. The connection between tensor products of A∞-maps and hypercubes
(Remark 4.2) was discovered by consulting the OEIS [21].

2. Twisting cochains

We work over a fixed commutative ring k with unit, which will be assumed
to be a principal ideal domain from Section 8.5 on. Since we will mostly deal
with cohomological complexes, we assume a cohomological grading throughout this
review section. The identity map on a complex M is denoted 1M . The suspension
map on a complex is denoted by s and the desuspension by s−1. All tensor products
are over k unless otherwise indicated.

Given two Z-graded complexes A and B, the complex Hom(A, B) consists in
degree n ∈ Z of all linear maps f : A → B raising degrees by n. The differential of
such a map is

(2.1) d(f) = d f − (−1)nf d.

We write

(2.2) T = TA,B : A ⊗ B → B ⊗ A, a ⊗ b 7→ (−1)|a||b| b ⊗ a

for the transposition of factors in a tensor product. This illustrates the Koszul sign
rule, another incarnation of which is the definition

(2.3) f ⊗ g : A ⊗ B → C ⊗ D, a ⊗ b 7→ (−1)|g||a| f(a) ⊗ g(b)
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of the tensor product of two maps f : A → C and g : B → D. To unclutter formulas,

we often write “
κ
=” to indicate that we suppress the Koszul sign as described above.

For example, the formula

F (a, b, c)
κ
= f(c) ⊗ g(a, b)(2.4)

means

F (a, b, c) = (−1)(|a|+|b|+|g|)|c| f(c) ⊗ g(a, b).(2.5)

In other words, we only specify the sign in the endomorphism operad explicitly. As
a convention, we distribute composition of maps over tensor products: The formula

(2.6) F (a, b)
κ
= f1(f2(a)) ⊗ g1(g2(b))

stands for the identity

(2.7) F = f1 f2 ⊗ g1 g2 = (−1)|f2||g1| (f1 ⊗ g1) (f2 ⊗ g2)

in the endomorphism operad. Another shorthand notation will be introduced in
equation (3.5) in Section 3.

We refer to [17, §§1.1, 1.2, 1.11] for the definitions of differential graded alge-
bras (dgas) and dga maps as well as for differential graded coalgebras (dgcs), dgc
maps and coalgebra homotopies. By an ideal a of a dga A, we mean a two-sided
differential ideal a ⊳ A. We write augmentations as ε and coaugmentations as η;
the augmentation ideal of a dga A is denoted by Ā. A dga A is connected if it is
N-graded and ηA : k → A0 is an isomorphism; it is simply connected if additionally
A1 = 0. A connected or simply connected dgc C is defined similarly.

For n ≥ 0, we write

(2.8) µ
[n]
A : A⊗n → A

for the iterated multiplication of a dga A, so that µ
[0]
A = ηA, µ

[1]
A = 1A and µ

[2]
A =

µA. The iterations ∆[n] are defined analogously. A dgc C is cocomplete if for
any c ∈ C there is an n ≥ 0 such that (1C − εC)⊗n∆[n](c) = 0. Any connected dgc
is cocomplete.

Given two ideals a⊳ A and b⊳ B where A and B are dgas, we define the ideal

(2.9) a⊠ b = a ⊗ B + A ⊗ b⊳ A ⊗ B.

It is then clear how the ideal a⊠n ⊳ A⊗n is defined for n ≥ 1; a⊠0 = 0.
We will make heavy use of the (reduced) bar construction

(2.10) BA =
⊕

k≥0

BkA, BkA = (s−1Ā)⊗k

of an augmented dga A, which is a cocomplete coaugmented dgc, connected if A is
simply connected, see [13, Sec. II.3] or [17, §1.6]. The canonical map

(2.11) tA : BA → B1A = s−1Ā
s

−→ Ā →֒ A

is a twisting cochain in the sense of the following definition.
For an augmented dga A and a coaugmented dgc C, the complex Hom(C, A) is

an augmented dga with cup product

(2.12) f ∪ g = µA (f ⊗ g) ∆C ,
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unit element ηA εC and augmentation ε(f) = (εA f ηC)(1). Note that for f , g as
before and any dgc map k : B → C we have

(2.13) (f ∪ g) k = (f k) ∪ (g k).

A twisting cochain is an element t ∈ Hom1(C, A) such that

d(t) = t ∪ t,(2.14)

εA t = 0 and t ηC = 0.(2.15)

Example 2.1. Let A and B be augmented dgas. The shuffle map

(2.16) ∇ = ∇A,B : BA ⊗ BB → B(A ⊗ B)

is the dgc map with associated twisting cochain tA ⊗ ηB εBB + ηA εBA ⊗ tB,

(2.17) [a1| . . . |ak] ⊗ [b1| . . . |bl] 7→







a1 ⊗ 1 if k = 1 and l = 0,

1 ⊗ b1 if k = 0 and l = 1,

0 otherwise.

The shuffle map is associative and also commutative in the sense that the diagram

(2.18)

BA ⊗ BB B(A ⊗ B)

BB ⊗ BA B(B ⊗ A)

TBA,BB

∇A,B

BTA,B

∇B,A

commutes.
If A is commutative, then the composition

(2.19) µBA = BµA ∇A,A : BA ⊗ BA → BA

turns BA into a dg bialgebra, that is, into a coaugmented dgc with an associative
product that is a morphism of dgcs.

An element h ∈ Hom0(C, A) is a twisting cochain homotopy from the twisting
cochain t : C → A to the twisting cochain u : C → A, in symbols h : t ≃ u, if

d(h) = t ∪ h − h ∪ u,(2.20)

εA h = εC and h ηC = ηA.(2.21)

Let A be an augmented dga. For any cocomplete coaugmented dgc C, the
assignment f 7→ tAf sets up a bijection between the dgc maps C → BA and the
twisting cochains C → A. A map h : C → BA is a coalgebra homotopy from a dgc
map f : C → BA to another dgc map g if and only if 1 + tA h ∈ Hom(C, A) is a
twisting cochain homotopy from tA f to tA g.

Let h : C → A be a twisting cochain homotopy, and let a⊳A be an ideal. If h is
congruent to 1 = ηA εC modulo a⊳A, we say that h as well as the associated coal-
gebra homotopy C → BA is a-trivial. By the first normalization condition (2.21)
any twisting cochain homotopy h : C → A is Ā-trivial.

Lemma 2.2. Let a⊳A be an ideal, and let C be a cocomplete dgc. Being related by
an a-trivial homotopy is an equivalence relation among twisting cochains C → A.
More precisely:

(i) Let h : t ≃ u and k : u ≃ v be a-trivial twisting cochain homotopies. Then h∪k
is an a-trivial homotopy from t to v.
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(ii) Let h : t ≃ u be an a-trivial twisting cochain homotopy Then h is invertible
in Hom0(C, A), and its inverse

h−1 =

∞∑

n=0

(1 − h)∪n : C → A

is an a-trivial homotopy from u to t.

In particular, we may unambiguously speak of an “a-trivial homotopy between
twisting cochains t and u” without specifying the direction of the homotopy.

Proof. The first part follows immediately from the definition of the cup product.
Apart from the obvious a-triviality, the second claim is [17, §1.12]. �

3. Strongly homotopy multiplicative maps

Our discussed is based on the treatment in [17, §3.1] and [26, Sec. 1 (c)].
Let A and B be augmented dgas. By definition, a strongly homotopy multi-

plicative (shm) map2 f : A ⇒ B is a twisting cochain f : BA → B. We write the
corresponding dgc map as Bf : BA → BB. Following Munkholm [17, Appendix],
we define for n ≥ 0 the map3

(3.1) f(n) : Ā⊗n (s−1)⊗n

−−−−−→ BnA
f

−→ B

of degree 1 − n and extend it to A⊗n by setting

f(1)(1) = 1,(3.2)

f(n)(a1 ⊗ · · · ⊗ an) = 0 if n ≥ 2 and ak = 1 for some k.(3.3)

The twisting cochain conditions (2.14) and (2.15) for f translate into

f(0) = εB f(n) = 0,(3.4)

d(f(n))(a•)
κ
=

n−1∑

k=1

(−1)k
(
f(k)(a•) f(n−k)(a•) − f(n−1)(a•, akak+1, a•)

)
(3.5)

for all n ≥ 1. In (3.5) we have used the symbol
κ
= to indicate the Koszul sign and

also the notation a• to denote a (possibly empty) sequence of a-variables, ordered by
their indices. The length of the sequence is to be inferred from the context. For in-
stance, f(n−1)(a•, akak+1, a•) stands for f(n−1)(a1, . . . , ak−1, akak+1, ak+2, . . . , an).

We call a family of multilinear functions

(3.6) f(n) : A⊗n → B

of degree 1−n satisfying (3.2)–(3.5) a twisting family. Twisting families correspond
bijectively to shm maps A ⇒ B. Note that f(1) : A → B is a chain map which is
multiplicative up to homotopy since

(3.7) d(f(2)) = f(1) µA − µB (f(1) ⊗ f(1)).

Given an shm map f : A ⇒ B, we define

(3.8) H∗(f) = H∗(f(1)) : H∗(A) → H∗(B).

It is a morphism of graded algebras.

2We prefer the term “shm map” used by Munkholm over the nowadays more popular termi-
nology “A∞-map” because it pairs better with the “shc algebras” to be introduced in Section 5.

3This definition leads to a sign convention different from Wolf’s [26].
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Any dga morphism f : A → B induces an shm map f̃ : A ⇒ B with f̃(1) = f and

f̃(n) = 0 for n ≥ 2. We call such an shm map strict. Note that H∗(f̃) = H∗(f)
in this case. We will not distinguish between a dga map and its induced strict
shm map.

More generally, we say that an shm map f : A ⇒ B is b-strict for some b⊳ B if

(3.9) f(n) ≡ 0 (mod b) for all n ≥ 2.

Then f is 0-strict if and only if it is strict, and every f : A ⇒ B is B̄-strict. Any
b-strict shm map f : A ⇒ B induces a strict map A → B/b.

A twisting cochain homotopy h : f ≃ g from an shm map f : A ⇒ B to another
shm map g : A ⇒ B is called an shm homotopy. Based on h we define the maps

(3.10) h(n) = h (s−1)⊗n : Ā⊗n → B

of degree −n for n ≥ 0 and extend them to A⊗n by

(3.11) h(n)(a1 ⊗ · · · ⊗ an) = 0 if ak = 1 for some k.

The normalization conditions (2.21) mean

(3.12) h(0) = ηB and εB h(n) = 0 for n ≥ 1,

and condition (2.20) is equivalent to

d(h(n))(a•)
κ
=

n−1∑

k=1

(−1)k h(n−1)(a•, akak+1, a•)(3.13)

+
n∑

k=0

(

f(k)(a•) h(n−k)(a•) − (−1)k h(k)(a•) g(n−k)(a•)
)

for all n ≥ 0.
We call a family of multilinear functions

(3.14) h(n) : A⊗n → B

of degree −n satisfying (3.11)–(3.13) a twisting homotopy family from the twisting
family f(n) to g(n). Twisting homotopy families correspond bijectively to homo-
topies between twisting cochains. We also write Bh : BA → BB for the coalgebra
homotopy induced by the twisting homotopy h : BA → B.

The twisting homotopy family h(n) as above is called b-trivial for some b⊳ B if
the twisting homotopy BA → B is so. Equivalently,

(3.15) h(n) ≡ 0 (mod b) for all n ≥ 1.

Let f : A ⇒ B and g : B ⇒ C be shm maps. We define the composition

(3.16) g ◦ f : A ⇒ C

to be the twisting cochain g Bf associated to the dgc map Bg Bf : BA → BC. The
corresponding twisting cochain family is given by

(3.17) (g ◦ f)(n)(a•)
κ
=

∑

k≥1

∑

i1+···+ik=n

(−1)ε g(n)

(
f(i1)(a•), . . . , f(ik)(a•)

)

for n ≥ 0 where the second sum is over all decompositions of n into k positive
integers and

(3.18) ε =

k∑

s=1

(k − s)(is − 1).
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The composition of an shm map and an shm homotopy is similarly defined as the
shm homotopy associated to the composition of the corresponding maps between
bar constructions.

Lemma 3.1.

(i) Let f : A ⇒ B be a b-strict shm map, and let g : B ⇒ C a c-strict shm map.
If g(1)(b) ⊂ c, then g ◦ f is c-strict.

(ii) Let h : C → A be an a-trivial twisting cochain homotopy, and let f : A → B
be a b-strict shm map. If f(1)(a) ⊂ b, then f ◦ h is b-trivial.

(iii) Let h : C → A be an a-trivial twisting cochain homotopy, and let g : D → C
be a map of coaugmented dgcs. Then h ◦ g is a-trivial.

Proof. The first two claims are readily verified, and the last one is trivial. �

4. Tensor products of shm maps

In this section, A, B, A′ and B′ denote augmented dgas. We write a• ⊗ b• for a
sequence a1 ⊗ b1, a2 ⊗ b2, . . . in A ⊗ B whose length is given by the context.

Let f : A ⇒ A′ be an shm map, and let g : B → B′ be a dga map. Then

(4.1) (f ⊗ g)(n)(a• ⊗ b•)
κ
= f(n)(a•) ⊗ g µ[n](b•)

is a twisting cochain family, hence defines an shm map

(4.2) f ⊗ g : A ⊗ B ⇒ A′ ⊗ B′.

If h is an a-trivial homotopy from f to another shm map f̃ , then

(4.3) (h ⊗ g)(n)(a• ⊗ b•)
κ
= h(n)(a•) ⊗ g µ[n](b•)

defines an a ⊗ B-trivial shm homotopy h ⊗ g from f ⊗ g to f̃ ⊗ g.
Similarly, if f : A → A′ is a dga map and g : B ⇒ B′ an shm map, then

(4.4) (f ⊗ g)(n)(a• ⊗ b•)
κ
= f µ[n](a•) ⊗ g(n)(b•)

defines an shm map

(4.5) f ⊗ g : A ⊗ B ⇒ A′ ⊗ B′.

If h is a b-trivial homotopy from g to another shm map g̃, then

(4.6) (f ⊗ h)(n)(a• ⊗ b•)
κ
= f µ[n](a•) ⊗ h(n)(b•)

defines an A ⊗ b-trivial shm homotopy f ⊗ h from f ⊗ g to f ⊗ g̃.
Now let both f : A ⇒ A′ and g : B ⇒ B′ be shm maps. Then the two shm maps

(4.7) (f ⊗ 1B′) ◦ (1A ⊗ g) and (1A′ ⊗ g) ◦ (f ⊗ 1B)

are not equal in general. In fact, for any n ≥ 0 one has

(4.8)
(
(f ⊗ 1) ◦ (1 ⊗ g)

)

(n)
(a• ⊗ b•)

κ
=

∑

l≥1

∑

j1+···+jl=n

(−1)ε F ⊗ G

where the sum is over all decompositions of n into l positive integers and

F = f(l)

(
µ[j1](a•), . . . , µ[jl](a•)

)
,(4.9)

G = µ[l]
(
g(j1)(b•), . . . , g(jl)(b•)

)
,(4.10)

ε =
l∑

t=1

(l − t)(jt − 1),(4.11)
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compare (3.17) and (3.18), while

(4.12)
(
(1 ⊗ g) ◦ (f ⊗ 1)

)

(n)
(a• ⊗ b•)

κ
=

∑

k≥1

∑

i1+···+ik=n

(−1)ε F ⊗ G

where the sum is analogously over all decompositions of n into k positive integers
and

F = µ[k]
(
f(i1)(a•), . . . , f(ik)(a•)

)
,(4.13)

G = g(k)

(
µ[i1](b•), . . . , µ[ik](b•)

)
,(4.14)

ε =

k∑

s=1

(s − 1)(is − 1).(4.15)

Note that if f or g is strict, then (4.8) and (4.12) coincide and agree with the
formulas given previously. Following Munkholm [17, Prop. 3.3] we define

(4.16) f ⊗ g = (f ⊗ 1) ◦ (1 ⊗ g)

in the general case. We compare it to the other composition.

Proposition 4.1. Assume that f is a-strict for some a⊳A′ and that g is b-strict
for some b⊳ B′. Then the two shm maps

f ⊗ g = (f ⊗ 1) ◦ (1 ⊗ g) and (1 ⊗ g) ◦ (f ⊗ 1)

are homotopic via an a⊗ b-trivial homotopy. In particular, if f or g is strict, then
the two compositions agree.

Proof. Instead of using Munkholm’s theory of trivialized extensions [17, Sec. 2], we
exhibit an explicit homotopy from (1 ⊗ g) ◦ (f ⊗ 1) to (f ⊗ 1) ◦ (1 ⊗ g). It is given
by h(0) = ηA′ ⊗ ηB′ and

(4.17) h(n)(a• ⊗ b•)
κ
=

∑

k,l≥1

∑

i1+···+ik+
j1+···+jl=n

(−1)ε F ⊗ G

for n ≥ 1, where the second sum is over all decompositions of n into k + l positive
integers,

F = µ[k]
(

f(i1)(a•), . . . , f(ik−1)(a•), f(ik+l)

(
a•, µ[j1](a•), . . . , µ[jl](a•)

))

,(4.18)

G = µ[l]
(

g(k+j1)

(
µ[i1](b•), . . . , µ[ik](b•), b•

)
, g(j2)(b•), . . . , g(jl)(b•)

)

,(4.19)

ε =

k∑

s=1

s (is − 1) +

l∑

t=1

(l − t)(jt − 1) + k (l − 1) + 1.(4.20)

Verifying that h is a homotopy as claimed is lengthy, but elementary, see Appen-
dix A. That the homotopy is a⊗ b-trivial follows from the assumptions on f and g
and the inequalities ik + l ≥ 2 and k + j1 ≥ 2. In particular, h takes values in
Ā′ ⊠ B̄′ ⊃ Ā′ ⊗ B̄′ since f and g are Ā-strict and B̄-strict, respectively.

Let us verify the normalization condition (3.11). Assume that ai = bi = 1 for
some i and consider a term F ⊗ G of the sum (4.17). Let m be the index such that
ai appears is the m-th f -term of F . If is > 1 or s = k, this term vanishes by (3.5).
Otherwise, the product inside g(k+j1) containing bm is bm itself, so that this term
vanishes again by (3.5). In any case we have F ⊗ G = 0.
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The last part of the statement is the special case a = 0 or b = 0 and already
known from the explicit formulas gives earlier. �

Formula (4.17) looks as follows in small degrees.

h(1) = 0,(4.21)

h(2)
κ
= −f(2)(a1, a2) ⊗ g(2)(b1, b2),(4.22)

h(3)
κ
= −f(1)(a1) f(2)(a2, a3) ⊗ g(2)(b1, b2, b3)(4.23)

+ f(3)(a1, a2, a3) ⊗ g(2)(b1, b2) g(1)(b3)

+ f(3)(a1, a2, a3) ⊗ g(2)(b1 b2, b3)

+ f(2)(a1, a2 a3) ⊗ g(3)(b1, b2, b3).

Remark 4.2. The summands appearing in (4.8) and (4.12) are in bijection with
the vertices of an (n − 1)-dimensional cube. For example, the vertex of [0, 1]n−1

corresponding to the decomposition i1 + · · · + ik = n is given by

(4.24)
(

i1
︷ ︸︸ ︷

0, . . . , 0, 1, . . . ,

ik−1
︷ ︸︸ ︷

0, . . . , 0, 1,

ik−1
︷ ︸︸ ︷

0, . . . , 0
)
.

Similarly, the summands appearing in (4.17) are in bijection with the edges of an
(n − 1)-dimensional cube. Here the summand corresponding to the decomposition
i1 + · · · + ik + j1 + · · · + jl = n is identified with the edge

(4.25)
(

i1
︷ ︸︸ ︷

0, . . . , 0, 1, . . . ,

ik−1
︷ ︸︸ ︷

0, . . . , 0, 1,

ik−1
︷ ︸︸ ︷

0, . . . , 0, ∗, 0, . . . , 0
︸ ︷︷ ︸

j1−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

j2

, . . . , 1, 0, . . . , 0
︸ ︷︷ ︸

jl

)
,

where “∗” denotes the free parameter.

Corollary 4.3. Let f1 : A0 ⇒ A1, f2 : A1 ⇒ A2, g1 : B0 ⇒ B1 and g2 : B1 ⇒ B2

be shm maps. Assume that f1 is a1-trivial, f2 a2-trivial and g2 b2-trivial and
that (f2)(1)(a1) ⊂ a2 for ideals a1 ⊳ A1, a2 ⊳ A2 and b2 ⊳ B2. Then the two shm
maps

(f2 ⊗ g2) ◦ (f1 ⊗ g1) and (f2 ◦ f1) ⊗ (g2 ◦ g1)

are homotopic via an a2 ⊗ b2-trivial homotopy. If f1 or g2 are strict, then the two
maps agree.

Proof. This follows by writing the maps as

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ⊗ 1) ◦ (1 ⊗ g2) ◦ (f1 ⊗ 1) ◦ (1 ⊗ g1)(4.26)

(f2 ◦ f1) ⊗ (g2 ◦ g1) = (f2 ⊗ 1) ◦ (f1 ⊗ 1) ◦ (1 ⊗ g2) ◦ (1 ⊗ g1)(4.27)

and applying Proposition 4.1 and Lemma 3.1. The second equality above is a
consequence of the formulas (4.1), (4.4) and (3.17). �

Lemma 4.4. The shuffle map is natural with respect to shm maps. In other words,
the diagram

BA ⊗ BB B(A ⊗ B)

BA′ ⊗ BB′ B(A′ ⊗ B′)

Bf⊗Bg

∇

B(f⊗g)

∇

commutes for all shm maps f : A ⇒ A′ and g : B ⇒ B′.
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Proof. Since all morphisms involved are dgc maps and the bar construction co-
complete, it suffices to compare the associated twisting cochains. Let a ⊗ b =
[a1| . . . |ak] ⊗ [b1| . . . |bl] ∈ BkA ⊗ BlB.

Assume g = 1B. Then both twisting cochains vanish on a⊗b if k ≥ 1 and l ≥ 1.
For l = 0 both twisting cochains yield f(a) ⊗ 1, and for k = 0 they give 1 ⊗ b1

if l = 1 and 0 otherwise, compare Example 2.1.
The case f = 1A is analogous, and the general case follows by combining the two

and using the definition (4.16). �

Now let fi : Ai ⇒ Bi be a family of shm maps, 1 ≤ i ≤ m. Generalizing (4.16),
we define the shm map

(4.28) f1 ⊗ · · · ⊗ fm =

(f1 ⊗ 1 ⊗ · · · ⊗ 1) ◦ (1 ⊗ f2 ⊗ 1 ⊗ · · · ⊗ 1) ◦ · · · ◦ (1 ⊗ · · · ⊗ 1 ⊗ fm).

If one of the maps is instead an shm homotopy fi = h, we use the same definition.
The resulting map is an shm homotopy in this case. We observe that this convention
is compatible with the definitions (4.3) and (4.6).

Lemma 4.5. Let h : A → B be an shm homotopy.

(i) For any dga map f : A′ → B′ we have

h ⊗ f = (1B ⊗ f) ◦ (h ⊗ 1A′) and f ⊗ h = (1B′ ⊗ h) ◦ (f ⊗ 1A).

(ii) For any shm map g : C → A and any dga D we have

(h ⊗ 1D) ◦ (g ⊗ 1D) = (h ◦ g) ⊗ 1D.

Proof. The first part follows from inspection of the formulas (4.3) and (4.6). The
second claim additionally uses that formula (3.17) remains valid for the shm homo-
topy h instead of the shm map f . �

5. Strongly homotopy commutative algebras

Let A be an augmented dga. According to Stasheff–Halperin [23, Def. 8], A is a
strongly homotopy commutative (shc) algebra if

(i) the multiplication map µA : A ⊗ A → A extends to an shm morphism

Φ: A ⊗ A → A.

Munkholm [17, Def. 4.1] additionally requires the following:

(ii) The map ηA is a unit for Φ, that is,

Φ ◦ (1A ⊗ ηA) = Φ ◦ (ηA ⊗ 1A) = 1A : A ⇒ A.

(iii) The shm map Φ is homotopy associative, that is,

Φ ◦ (Φ ⊗ 1A) ≃ Φ ◦ (1A ⊗ Φ): A ⊗ A ⊗ A ⇒ A.

(iv) The map Φ is homotopy commutative, that is,

Φ ◦ TA,A ≃ Φ: A ⊗ A ⇒ A.

Whenever we speak of an shc algebra, we mean one satisfying all four properties
unless otherwise indicated. Any commutative dga is canonically an shc algebra.
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Let A and B be shc algebras, and let b ⊳ B. A morphism of shc algebras is an
shm map f : A ⇒ B such that the diagram

(5.1)

A ⊗ A B ⊗ B

A B

ΦA

f⊗f

ΦB

f

commutes up to homotopy.4 It is called b-strict if it is so as an shm map, and b-
natural if there is a b-trivial homotopy making (5.1) commute.

Recall from [17, Prop. 4.2] that the tensor product of two shc algebras A and B
is again an shc algebra with structure map

(5.2) ΦA⊗B : A ⊗ B ⊗ A ⊗ B
1⊗TB,A⊗1
−−−−−−−→ A ⊗ A ⊗ B ⊗ B

ΦA⊗ΦB=====⇒ A ⊗ B.

The following is a variant of the result just cited.

Lemma 5.1. Let fi : Ai → Bi be strict bi-natural shc maps, i = 1, 2. Then f1 ⊗
f2 : A1 ⊗ A2 → B1 ⊗ B2 is a strict b1 ⊠ b2-natural shc map.

Proof. We have to show that there is a b1 ⊠ b2-trivial homotopy for the dia-
gram (5.1), which in the present setting reads

(5.3)

A1 ⊗ A2 ⊗ A1 ⊗ A2 B1 ⊗ B2 ⊗ B1 ⊗ B2

A1 ⊗ A1 ⊗ A2 ⊗ A2 B1 ⊗ B1 ⊗ B2 ⊗ B2

A1 ⊗ A1 ⊗ A2 B1 ⊗ B1 ⊗ B2

A1 ⊗ A2 B1 ⊗ B2.

1⊗T ⊗1

f1⊗f2⊗f1⊗f2

1⊗T ⊗1

1⊗1⊗Φ

f1⊗f1⊗f2⊗f2

1⊗1⊗Φ

Φ⊗1

f1⊗f1⊗f2

Φ⊗1

f1⊗f2

Since f1 and f2 are strict, the top square commutes. If hi denotes a bi-trivial
naturality homotopy for fi, then f1 ⊗ f1 ⊗ h2 is a B1 ⊗ B1 ⊗ b2-natural homotopy
making the middle diagram commute, and h1 ⊗ f2 is a b1 ⊗ B2-natural one for the
bottom square. Hence the cup product of

(5.4) (Φ ⊗ 1) ◦ (f1 ⊗ f1 ⊗ h2) ◦ (1 ⊗ T ⊗ 1)

and

(5.5) (h1 ⊗ f2) ◦ (1 ⊗ 1 ⊗ Φ) ◦ (1 ⊗ T ⊗ 1)

yields the required homotopy by Lemmas 3.1 and 2.2 (i). �

Let A be an shc algebra with structure map Φ: A⊗A ⇒ A. Following [17, p. 30],
we define the shm map

(5.6) Φ[n] : A⊗n ⇒ A

for n ≥ 0 by

(5.7) Φ[0] = ηA, Φ[1] = 1A, Φ[n+1] = Φ ◦ (Φ[n] ⊗ 1A)

4Munkholm also requires the identity f ◦ ηA = ηB . Given the normalization condition (2.15),
this holds automatically as both maps necessarily represent 0 as twisting cochains k = Bk → B.
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for n ≥ 1. Note that

(5.8)
(
Φ[n]

)

(1)
= µ

[n]
A .

If Φ is a-strict for some ideal a⊳A, then so is Φ[n] for any n ≥ 0 by Lemma 3.1 (i).
For the next result, compare [17, Prop. 4.6].

Lemma 5.2. Let A and B be shc algebras with ideals a ⊳ A and b ⊳ B. Assume
that ΦA is a-strict and ΦB b-strict. Let f : A ⇒ B be a b-strict and b-natural map
of shc algebras such that f(1)(a) ⊂ b. Then the diagram

A⊗n B⊗n

A B

Φ[n]

f⊗n

Φ[n]

f

commutes up to a b-trivial homotopy for any n ≥ 0.

Proof. The claim is trivial for n ≤ 2. Assume it proven for n and consider the
diagram

(5.9)

A⊗n ⊗ A A⊗n ⊗ B B⊗n ⊗ B

A ⊗ A A ⊗ B B ⊗ B

A B.

Φ
[n]

A
⊗1

1⊗n⊗f

Φ
[n]

A
⊗1

f⊗n⊗1

Φ
[n]

B
⊗1

ΦA

1⊗f f⊗1

ΦB

f

Since Φ
[n]
A is a-strict, the top left square commutes up to an a ⊗ B-trivial ho-

motopy by Proposition 4.1. The composition of this homotopy with ΦB ◦ (f ⊗ 1)
is b-trivial by Lemma 3.1 because ΦB and f are b-strict and f(1)(a) ⊂ b. By in-
duction, the top right square commutes up to a b ⊗ B-trivial homotopy, whose
composition with ΦB is b-trivial. The bottom rectangle finally commutes up to a
b-trivial homotopy since f is b-natural. The claim follows. �

6. Homotopy Gerstenhaber algebras

6.1. Definition of an hga. Let A be an augmented dga. We say that A is a
homotopy Gerstenhaber algebra (homotopy G-algebra, hga) if it is equipped with
operations

(6.1) Ek : A ⊗ A⊗k → A, a ⊗ b1 ⊗ · · · ⊗ bk 7→ Ek(a; b1, . . . , bk)

of degree |Ek| = −k for k ≥ 1. To state the properties they satisfy, it is convenient
to use the additional operation E0 = 1A. All Ek with k ≥ 1 take values in the
augmentation ideal Ā and vanish if any argument is equal to 1. For k ≥ 1 and
all a, b1, . . . , bk ∈ A one has

d(Ek)(a; b•)
κ
= b1 Ek−1(a; b•) +

k−1∑

m=1

(−1)m Ek−1(a; b•, bmbm+1, b•)(6.2)

+ (−1)k Ek−1(a; b•) bk.
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For k ≥ 0 and all a1, a2, b1, . . . , bk ∈ A one has

(6.3) Ek(a1a2; b•)
κ
=

∑

k1+k2=k

Ek1 (a1; b•) Ek2 (a2; b•)

where the sum is over all decompositions of k into two non-negative integers. Fi-
nally, for k, l ≥ 0 and all a, b1, . . . , bk, c1, . . . , cl ∈ A one has

(6.4) El(Ek(a; b•); c•)
κ
=

∑

i1+···+ik+
j0+···+jk=l

(−1)ε En

(
a; c•

︸︷︷︸

j0

, Ei1 (b1; c•), c•
︸︷︷︸

j1

, . . . , c•
︸︷︷︸

jk−1

, Eik
(bk; c•), c•

︸︷︷︸

jk

)
,

where the sum is over all decompositions of l into 2k + 1 non-negative integers,

(6.5) n = k +

k∑

t=0

jt

and

(6.6) ε =

k∑

s=1

is

(

k +

k∑

t=s

jt

)

+

k∑

t=1

t jt.

A morphism of hgas is a morphism f : A → B of augmented dgas that is compatible
with the hga operations in the obvious way.

Given an hga A, we can define

(6.7) Ekl : BkA ⊗ BlA = (s−1A)⊗(k+l) → A

for k, l ≥ 0 by

(6.8) Ekl (s−1)⊗(k+l) =







1A if k = 0 and l = 1,

El if k = 1,

0 otherwise.

The functions Ekl assemble to a map

(6.9) E : BA ⊗ BA → A,

which is a twisting cochain by (6.2) and (6.3) together with the normalization
conditions. Moreover, the identity (6.4) implies that the induced dgc map

(6.10) µBA : BA ⊗ BA → BA

is associative and therefore turns BA into a dg bialgebra. Conversely, a dg bialgebra
structure on BA whose associated twisting cochain E is of the form (6.8) defines
an hga structure on A with operations Ek.

Remark 6.1. Our hga operations are related to the braces originally defined by
Voronov and Gerstenhaber [25, §8], [8, Sec. 1.2], [24, Sec. 3.2] by the identity

(6.11) a{b1, . . . , bk} = E1k([a] ⊗ [b1| . . . |bk]) = (−1)ε Ek(a; b1, . . . , bk)

for k ≥ 0 where

(6.12) ε = k |a| +

k∑

m=1

(k − m) |bm|.
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Our grading agrees with [24]; in [25] and [8] the degrees of the desuspended argu-
ments are used.5

We observe that the ∪1-product

(6.13) a ∪1 b = −E1(a; b)

is a homotopy from the product with commuted factors to the standard one,

(6.14) d(a ∪1 b) + da ∪1 b + (−1)|a| a ∪1 db = ab − (−1)|a||b| ba

satisfying the Hirsch formula

(6.15) ab ∪1 c = (−1)|a| a(b ∪1 c) + (−1)|b||c|(a ∪1 c) b

for a, b, c ∈ A. Hence the cohomology H∗(A) is (graded) commutative and in fact
a Gerstenhaber algebra with bracket

{
[a], [b]

}
=

[
E1(a; b) − (−1)(|a|−1)(|b|−1)E1(b; a)

]
(6.16)

= (−1)|a|−1
[

a ∪1 b + (−1)|a||b| b ∪1 a
]

for a, b ∈ A, see [25, §10].
The main examples of hgas are the cochains on a simplicial set, see Section 8.2,

and the Hochschild cochains of an algebra, see the references given below. Any
commutative dga is canonically an hga by setting Ek = 0 for all k ≥ 1. The
induced multiplication on BA then is the shuffle product discussed in Example 2.1.

We say that an hga A is formal if it is quasi-isomorphic to its cohomology H∗(A),
considered as an hga.

6.2. Extended hgas. In his study of ∪i-products on BA for i ≥ 1, Kadeishvili
introduced operations Ei

kl for an hga A defined over k = Z2 [14]. He called an
hga equipped with these operations an ‘extended hga’. We will only need the
family Fkl = E1

kl, but for coefficients in any k. We therefore say that an hga is
extended if it has a family of operations

(6.17) Fkl : A⊗k ⊗ A⊗l → A

of degree |Fkl| = −(k + l) for k, l ≥ 1, satisfying the following conditions. All
operations Fkl take values in the augmentation ideal Ā and vanish if any argument
equals 1 ∈ A. Their differential is given by

(6.18) d(Fkl)(a•; b•) = Akl + (−1)k Bkl

for all a1, . . . , ak, b1, . . . , bl ∈ A, where

A1l = El(a1; b•),(6.19)

Akl
κ
= a1 Fk−1,l(a•; b•) +

k−1∑

i=1

(−1)i Fk−1,l(a•, aiai+1, a•; b•)(6.20)

+

l∑

j=1

(−1)k Fk−1,j(a•; b•) El−j(ak; b•)

for k ≥ 2, and

Bk1
κ
= −Ek(b1; a•),(6.21)

5The signs given in eqs. (6) and (7) of [8] seem to be incorrect.
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Bkl
κ
=

k−1∑

i=0

Ei(b1; a•) Fk−i,l−1(a•; b•) +

l−1∑

j=1

(−1)j Fk,l−1(a•; b•, bjbj+1, b•)(6.22)

+ (−1)l Fk,l−1(a•; b•) bl

for l ≥ 2, compare [14, Def. 2].
In particular, the operation ∪2 = −F11 is a ∪2-product for A in the sense that

(6.23) d(∪2)(a; b) = a ∪1 b + (−1)|a||b| b ∪1 a

for all a, b ∈ A. This implies that the Gerstenhaber bracket in H∗(A) is trivial.
A morphism of extended hgas is a morphism of hgas that commutes with all

operations Fkl, k, l ≥ 1.
The following observation will be used in Section 9.3.

Lemma 6.2. Let f : A → B be a morphism of hgas where A is extended and B a
commutative graded algebra, for example B = H∗(A). Then for any cocycles a, b ∈
A, the value f(a ∪2 b) depends only on the cohomology classes of a and b.

Proof. We have to show that f(a ∪2 b) vanishes if one cocycle is a coboundary. If
a = dc, then

(6.24) a ∪2 b = d
(
c ∪2 b

)
− a ∪1 b − (−1)|a||b|b ∪1 a

maps to 0 ∈ B since f vanishes on coboundaries and on ∪1-products. The same
argument works for b. �

6.3. Extended hgas as shc algebras. We will need the following result.

Theorem 6.3. Let A be an extended hga, and let a ⊳ A be the ideal generated by
the values of all operations Ek with k ≥ 1 as well as those of all operations Fkl

with (k, l) 6= (1, 1).

(i) The extended hga A is canonically an shc algebra. The structure maps Φ, ha

and hc commute with morphisms of extended hgas.
(ii) The shm map Φ is a-strict. More generally, all iterations Φ[n] with n ≥ 0 as

well as the composition Φ ◦ (1 ⊗ Φ) are a-strict.
(iii) The homotopy ha is a-trivial.
(iv) Modulo a, we have for any n ≥ 0 and any a•, b• ∈ A the congruence

hc
(n)(a• ⊗ b•) ≡







1 if n = 0,

±b1 (a2 ∪2 b1) a2 if n = 2,

0 otherwise.

Proof. The shc structure is constructed explicitly in the companion paper [7]. In-
spection of the definition of Φ there shows that it is k-strict. The case n = 0 of
the iteration is void, and for n ≥ 2 it is a consequence of Lemma 3.1 (i) (observed
already in Section 5), as is the case of the other composition. The statements
about ha and hc follow again by looking at their definitions in [7]. �

7. Twisted tensor products

Let A be an augmented dga and C a coaugmented dgc. For any f ∈ Hom(C, A)
we set

(7.1) δf = (1C ⊗ µA) (1C ⊗ f ⊗ 1A) (∆C ⊗ 1A) : C ⊗ A → C ⊗ A.
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If t ∈ Hom(C, A) is a twisting cochain, then

(7.2) d⊗ − δt =
(
dC ⊗ 1A + 1C ⊗ dA

)
− δt

is a differential on C ⊗ A. The resulting complex is called a twisted tensor product
and denoted by C ⊗t A, compare [13, Def. II.1.4] or [12, Sec. 1.3].

Lemma 7.1. Let a ⊳ A, and let h : C → A be an a-trivial homotopy from the
twisting cochain t : C → A to t̃ : C → A. Then the map

δh : C ⊗t̃ A → C ⊗t A

is an isomorphism of complexes, congruent to the identity map modulo C ⊗ a.

Proof. The inverse of δh is given by δh−1 , see [12, Cor. 1.4.2]. The congruence to
the identity map follows directly from the a-triviality. �

Lemma 7.2. Let t : C → A be a twisting cochain, and let g : C′ → C be a map of
dgcs. Then t ◦ g : C′ → A is a twisting cochain and

g ⊗ 1A : C′ ⊗t◦g A → C ⊗t A

is a chain map.

Proof. This follows directly from the definitions. �

Let f : A → B be a map of augmented dgas. Then f ◦ tA : BA → B is a twisting
cochain. The associated twisted tensor product

(7.3) B(k, A, B) = BA ⊗f◦tA
B

is the one-sided bar construction. Usually, the map f will be understood from
the context and not indicated. We write the cohomology of the one-sided bar
construction as the differential torsion product

(7.4) TorA(k, B) = H∗
(
B(k, A, B)

)
.

Note that this is just a notation; we are not concerned with whether the bar con-
struction leads to a proper projective resolution in case k is not a field. However,
if A and B have zero differentials, then (7.4) is the usual torsion product.

Given an shm map g : B1 ⇒ B2, we define

Γg : B(k, A, B1) = BA ⊗tA
B1 → BA ⊗g◦tA

B2,(7.5)

Γg

(
[a1| . . . |ak] ⊗ b

)
=

k∑

m=0

[a1| . . . |am] ⊗ g([am+1| . . . |ak] ⊗ b)(7.6)

where for any k ≥ 0 the map g of degree 0 is defined as the composition

(7.7) g : BkB1 ⊗ B1
1⊗k⊗s−1

−−−−−−→ Bk+1B1
g

−→ B2.

The following is essentially taken from [26, Thm. 7], where also a version of
Lemma 7.2 for two-sided bar constructions is given.

Lemma 7.3. Assume that g : B1 ⇒ B2 is b-strict for some b ⊳ B2. Then Γg as
defined above is a chain map, congruent to 1BA ⊗ g(1) modulo BA ⊗ b.

Proof. This is a direct computation. �
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Remark 7.4. If all complexes involved are torsion-free over the principal ideal
domain k and (including the bar constructions) bounded below and if the map g
is a quasi-isomorphism, then the resulting maps in Lemmas 7.2 and 7.3 are quasi-
isomorphisms. This follows from the Künneth theorem and a standard spectral
sequence argument, compare the proof of Proposition 12.2 (i) below.

Assume now that A → A′ is a morphism of hgas. It is convenient to introduce
the map

(7.8) E : A′ ⊗ BA′ → A′, a ⊗ b 7→ E([a], b)

of degree 0. Following [15], we can then define the map

◦ : B(k, A, A′) ⊗ B(k, A, A′) → B(k, A, A′),(7.9)

(a ⊗ a) ◦ (b ⊗ b)
κ
=

l∑

m=0

(
a ◦ [b1| . . . |bm]

)
⊗ E(a; [bm+1, . . . , bl]) b

where a = [a1| . . . |ak], b = [b1| . . . |bl] ∈ BA and a, b ∈ A′. Observe that the
summand for m = l is the componentwise product

(7.10) (−1)|a||b|
a ◦ b ⊗ a b.

Proposition 7.5 (Kadeishvili–Saneblidze). Assume the notation introduced above.
Then B(k, A, A′) is naturally an augmented dga with unit 1BA ⊗ 1A′ , augmenta-
tion εBA ⊗ εA′ and product (7.9).

Proof. In [15, Cor. 6.2, 7.2] this is only stated for simply connected hgas.6 It is,
however, a formal consequence of the defining properties of any hga. �

8. Simplicial sets

Our basic reference for this material is [16]. We write [n] = {0, 1, . . . , n}.

8.1. Preliminaries. Let X be a simplicial set. We call X reduced if X0 is a
singleton and 1-reduced if X1 is a singleton. We abbreviate repeated face and
degeneracy operators as

(8.1) ∂j
i = ∂i ◦ · · · ◦ ∂j , ∂i−1

i = id, sI = sim
◦ · · · ◦ si1

for i ≤ j and I = {i1 < · · · < im}.
We write C(X) and C∗(X) for the normalized chain and cochain complex of X

with coefficients in k. Then C(X) is a dgc with the Alexander–Whitney map as
diagonal and augmentation induced by the unique map X → ∗, and C∗(X) is a
dga with product ∆∗

C(X).

We say X has polynomial cohomology (with respect to the chosen coefficient
ring k) if H∗(X) is a polynomial algebra on finitely many generators of positive
even degrees. Note that X is of finite type over k in this case.

For 0 ≤ k ≤ n we define the “partial diagonal”

P n
k : Cn(X) → Ck(X) ⊗ Cn−k(X),(8.2)

σ 7→ ∂n
k+1σ ⊗ ∂k−1

0 σ = σ(0, . . . , p) ⊗ σ(p, . . . , n)

6Note that the definition of an hga in [15, Def. 7.1] uses Baues’ convention (see Footnote 7)
and differs from ours (as does the definition of the differential on the bar construction [15, p. 208]).
This results in a product on the one-sided bar construction B(A′, A, k).
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so that

(8.3) ∆c =

n∑

k=0

P n
k (c)

for any c ∈ Cn(X). Note that each P n
k is well-defined on normalized chains.

For simplicial sets X and Y , the shuffle map

(8.4) ∇ = ∇X,Y : C(X) ⊗ C(Y ) → C(X × Y )

is a map of dgcs and additionally commutative in the sense that the diagram

(8.5)

C(X) ⊗ C(Y ) C(X × Y )

C(Y ) ⊗ C(X) C(Y × X)

TC(X),C(Y )

∇X,Y

τX,Y

∇Y,X

commutes, where τX,Y : X × Y → Y × X swaps the factors, cf. [6, Sec. 3.2].

8.2. The extended hga structure on cochains. Gerstenhaber and Voronov [8,
Sec. 2.3] have constructed an hga structure on the non-normalized cochain complex
of a simplicial set X , which descends to the normalized cochain complex C∗(X). It
can be given in terms of the interval cut operations

(8.6) Ek = AW ∗
ek

corresponding to the surjections

(8.7) ek = (1, 2, 1, 3, 1, . . . , 1, k + 1, 1),

cf. [3, §1.6.6, Sec. 2]. The operations Ek vanish for k ≥ 1 if any argument is of
degree 0 and never return a non-zero cochain of degree 0. This implies that the
normalization condition (2.15) is satisfied independently of the chosen augmenta-
tion C∗(X) → k. This hga structure generalizes the multiplication on BC∗(X)
previously defined by Baues [1, §IV.2] for 1-reduced X .7

Kadeishvili [14]8 observed that C∗(X) is an extended hga with operations Fkl

corresponding to the surjections

fkl = (k + 1, 1, k + 1, 2, k + 1, . . . , k + 1, k,(8.8)

k + 1, k, k + 2, k, . . . , k, k + l, k)

for k, l ≥ 1. The associated ∪2-product is ∪2 = −AW ∗
(2,1,2,1).

8.3. Simplicial groups. Let G be a simplicial group with multiplication µ. We
write 1p ∈ G for the identity element of the group of p-simplices. A loop in G is a
1-simplex g ∈ G such that ∂0g = ∂1g = 10.

The dgc C(G) is a dg bialgebra with unit given by the identity element of G and
multiplication

(8.9) C(G) ⊗ C(G)
∇G,G

−→ C(G × G)
µ∗

−→ C(G).

If G is commutative, then so is C(G).

7 More precisely, Baues’ multiplication is obtained by transposing the factors of the product,
so that Ekl vanishes for l 6= 1, except for E10. This also affects the components of the homotopy F

from [7, Cor. 6.2].
8Kadeishvili’s choice for fkl [14, pp. 116, 123] does not lead to the formula (6.18) (or [14,

Def. 2]) for d(Fkl), but to the one with a-variables and b-variables interchanged.
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Similarly, if G acts on the simplicial set X , then C(G) acts on C(X). We write
this action as a ∗ c for a ∈ C(G) and c ∈ C(X). If the G-action is trivial, then the
C(G)-action factors through the augmentation ε : C(G) → k. (Remember that we
use normalized chains.)

For any loop g ∈ G and any 0 ≤ m ≤ n we define the map

(8.10) Ag
m : Cn(X) → Cn+1(X), σ 7→ (s[n]\m g) · smσ

(which is again well-defined on normalized chains). By the definition of the shuffle
map we can write the action of the loop g ∈ C(G) on σ ∈ C(X) as

(8.11) g ∗ σ =

n∑

m=0

(−1)m Ag
m(σ).

The diagonal of C(X) is known to be C(G)-equivariant, cf. [6, Prop. 3.5]. For
loops, a more refined statement is the following.

Lemma 8.1. Assume that g ∈ G is a loop, and let σ ∈ Xn. Then

P n+1
k

(
Ag

m(σ)
)

=

{

(−1)k (1 ⊗ Ag
m−k) P n

k (σ) if k ≤ m,

(Ag
m ⊗ 1) P n

k−1(σ) if k > m.

for any 0 ≤ m ≤ n and 0 ≤ k ≤ n + 1.

Proof. We have

P n+1
k (Ag

m(σ)) = ∂n+1
k+1 Ag

m(σ) ⊗ ∂k−1
0 Ag

m(σ)(8.12)

=
(
∂n+1

k+1 s[n]\m g
)

·
(
∂n+1

k+1 sm σ
)

⊗
(
∂k−1

0 s[n]\m g
)

·
(
∂k−1

0 sm σ
)
.

If k ≤ m, then

(8.13) ∂n+1
k+1 s[n]\m g = 1 ∈ Gk,

hence

P n+1
k (Ag

m(σ)) = ∂n+1
k+1 sm σ ⊗

(
∂k−1

0 s[n]\m g
)

·
(
∂k−1

0 sm σ
)

(8.14)

= ∂n
k+1σ ⊗

(
s[n−k]\m−k g

)
·
(
∂k−1

0 sm σ
)

= (−1)k (1 ⊗ Ag
m−k) P n

k (σ).

In the case k > m we similarly find

(8.15) ∂k−1
0 s[n−1]\m g = 1 ∈ Gn−k

and

P n+1
k (Ag

m(σ)) =
(
∂n+1

k+1 s[n]\m g
)

·
(
∂n+1

k+1 sm σ
)

⊗ ∂k−1
0 sm σ(8.16)

=
(
s[k]\m g

)
·
(
sm ∂n

k σ
)

⊗ ∂k−1
0 sm σ

= (Ag
m ⊗ 1) P n

k−1(σ),

as claimed. �
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8.4. Universal bundles. The standard reference for this material is [16, §21],
where the notation BG =W(G) and EG = W (G) is used.

Let G be a simplicial group. Its classifying space is the simplicial set BG whose
p-simplices are elements of the Cartesian product

(8.17) [gp−1, . . . , g0] ∈ Gp−1 × · · · × G0 = BGp.

It is always reduced (with unique vertex b0 := [] ∈ BG0) and 1-reduced in case G is
reduced. The simplices in the total space of the universal G-bundle π : EG → BG
are similarly given by

(8.18) e =
(
gp, [gp−1, . . . , g0]

)
∈ Gp × BGp = EGp ;

the map π is the obvious projection. We write e0 = (1, b0) ∈ EG0 for the canonical
basepoint, which projects onto b0. See [16, pp. 71, 87] for the face and degeneracy
maps of EG and BG. We consider EG as a left G-space via

(8.19) h ·
(
gp, [gp−1, . . . , g0]

)
=

(
gp h−1, [gp−1, . . . , g0]

)

for h ∈ Gp.
There is a canonical map S : EG → EG of degree 1 given by

(8.20) S
(
gp, [gp−1, . . . , g0]

)
=

(
1p+1, [gp, gp−1, . . . , g0]

)
,

cf. [16, p. 88]. For all e ∈ EGp one has

∂0Se = e,(8.21)

∂1Se = e0 if p = 0,(8.22)

∂kSe = S∂k−1e if p > 0 and k > 0.(8.23)

This implies that S induces a chain homotopy on C(EG), again called S, between
the projection to e0 and the identity on EG,

(8.24) (dS + Sd)(e) =

{

e − e0 if p = 0,

e if p > 0,

for any simplex e ∈ EG, and that it additionally satisfies

(8.25) SS = 0 and Se0 = 0,

compare [5, Prop. 2.7.1] or [6, Sec. 3.7].

Lemma 8.2. Let c ∈ C(EG) be of degree n.

(i) For any 0 ≤ k ≤ n + 1 one has

P n+1
k (Sc) =

{

e0 ⊗ Sc if k = 0,

(S ⊗ 1) P n
k−1(c) if k > 0.

(ii) One has

∆ Sc = (S ⊗ 1) ∆c + e0 ⊗ Sc.

Proof. The first statement is immediate if c = e0 or k = 0. For n > 0 and k > 0 it
follows from the identities (8.21)–(8.23). Combining it with (8.3) gives the second
claim, cf. [5, Prop. 2.7.1] or [6, Prop. 3.8]. �
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8.5. An Eilenberg–Moore theorem. For this rest of this article we assume that
k is a principal ideal domain.

The following result is suggested by work of Kadeishvili–Saneblidze [15, Cor. 6.2].

Proposition 8.3. Let F
ι

→֒ E → B be a simplicial fibre bundle. If B is 1-reduced
and of finite type over k, then the map

(8.26) B(k, C∗(B), C∗(E)) → C∗(F ), [γ1| . . . |γk] ⊗ γ 7→

{

ι∗(γ) if k = 0,

0 otherwise

is a quasi-isomorphism of dgas. In particular, there is an isomorphism of graded
algebras

H∗(F ) ∼= TorC∗(B)
(
k, C∗(E)

)
.

Proof. By the usual Eilenberg–Moore theorem, the map is a quasi-isomorphism of
complexes. For field coefficients, we can refer to [22, Thm. 3.2]. For general k, it
follows by dualizing the homological quasi-isomorphism [9, Sec. 6]

(8.27) C(F ) → Ω
(
k, C(B), C(E)

)

where the target is the one-sided cobar construction.
Let us recall the argument: If we write G for the structure group of the bun-

dle E → B, then C(F ) is a left C(G)-module. By the twisted Eilenberg–Zilber
theorem [9, Sec. 4], there is a twisting cochain t : C(B) → C(G) and a homotopy
equivalence

(8.28) C(E) ≃ C(B) ⊗t C(F )

of left C(B)-comodules. Under this isomorphism, the map ι∗ : C(F ) → C(E)
corresponds to the canonical inclusion of C(F ) into the twisted tensor product
with the unique base point of B as first factor.

We therefore get a homotopy equivalence of complexes

Ω
(
k, C(B), C(E)

)
≃ Ω

(
k, C(B), C(B) ⊗t C(F )

)
(8.29)

= Ω
(
k, C(B), C(B)

)
⊗t C(F )

between the one-sided cobar constructions, where we consider Ω(k, C(B), C(B)) as
a right C(B)-comodule, cf. [13, Def. II.5.1].

The canonical inclusion k →֒ Ω(k, C(B), C(B)) is a homotopy equivalence [13,
Prop. II.5.2], and δt vanishes on its image. Because B is 1-reduced, a spectral
sequence argument shows that the map C(F ) → Ω(k, C(B), C(B)) ⊗t C(F ) is a
quasi-isomorphism of complexes, hence so is the natural map

(8.30) C(F ) → Ω
(
k, C(B), C(E)

)
, c 7→ 1 ⊗ 1ΩC(B) ⊗ ι∗(c).

Since B is of finite type, the canonical map

(8.31) (s−1C̄∗(B))⊗k ⊗ C∗(E) →
(
k ⊗ (s−1C̄(B))⊗k ⊗ C(E)

)∗

is a quasi-isomorphisms for any k ≥ 0 by the universal coefficient theorem, hence
so is the composition

(8.32) B
(
k, C∗(B), C∗(E)

)
→ Ω

(
k, C(B), C(E)

)∗
→ C∗(F ).

A look at Proposition 7.5 finally shows that the quasi-isomorphism is multiplica-
tive because any cochain on B of positive degree restricts to 0 on F . (Recall that
we are working with normalized cochains.) �
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If we define an increasing filtration on B(k, C∗(B), C∗(E)) by the length of ele-
ments, then we get an (Eilenberg–Moore) spectral sequence of algebras converging
to H∗(F ) because the deformation terms in the product formula given in Proposi-
tion 7.5 lower the filtration degree. By the Künneth theorem, the second page of
this spectral sequence is of the form

(8.33) E2 = TorH∗(B)
(
k, H∗(E)

)

with the usual product on Tor, provided that H∗(B) is free over k.

Remark 8.4. Assume that the base B has polynomial cohomology, say H∗(B) =
k[y1, . . . , yn]. Let b1, . . . , bn ∈ C∗(B) be representatives of the generators, and let

(8.34)
∧

(x1, . . . , xn)

be the exterior algebra on generators xi of degrees |xi| = |yi| − 1. Since BC∗(Y ) is
a dg bialgebra and the elements [bi] ∈ BC∗(Y ) primitive, the assignment

(8.35)
∧

(x1, . . . , xn) → BC∗(Y ), xi1 ∧ · · · ∧ xik
7→ [bi1 ] ◦ · · · ◦ [bik

]

is a dgc map (but not multiplicative in general) and in fact a quasi-isomorphism.
Evaluating the product from the left to the right shows that the associated twisting
cochain tGM is of the form tGM(xi) = bi and

tGM(xi1 ∧ · · · ∧ xik
) = E1(· · · E1(E1(bi1 ; bi2 ); bi3 ); · · · ; bik

)(8.36)

= (−1)k−1
(
((bi1 ∪1 bi2) ∪1 bi3 ) ∪1 · · ·

)
∪1 bik

for k ≥ 2 and i1 < · · · < ik. A standard spectral sequence argument then implies
that the twisted tensor product

(8.37)
∧

(x1, . . . , xn) ⊗tGM
C∗(E)

is quasi-isomorphic to B(k, C∗(B), C∗(E)) as a complex, hence computes H∗(F ) as
a graded k-module by the Eilenberg–Moore theorem. We thus recover the model
constructed by Gugenheim–May [11, Example 2.2 & Thm. 3.3].

Lemma 8.5. Let G be a connected simplicial group and K ⊂ G a connected
subgroup. Write Ǧ ⊂ G for the reduced subgroup of simplices lying over 1 ∈ G0,
and define Ǩ ⊂ K analogously. Then the inclusion Ǧ/Ǩ →֒ G/K is a homotopy
equivalence, natural in the pair (G, K).

Proof. The inclusions Ǧ →֒ G and Ǩ →֒ K are homotopy equivalences, compare
[16, Thm. 12.5]. The long exact sequence of homotopy groups implies that the

map Ǧ/Ǩ →֒ G/K is also a homotopy equivalence. Injectivity follows from the

identity Ǩ = K ∩ Ǧ, and naturality is clear. �

Proposition 8.6. Let G be a reduced simplicial group and K a reduced subgroup.
There is an isomorphism of graded algebras

H∗(G/K) ∼= TorC∗(BG)
(
k, C∗(BK)

)
,

natural with respect to maps of pairs (G, K).



THE COHOMOLOGY RINGS OF HOMOGENEOUS SPACES 25

Proof. The map π : EG/K → BG is a fibre bundle with fibre G/K. By Propo-
sition 8.3, the dgas C∗(G/K) and B(k, C∗(BG), C∗(EG/K)) are naturally quasi-
isomorphic. The homotopy equivalence BK = EK/K → EG/K is a map over BG
and induces a quasi-isomorphism

(8.38) B
(
k, C∗(BG), C∗(EG/K)

)
→ B

(
k, C∗(BG), C∗(BK)

)
,

which is multiplicative by the naturality of the hga structure on cochains. �

9. Homotopy Gerstenhaber formality of BT

9.1. Dga formality. Let T be a simplicial torus of rank n. By this we mean a
commutative simplicial group T such that H(T ) is an exterior algebra on genera-
tors x1, . . . , xn of degree 1. For example, T can be the compact torus (S1)n, the
algebraic torus (C×)n or the simplicial group BZn.

As mentioned in the introduction, Gugenheim–May [11, Thm. 4.1] have con-
structed a quasi-isomorphism of dgas

(9.1) C∗(BT ) → H∗(BT )

annihilating all ∪1-products. An alternative approach was given by the author in
his doctoral dissertation [5, Prop. 2.2], see also [6, Prop. 5.3]. The goal of this
section is to promote the latter construction to a quasi-isomorphism of hgas, that
is, one that annihilates all operations Ek with k ≥ 1. We will see that also all
operations Fkl with the exception of the ∪2-product are send to 0.

We write Λ = H(T ) and S = H(BT ). The latter is the commutative coalgebra
on generators yi ∈ S2 that correspond to the xi’s under transgression. The yi’s
define a k-basis yα of S index by multi-indices α ∈ Nn. We also write y0 = 1.

Let t : S → Λ be the (homological) twisting cochain that sends each yi to xi and
vanishes in other degrees. The twisted tensor product

(9.2) K = Λ ⊗t S

is the Koszul complex. It is a dgc with Λ-equivariant diagonal given by the com-
ponentwise diagonals. For a ∈ Λ and c ∈ S we write a · c ∈ K instead of a ⊗ c,
reflecting the Λ-action. The differential on K is given by

(9.3) d(a · yα) = (−1)|α|
∑

i

a ∧ xi · yα|i =
∑

i

xi ∧ a · yα|i

where the sum runs over all i such that αi > 0, and α|i means that the i-th
component of α is decreased by 1.

Let c1, . . . , cn ∈ C1(T ) be linear combinations of loops in G representing the
generators xi. They define a quasi-isomorphism of dg bialgebras

(9.4) ϕ : Λ → C(T ), xi1 ∧ · · · ∧ xik
7→ ci1 ∗ · · · ∗ cik

for i1 < · · · < ik. Moreover, let π : ET → BT be the universal T -bundle. Note that
C(ET ) is an Λ-module via ϕ.

Our map (9.1) will be the transpose of a quasi-isomorphism f : S → C(BT ).
The construction of the latter is based on a map

(9.5) F : K → C(ET )

recursively defined by

F (1) = e0,(9.6)
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F (a · c) = a ∗ F (c) if |a| > 0,(9.7)

F (c) = S F (dc) if |c| > 0(9.8)

for c ∈ S and a ∈ Λ, where S is the homotopy defined in (8.20).

Proposition 9.1. The map F is a Λ-equivariant quasi-isomorphism of dgcs.

For the convenience of the reader, we adapt the proof given in [6, Prop. 4.3] to
our slightly more general setting.9

Proof. It is clear from the definition that F commutes with the Λ-action. To show
that it is a chain map, we proceed by induction on the degree of a · y ∈ K. For
a · y = 1 this is obvious. For |a| > 0 we have by equivariance and induction

d F (a · y) = d
(
ϕ(a) ∗ F (y)

)
= ϕ(da) ∗ F (y) + (−1)|a| ϕ(a) ∗ dF (y)(9.9)

= F
(
da · y + (−1)|a|a · dy

)
= F d(a · y).

For |y| > 0 we have by (8.24) and induction

(9.10) d F (y) = d S F (dy) = F (dy) − S d F (dy) = F (dy).

To show that f is a map of coalgebras, we proceed once more by induction
on |a · y|, the case a · y = 1 being trivial. If |a| > 0, then again by equivariance and
induction we have

∆F (a · y) = ∆
(
ϕ(a) ∗ F (y)

)
= ∆ϕ(a) ∗ ∆F (y) = ∆ϕ(a) ∗ (F ⊗ F )∆y(9.11)

= (F ⊗ F )(∆a · ∆y) = (F ⊗ F )∆(a · y).

For α 6= 0 we therefore have by Lemma 8.2 (ii) that

∆ F (yα) = ∆ S F (dyα) = (S ⊗ 1) ∆ F (dyα) + e0 ⊗ S F (dyα)(9.12)

=
∑

i

(S ⊗ 1) ∆F (xi · yα|i) + F (1) ⊗ F (yα),

where the sum runs over the indices i such that αi 6= 0. Using again the equivariance
of the Alexander–Whitney map and induction, we get

∆ F (yα) =
∑

i

(S ⊗ 1) ∆ci ∗ ∆ F (yα|i) + F (1) ⊗ F (yα)(9.13)

=
∑

i

∑

β+γ=α|i

(S ⊗ 1) ∆ci ∗
(
F (yβ) ⊗ F (yγ)

)
+ F (1) ⊗ F (yα).

Now ∆ci = ci ⊗ 1 + 1 ⊗ ci, and S F (yγ) = 0 by (8.25), hence

(9.14) ∆F (yα) =
∑

i

∑

β+γ=α|i

S(ci ∗ F (yβ)) ⊗ F (yγ) + F (1) ⊗ F (yα).

We reorder the summands. For each γ 6= α whose components are all less than or
equal to those of α, we have one term of the form ci ∗ F (yβ|i) for each β = α − γ
and each i such that βi 6= 0. This gives

∆ F (yα) =
∑

β+γ=α
γ 6=α

∑

i

S(ci ∗ F (yβ|i) ⊗ F (yγ) + F (1) ⊗ F (yα)(9.15)

9Using [5, eq. (2.12c)] or [6, eq. (3.29a)], one can see that our new construction coincides with
the previous one if each ci lies entirely in the i-th factor of a circle decomposition of T .
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=
∑

β+γ=α
γ 6=α

F (yβ) ⊗ F (yγ) + F (1) ⊗ F (yα)

=
∑

β+γ=α

F (yβ) ⊗ F (yγ),

as was to be shown.
That F induces an isomorphism in homology is trivial. �

Since C(G) acts trivially on BT , the composition π∗F : K → C(BT ) descends
to a map of dgcs

(9.16) f : S = k ⊗Λ K → C(BT ).

Proposition 9.2. The transpose f∗ : C∗(BT ) → S∗ is a quasi-isomorphism of
dgas.

Proof. We only have to show that f is a quasi-isomorphism. We start with a general
remark. All complexes in this proof are homological and N-graded.

Recall that for any dga A the canonical map

(9.17) B(k, A, A) → k

is a homotopy equivalence of complexes [13, Prop. II.5.2]. This implies that for any
twisting cochain t : C → A and any left C-comodule M the chain map

(9.18) B(k, A, A ⊗t M) → M = k ⊗
A

(A ⊗t M)

is a quasi-isomorphism.
Now consider the commutative diagram

(9.19)

B(k, Λ, K) B
(
k, C(T ), C(ET )

)

S = k ⊗
Λ

K k ⊗
C(T )

C(ET ) C(BT ).

The composition along the bottom row equals f . The top arrow is a quasi-isomor-
phism by a standard spectral sequence argument, and the left vertical arrow is one
by the remark above.

Recall from the twisted Eilenberg–Zilber theorem [9, Lemmas 4.3, 4.5∗] (see also
[20, § II.4]) that C(ET ) and C(T ) ⊗t C(BT ) (with a suitable twisting cochain t)
are homotopic as C(T )-modules. It follows that the bottom right arrow above is a
homotopy equivalence of complexes and, again by the remark above, that the right
vertical arrow is a quasi-isomorphism.

Putting everything together, we see that f is a quasi-isomorphism. �

9.2. Hga formality. We say that a (non-degenerate) simplex σ ∈ ET appears
in an element of C(ET ) if its coefficient in this chain is non-zero; an analogous
definition applies to tensor products of chain complexes.

Lemma 9.3. Let 0 ≤ k ≤ n+1, a ∈ Λ1 and c ∈ Sn. For any simplex σ ∈ (ET )n+1

appearing in F (a · c) we have

(S ⊗ S) P n+1
k (σ) = 0.
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Proof. By construction and formula (8.11), the simplex σ is of the form Ag
m(τ) for

some loop g ∈ T1, some 0 ≤ m ≤ n and some n-simplex τ appearing in F (c).
If n = 0, then τ = e0. Hence

(9.20) P 1
0 (σ) = e0 ⊗ g ∗ e0 and P 1

1 (σ) = g ∗ e0 ⊗ e0

by Lemma 8.1, and our claim follows from the second identity in (8.25).
Now consider the case n > 0. The definition of the map F implies that τ is of

the form Sρ where ρ is a simplex appearing in F (ã · c̃) with ã ∈ Λ1 and c̃ ∈ Sn−2.
Assume k ≤ m. Then

(9.21) P n+1
k (σ) = P n+1

k (Ag
m(Sρ)) = (−1)k (1 ⊗ Ag

m−k) P n
k (Sρ)

where we have once again used Lemma 8.1. In the case k = 0 we obtain

(9.22) (S ⊗ S) P n+1
0 (σ) = Se0 ⊗ S Ag

m(Sρ) = 0

by Lemma 8.2 (i) and (8.25). If k > 0, then

(9.23) (S ⊗ S) P n+1
k (σ) = (−1)k (S S ⊗ S Ag

m−k) P n−1
k−1 (ρ) = 0

again by Lemma 8.2 (i) and the first identity in (8.25).
In the case k > m, we have

(9.24) P n+1
k (σ) = (Ag

m ⊗ 1) P n
k−1(Sρ).

For k = 1 this gives

(9.25) (S ⊗ S) P n+1
1 (σ) = −S Ag

m(e0) ⊗ S Sρ = 0.

If k > 1, we finally get

(S ⊗ S) P n+1
k (σ) = (S Ag

m S ⊗ S) P n−1
k−2 (ρ)(9.26)

= (S Ag
m ⊗ 1) (S ⊗ S) P n−1

k−2 (ρ) = 0

by induction. �

For 0 ≤ k < l ≤ n we define

Qn
k,l : Cn(ET ) → Cn−l+k+1(ET ) ⊗ Cl−k(BT ),(9.27)

σ 7→ ∂l−1
k+1σ ⊗ π∗ ∂k−1

0 ∂n
l+1σ

= σ(0, . . . , p, l, . . . , n) ⊗ π∗σ(k, . . . , l).

This operation is related to the ∪1-product since for σ ∈ Cn(ET ) we have

(9.28) (1 ⊗ π∗) AW(1,2,1)(σ) =
∑

0≤k<l≤n

(−1)(n−l)(l−k)+k Qn
k,l(σ),

compare [3, §2.2.8].

Lemma 9.4. Let 0 ≤ k < l ≤ n and a · c ∈ Kn. For any n-simplex σ ∈ ET
appearing in F (a · c) we have

Qn
k,l(σ) = 0.

Proof. We proceed by induction on n, the case n = 0 being void. For the induction
step from n for n + 1, we start by considering the case |a| = 0, which entails n ≥ 1.
The definition of F then implies that σ is of the form σ = Sτ for some n-simplex
τ ∈ ET that appears in F (ã · c̃) for some ã ∈ Λ1 and some c̃ ∈ Sn−1.

If 1 ≤ k < l ≤ n + 1, we get

Qn+1
k,l (σ) = ∂l−1

k+1 Sτ ⊗ π∗ ∂k−1
0 ∂n+1

l+1 Sτ(9.29)



THE COHOMOLOGY RINGS OF HOMOGENEOUS SPACES 29

= S ∂l−2
k τ ⊗ π∗ ∂k−1

0 S ∂n
l τ(9.30)

= S ∂l−2
k τ ⊗ π∗ ∂k−2

0 ∂n
l τ(9.31)

= (S ⊗ 1) Qn
k−1,l−1(τ) = 0(9.32)

by induction.
For 0 < l ≤ n + 1 we have

Qn+1
0,l (σ) = ∂l−1

1 Sτ ⊗ π∗ ∂n+1
l+1 Sτ(9.33)

= S ∂l−2
0 τ ⊗ π∗ ∂n+1

l+1 Sτ(9.34)

= S ∂l−1
0 Sτ ⊗ π∗ ∂n+1

l+1 Sτ(9.35)

= ±(1 ⊗ π∗) T (1 ⊗ S) P n+1
l (Sτ)(9.36)

where T denotes the transposition of factors,

= ∓(1 ⊗ π∗) T (S ⊗ S) P n
l−1(τ) = 0(9.37)

by Lemmas 8.2 (i) and 9.3.
Now we turn to the case |a| > 0. Then a simplex appearing in F (a · c) is of the

form σ = Ag
m(τ) for some loop g ∈ T1, some n-simplex τ ∈ ET appearing in F (c)

and some 0 ≤ m ≤ n. We have

Qn+1
k,l (σ) = Qn+1

k,l

(
Ag

m(τ)
)

= Qn+1
k,l

(
s[n]\m g · smτ

)
(9.38)

= ∂l−1
k+1

(
s[n]\m g · smτ

)
⊗ π∗ ∂k−1

0 ∂n+1
l+1 smτ.

Assume l > m. Then

(9.39) ∂k−1
0 ∂n+1

l+1 smτ = ∂k−1
0 sm ∂n

l τ =

{

sm−k ∂k−1
0 ∂n

l τ if k ≤ m,

∂k−2
0 ∂n

l τ if k > m.

In the first case we obtain a degenerate simplex, so that (9.38) vanishes. In the
second case we have

Qn+1
k,l (σ) =

(
s[n−l+k+1]\m g

)
·
(
sm ∂l−2

k τ
)

⊗ π∗ ∂k−2
0 ∂n

l τ(9.40)

= (Ag
m ⊗ 1)

(

∂l−2
k τ ⊗ π∗ ∂k−2

0 ∂n
l τ

)

= (Ag
m ⊗ 1) Qn

k−1,l−1(τ) = 0

by induction.
Finally consider l ≤ m. Then

Qn+1
k,l (σ) =

(
∂l−1

k+1 s[n]\m g
)

·
(
∂l−1

k+1 smτ
)

⊗ π∗ ∂k−1
0 ∂n+1

l+1 smτ(9.41)

=
(
s[n−l+k+1]\m−l+k+1g

)
·
(
sm+k−l+1 ∂l−1

k+1τ
)

⊗ π∗ ∂k−1
0 ∂n

l+1τ

= Ag
m−l+k+1

(
∂l−1

k+1τ
)

⊗ π∗ ∂k−1
0 ∂n

l+1τ

= (Ag
m−l+k+1 ⊗ 1) Qn

k,l(τ) = 0

by induction. This completes the induction step and the proof. �

We write n = {1, . . . , n}. We say that a surjection u : k + l → l has an enclave
at some position 1 < i < k + l if u(i − 1) = u(i + 1) and if the value u(i) does not
appear elsewhere in the surjection. For example, the surjection (1, 2, 1, 3, 4, 1, 5)
has exactly one enclave at position 2.
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Proposition 9.5. If the surjection u : k + l → l has an enclave, then

AWu f = 0.

Proof. We start with a general observation. Let σ be a simplex in some simplicial
set. If u has an enclave, then it follows from the definition of interval cut opera-
tions [3, Sec. 2.2] that any tensor product of simplices appearing in AWu(σ) can be
obtained from a term τ ⊗ ρ appearing in AW(1,2,1)(σ) by applying an interval cut
to τ (at one choice of positions, not at all positions as in [3, §2.2.6]) and permuting
the factors of the result.

Now let c ∈ Sn for some n ≥ 0. By definition and naturality we have

(9.42) AWu f(c) = AWu π∗ F (c) = (π∗ ⊗ π∗) AWu F (c).

Our previous remarks together with (9.28) show that it suffices to prove that Qn
k,l(σ)

vanishes for any σ ∈ ET appearing in F (c) and any 0 ≤ k < l ≤ n. But this has
been done in Lemma 9.4. �

Theorem 9.6. The map f∗ : C∗(BT ) → H∗(BT ) is a quasi-isomorphism of hgas
that additionally annihilates all extended hga operations Fkl with (k, l) 6= (1, 1). In
particular, C∗(BT ) is formal as an hga.

Proof. We know from Proposition 9.2 that f∗ is a quasi-isomorphism of dgas. The
hga operations Ek with k ≥ 1 as well as the operations Fkl with (k, l) 6= (1, 1) are
defined by surjections having enclaves, see (8.7) and (8.8). Hence the claim follows
by dualizing Proposition 9.5. �

9.3. The case where 2 is invertible. It would greatly simplify the discussion of
the next sections if the formality map f∗ also annihilated the operation F11 = −∪2.
However, this is impossible to achieve for the transpose of a quasi-isomorphism
f : H(BT ) → C(BT ), independently of the coefficient ring k. This can be seen as
follows.

Take a non-zero y ∈ H2(BT ) and set w = f(y) ∈ C2(BT ). Choose a cochain
a ∈ C2(BT ) such that a(w) 6= 0. Let σ be a 2-simplex appearing in w with
coefficient wσ 6= 0 and such that a(σ) 6= 0. Define b ∈ C2(BT ) by b(σ) = 1 and
b(τ) = 0 for τ 6= σ. Then

(9.43) (a ∪2 b)(w) =
∑

τ

wτ a(τ) b(τ) = wσ a(σ) 6= 0,

where we have used the identity (a ∪2 b)(σ) = a(σ) b(σ), cf. [3, §2.2.8]. Hence
f∗(a ∪2 b) 6= 0, and analogously f∗(b ∪2 a) 6= 0. Note that a may be a cocycle, but
b is not. (If σ = [ g | 10 ] for a loop 11 6= g ∈ T1, then b

(
d [ s0g−1 | g | 10 ]

)
6= 0.)

In general one cannot even expect f∗ to annihilate all ∪2-products of cocycles as
they are related to Steenrod squares. For k = Z2 and any non-zero [a] ∈ H2(BT )
one has

(9.44) [a] = Sq0[a] = [a ∪2 a] 6= 0.

The situation changes if we can invert 2.

Proposition 9.7. Assume that 2 is invertible in k. Then one can choose repre-
sentatives (ci) such that f∗ additionally annihilates all ∪2-products of cocycles.
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Proof. Let ι : T → T be the group inversion. Being a morphism of groups, it induces
involutions of ET and BT , which we denote by the same letter. Recall that ι∗

changes the sign of all generators xi ∈ H1(T ) and all cogenerators yi ∈ H2(BT ).
Starting from any set of representatives (ci), we set

(9.45) c̃i = 1
2 ci − 1

2 ι∗ci,

so that ι∗c̃i = −c̃i. We construct F and f based on these representatives. The
equivariance of F with respect to the involutions follows inductively from the re-
cursive definition, and it entails that of f .

Now let a and b be cocycles. By Lemma 6.2, the value f∗(a ∪2 b) only depends
on the cohomology classes of a and b. In particular, we may assume that a is of
even degree 2k and b of degree 2l. Then a ∪2 b is of degree 2(k + l − 1), whence

(9.46) ι∗f∗(a ∪2 b) = −(−1)k+lf∗(a ∪2 b).

On the other hand, we have

(9.47) ι∗(a ∪2 b) = ι∗(a) ∪2 ι∗(b)

by naturality. Now ι∗(a) is cohomologous to (−1)k a and ι∗(b) cohomologous
to (−1)l a, which implies that

(9.48) f∗(ι∗(a ∪2 b)) = (−1)k+l f∗(a ∪2 b).

Since 2 is invertible in k, this can only happen if the ∪2-product vanishes. �

10. The kernel of the formality map

Let T be a simplicial torus, and let f∗ : C∗(BT ) → H∗(BT ) be the formality
map constructed in the previous section for some choice of representatives ci. We
need to study its kernel k = ker f∗. We summarize what we know so far.

Proposition 10.1. The kernel k⊳C∗(BT ) of f∗ contains the following elements:

(1) all elements of odd degree,
(2) all coboundaries,
(3) the images of the interval cut operations AW ∗

u if the surjection u has an en-
clave. This includes the images of all hga operations Ek with k ≥ 1 and of all
extended hga operations Fkl with (k, l) 6= (1, 1).

(4) If 2 is invertible in k, then k contains all ∪2-products of cocycles.

Proof. The first two claims hold because H∗(BT ) is concentrated in even degrees.
The other two are Theorem 9.6 and Proposition 9.7. �

Let us write

(10.1) [a, b] = ab − (−1)|a||b| ba

for the commutator of a, b ∈ C∗(BT ).

Lemma 10.2. For all a, b ∈ C∗(BT ),

[a, b] ≡ 0 (mod k).

Proof. This follows from Proposition 10.1 together with the identity

(10.2) d(∪1)(a; b) = [a, b],

or from the fact that k is the kernel of a map to a commutative dga. �
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Lemma 10.3. The ∪1-product is a right derivation of the commutator. That is,

[a, b] ∪1 c = (−1)|a|[a, b ∪1 c] + (−1)|b||c|[a ∪1 c, b]

for all a, b, c ∈ C∗(BT ).

Proof. This is a consequence of the Hirsch formula (6.15). �

Lemma 10.4. Let a, b, c ∈ C∗(BT ).

(i) Modulo k, the ∪2-product is both a left and a right derivation of the commuta-
tor. That is,

a ∪2 (b c) ≡ (a ∪2 b) c + (−1)|a||b| b (a ∪2 c) (mod k),

(a b) ∪2 c ≡ (−1)|b||c| (a ∪2 c) b + a (b ∪2 c) (mod k).

(ii) One has
a ∪2 [b, c] ≡ [a, b] ∪2 c ≡ 0 (mod k).

Proof. The first part follows from the identities

d(F12)(a; b, c)
κ
= E2(a; b, c) − F11(a; b) c + F11(a, b c) − F11(a; c),(10.3)

d(F21)(a, b; c)
κ
= a F11(b; c) − F11(a b; c) + F11(a; c) b − E2(c; a, b).(10.4)

It implies the formulas

a ∪2 [b, c] ≡ [a ∪2 b, c] + (−1)|a||b|[b, a ∪2 c] (mod k),(10.5)

[a, b] ∪2 c ≡ (−1)|b||c|[a ∪2 c, b] + [a, b ∪2 c] (mod k),(10.6)

which together with Lemma 10.2 entail the second claim. �

Lemma 10.5. Let a, b, c1, . . . , ck ∈ C∗(BT ) with k ≥ 2. Then

a ∪2 Ek(b; c1, . . . , ck) ≡ Ek(b; c1, . . . , ck) ∪2 a ≡ 0 (mod k).

Proof. When the surjection ek with k ≥ 2 is split into two, then at least one of
them will have an enclave. By the composition rule in the surjection operad, this
implies that each surjection appearing in f11 ◦2 ek or f11 ◦1 ek again has an enclave.
Together with Proposition 10.1 this gives the desired identities. �

Lemma 10.6. Let a, b, c ∈ C∗(BT ). If a is cocycle of degree |a| ≤ 2, then

a ∪2 (b ∪1 c) ≡ (b ∪1 c) ∪2 a ≡ 0 (mod k).

Proof. We consider the element g12 = (2, 3, 1, 3, 1, 2, 1) in the surjection operad,
following Kadeishvili [14, Rem. 2].10 It satisfies

(10.7) d g12 = e1 ◦1 f11 + (1 2) · (e1 ◦2 f11) − f11 ◦2 e1 − f12 + (2 3) · f12

and the corresponding interval cut operation therefore

(10.8) d(G12)(a, b, c) ≡ ∓a ∪2 (b ∪1 c) (mod k).

Because there are three 1’s appearing in g12, the homological interval cut oper-
ation on a simplex σ has the property that the first simplex σ(1) in the resulting
tensor product involves three intervals, which each contributes at least one vertex.

10Kadeishvili takes g12 = (1, 2, 1, 3, 1, 3, 2) and g21 = 1, 2, 3, 2, 3, 1, 3) instead. Assuming his
definition of E1

pq (see Footnote 8), this gives the formula for d(G12) stated in [14, Rem. 2] with

the term (a ∪2 c) ∪1 b replaced by (a ∪2 b) ∪1 c. In the formula for d(G21), the double ∪2-product
should read (a ∪2 c) ∪1 b.
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Now the first occurrence of 1 in g12 is surrounded by two occurrences of 3. Hence
the associated interval for this 1 must involve at least two vertices for otherwise the
simplex σ(3) made up of the 3-intervals would contain twice the same vertex and
therefore be degenerate. Hence σ(1) is of dimension at least 3.

Dually, G12(a, b, c) vanishes for |a| ≤ 2, which implies that the left-hand side
of (10.8) is a coboundary if a is additionally a cocycle. This proves that the first
term in the statement is congruent to 0.

The second part follows analogously by looking at g21 = (3, 1, 3, 2, 3, 2, 1), which
satisfies

�(10.9) d g21 = (2 3) · (e1 ◦1 f11) + e1 ◦2 f11 − f11 ◦1 e1 + f21 − (1 2) · f21.

For elements b0, . . . , bk ∈ C∗(BT ) we write the repeated ∪1-product as

(10.10) U0(b0) = b0

for k = 0 and

(10.11) Uk(b0, . . . , bk) = (−1)k−1
(
((b0 ∪1 b1) ∪1 b2) ∪1 · · ·

)
∪1 bk

for k ≥ 1, compare the Gugenheim–May twisting cochain (8.36).

Proposition 10.7. For all cocycles a, b0, . . . , bk ∈ C∗(BT ), k ≥ 1, we have

a ∪2 Uk(b0, . . . , bk) ≡ Uk(b0, . . . , bk) ∪2 a ≡ 0 (mod k).

Proof. We show that the first term in the statement lies in k; the proof for the
second is analogous.

Write b = Uk(b0, . . . , bk) and assume first that a = dc is a coboundary. Then

(10.12) d(c ∪2 b) = dc ∪2 b ± c ∪2 db ± c ∪1 b ± b ∪1 c,

hence

(10.13) a ∪2 b ≡ ∓c ∪2 db (mod k).

Since b1, . . . , bk are cocycles, we have

(10.14) d b =
k∑

i=1

±Uk−i

([
Ui−1(b0, . . . , bi−1), bi

]
, bi+1, . . . , bk

)

By a repeated application of Lemma 10.3 we see that each term on the right-hand
side of (10.14) is a sum of commutators, so that the right-hand side of (10.13)
vanishes by Lemma 10.4 (ii). This proves the claim for a = dc.

As a consequence, we may replace a by any cocycle cohomologous to it. Because
H∗(BT ) is generated in degree 2, we may in particular assume that a is the product
of cocycles of degree 2. By Lemma 10.4 (i), it is enough to consider the case where
a is a single degree-2 cocycle, where Lemma 10.6 applies. �

11. Spaces and shc maps

Let T be a simplicial torus and let κ : BT → X be a map of simplicial sets. We
write k = kX ⊳ C∗(X) for the kernel of the composition

(11.1) C∗(X)
κ∗

−→ C∗(BT )
f∗

−→ H∗(BT )

where f∗ denotes the formality map constructed in the previous section. We want
to relate k to the the canonical shc structure on C∗(X). Combining Theorem 6.3
with Proposition 10.1 we see that the structure map Φ: C∗(X) ⊗ C∗(X) ⇒ C∗(X)
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is k-strict. Moreover, the associativity homotopy ha : Φ ◦ (Φ ⊗ 1) ≃ Φ ◦ (1 ⊗ Φ) is
k-trivial, but the commutativity homotopy hc : Φ ◦ TA,A ≃ Φ is not in general. This
failure requires extra attention.

We introduce the following terminology: Let A and B be dgas, b⊳B and m ≥ 0.
An shm homotopy h : A⊗m → B is called k-trivial on cocycles if

(11.2) h(n)(a11 ⊗ · · · ⊗ a1m, . . . , an1 ⊗ · · · ⊗ anm) ≡ 0 (mod b)

for all n ≥ 1 and all cocycles a11, . . . , anm ∈ A. Similarly, an shc map f : A⊗m ⇒ B
is called k-natural on cocycles if there is a homotopy h : A⊗2m → B that is b-trivial
on cocycles and makes the diagram (5.1) commute.

Lemma 11.1. Let h, k : A⊗m → B be shm homotopies, b-trivial on cocycles.

(i) The shm homotopies h ∪ k and h−1 are again b-trivial on cocycles.
(ii) If f : B → C is a c-strict shm map such that f(1)(b) ⊂ c, then f ◦h is c-trivial

on cocycles.
(iii) If T : A⊗m → A⊗m is some permutation of the factors, then h ◦ g is b-trivial.

Proof. The first claim follows from the definition of the cup product and the for-
mula for the inverse given in Lemma 2.2 (ii). The second part is analogous to
Lemma 3.1 (ii), and the last claim is trivial. �

We assume from now on that 2 is invertible in k. Then k contains all ∪2-products
of cocycles by Proposition 9.7, so that both hc and the homotopy kc = hc ◦T in the
other direction become k-trivial on cocycles. We need to extend this observation.

Lemma 11.2. For any n ≥ 0, the shm homotopy

hc ◦
(
1 ⊗ Φ[n]

)
: C∗(X) ⊗ C∗(X)⊗n → C∗(X)

is k-trivial on cocycles, and the same holds with kc instead of hc.

Proof. By naturality we may assume that κ is the identity map of X = BT .
Let l ≥ 0, and let b1, . . . , bl ∈ C∗(BT )⊗n with bi = bi,1 ⊗ · · · ⊗ bi,n where all bi,j

are cocycles. We claim that Φ
[n]
(l) (b1, . . . , bl) is a linear combination of products of

terms of the following two kinds: Repeated ∪1-products Uk(c0, . . . , ck) of cocycles
with k ≥ 0, or Ek-terms with k ≥ 2 (and not necessarily cocycles as arguments).

This follows by induction: Φ
[n]
(0) = 0, and Φ

[n]
(1)(b1) = b1,1 · · · b1,n is a product

of cocycles b1,j = U0(b1,j). For the induction step, we observe from the formula
for Φ and the composition formula (3.17) for shm maps that we get products of

terms Em(. . . ) with some value Φ
[n]
(l) (b1, . . . , bl) plugged into the first argument and

cocycles into the remaining arguments.
We consider each factor Em separately. For m = 0 the induction hypothesis

applies and for m ≥ 2 there is nothing to show. So assume m = 1. By induction
and the Hirsch formula (6.15), we may assume that the first argument is a repeated
∪1-product of cocycles or a term Ek with k ≥ 2. In the former case we get another
repeated ∪1-product of cocycles. In the latter case the identity (6.4) shows that we
end up with a sum of terms Ek′ with k′ ≥ k ≥ 2. This completes the proof of the
claim.

Now consider hc
(m) for m ≥ 1, or rather its description modulo k given in

Theorem 6.3 (iv). We have to plug cocycles into the first arguments and values

Φ
[n]
(l)(b1, . . . , bl) as above into the second arguments. Because the ∪2-product is a
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derivation modulo k by Lemma 10.4 (i), we only have to consider terms of the fol-
lowing two kinds in light of our previous discussion: firstly, ∪2-products a∪2 b where
a is a cocycle and b a repeated ∪1-product of cocycles, and secondly, ∪2-products
where the second argument is an Ek-term with k ≥ 2. The second case is covered
by Lemma 10.5 and the first by Proposition 10.7 if we have at least one ∪1-product.
Finally, all ∪2-product of cocycles are contained in k as remarked above.

The proof for kc is analogous. �

Proposition 11.3. For any n ≥ 0 the iteration Φ[n] : C∗(X)⊗n ⇒ C∗(X) is an
shc map that is k-natural on cocycles.

Proof. Munkholm [17, Prop. 4.5] has shown that Φ[n] is an shc map. The non-trivial
part of the proof is to construct a homotopy

(11.3) h[n] : Φ ◦
(
Φ[n] ⊗ Φ[n]

)
≃ Φ[n] ◦ Φ⊗n ◦ Tn

where Tn : A⊗n ⊗ A⊗n → (A ⊗ A)⊗n is the reordering of the 2n factors A = C∗(X)
corresponding to the permutation

(11.4)

(
1 2 . . . n n + 1 n + 2 . . . 2n
1 3 . . . 2n − 1 2 4 . . . 2n

)

.

We follow Munkholm’s arguments and verify that in our setting they lead to a
homotopy that is k-trivial on cocycles. There is nothing to show for n ≤ 1.

We start with the case n = 2, see [17, p. 31]. The homotopies labelled h1, h2, h4

and h5 by Munkholm are k-trivial because Φ◦(1⊗Φ) is k-strict and the homotopy ha

is k-trivial, see Lemmas 6.3, 11.1 (ii) and 3.1. So consider the homotopy

(11.5) h3 = Φ ◦ (1A ⊗ Φ) ◦ (1A ⊗ kc ⊗ 1A).

We have remarked above that kc is k-trivial on cocycles. Together with the k-
strictness of Φ ◦ (1 ⊗ Φ) this implies by Lemma 11.1 that h3 is k-trivial on cocycles,
too, and therefore also the sought-after homotopy

(11.6) h[2] = h1 ∪ h2 ∪ h3 ∪ h4 ∪ h5.

For the induction step we have another set of homotopies h1 to h5, see [17, p. 32].
The homotopies h1 and h4 are k-trivial by Corollary 4.3 and Lemma 3.1 because Φ
is k-strict. The homotopy h3 is actually not needed. In fact, the identity

(11.7)
(
Φ[n] ⊗ 1

)
◦ TA,A⊗n = TA,A ◦

(
1 ⊗ Φ[n]

)

(see [17, §3.6 (iii)]) and [17, Prop. 3.3 (ii)] (or Corollary 4.3) imply that

(11.8)
(
1A ⊗ TA,A ⊗ 1A

)
◦

(
Φ[n] ⊗ 1A ⊗ Φ[n] ⊗ 1A

)
=

(
Φ[n] ⊗ Φ[n] ⊗ 1A ⊗ 1A

)
◦

(
1A⊗n ⊗ TA,A⊗n ⊗ 1A

)
,

which means that the homotopy relation labelled “
3
≃” in [17, p. 32] is an equality.

That the homotopy h5 is k-trivial on cocycles uses that so is h[n] by induction, that
Φ is k-strict and also Lemma 11.1.

To show that

(11.9) h2 = h[2] ◦
(
Φ[n] ⊗ 1A ⊗ Φ[n] ⊗ 1A

)

is k-trivial on cocycles, we may by (2.13) and Lemma 11.1 (i) consider the com-
position with each factor in (11.6) separately. (Recall that h ◦ f = h Bf for an
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shm homotopy h and an shm map f .) The homotopies h1, h2, h4 and h5 for the
case n = 2 are k-trivial on all arguments and therefore pose no problem.

It remains to look at the homotopy

k1 = h3 ◦
(
Φ[n] ⊗ 1A ⊗ Φ[n] ⊗ 1A

)
(11.10)

= Φ ◦ (1A ⊗ Φ) ◦ (1A ⊗ kc ⊗ 1A) ◦
(
Φ[n] ⊗ 1A ⊗ Φ[n] ⊗ 1A

)
.

We want to compare it to the homotopy

k2 = Φ ◦ (1A ⊗ Φ) ◦
(

Φ[n] ⊗
(
kc ◦

(
1A ⊗ Φ[n]

))
⊗ 1A

)

.(11.11)

Denoting reduction modulo k by a bar above a map, we have

k̄1 = µ
[3]
A/k ◦ (1A/k ⊗ k̄c ⊗ 1A/k) ◦

(
Φ̄[n] ⊗ 1A ⊗ Φ[n] ⊗ 1̄A

)
,(11.12)

k̄2 = µ
[3]
A/k ◦

(

Φ̄[n] ⊗
(
k̄c ◦

(
1A ⊗ Φ[n]

))
⊗ 1̄A

)

.(11.13)

Because Φ̄[n] is a dga map, k̄1 and k̄2 agree, see Lemma 4.5. Moreover, the homotopy
k̄c◦(1⊗Φ[n]) is 0-trivial (that is, trivial) on cocycles by Lemma 11.2, which together
with Lemma 11.1 (ii) implies that k̄2 has the same property. Putting these facts
together, we obtain that k1 is k-trivial on cocycles. This completes the proof. �

Let n ≥ 0 and choose cocycles a1, . . . , an ∈ C∗(X) of even positive degrees. We
write a = (a1, . . . , an) and consider the shm map

(11.14) Λa : k[x] := k[x1] ⊗ · · · ⊗ k[xn]
λa−→ C∗(X)⊗n Φ[n]

=⇒ C∗(X)

where λa is the tensor product of the dga maps sending each xi to ai.

Remark 11.4. The map Λa can be expressed in terms of the hga operations
on C∗(X). It is not the same as Wolf’s explicit shm map [26, Sec. 3], which only
uses ∪1-products.

Proposition 11.5. The map Λa : k[x] → C∗(X) is a k-strict and k-natural shc
map.

Proof. Since Φ[n] is k-strict, so is Λa by Lemma 3.1 (i). It remains to consider the
diagram

(11.15)

k[x] ⊗ k[x] k[x]

C∗(X)⊗n ⊗ C∗(X)⊗n C∗(X)⊗n

C∗(X) ⊗ C∗(X) C∗(X).

λa⊗λa

µ[n]

λa

Φ[n]⊗Φ[n]

Φ⊗n◦Tn

Φ[n]

Φ

Each dga map k[xi] → C∗(X), xi 7→ ai is in fact a k-natural shc map because
we can choose b = − 1

2 ai ∪2 ai ∈ k in the statement of [7, Prop. 7.2]. Then the shc

map λa is k⊠n-natural by Lemma 5.1 and induction. Because Φ[n] is k-strict, its
composition h1 with the homotopy making the top diagram commute is k-trivial
by Lemma 3.1 (ii).
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Composed with the top left arrow, the homotopy making the bottom square
commute is k-trivial by Proposition 11.3. The cup product of this composed homo-
topy h2 with h1 then is k-trivial as well by Lemma 2.2 (i). This proves the claim
since

(11.16) (λa ⊗ λa) ◦
(
Φ[n] ⊗ Φ[n]

)
= (λa ◦ Φ[n]) ⊗ (λa ◦ Φ[n]) = Λa ⊗ Λa

by Corollary 4.3. �

If H∗(X) ∼= k[x] is polynomial and each ai represents xi under this isomorphism,
then Λa is a quasi-isomorphism. Note that it depends both on the choice of the
generators xi and of their representatives ai.

Theorem 11.6. Let ϕ : Y → X be a map of simplicial sets with polynomial coho-
mology. Let a and b be representatives of some generators of H∗(X) and H∗(Y ),
respectively. Then the diagram

H∗(X) H∗(Y )

C∗(X) C∗(Y )

Λa

H∗(ϕ)

Λb

ϕ∗

commutes up to a kY -trivial homotopy.

The corresponding result in [17, Sec. 7] is the heart of Munkholm’s paper, and
for our proof of Theorem 1.3 in the next section Theorem 11.6 will also be crucial.

Proof. We write f = ϕ∗, a = (a1, . . . , an) and k = kY . By assumption, we have
H∗(X) = k[x1, . . . , xn]. We define ã = (H∗(f)(a1), . . . , H∗(f)(an)) and consider
the diagram

(11.17)

H∗(X)

C∗(X)⊗n C∗(Y )⊗n H∗(Y )⊗n

C∗(X) C∗(Y ) H∗(Y ).

λa λã

Φ
[n]

X

f⊗n

Φ
[n]

Y

Λ⊗n

b

µ[n]

f Λb

The composition from H∗(X) to C∗(X) equals Λa, and the one from H∗(X)
to H∗(Y ) is H∗(f). The left square commutes strictly by the naturality of the
hga structure. Lemma 5.2 implies that the right square commutes up to a k-trivial
homotopy since Λb is k-strict and k-natural by Proposition 11.5.

The composition

(11.18) k[xi] −→ H∗(Y )
Λb=⇒ C∗(Y )

is a k-strict shm map, and the composition

(11.19) k[xi] −→ C∗(X)
f

−→ C∗(Y )

is the dga map sending xi to f(ai). Since both (Λb)(1)(ãi) and f(ai) represent the
even-degree element ãi ∈ H∗(B) and k contains all elements of odd degree, these
two maps are homotopic via a k-trivial shm homotopy by [7, Prop. 7.1].
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The two ways to go from H∗(X) to C∗(Y )⊗n in the diagram represent the tensor
products of the shm maps just discussed. This implies by induction and Lemma 3.1
that also the triangle commutes up to a k⊠n-trivial homotopy. Its composition

with Φ
[n]
Y is k-trivial by Lemma 3.1 as Φ

[n]
Y is k-strict. Lemma 2.2 concludes the

proof. �

12. Homogeneous spaces

We are now ready to prove Theorem 1.3. We continue to assume that 2 is
invertible in k.

Let G be a compact connected Lie group and ι : K →֒ G a closed connected
subgroup such that the order of the torsion subgroup of H∗(G;Z) is invertible in k

and analogously for K. This implies that BG and BK have polynomial cohomology
over k (and in fact is equivalent to it), see [13, Rem. IV.8.1]. By Lemma 8.5 we may
assume both BG and BK to be 1-reduced. For simplicity, we denote the induced
maps C∗(BG) → C∗(BK) and H∗(BG) → H∗(BK) both by ι∗.

Our goal is to construct an isomorphism of graded algebras

(12.1) H∗(G/K) ∼= TorH∗(BG)
(
k, H∗(BK)

)
,

natural in the pair (G, K). Recall from Proposition 8.6 that there is a natural
isomorphism of graded algebras

(12.2) H∗(G/K) ∼= TorC∗(BG)
(
k, C∗(BK)

)
,

It suffices therefore to connect the two bar constructions underlying the torsion
products in (12.1) and (12.2). We start by establishing an isomorphism of graded
k-modules, proceeding in a way similar to Munkholm [17, §7.4]. Remember that
we have defined one-sided bar constructions as twisted tensor products in (7.3).

Let a and b be representatives of generators of H∗(BG) and H∗(BK), respec-
tively. We write the induced shm quasi-isomorphism Λa : H∗(BG) ⇒ C∗(BG)
defined in (11.14) as ΛG and analogously ΛK = Λb : H∗(BK) ⇒ C∗(BK).

We define the map

(12.3) ΘG,K : B(k, H∗(BG), H∗(BK)) → B(k, C∗(BG), C∗(BK))

as the composition of the chain maps

(12.4)

BH∗(BG) ⊗ι∗◦tH∗(BG)
H∗(BK)

BH∗(BG) ⊗ΛK◦ι∗◦tH∗(BG)
C∗(BK)

BH∗(BG) ⊗ι∗◦ΛG◦tH∗(BG)
C∗(BK)

BC∗(BG) ⊗ι∗◦tC∗(BG)
C∗(BK),

ΓΛK

δh

BΛG⊗1

given by Lemmas 7.3, 7.1 and 7.2, respectively, where the twisting cochain homo-
topy h in the second step comes from Theorem 11.6. Note that ΘG,K depends on
the chosen representative cocycles a and b.
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Let κ : T → K be a morphism of simplicial groups where T is some torus, and
choose a formality map f∗ : C∗(BT ) → H∗(BT ) as in Proposition 9.7. As before,
we write kBK for the kernel of the composition

(12.5) C∗(BK)
κ∗

−→ C∗(BT )
f∗

−→ H∗(BT ).

Then the homotopy h mentioned in the previous paragraph is kBK-trivial.

Lemma 12.1. Modulo BC∗(BG) ⊗ kBK we have

ΘG,K ≡ BΛG ⊗ ΛK
(1).

Recall that ΛK
(1) is the quasi-isomorphism of complexes

(12.6) H∗(BK) ∼= k[y1, . . . , yn] → C∗(BK), yk1
1 · · · ykn

n 7→ bk1
1 · · · bkn

n .

Proof. The congruence follows from Lemmas 7.1, 7.2 and 7.3, given that ΛK is a
kBK-strict shm map and h a kBK -trivial homotopy. �

Proposition 12.2.

(i) The map

H∗(ΘG,K) : TorH∗(BG)
(
k, H∗(BK)

)
→ TorC∗(BG)

(
k, C∗(BK)

)

is an isomorphism of graded k-modules.
(ii) The Eilenberg–Moore spectral sequence for the fibration G/K →֒ BK → BG

collapses at the second page.

Proof. Both ΛG and ΛK are quasi-isomorphisms, and so is BΛG. It follows from
Lemma 12.1 as in Remark 7.4 that ΘG,K induces an isomorphism between the
second pages of these spectral sequences and therefore between the torsion products.

Because the spectral sequence for B(k, H∗(BG), H∗(BK)) collapses at this stage,
so does the one for B(k, C∗(BG), C∗(BK)), which is the Eilenberg–Moore spectral
sequence of the fibration. �

We now turn to the multiplicativity and naturality of H∗(ΘG,K). Here our
approach is inspired by Wolf [26, p. 331]. Based on κ and f∗ we define the map

(12.7) Ψκ : B(k, C∗(BG), C∗(BK)) → B(k, C∗(BG), H∗(BT ))

as the composition

(12.8)

BC∗(BG) ⊗ι∗◦tC∗(BG)
C∗(BK)

BC∗(BG) ⊗κ∗ι∗◦tC∗(BG)
C∗(BT )

BC∗(BG) ⊗f∗κ∗ι∗◦tC∗(BG)
H∗(BT )

1⊗κ∗

1⊗f∗

Lemma 12.3.

(i) Ψκ is a morphism of dgas.
(ii) If κ is the inclusion of a maximal torus into K, then H∗(Ψκ) is injective,

hence so is the map H∗(G/K) → H∗(G/T ).
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(iii) The composition Ψκ ΘG,K is the map

BH∗(BG) ⊗ι∗◦tH∗(BG)
H∗(BK)

BC∗(BG) ⊗f∗ κ∗ι∗◦tC∗(BG)
H∗(BT ).

BΛG⊗κ∗

The idea of reducing to a maximal torus goes back to Baum [2, Lemma 7.2].

Proof. The first map in (12.8) is a dga map by naturality and the second one by
inspection of the product formula (7.9). This proves the first claim.

If T ⊂ K is a maximal torus, then H∗(K/T ) is concentrated in even degrees,
as is H∗(BK) by assumption. Hence the Serre spectral sequence for the fibration
K/T → BT → BK degenerates at the second page. By the Leray–Hirsch theorem,
this implies that H∗(BT ) is a free module over H∗(BK) with κ∗(H∗(BK)) being
a direct summand.

As a consequence, the induced map

(12.9) TorH∗(BG)
(
k, H∗(BK)

) Tor1(1,κ∗)
−−−−−−−→ TorH∗(BG)

(
k, H∗(BT )

)

is injective. This is the map between the second pages of the Eilenberg–Moore spec-
tral sequences for G/K and G/T , respectively. Because these spectral sequences
degenerate at this level by Proposition 12.2 (ii), this implies that the map 1 ⊗ κ∗

in (12.8) is injective in cohomology.
Another standard spectral sequence argument shows that the map 1⊗f∗ in (12.8)

is a quasi-isomorphism since f∗ is so. Together with the naturality of the isomor-
phism (12.2) this shows the second claim.

The last part is a consequence of Lemma 12.1. �

Theorem 12.4. The isomorphism H∗(ΘG,K) is multiplicative.

Proof. Let κ : T →֒ K be the inclusion of a maximal torus. By Lemma 12.3 it
suffices to prove that the composition Ψκ ΘG,K = BΛG ⊗ κ∗ is multiplicative up to
homotopy. Clearly, κ∗ is multiplicative.

We claim that BΛG is multiplicative up to a coalgebra homotopy

(12.10) h : BH∗(BG) ⊗ BH∗(BG) → BC∗(BG).

To see this, consider the diagram

(12.11)

BH∗(BT ) ⊗ BH∗(BT ) B
(
H∗(BT ) ⊗ H∗(BT )

)
BH∗(BT )

BC∗(BT ) ⊗ BC∗(BT ) B
(
C∗(BT ) ⊗ C∗(BT )

)
BC∗(BT ).

BΛG⊗BΛG

∇

B(ΛG⊗ΛG)

Bµ

BΛG

∇ BΦ

The composition along the top row is the multiplication in H∗(BT ), and by [7,
Prop. 4.2] the one along the bottom row equals the product in C∗(BT ). The left
square commutes by naturality of the shuffle map (Lemma 4.4). The right square
commutes up to a kBG-trivial coalgebra homotopy h because ΛG is an shc map by
Proposition 11.5. This implies that it induces a homotopy

(12.12) h̃ : B(k, H∗(BG), H∗(BK))⊗2 −→ B(k, C∗(BG), C∗(BK))

such that BΛG ⊗ κ∗ is multiplicative up to h̃. �



THE COHOMOLOGY RINGS OF HOMOGENEOUS SPACES 41

Theorem 12.5. Let ϕ : (G, K) → (G′, K ′) be a map of pairs, both satisfying
our assumptions, and choose representatives a

′ and b
′ for generators of H∗(BG′)

and H∗(BK ′), respectively. Then the following diagram commutes.

TorH∗(BG′)
(
k, H∗(BK ′)

)
TorH∗(BG)

(
k, H∗(BK)

)

H∗(G′/K ′) H∗(G/K)

Torϕ∗
(1,ϕ∗)

Proof. Let T ⊂ K again be a maximal torus. We consider the diagram

(12.13)

B(k, H∗(BG′), H∗(BK ′)) B(k, H∗(BG), H∗(BK))

B(k, C∗(BG′), C∗(BK ′)) B(k, C∗(BG), C∗(BK))

B(k, C∗(BG′), C∗(BT )) B(k, C∗(BG), C∗(BT ))

B(k, C∗(BG′), H∗(BT )) B(k, C∗(BG), H∗(BT )).

ΘG′,K′

B(1,ϕ∗,ϕ∗)

ΘG,K

1⊗κ∗ϕ∗

B(1,ϕ∗,ϕ∗)

1⊗κ∗

1⊗f∗

B(1,ϕ∗,1)

1⊗f∗

B(1,ϕ∗,1)

We have to show that the top square in the diagram commutes in cohomology. By
Lemma 12.3 (ii), it suffices to consider the prolongations of the maps in question
to B(k, C∗(BG), H∗(BT )).

The composition along the path via B(k, H∗(BG), H∗(BK)) gives the map

(12.14) BΛG Bϕ∗ ⊗ κ∗ϕ∗

by Lemma 12.3 (iii). Since the middle square in (12.13) commutes by natural-
ity and the bottom square by construction, the same result shows that the path
via B(k, C∗(BG′), C∗(BK ′)) gives

(12.15) Bϕ∗ BΛa′ ⊗ κ∗ ϕ∗.

By Theorem 11.6 there is a kBG-trivial homotopy h between the shm maps
ϕ∗ ◦ Λa′ and ΛG ◦ ϕ∗. In other words, Bh is a kBG-trivial coalgebra homotopy
between BΛG Bϕ∗ and Bϕ∗ BΛa′ . This implies that Bh⊗1 is a homotopy between
the maps (12.14) and (12.15) and completes the proof. �

Corollary 12.6. The isomorphism (12.1) does not depend on the chosen represen-
tatives a and b.

Proof. Take ϕ : (G, K) → (G, K) to be the identity map in Theorem 12.5. �

Remark 12.7. Baum [2, Ex. 4] has observed that there is no multiplicative iso-
morphism of the form (12.1) for the projective unitary group P U(n) = U(n)/U(1)
with n ≡ 2 (mod 4) and k = Z2. This is readily verified for P U(2). Recall that the
torsion product of graded commutative algebras is bigraded with the Tor-degree
being non-positive. In the case at hand one obtains

(12.16)

Z2 4
Z2 Z2 2

Z2 0
−2 −1 0 .
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Because the product respects bidegrees, the non-zero element in bidegree (−1, 2)
squares to 0. This does of course not happen for the generator x ∈ H1(P U(2)) as
P U(2) ∼= SO(3) ≈ RP

3.
The same counterexample shows that one cannot expect the isomorphism (12.1)

to be natural if 2 is not invertible in k. Consider the diagonal map

(12.17) P U(2) = U(2)
/

U(1) →
(
U(2)×U(2)

) / (
U(1)×U(1)

)
= P U(2)×P U(2),

which induces the cup product in cohomology. Naturality of the isomorphism (12.1)
would predict that the image of x ⊗ x in H2(P U(2)) vanishes, which again is not
the case.

Appendix A. Proof of Proposition 4.1

We only give a sketch of the proof. The computation is elementary, but somewhat
lengthy because of the many cases to consider. In each case, we indicate whether
the corresponding terms cancel against other terms or contribute to the final result.
The notation “X → Y” means that the terms X cancel with or result in the terms Y.

We say that a term is split at position m if it is split between the m-th and the
(m + 1)-st argument. Similarly, two arguments are multiplied at position m if the
arguments at positions m and m + 1 are multiplied.

Terms produced by d(h(n))

1. Splitting of a term f(is)

1.1. Term f(is), 1 ≤ s < k, at any position (if k ≥ 2) → 4.1.
1.2. Term f(ik+l) at position 1 ≤ m < ik (if ik ≥ 2) → 4.2.
1.3. Term f(ik+l) at position m = ik

1.3.1. j1 = 1 and l = 1 → 10.1.
1.3.2. j1 = 1 and l > 1 → 2.2.2.
1.3.3. j1 > 1 → 3.3.2.

1.4. Term f(ik+l) at position ik + 1 ≤ m < ik + l (if l ≥ 2) → 12.
2. Splitting of a term g(jt)

2.1. Term g(k+j1) at position 1 ≤ m < k (if k ≥ 2) → 9.
2.2. Term g(k+j1) at position m = k

2.2.1. ik = 1 and k = 1 → 11.1.
2.2.2. ik = 1 and k > 1 → 1.3.2.
2.2.3. ik > 1 → 4.3.2.

2.3. Term g(k+j1) at position k + 1 ≤ m < k + j1 (if j1 ≥ 2) → 3.4.
2.4. Term g(jt), 1 < t ≤ l, at any position (if l ≥ 2) → 3.5.

3. Multiplication of two arguments of a term f(is)

3.1. Term f(is), 1 ≤ s < k, at any position → 5.
3.2. Term f(ik+l) at position 1 ≤ m < ik → 5.
3.3. Term f(ik+l) at position m = ik

3.3.1. ik = 1 and k = 1 → 11.2.
3.3.2. ik = 1 and k > 1 → 1.3.3.
3.3.3. ik > 1 → 4.3.3.

3.4. Term f(ik+l) at position m = ik + 1 (if l ≥ 2) → 2.3.
3.5. Term f(ik+l) at position ik + 1 < m < ik + l (if l ≥ 3) → 2.4.

4. Multiplication of two arguments of a term g(jt)

4.1. Term g(k+j1) at position 1 ≤ m < k − 1 (if k ≥ 3) → 1.1.
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4.2. Term g(k+j1) at position m = k − 1 (if k ≥ 2) → 1.2.
4.3. Term g(k+j1) at position m = k

4.3.1. j1 = 1 and l = 1 → 10.2.
4.3.2. j1 = 1 and l > 1 → 2.2.3.
4.3.3. j1 > 1 → 3.3.3.

4.4. Term g(k+j1) at position k + 1 ≤ m < k + j1 → 7.
4.5. Term g(jt), 1 < t ≤ l, at any position → 8.

Terms appearing in h(n−1)(. . . , amam+1 ⊗ bmbm+1, . . . )

5. m ≤ i1 + · · · + ik−1 (if k ≥ 2) → 3.1.
6. i1 + · · · + ik−1 < m ≤ i1 + · · · + ik → 3.2.
7. i1 + · · · + ik < m ≤ i1 + · · · + ik + j1 → 4.4.
8. i1 + · · · + ik + j1 > m (if l ≥ 2) → 4.5.

Terms appearing in
(
(1 ⊗ g)(f ⊗ 1)

)

(k)
· h(n−k)

9. k < n → 2.1.
10. k = n

10.1. in = 1 → 1.3.1.
10.2. in > 1 → 4.3.1.

Terms appearing in h(k) ·
(
(f ⊗ 1)(1 ⊗ g)

)

(n−k)

11. k = 0
11.1. j1 = 1 → 2.2.1.
11.2. j1 > 1 → 3.3.1.

12. k > 0 → 1.4.
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