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ABSTRACT: We further elaborate on the general construction proposed in [1], which con-
nects, via tree-level double copy, massless string amplitudes with color-ordered QFT ampli-
tudes that are given by Cachazo-He-Yuan formulas. The current paper serves as a detailed
study of the integration-by-parts procedure for any tree-level massless string correlator
outlined in the previous letter. We present two new results in the context of heterotic and
(compactified) bosonic string theories. First, we find a new recursive expansion of any
multitrace mixed correlator in these theories into a logarithmic part corresponding to the
CHY integrand for Yang-Mills-scalar amplitudes, plus correlators with the total number of
traces and gluons decreased. By iterating the expansion, we systematically reduce string
correlators with any number of subcycles to linear combinations of Parke-Taylor factors
and similarly for the case with gluons. Based on this, we then derive a CHY formula for
the corresponding (DF)? + YM + ¢ amplitudes. It is the first closed-form result for such
multitrace amplitudes and thus greatly extends our result for the single-trace case. As a
byproduct, it gives a new CHY formula for all Yang-Mills-scalar amplitudes. We also study
consistency checks of the formula such as factorizations on massless poles.
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1 Introduction and review

Recently, the study of scattering amplitudes has uncovered new structures and symmetries
in various quantum field theories (QFT), as well as surprising connections between them
(¢f. [2-4]). The double-copy construction provides a notable example, which describes
gravitational scattering amplitudes as “squares” of gauge-theory ones. At tree level, such
relations can be derived as the field-theory limit of the celebrated Kawai-Lewellen-Tye
(KLT) relations [5] between tree amplitudes in open and closed string theory [6]. Based on
a remarkable duality between color and kinematics due to Bern, Carrasco and Johansson
(BCJ) [7], double copy has been extended to quantum regime and become the state-of-the-
art method for multiloop calculations in supergravity theories [8-12].



The Cachazo-He-Yuan (CHY) formulation [13, 14] has provided a new way to mani-
fest and extend the double copy. Based on the universal scattering equations connecting
kinematics of massless particles to moduli space of punctured Riemann spheres [15], the
CHY formula expresses tree amplitudes in a large class of theories as integrals over moduli
space localized to the solutions of scattering equations. Together with loop-level gener-
alizations [16-20], they have led to new double-copy realization of various theories [21],
and one-loop extensions of KLT relations and amplitude relations [22, 23]. What under-
pins both tree and loop-level CHY formulas are worldsheet models known as ambitwistor
string theory [24, 25], where CHY integrands can be obtained as correlators therein. There
has been significant progress [26-30] for connecting ambitwistor string theory to the usual
string theory, but a complete understanding is still lacking.

String theory has played a crucial role in these developments since the discovery of KL'T
relations. In particular, amplitude representations that respect color-kinematics duality
at tree and loop level have both been realized by string-theory based methods [31-35].
Amplitude relations in gauge theory, e.g. BCJ relations [7], and those in Einstein-Yang-
Mills (EYM) [36], can also find origin in string theory [37-40]. More interestingly, it has
been realized that tree-level superstring amplitudes themselves can be obtained via a double
copy [41]. The first example is the discovery that one can decompose disk amplitudes for
massless states of type-I theory into field-theory KLT products of universal basis of disk
integrals, later called Z integrals, and super-Yang-Mills (SYM) amplitudes: “type-I =
Z ®@SYM” [32, 33]. The key point is that all nontrivial o/-dependence of string amplitudes
is encoded in the Z integrals, which can also be interpreted as amplitudes in an effective
field theory of biadjoint scalars dubbed as Z theory [42—-44].

It has been realized in [45, 46] that such a double copy for string amplitudes is general,
since it also applies to cases for bosonic and heterotic strings. For (compatified) bosonic
open string amplitudes, the same double copy works where the field-theory amplitudes
now contain tachyon poles, and they were shown [46] to come from the (DF)? + YM + ¢*
Lagrangian [47], with o/ related to its mass parameter:

(compactified) bosonic open string = Z ® [(DF)2 +YM+ ¢3] :

Furthermore, by replacing Z integrals by certain sphere integrals, one can generalize the
double copy structure to the massless amplitudes of closed and heterotic strings. As con-
jectured in [48-50] and proven in [51, 52|, the latter can be obtained as the single-valued
(sv) projection [53, 54| of open-string amplitudes:

type-II = sv(type-I) ® SYM,
heterotic = sv(type-I) ® [(DF)2 +YM+ <;53] .

In a recent letter [1], we have initiated a systematic study on the double-copy of
tree-level massless string amplitude in terms of field-theory amplitudes defined by CHY
formulas. The nontrivial part of such CHY formulas can be directly obtained from the
original string correlator via an integration-by-parts (IBP) process [1], which we review



here. A generic massless open-string tree amplitude is given by a disk integral:

rin d"z . rin. -
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where z;; == z; — z; and s;; := o k;i-k; are the Mandelstam variables. The color ordering
p € Sp/Z,, is realized by the integration domain Zoi) < Zp(i+1)- We denote the Koba-
Nielsen factor as KN and the integral measure including it as d,u%tring. One can fix three
punctures, e.g. (z1,2n—1,2n) = (0,1,00), using the SL(2,R) redundancy, and the product
in the Koba-Nielsen factor is over 1 < ¢ < j < n—1 with this fixing. The (reduced) string

correlator T5™8 is a rational function of 2’s, and we only require it to have correct SL(2)
weight: Zn'"™"® — [T0_, (v + 024)%Z0""® under z, — —21?: with ad — By = 1. As shown

in [1], using IBP relations, one can write any such integral as a double-copy of field-theory
color-ordered amplitudes and the Z integrals

./\/(S;Ltring(p) — _/\/(ST ® Zp = Z MST(Q)S[a’ﬁ]ZP(5)7 (1'2)

avﬁesn—l’)

where «, 8 are color orderings in a minimal basis, and the KLT double copy is defined using
(n—3)!-dimensional matrix S[a|5] known as the field-theory momentum kernel [6, 55]. The
Z integral is a disk integral over a Parke-Taylor (PT) factor of [41]:

Zp() ::/du,sfrmg PT(n), PT(n) := 1 . (1.3)
P

RmimoRmams " Ry

Each color-ordered, field-theory amplitude ME™ is defined by a CHY formula, whose color
ordering is given by a PT factor PT(p); the nontrivial part is a half-integrand ZSHY that
is obtained from the original Z5"™# by IBP, which specifies the theory and external states:

M) = [ [T 2 P 97 e). (1.4

o
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Here the integrals are localized by the n—3 delta functions imposing scattering equa-
tions [13, 15].

Before moving on, let us pause and talk about an equivalent way of expressing string
amplitudes as double copy. Note that the KLT double copy of Z integrals with M(p) only
concerns the Parke-Taylor factor PT(p) of the latter, and leaves ZSHY intact (which is
independent of the ordering p). Thus it is natural to put the double-copy inside the CHY
integral and write the string amplitude as a CHY formula:

M) = [ i 2,(2) V() (15)



where we have defined a universal CHY half-integrand Z,(z) := Z, ® PT(z) for any open-
string amplitude.! This part is present regardless of type-I, bosonic or other possible

theories, and the difference between these theories is represented by ISHY

only. For the
closed string case, we simply replace the Z integral in the definition of Z by single-valued
projection of open-string amplitudes. While this rewriting has been known for a while, we
emphasize that here the nontrivial, theory-dependent part in such CHY formulas, ZSHY,

can be obtained from the string correlator Z5" "8 as follows.

Using the technique developed in [1], one in fact obtains an equivalence class of CHY
half-integrands from the string correlator Z5tring through the following two steps:

e First we algorithmically reduce the string correlator I,Sfring

, via IBP relations, to
an equivalent class of logarithmic functions Z,,, which can be used as a CHY half-
integrand in Eq. (1.4).

e Next we use scattering equations (SE) to obtain equivalent half-integrands, ZSHY,

which are no longer logarithmic but usually take a more compact form and make

some useful properties more manifest.

Logarithmic functions are defined to have only logarithmic singularities, i.e. simple poles,
on boundaries of the moduli space of n-punctured Riemann spheres. Equivalently, it can
be written as a linear combination of PT factors [57-59]. Note that we have an equivalence

I%P z—string_
- n

class of logarithmic functions Z, : any Z, gives the same string integral as that

of T3¢ Since they are also equivalence by SE, any Z, gives the same MET as well. One

CHY.
Zn

can usually use SE to simplify Z,, greatly and obtain : while being non-logarithmic,

usually it allows an all-multiplicity expression!

In this paper, we obtain two new results, corresponding to the two steps above, for the
scalar-gluon correlators of compactified open bosonic strings, or equivalently the holomor-
phic part of heterotic strings. Recall that a general mixed string correlator for r gluons
and m+1 scalar traces reads [40]

m+1

T3MM8(z) = Riy, iz, ..., ir) [ PT(WA), (1.6)
t=1

where the PT factors follow the definition in Eq. (1.3). The R(iy,i9,...,4,) correlator,

containing the gluon polarization vectors, is given by a cycle expansion:

R(i1, iz, ,ip) = Y RoRwy R - (1.7)
(D) (K)ESy

Here, we sum over all the permutations of {i1,...,i,}, and write them as products of cycles

!Such half-integrands have been studied earlier: it was called string-deformed Parke-Taylor factor in [56)
and also implicitly studied for the higher-energy limit in [15].



(I),(J),...,(K). For length-one and two cycles, we have

Ry =0Ci = ZCM = Z EZZ.. ]?] » Rap = Z/—ez] ; (1.8)

i#i i# 2

while R(;y = 0 for longer cycles. In Cj, the summation is over all the particle labels that

are different from 7. We note that Eq. (1.6) also appears in the heterotic string correlator

38 (2)K (%) for r gravitons and m+1 gluons traces, where K(Z) is an antiholomorphic
type-I superstring correlator.

For step 1, we will propose a systematic method for performing IBP to reduce any
multitrace mixed correlator to logarithmic functions. This is based on a new recursive
expansion we discover for such string correlators, as we show in (3.14) for pure-scalar case
and (3.23) for mixed case. The correlator can be expanded into two parts: the first part
is a logarithmic function involving a set of labeled trees T, which has appeared in previous
studies of Yang-Mills-scalar CHY integrand [60, 61], and corresponds to Z, from IBP re-
ducing (compactified) superstring correlators; the second part contains terms with the total
number of traces and gluons decreased. By iterating the expansion, any multitrace mixed
correlator can be reduced to a logarithmic function. In our arXiv submission, we provide
an ancillary Mathematica file which implements the expansion and does IBP reduction for
any number of traces and gluons.

For step 2, we further use SE to rewrite the logarithmic function Z,, to a closed-form
CHY half-integrand, ZSMY for generic multitrace (DF)? + YM + ¢ amplitudes. In [1]
we have presented a simple formula for all single-trace results, which we checked to high
multiplicities but we had not found a proof then. In this paper we extend our construction

to any number of traces, and write Z&HY

in a relatively simple form once a basic operation
called fusion is defined. The result is expressed as a sum over total partitions, and it turns
out that even for the single-trace case, we get an equivalent but distinct formula than that
in [1]. The outline of the paper is as follows.

We first present the general CHY-half integrand, I,(;HY in section 2. As a byproduct, in
the o/ — 0 limit, our formula also gives a new formula for all multitrace Yang-Mills-scalar
amplitudes, which are different from the original one in [21]. In section 3, we present the
recursive expansion of the string correlator into a manifestly logarithmic part (which will
be reviewed in Appendix A), and additional terms for which we can use the expansion
again. We derive the expansion for pure-scalar case and outline the derivation for mixed
cases, with some details left in the Appendix B and C. In section 4, we will illustrate how
to use the result from IBP to obtain the CHY formula summarized in section 2. In section

5, we present an important check of the result which is factorization on massless poles.

2 The formula for all multitrace amplitudes

In this section, we present the complete CHY half-integrands for multitrace amplitudes
in (DF)? + YM + ¢3 theory. The allowed external particles are massless gluons AZ and
bi-adjoint scalars ¢%?, where @ is in the adjoint of a gauge group U(N) and & is in the



adjoint of a global symmetry group U (N ). We consider tree-level amplitudes with a fixed
color ordering in a, represented by PT(p) in Eq. (1.4). By “multitrace”, we mean that the
global adjoint indices a of the scalars have the structure of m+1 traces.

In the limit o/ — 0, the half-integrand reduces to the usual Yang-Mills-scalar one,
where the gluons {i1,io,...,i,} are packed into a reduced Pfaffian Pf’(II), and the scalar
multitrace structure is described by m+1 PT factors PT(W;), see section 3 of [21]. Al-
ternatively, we can single out one trace, say PT(W,,+1), but treat the rest on the same
footing as gluons. As we will see, the result is given by “fusions” of all possible partitions
of the set {W1,..., Wi, 41,...,i0-}. At finite o/, we need to introduce some «o'-deformation
of the fusion and consider a generalization of the partition: it turns out that we need the
so-called total partitions.

2.1 Fusion of traces and gluons

The first operation we introduce is the (weighted) fusion between two traces Wi and Wy
represented by the PT factors PT(W;) and PT(Ws):

1 %0 2
(WL, Wa)i= 50 D St Sty =22 PT (W1) PT (W), (2.1)

a1,b1€EWy Zbiag Fboay

az2,b2€Ws

The cross ratio on the right hand side glues PT(W7) and PT(W3) into a single PT factor:

hiaFhets p (W) PT (W) = (—1) P12 > PT(a1,01,b1,a9,09,00).  (2.2)

Zbraz “baa
1a2~b2a1 01€A1u_|BlT

O'QEAQLLIB;

The sets A; and B; are determined as follows for ¢ = 1,2. For each choice of a;,b; € W;,
we write PT(W;) = PT(a;, A;, b;, B;), using the cyclicity of PT factors. We then break W;
into words (a;,0;,b;), sum over all the o;’s in A;1uB} (the shuffle of A; and the reverse of
B;), and then glue the two words (a;, 0;,b;) into PT(a1,01,b1,as,02,b2). This process is
shown schematically in figure 1. The sum over shuffle can be represented by a wavy line:

e = PT(W)z = PT(a, A,b, B)zpa = > (=) . (23)

BT ZaoiRo1o9 """ ZU‘J‘b

oEAWL

where b is chosen as the end connected to an edge pointing away from W (see figure 1). The
fusion (W71, Wa) merges two color traces into a single trace since it is a linear combination of
PT(p) with p € perm(W; UWs3). As a concrete example, we consider the fusion of PT(12)

and PT(345):
Z21% Z21%. Z91%,
((12), (345)) = PT(12)PT(345) [323351 215 1 93541 22 4 sou551 — 2 4 (1 4> 2)]
223251 293241 224251

= 823851PT(12345) — 823841PT(12354) + SQ4S51PT(12435) + (1 <~ 2) . (24)
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Figure 1: Gluing two cycles W7 and W into a single one. A directed edge from node i to
j represents a factor of % while a wavy edge is defined by Eq. (2.3).

The generalization to the fusion of r cycles is straightforward (with a,41 := aq):

. 1 [ Sbia¢+1zb¢a¢
WL Wa, o W)= ([T Y —5=—==PT(W))

Zb:a:
L i=1a;,b;cW; biait1

ro al b1 az b2
1 )
—z| 2 ] S S
Li=1a;,b;eW; b a .

Each wavy line represents a summation over AiLLIBiT with ¢ inferred by the ends points.
This also defines the fusion for » = 1 case: (2.5) reduces to (W) = sy PT(W), where
1

sSw = > jew Sij- The definition (2.5) is clearly cyclic, and the factor 3 cancels the

double counting due to the reflection symmetry (Wi, Wa, ... , W,) = (W, ..., Wy, W7).

Next, we include gluons into the fusion of traces. We find it convenient to view them as
length-one words carrying polarizations, and consider them on the same footing as traces.
For a single gluon, we define the fusion to be

(i) :=—Ci=-> ciky (2.6)

o
g#i Y

The fusion between two or more gluons (i1, 9, ...,4,) is given as follows. For each length-
one word ¢, we assign a field strength f/" = kl'e/ — kVel'. We then glue all the 4’s in order
and Lorentz contract the field strengths in the same way:

11 12

(ivin, o) = Str(fifo ) PTiin, i) = 2ulfifef) h y . @)

Y

A

i
These objects have already appeared in the cycle expansion of gluon CHY integrands [62].

If a trace W is involved in the fusion with a gluon i, we break W as in figure 1, glue
the length-one word i to the end points, and then contract the momenta with the field



strength f;. Namely, we have

~

o k) e
(Woi) i= 5 3 (ke fivka) == PT(W)
a,beW
o .
=5 S )Pk fioka) Y PT(a,0,b,0) (2.8)
a,beW occAwBT

The generalization to arbitrary number of traces and gluons is straightforward:

G Gr

— — o' 4 (kafle i )Zbi i
<W1,215"'afLS?"'aWTajla"'7]f>:_ H Z 2ot aPT(WZ)
2 =1 a;,b;eW; bi,Gi,ai+1

, (29

where, for example, 2y, G, s = Zbyi Zivia - * Zisaz A (fG,)uw = (fiy fin -+ fi,)w» €tc. Sim-
ilarly, we also have a diagrammatic representation for the fusion. We illustrate with two
traces and two sets of gluons in between:

b1 il ir az
° c: )
(Wiyin,. s, Way i, o0 Je) = - Z (kby - foy " Kay) (Kb, - Gy Kay) é::::;g ,
a1,b1€Wy
a2,b2€W> ar g, g1 by
(2.10)
where the diagram stands for the sum
b1 il e ir a2
%::E :(_1)‘Bl‘+|32‘ Z PT(alaalablyila"',iT,a2,02yb2aj1,"'ajf)'
¢ ) 016A1|_|_|Bf
ai Je T b UQEAQLLIB%
(2.11)

Loosely speaking, the gluons participating in fusions are turned into components of a color
trace, while the polarization information appears as kinematic coefficients of the color
traces. To illustrate our result, let us write explicitly some low-multiplicity examples:

((12),3) = ' (ks fy- k1 )PT(123)

((12),3,4) = %/[(kg-fgf4-k1)PT(1234) + (k1 f3fa-k2)PT(2134)] ,
((123),4) = o [(ks- fa-k1)PT(1234) — (ko f4-k1)PT(1324) — (k3- f4-ke)PT(2134)] ,

Q\

<(12), (34), 5> = [823(k4-f5-k1)PT(12345) + 824(/€3-f5-k1)PT(12435) + (1 — 2)] s

SN
[N}

((12),5,(34),6) = (ko f5-k3) (s~ fi-k1)PT(125346) + (k- f5-ka) (ks fo-k1)PT(125436)

|

+(1+2)]. (2.12)



Finally, as a technical convenience, we require the fusion operation be multilinear on traces,
namely, the following relation should hold:

(...,aPT(W1) + yPT(Wa),...) :=x(...,PT(W1),...) + y(...,PT(Wa),...), (2.13)

where z and y are independent of the worldsheet variables z;. As a result, nested fusions
like ((Wy,i, W), W3, j) are well-defined. We note that fusions are not associative. For
example, one can check that (W, (Wa, W3)) # (Wi, Wa), W3) # (Wi, Wy, W3) by an

explicit calculation.

2.2 Partitions of set and symmetrized fusions

A partition of set A is a family of nonempty subsets {A1,Ag,..., A} of A that satisfies
UL Ai=Aand A;nA; =0 if i # j, where 1 < m < |A] is the order of the partition. We
refer A; as a block in the partition. For A = {aj,as} and {a1,as,a3}, the collections of all
partitions, denoted as P[A], are

P[{a1,22}] = {{{31,32}} {31,32}}
[{31732733} {{{31732,33}} {31732,33} {{31732} 33} {{32,33} 31} {{31,33} 32}}

To avoid cluttered notations, we omit the curly bracket on singleton blocks when confusion
is unlikely.? For the partitions with m > 2, we can further partition each non-singleton A;
into two or more blocks, and continue the process until only singleton blocks remain. On
the other hand, if we perform the same operation on the m = 1 partition {A}, we get the
same result but with an overall curly bracket [63]. Together they form the family of total
partitions of A, denoted as T[A].> For example, we have

T[{a1,a2}] = {{al,az} {{31,32}}}
T[{a1,a2,a3}] = {{31,32733} {{31,32} 33} {{32733} 31} {{31733} 32}
{{31,32,33}},{{{31@2},33}},{{{32,33},31}}{{{31,33}@2}}}-

For a total partition A = {A1, Az ..., A} € T[A], each block A; may contain nested curly
brackets. In contrary, for A € P[A], the A;’s contain only singleton blocks. It is clear that
by construction P[A] is always a subset of T[A].

We are interested in the case when the elements of A are a collection of traces and

gluons. Now we define the symmetrized fusion with o/ deformation that acts recursively
on the block A; of a total partition A € T[A]:

2The total number of partitions for n elements is known as the Bell number (https://oeis.org/A000110),
which equals 1, 2, 5, 15, 52 for n = 1, 2, 3, 4, 5, etc.

3The only exception is that T[{a1}] := {{a1}}. The number of total partitions under our definition
equals the one in https://oeis.org/A006351.
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o If A; ={aj,a9,...,a,} contains only singleton blocks, we define

1
‘90/(315325---,37’) = Z <a7r(1)aa7r(2)""’a7r(7’)>? (214)

1—s
A2 1S, /7y

where a; can either be a trace W; or a gluon j. For r = 1, we use instead

Sur (W) := (W) = sy PT(W), Su (i) = (i) = —C;. (2.15)

e In the o — 0 limit, we have

50(315325---,37’) = Z <a7r(1)aa7r(2)""’a7r(7’)>? (216)

WEST/ZT

but still So(W) = (W) and Sy(i) = (i) since they contribute to the leading o’ order.

o If A; contains nested curly brackets, say A; = {A},Ay,... A% aj41,...,a,}, we define

Sa/ (Az) = Sa/ (Sa/(All),Sa/(AIQ), ce ,Sa/(A;), Aj41, .- ,ar) . (2.17)

The symmetrization is an essential ingredient here since it restores the bosonic exchange
symmetry of the gluons and color traces after the fusion.

Using the multilinearity (2.13) of the fusion, we can calculate generic Sy (A;) from the
inner-most level. We give two examples to demonstrate the construction:

Sar({(456),7}) = Sar ((456),7)

o (k- f7-ka)PT(4567) — (ks- f7-ka)PT(4657) — (ke f7-ks)PT(5467)]

1 — s4567 ( ’)
2.18a
So/({{2’ 3}’ 4}) = Soz’ (So/(2a 3)’ 4)
_ tr(fafs) a'tr(faf3) (k3 fa-ka)
R Su((23),4) = T T —" PT(234). (2.18Db)

The symmetrized fusion is our basic building block for the multitrace CHY integrands, as

we will show in the next subsection.

2.3 Half-integrands for multitrace amplitudes
Now we present the half-integrand for m-+1 traces and r gluons in the (DF)? + YM + ¢°

theory. It is given by an overall factor including PT(W,,11) for the trace Wy,;1 and
tachyon poles for traces {W1,..., Wy}, times a sum over symmetrized fusions of all the

,10,



total partitions A = {A1, Az, ..., Ajp} of {Wh,. .., Wi,i1,... 0}

Al

. . PT(W,
ﬁmﬁmeWW%ﬂnhnww%:ﬁw%ﬁﬁﬁj >, CONTTsaA).
i=1 Wi) AETIWy .. Wi i1 ir] j=1
(2.19)
In particular, the pure-scalar and single-trace integrands are given by
CHY PT(Win1) IA| at
IO Wy, W) = o) S AT Su(A),  (2.200)
[T5 (1 = sw;) ,
VAET[W .. Wiy J=1
|A|
I Wiy, i) =PTW) Y (DA Sa(A)). (2.20b)
AET[i1...r] j=1
The crossing symmetry among {W1,..., Wy, i1,...,4,} is manifest since Sy is completely

symmetric in its arguments. On the other hand, different choices of W, 11 lead to equivalent
integrand on the support of scattering equations. Some simple multitrace examples are
given as follows:

_ PT(p) Sw (o) So

double-trace: WY (5, p) = T =1, PT(p)PT(0), (2.21a)
PT(p)|(Sa (0)Sar (1) — S (0,
triple-trace: %Y (g, 7, p) = (p)] (1(0) )((17-) ) (0,7)] , (2.21b)
— So — S
double-trace one-gluon: ZSMY (7, p, q) = TT([)) (S (T)Sw (q) — Sw (7,9)] (2.21¢)

where o, p and 7 are traces and ¢ is a single gluon. The symmetrized fusions involved can
be written explicitly as

So(0) S (T) = 855, PT(0)PT(7), So (1) S (q) = —5,.PT(1)Cy,

1 z z
Sylo,7) = —— Sroo1 Sgor —222"2TL PT(5) PT (1),
A0 = gy 3 srmoen L PL) PI()
T1,T2€T
S (1,q9) = L Z (sz'fq'kn)zmiTlPT(T)- (2.22)
2(1 = sp) romET ~T2q%qT

Interestingly, we can rewrite the single-trace integrand (2.20b) into a more familiar cycle
expansion form:

Al

SO EDATISe ) =0T DY T Ty Ty (2.23)
j=1

AET[i1...ir] (I)(J)...(K)ES

This identity holds at the algebraic level, which can be easily checked numerically. However,
the inductive proof is lengthy and we omit it here. For length-one and two cycles, the cycle
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factor W is given by

.. tr(fif; ..
\Ij(z) = Ci7 \Il(z]) = —ﬂj PT(Zj) = —M PT(Zj) . (224)

For cycles with |I| > 3, we have

T PT() 1| 1

The definition of T;; and 77 can be inferred from the above two equations. Here, the
summation is over all the cyclic partitions (CP) {I1, I, ..., I,} of I with p > 2. Each block
I; of a cyclic partition must conform to the cyclic order determined by I.* For length-one
blocks, F!" is just the field strength f!*; for longer ones, it is recursively defined as

kjl/

it

B =o'k

119240t

(t>2), (2.26)

1i2(i3] - [te—14¢]-+]]

where the bracket [ij] stands for an antisymmetrization. For example,

nlig[i3i4} - E1i2i3i4 - E1i2i4i3 5
Tilig[ig[uisﬂ = Tiyigigiais — Livizigisia — Livigiaisiz T LTirigisiais - (2'27)

The cycle factor (2.25) is of a different form compared with the one defined in [1].> They
are of course algebraically equivalent, as one can check explicitly.

Finally, we study the o/ —0 limit of the half-integrand (2.19). From the definition of
Sur, one can show that, for example, S,/ ({{a1,a2},a3}) = S/ (Sa(a1,a2),a3) gives higher
o/ order contribution than S,/ ({a1,az2,a3}) = Sy(a1,a2,a3). As a result, the leading o’
order is contributed solely by A = {Ay,...,Aja} € P[Wq,..., Wy, i1,...,i;], where the
A;’s do not have nested curly brackets:

Al
ISHY(WI,---’Wm+1ai1,---air)a’—>0 = PT(Werl) Z (—1)|A‘ HSO(A])
AEP[W1... W ,i1...ir] j=1
(2.28)

We have also removed all tachyon poles such that S, reduces to Sy. For the single-trace
case, one can easily show that the summation in Eq. (2.28) indeed gives a Pfaffian in the
leading o order. For generic cases, we can establish the equivalence between Eq. (2.28) and
the Yang-Mills-scalar integrand given in the squeezed form [21] by using Eq (2.5) and (2.9).
After factorizing out the overall product Hgtl PT(W;), one can recognize that Eq. (2.28)
agrees exactly with the reduced Pfaffian under the gauge choice of deleting the two rows
and columns associated to trace Wi, 41.

If |I| = n, the number of such cyclic partitions is the Eulerian number A(n,1) = 2"—n—1.
®Comparing with the definition given in [1], we note that the requirement |I¢| > 2 is relaxed in Eq. (2.25).
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3 Recursive expansion of string correlator

In this section, we present a recursive expansion for the open-bosonic string integrand (1.6).
To achieve this, one needs to perform the IBP reduction in a well-controlled manner. We
first show how this can be done for pure-scalar cases,

75tring — PT(W,) PT(Wa) - - PT(Wi1) . (3.1)

Our goal is to reduce this string integrand, via IBP relations, into a combination of loga-
rithmic functions and the string integrands with number of traces decreased by the fusions
defined in the previous section. The logarithmic function naturally takes the form of labeled
trees which will be reviewed in Appendix A. We can then use recursively the fewer-trace

results and land on a logarithmic form integrand eventually.

As the starting point of our derivation, we always take a puncture in W, 41 to infinity.
Under this gauge, we can break another subcycle W at a chosen puncture z, € W by the
following IBP relation [40]:

IBP 1] Zba
PT(W)(---) = S pTw) S e (), (3.2)
1— sy - Zbj
JEW beWw
i

where (- --) does not involve any punctures in W except for z,. It is convenient to represent
C’% by the following diagram

b J
A S S (3.3)
beWw

where each term in the summation can be viewed as a chain (dressed with an additional
factor sp;). This diagrammatic representation is consistent with the one shown in figure 1.
If the (---) contains no subcycles, for example, the double-trace case,

IBP 1

PT(W,)PT(Wh) = — PT(W2)

> O PT(Wh) = - Tw,(W1),  (3.4)

ai,jz — Sw
1

the result is already logarithmic and our IBP reduction finishes.

However, for triple-trace and beyond, the above no-subcycle condition no longer holds
after breaking one subcycle, say Wj. Thus further IBP reduction is necessary. We first
show by some examples on how to proceed in this situation. We then provide a systematic
solution that leads to a recursive expansion for generic pure-scalar integrands. Finally, we
write down the expansion for the case with gluons, which is an analog of the pure-scalar
case, and leave the derivation to Appendix C.
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3.1 Pure-scalar examples

We start with the triple-trace integrand PT(W;) PT(W2) PT(W3), the simplest nontrivial
example. As the common first step, we break W; using the relation (3.2), which leads to

IIZDj

T(W0)PT(Wo)PT(W3) > Ol D Coll, | PT(W2)PT(Ws). (3.5)

L jsews J2€W2

The structure of Eq. (3.5) is represented by the middle column of figure 2. For the first
term on the right hand side, the chain C"1 is attached to W3 and forms a labeled tree.
We then continue to break Wy at a puncture z,, € Wy using Eq. (3.2):

1BP PT (W)
QUSTEIUAN SRCION R ST DcI R
J3€EWs3 2

J3EWs JEW2

which becomes a combination of labeled trees. We note that in Eq. (3.6) the choice of ag
is arbitrary. In contrary, in the second term of Eq. (3.5), the chain C"1 is attached to W5
and forms a normal tadpole. We then break the subcycle W5 at the attach point, namely,
we must choose as = j» for each C'V . when using the relation (3.2). This leads to

ai,j2
BP PT(W3)
2 : W1 3 W1 ~W2 E ’ Wi ~Wa
T(s) Car . PTV: ) 1 —sy Car2Cla s CaroCiagn |+ (3.7)
joEW> 2 Lj2eWs joEW>
J3EWs J1EW]

where the first term is a combination of labeled trees. The second term consists of induced
tadpoles, in which the subcycle involves punctures from different W;’s due to IBP. Remark-
ably it reproduces the fusion between Wi and Wy after some algebraic manipulation:

4%
Z Ca1,1]2 ]2?]1 = Z awwm WlaW2 (38)

Je€W? j2€W, M
J1EW] Jj1eEW]

This identity can be proved by writing out the definition of the C’s in full and then average
over different ways of assigning dummy indices. Combining Eq. (3.6) and (3.7), we get

p PT(Wg)
(1 - SWI)(l - SWQ)

IS

T(W1) PT(W3) PT(Ws3)

[a'QTW3(W1,W2) + (W1, Wa)|, (3.9)

where Ty, (W1, Wa), when dressed with PT(W3), is a combination of logarithmic functions:

/2 1% W-
Ty (W1, W2) = Z Cahljs Z Ca22j+ Z Z ahlp 12713 (3.10)

J3EWs JEWo J2EWs j3eWs

We can interpret Ty, (W1, Wa) as a set of labeled trees rooted on W3 and evaluated under
the reference order that Wy proceeds W, denoted as W7 < Ws. These labeled trees are
illustrated in the last column of figure 2. The generic construction of these labeled trees will
be given in Appendix A. A remarkable feature of Eq. (3.9) is that the triple-trace integrand
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AMN_Q G Bq. (3.7) (Wi, W2) Ws
e N
W3

Wa

1 1

1 1

1 1

1 1

1 1

O Q G e I I
- | |

W W W ! m@ !
: :

1 1

1 1

1 1

1 1

1 1

1 1

Q AM/C Eq. (3.6) Ws
Ws
Tws (Wi, W2)

Figure 2: The IBP reduction of the triple-trace string integrand PT(W;)PT(Wy)PT(Ws).
The subcycle PT(W3) is broken since we set one of its punctures to infinity.

is given as a linear combination of logarithmic functions and double-trace integrands.

The recursive nature of this derivation is more obvious when we carry on to four traces.
After setting a puncture in Wy to infinity, we break the subcycle W; by Eq. (3.2). Now the
chain C"1 can either connect to another subcycle (W5 or W3), forming a normal tadpole,
or to the root Wy. Next, we break all the normal tadpoles by Eq. (3.2) at the attach point
of the tail, including those generated in the process. At the end, the chain C"1 is either
connected to the root (maybe through another chain), or appears in a induced tadpole.
We then repeat these steps for subcycle Wy (if exists), followed by W3 (if exists). This
prescription introduces a reference order W1 < Wy < W3 for the subcycles as the priority
rank of being broken by the IBP relation (3.2). The result of the above IBP reduction is

IBP  PT(Wy)

4
HPT(Wi) = — [QIBTW4(W1,W2,W3) + <W1,W2,W3> + (Wl,W3,W2>
i=1 ITiei (X = sw,)

+ (1 = sw,) PT(W1)(Wa, W3) + cyclic)} , (3.11)

where Ty, (W1, Wy, W3) is a set of labeled trees rooted on Wy and evaluated under the
reference order W7 < Wy < Wj. Again we refer the readers to Appendix A for the
construction of these labeled trees. Different reference orders will give different 7yy,’s that
are equivalent up to an IBP relation. The fusions in the first line of Eq. (3.11) come from
induced tadpoles after using the algebraic identity

> ¥ Z(CZIV}].QCJ.VQV;SCX; (293)):(Wl,Wg,W3>+(W1,W3,W2>, (3.12)
J1EWL jo€Ws j3eWs

while the fusions in the second line of Eq. (3.11) are obtained by first using Eq. (3.8) and
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then the inversion of the relation (3.2), for example:

> CYL (W, W) PT (W) 'z (1 — sy, ) PT(W1)(Wa, W3) PT(Wy). (3.13)

ai,)
JEW

Although the above manipulation seems to be a move in the opposite direction, the benefit
is that now we can use directly the double- and triple-trace results in Eq. (3.11).

3.2 General pure-scalar cases

Now we provide the IBP reduction algorithm for generic (m + 1)-trace string integrands,
where we gauge fix one of the punctures in W,,,+; to infinity. We first pick an arbitrary
reference order, say R = W7 < Ws < ... < W,,, as the priority rank of being broken by the
IBP relation (3.2). For each term in the integrand, we carry out the following algorithm:

(t1) Break the first trace in the reference order (here W) by Eq. (3.2), which turns the
trace W, into a chain C"1 that is attached to another subcycle or the root Wint1-

(t2) If the chain C"1 appears in the tail of a normal tadpole, break that subcycle using
Eq. (3.2) at the attach point of the tail. Repeat this step until C"1 is connected to
the root W, 41 (maybe through another chain) or appears in an induced tadpole.

(t3) Repeat step (t1) and (t2) for the next subcycle Wj in the reference order that remains
in the original PT(W;) configuration.

The algorithm leads to a remarkable recursive expansion for the string integrand:

m+1

IBP PT Wm m
[[Pron) = e s @ T n® = 30 )M e
12 (1= sw,) AEP[W; .. Wi ]
|Al<m

where Tyy,,., (R) consists of labeled trees only, and thus logarithmic. It is actually the
logarithmic form CHY integrand for the pure-scalar sector of Yang-Mills scalar amplitudes.
The explicit form depends on the reference order R (for example, W7 < Wy < ... < W,,),
and we defer the details to Appendix A. The second term of Eq. (3.14) is independent of the
reference order, in which the summation is over all the partitions A of {Wy, Wa, ..., W,,}
whose number of blocks is less than m. Suppose A has s singleton blocks and the rest
non-singletons, namely, A = {a1,...,as,As11,..., Az}, We can write J as

(3.15)

i

Jj=s+1

JIA] :(_1)s[ﬁ(1 52,) PT(a;)

J=1

They come from the induced tadpoles generated in step (t2) after we use some algebraic
identities like

Yooy, Yo opr e Yo L +perm (2,3, 1) = So(Wi, Wa, ..., W,) . (3.16)
joEW jaeEWs JrEWR
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In addition, we need to use the inverse of Eq. (3.2) to obtain the (1 — s,,) PT(a;) factor.

We note that each singleton block a; contributes factor proportional to the original PT
factor PT(a;). The condition |A| < m in Eq. (3.14) guarantees that there exists at least
one non-singleton block A; = {W;,,W,,,...}. Each Sy(A;) then merges the traces in the
non-singleton block A; into a single trace according to Eq. (2.16). In factor, Sp(A;) is a
linear combination of PT(p) with p belong to a subset of perm(A;) = perm(W; UW;,U. . .).
The symmetrization defined in Sy takes care of the bosonic exchange symmetry between
the original traces.

Therefore, J[A] is a product of PT factors taking value in each block of A respectively,
the physical meaning of 7 [A] is then clear: it is a linear combination of the string integrands
with less number of traces, cf. the left hand side of Eq. (3.14). It is non-logarithmic because
of the existence of subcycles. Nevertheless, we can recursively use Eq. (3.14) to eventually
obtain a logarithmic integrand. On the other hand, further IBP reduction on [J[A] only
leads to contributions to higher order of o’. Thus in the limit o/ — 0, we have

m—+1 I
[[PTW) = o PT(Woni1) T, (R) + O™, (3.17)
=1

where the first term is the result if we would have started with a type-1 superstring corre-
lator and obtained the multitrace structure through a compactification.

Our algorithm can reduce any multitrace correlator to a logarithmic function. In the
arXiv submission of this paper, we implement the recursive expansion (3.14) in the ancillary
Mathematica notebook IBP.nb. Given a reference order, the result can either be exported
as a linear combination of labeled trees or further expanded in terms of Parke-Taylor factors
in the DDM basis [64]. Run on a laptop, our algorithm can process eleven points with five
traces in a few minutes.

3.3 Inserting one gluon

The single-gluon string integrand C; HT;ll PT(Wj) is only slightly more general than the

pure-scalar one: each term in the integrand contains exactly one tadpole whose tail is a
single gluon. We start with breaking the tadpole at the gluon attach point by Eq. (3.2),
and then follow the same prescription as the pure-scalar case. In other words, the subcycle
connected with the gluon is always prioritized. This essentially means that we choose the
reference order R =i < Wy < ... < W,,. The result can again be written as

m+1 IBP  PT
¢ [[pr(wy) = M T W, W) = Y (—D)AT(A],
i=1 [TiZ1 (1 = swi) AEP[, W1 ... Wi

|Al<m+1

(3.18)
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where the definition of J[A] is extended to include one single gluon. In particular, if there

is a gluon singleton block, namely, A = {i,az,..., a5, Ast1,-- -, Ajal}
s |A
JIA] = (=1)°C; | [](1 - s5a,) PT(a;) [ II So(A ] : (3.19)
Jj=2 j=s+1

Otherwise, the definition is the same as Eq. (3.15) but with Sy involving fusion between
the gluon and traces, which is obtained through algebraic identities like

Wy ” ]
> G Y O Y O O perm(L,2, ) = Soli, Wiy W) (3.20)
J1EWL Jj2EWa Jr€EWr

As a very simple example of Eq. (3.18), we show the expansion of the double-trace single-

gluon integrand under the reference order ¢ < Wy,
IBP . ‘
CiPT(Wl)PT(WQ) = |:TW2 (Z, Wl) + <Z, W1>] PT(WQ) R (3.21)

where Ty, (1, W7) is a combination of logarithmic functions:

Two(i,Wh) = Y Cijy D Cobt > > €y, O (3.22)

J2E€EW2 JEWL J1EWT j2€W?

We note that to obtain Eq. (3.18) with a more generic reference ordering in which the
gluon ¢ appears between traces, we need to use some new IBP relations that allow us to
break a subcycle at a point different from the gluon attach point. We will discuss these
IBP relations in Appendix B.

3.4 General cases with gluons

For the most generic string integrand (1.6), we encounter graphs with multiple tails at-
tached to a subcycle that consists of a single trace W; or a set of gluons. We thus need to
perform IBP reductions on these multibranch graphs [1], which will be discussed in details
in Appendix B. However, using the intuition developed in the single-gluon formula (3.18),
one can be convinced that the generic recursive expansion is

m+1

21,..., HPT

UiP PT(Wp41)

> L G, (R) - (—D)ATA]|, (3.23)
Hj:l(l - SWJ) ’ Ae]ll’[il,...;Wl...Wm]
|A|<r+m

where the first term is the logarithmic form CHY integrand for generic Yang-Mills-scalar
amplitudes written under the reference order R. A very convenient choice is to put all
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gluons before the traces:
R=i1<... 204, <Wi <...<Wy,. (3.24)
In the string context, it corresponds to the contribution from a compactified superstring.

The non-logarithmic function J is generalized from Eq. (3.19) to include more gluons.
For a partition A that contains s singleton blocks, in which ¢ of them are gluons and the
rest traces, namely, A = {a,...a;,bry1,...,bs, Asi1,. .. A}, we have

S

JIA] = (=1)°R(a1,...,a) | J] (1= sp,)PT(by)

j=t+1

Al
[ 11 so(Aj)] . (3.25)

Jj=s+1

Similar to the discussion in section 3.2, the |A| < r +m condition in Eq. (3.23) guarantees
that there must be at least one non-singleton block A; in A and thus at least one nontrivial
fusion Sp(A;). It is a linear combination of PT factors taking value in a subset of perm(A;),
where the coefficients contain the polarization vectors if A; contain gluons.

Now combining the contributions from every block in A, we can see that J[A] is a string
integrand with total number of traces and gluons decreased due to the of nontrivial fusions.
Consider the triple-trace three-gluon integrand R(iy,i2,i3)PT(W1)PT(W2)PT(W3), with
total number of gluons and traces being six. After pulling out the overall factor PT(W3),
we need to consider the partitions of the set {iy, 12,43, W1, Wa}. Two such examples are

A = {ig, iz, W1, {i1, Wa}} = J[A] = —R(iz,i3)(1 — sw, ) PT(W1)So (i1, Wa),
A= {il,ig,ig,{Wl,Wz}} = j[A] = —R(il,i2ai3)SO(W1aW2) ) (3'26)

where the first line gives a linear combination of triple-trace two-gluon integrands and
the second line double-trace three-gluon integrands. For both cases, the total number of
gluons and traces is five. When there are no gluons, this J[A] reduces trivially to the one
in Eq. (3.15).

We give several examples for this recursive expansion under the reference order (3.24).
First, The recursive expansion for single-trace integrands with two and three gluons will be
worked out in detail in Appendix C.1. As a more involving case, the single-trace four-gluon
integrand can be expanded as

IBP
R(1,2,3,4)PT(Wy) = PT(W1)|Tiw, (1,2,3,4) + So(1,2,3,4) + (So(1,2,3)Cy + cyclic)

— 80(1,2)85(3,4) — So(1,3)80(2,4) — So(1,4)S0(2, 3)

+ R(1,2)S0(3,4) + R(3,4)S0(1,2) + R(1,3)So(2,4)

+ R(2,4)80(1,3) + R(1,4)S0(2,3) + R(2,3)So(1, 4)] :
(3.27)
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The next example is the expansion of the double-trace two-gluon integrand,

IBP PT(W-
R(1, 2)PT(W1)PT(W2) = 1_(75‘;) OC/TWQ(L 2, Wl) + 80(1, 2, Wl) + 0180(2, Wl)
1

+ 0280(1, Wl) + (1 — SWl)PT(Wl)SQ(l, 2) . (3.28)

In Appendix C, we will provide more details on the derivation of the generic formula (3.23).

4 Derivation of the CHY integrand

The recursive expansion (3.23) of string integrands might have a very wide application.
In this section, we show how to use it to derive inductively the CHY integrand of the
pure-scalar sector of (DF)? + YM + ¢3, Eq. (2.20a). The derivation of the most generic
integrand (2.19) is very similar and we will comment on it at the end.

The induction starts at double trace. The logarithmic function (3.4) can be further
simplified by SE as

IBP PT(W- SE

PT(W1) PT(W,) = PT(V,) Yool = - Wi p(W)PT(Ws). (4.1)
1-— SWh 1,J2 1-— SWh
J2EW?
We can combine the two-step process and write

IBP+SE SWL

PT(Wy)PT(W,) = T PT(Wy) PT(W3). (4.2)
—

This CHY integrand was first identified in [46]. We use “IBP+SE” to stand for the process
of IBP reduction to logarithmic functions followed by a SE simplification.

To derive the triple-trace CHY integrand, we can directly apply the double-trace re-
sult (4.2) to the second term of Eq. (3.9):

IBP;’_SE —SW1 W <W1, W2>PT(W3)
- 1—sw,w,
= [(Wl,W2> — S (Wi, Wo)|[PT(W3) . (4.3)

(W1, W) PT(W3)

Finally, the (W7, Ws) in the above equation, when combined with Ty, (W7, Ws), produces
the last piece of the triple-trace CHY integrand:

SE
|02 T (W, Wa) + (W3, Wa) |PT(W3) = sy, sws PT(W1) PT(W2) PT(Ws) . (4.4)
This completes the derivation of the triple-trace CHY integrand from the string integrand

3
[Terov:) 5P 4 SE — SleT;zﬁlfsz o [Sa/(Wl)Sa/(Wg) — S (W, W), (4.5)
i=1 1 2

which agrees with Eq. (2.20a).
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The last two terms in the first line of

The calculation at four traces is also similar
4.2) leads to

Eq. (3.11) are double-trace string integrands, such that Eq. (

(W) (W1, Wa, Wa) + (Wi, Wa, W) )
. (4.6)

IBP+SE
=" p (W4)<(W1,W2,W3> (W, W, Wa) — sa,(Wl,WQ,Wg))

On the other hand, the terms in the second line of Eq. (3.11) are all triple-trace integrands

)
from which we can generate nested fusions using Eq. (4.5). For example

T(Wy)

(1 = swy) PT(W1) (W2, W3) P
SWIPT(W1)<W2, W3> + Sa/(Wl)Sa/(WQ, Wg)

IBP+SE
= PT(W,) [ -
(4.7)

Sor (W, S (W, W) |

and the rest are obtained by cyclic permutations. If we plug the above two equations back
to Eq. (3.11), add and subtract H§:1 [sw,PT(W;)], the labeled trees are exactly canceled

due to the relation
— (W1, Wy, W3) — (W1, W3, Wa)

SW PT(W,

||Zm
zoo

3TW4 (le WQ, W3
(4.8)

=1

+ <5W1PT (W) (Wa, W) + cyclic) :

where we use the definition (2.28) for the Yang-Mills-scalar integrand on the right hand

side. Collecting all the relevant terms, we get the four-trace CHY integrand

IBP4SE  PT(W))
5 —4[ HS Sor (W1, Wyo, W3)

4
PT(W; =

H ( ) Hz 1(1 - SWz

<S (Wl)S (WQ, Wg) — Sy (Wl, Sa/(WQ, Wg)) + cychc)] , (4 9)

which again agrees with Eq. (2.20a)
In fact, starting from Eq. (3.14), we can derive the (m+1)-trace CHY integrand (2.20a)

inductively. Since the second term of Eq. (3.14) is a linear combination of string integrands
with fewer traces, we can simplify it using Eq. (2.20a) as our inductive assumption. After

Al Al
IBPngSE Z |A‘HS Z |A‘H50
ACT[W;.. Wm] AcCP[W;.. Wm]
(4.10)

some algebras, one can show that the result is

D R G AL
AEP[W1...Wp]
|Al<m

While the first term is precisely the desired (m + 1)-trace integrand (2.20a), the second
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term exactly cancels the labeled trees:

IA|

> (—nATT se(A)), (4.11)

AEP[W1...Wi]

IRE

Oélm TWm +1 (R)

since both of them are valid CHY integrands for the same amplitude and thus must equal
on the support of the scattering equations. Finally, we note that the most generic CHY
integrand (2.19) for multitrace (DF)? + YM + ¢3 can be inductively derived following a
procedure similar to Eq. (4.10) and (4.11).

5 Special massless factorizations

As an important consistency check, our integrand (2.19) should demonstrate the correct
factorization behavior. In particular, we consider two special massless factorization chan-
nels as shown in figure 3: (i) we cut out exactly a single trace o. The on-shell internal
propagator is thus a gluon; (ii) we also cut out part of a second trace p;, C p. The on-shell
internal propagator is thus a scalar.

We start with introducing essential tools for studying factorization in the CHY frame-
work. We consider a generic physical factorization limit q% — 0, where

ny, n

> ki=—qu, > ki=—qr=qr. (5.1)
i=1 i=np+1

We follow the prescription of [14] and change the variables to

¢

Zao=—— ac€L={1,2...n1},
Ugq
Zazv_g a€R={np+1,n,+2...n}, (5.2)

*

where we have fixed one of the v’s, say, v,—1 = v),_;. In terms of the new variables, the

scattering equations for L and R are independent of each other at the zeroth order of ¢2:

i o ka‘kb 2
ael: 0= > - +0(¢?), (5.3a)
beLU{gr}\{a}
kak
a€R: o= > b1 oY), (5.3b)
Vab
be RU{gr}\{a}

where we have used the gauge choice uy, = vy, = 0. On the other hand, ¢? satisfy the
following equation,

0= ﬁ+<2227ka'kb = ﬁJFQF( ki) +O(¢Y) (5.4)
K aeRbeLvaub_<2_ 2 TR , .
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Figure 3: Two special massless factorization channels of our integrand. The dashed lines
represent scalars and the curly lines represent gluons. Note that there are no original
external gluons on the left.

where F':= 3 -p> icr Zka'ky 35 independent of ¢. In the limit g7 — 0, there always exists

VaUp
a singular solution

2
2 qar, 4
=—=——+40 . 5.5
C F(U,’U, ]CZ) + (QL) ( )
We can ignore other solutions of ¢ since they are only relevant to subleading orders in the
factorization limit.
The benefit of these new worldsheet variables is that, at the leading order of (, the

CHY integration measure factorizes nicely as [14]

dCQ C2nL 2np—4

dpcuy ~ dprdpr—5 2 5(°F — )T ) (5.6)
where U := ]\t u,, and
n—2
dpg = u1u2u12 [Hdua EL > dur = (Un—lvnun—l,n)2[ H dvaé(Ef) >
a=nr+1

ko -k ko -k
Ec{/ = . ) Ef = - : 5.7
> ” > - (5.7)

beLU{qr }\{a} beRU{qr}\{a}

Namely, duy, and dug are nothing but the integration measure for L U {qr} and RU {qr}
respectively, where q% = q%% = 0. As a universal building block for gauge amplitudes, the
Parke-Taylor factor becomes

PT(1,2,...,n) ~ (=1)"e¢"e P22 PT(1,2,...,n1,q1) PT(qr,np + 1,...,n), (5.8)

where the two PT’s on the right hand side are given by u and v variables respectively.’
We expect a valid CHY half-integrand ZSMY to behave as

IS~ (=) 2y N TP (L2 i, qr) IR (qronp 41, m), (5.9)

states

where the summation is over the on-shell states on the factorization channel q% =0. If

In the following, it is understood that in a factorization analysis, particles in L are always associated
with the u’s while particles in R with the v’s.
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this is true, then the ¢?"#=2n2+4 /144 factor in the measure (5.6) will be cancel, such that

the ¢? integration will provide the desired massless pole:

d¢? 1
S OCF —dt) = ., (5:10)
¢ ar,
We thus obtain the correct factorization behavior
1
A(l, 2, e ,n) ~ Z AL(L 2, ...,Nnr, qL) ) AR(QRynL—I—l; ce ,n) 5 (511)
states qL

where A, and Ag are the amplitude given by the half-integrand Z; and Zg.

5.1 An example: factorization of the triple-trace scalar integrand

We apply the above construction to study the factorization behavior of the triple-trace
scalar integrand (2.21b). We first consider the scalar factorization channel. In particular,
we cut through the trace p such that L = o U py, and R = 7 U pr, where py, U pr = p and
pr, N pr = (0. The leading order is contributed only by the first term of (2.21b). Using
Eq. (5.2), we find that

ISHY(U, T, /0) ~ CnR*nL‘FQ Z,{2 PT(pl)SUPT(U) PT(’O2)STPT(7—)
1—s, 1—s;
= (TR TP (0, p1) TR (7 p2) (5.12)

which is the correct factorization behavior according to Eq. (5.9). We note that in our
factorization analyses, we always omit a possible overall sign, but keep track carefully the
relative signs in our integrands.

Next, we consider the gluon factorization channel L = ¢ and R = 7Up. The first term

of Eq. (2.21b) behaves as

PT(p)Su (0)So (T) sap S:PT(T)PT(p)

~ (MR Y2 PT 1
Gos)(i—s) ~CTTWRTE) D, ST (513)
acR,beL
_ PT(p)Sw (1)Sor (4r)
~ ! rnp—nr+2 742 , )
o¢ u ; [30, (q1)PT(0) e

Besides changing the variables to (5.2), we also replace s, by Eq. (5.5), which leads to the
first line. To achieve the second line, we first insert the on-shell completeness relation”

Z eu(QL)Gu(QR) — Nuw (5'14)

states

"The arrow means that we have excluded terms that vanish on-shell.
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into sqp = &'k ky. Similarly, the second term of Eq. (2.21b) behaves as

PT(,O)SO/ (U’ 7—) CnR_nL+2 U? PT(J)PT(T)PT(/)) Z S0y Soamy ) Urima
~ Soomy T T Smo
(1 —s5)(1 —5;) 2(1 —s7)(1 —sp) o\ gy 2T e )
T1,T2€ET
-~ a/2CannL+2 U2 Z CqLPT(J)PT(T)PT(p) (kr, 'fQR'le)UnTz
states 2(1 o ST)(l o Sp) T, T2 €T UryUny

1
s (5.15)

Na/CnR—nL—I—ZuZ Z [Sa/(QL)PT(U)

states

PT(p) S (7. qR>] |

We have used the completeness relation (5.14), the momentum conservation (5.1) and the
gauge choice vy, = 0 to get the final result.

Combining Eq. (5.13) and (5.15), we find that the triple-trace integrand (2.21b) indeed
factorizes into a single-trace one-gluon and a double-trace one-gluon integrand, namely,

S (0,7, p) ~ ¢V Y TP (0,q1) TR (7, pyam) (5.16)
states

where Z8"Y (0, q1) = Cy, PT(0) = =Sy (q) PT(0) and ZEMY is given by Eq. (2.21c). Our
result thus agrees with the general requirement (5.9).

5.2 Generic integrands

We briefly talk about how the above two special factorization channels work for generic
multitrace integrand (2.19). We first consider the scalar channel L = Wy U WL |, where
WL

m

41 is part of the trace W, treated specially in Eq. (2.19). One can show that the
more mixed L and R are in a PT factor, the higher order of ( it will give rise to:

PT(L)PT(R) ~ ("2~ " PT(LR) ~ ("=~ "tt2  PT(LRLR) ~ ("7 "LH | ete.

Since the overall factor PT(W,,,1) already mixes L and R once, the leading order ("7~ "z+2
must be contributed by the terms containing also the stand-alone factor PT(W7;). There-
fore, only those total partitions that have a singleton block Wj is relevant at the leading
order. This immediately leads to the correct factorization behavior

ISHY(WL ) Wm+15 il) cee ,ir) ~ CnR_nL+2u2 ISHY(Wl, W#-{-l)
X TEY (Way oo W, WE iy, i), (5.17)

where W,%H U W,Inﬂ_l = W41 and WnLI_H A Wn];z-f-l =0.

The analysis of the gluon channel L = W is only slightly more difficult. The rel-
evant terms are either of the form PT(LR) or s PT(L). These terms are generated by

So (W1, ...), where the “...” may contain traces, gluons, or their symmetrized fusion S,/ .
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A calculation similar to Eq. (5.13) and (5.15) shows that

Sar(W,..) ~ CF7m 202 N = TP (W, q1) S (s -+ ) (5.18)

states

“...”. In other words, we can simply

where # is the number of particles contained in
replace Wi by gr. We note that the prescription still holds when S,/ (W7, ...) is nested in

some other symmetrized fusions:

Sar (s Sar(Wi,..)) ~ CFm202 N = TP (W, q1) Sar (-, Sar(grs - 2)) - (5.19)

states

Although the outer level S, may further mix W7 with the others, the contribution is
subleading and thus can be ignored. On the other hand, the terms still of the form PT(LR)
are exactly captured by (5.19). The final result of this channel is

Z,?HY(Wl, el Wm+17 2'1’ o ’,L'T) ~ CNR—HL-FZ uZ Z ISHY(Wl, qL)

states

X T (Wa, ..o, Wing 1,01, - -+, iry qR) (5.20)

agreeing with Eq. (5.9). Schematically, we can obtain ZgHY by replacing the trace Wi by
qr in the original ZSMY.

By iterating the two cuts discussed above, we eventually land on the single-trace in-
tegrand (2.20b). This factorization analysis provides a simple but nontrivial consistency

check to our integrands.

6 Conclusion and discussion

In this work we have continued our study of the two-step method proposed in [1]: namely
(1) IBP reduction of correlators of string amplitudes to a logarithmic function, and (2)
rewriting the logarithmic function into a closed-form CHY half-integrand for field-theory
amplitudes using scattering equations. We present two main results regarding heterotic
and compactified bosonic strings for arbitrary multiplicities and number of traces. The
final outcome of our calculation is remarkably simple CHY formulas for general (DF)? +
YM + ¢® amplitudes, which extend our previous formula for the single-trace case greatly.
As a paraphrase, our result gives the half-integrand needed in a rewriting of open-string
amplitude as a CHY formula. In order to derive the formula, we find that the key new
result is a recursive expansion for multi-trace string correlators. It provides an efficient
algorithm for reducing multi-trace correlator to logarithmic functions, which is useful for
other purposes as well. Note that we have left out one special case, which is the formula
for pure-graviton case: while it can be obtained from factorization already from our single-
trace formula, it would be highly desirable to obtain a closed-form result for it as well.
Our results opens various interesting avenues for further investigations. First of all,
they may bring new insight into the (DF)? + YM + ¢3 theory especially in the multi-trace
sector, as well as conformal (super-)gravity which can be obtained from a double copy with
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(super)-YM [47, 65]. Moreover, it would be interesting to compute matrix elements with
higher-dimensional operators from bosonic/heterotic string corrections, and our formulas
can serve as a starting point for extracting such corrections, in a way similar to [66, 67].
Of course having such a general formula for a large class of amplitudes, including those
in Einstein-Yang-Mills theory, provides more applications. For example, one could use it
for extracting BCJ numerators and discovering new amplitude relations, which have been
recently studied further in [61, 68-70].

The recursive expansion certainly has more applications. Most directly it gives the BCJ
numerators for the (DF)? + YM + ¢? theory. From a more mathematical point of view,
it allows us to reduce non-logarithmic functions with multiple cycles to logarithmic ones,
both for IBP reduction of string correlator and, in the o/ — oo limit, for manipulating CHY
integrand using SE. As shown in the paper and in the ancillary file, the recursive expansion
allows us to do such calculations in a very efficient way. It is also interesting to relate our
general procedure to various ideas in the literature, such as intersection theory [29, 71],
studies of disk/sphere integrals from a mathematical point of view [51, 52, 72], and positive
geometries related to string worldsheet [59, 73, 74].

As we have pointed out in [1], our method applies to any string correlator for massless
external states with the correct SL(2) weight, and it would be interesting to study more
examples beyond type I, bosonic and heterotic cases, such as the dual model proposed in
ref. [75]. More importantly, it would be highly desirable to apply our method to string
correlators with massive states, as well as to cases at genus one [76-82]. On the other hand,
the CHY half-integrands here contain explicit o/ dependence, and it would be interesting
to understand if there are worldsheet models, such as ambitwistor string [20, 24, 25] theory,
underpin it (see [28] for some progress which gives at least correct three-point amplitudes).
Investigations along these lines may shed new light into the universality and origin of
CHY /ambitwistor string constructions.
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A Labeled trees and logarithmic Yang-Mills-scalar integrands

As shown in ref. [83], labeled trees form a basis for logarithmic functions on the worldsheet.
In this section, we give the rules to write down the logarithmic Yang-Mills-scalar CHY
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integrand Ty, , (R) in terms of a labeled-tree expansion:

Twa®) = Y Nr(T)C(T). (A1)

TET(Wint1)

To carry out this expansion, we need to first construct the relevant labeled trees, and
then define the map Ng and C for each labeled tree. The summation in Eq. (A.1) is over
T (Wynt1), the labeled trees with roots in Wi, 41, the nodes of which are labels of all the
external particles. The function C maps a tree T into a rational function of worldsheet
variables:® each edge is mapped to a zi; factor in the denominator, where 7 and j are the
labels of the nodes connected by the edge. Each tree also carries a dual kinematic factor
Ng, the evaluation of which depends on the choice of reference order R. Very interestingly,
these dual kinematic factors form a basis for the DDM basis BCJ numerators [60, 61], while
the reference order R characterizes certain generalized gauge degrees of freedom.

We start with constructing the relevant labeled trees T(W,,4+1). We first treat the
gluons and traces on the same footing, and draw all the rooted trees on W,,,+1 with nodes
{i1,.+yir, W1, ..., Wy, }. In all there are (r +m + 1)"+™~1 such trees. For example, the

spanning trees for the double-trace single-gluon case are

Wi i ) Wi Wi )
V . (A.2)
W2 W2 W2

Next, given a reference order R, we decompose each tree into a collection of paths and
blow up the traces according to the following procedures:

(1) draw a path from the first element of R to the root. Then draw another path towards
the root from the first element of R that has not been traversed. This path will end on
a previous path. Repeat the process until all nodes are traversed. This decomposes
each tree into a set of paths, denoted as P|[T].

(2) replace the root by a chain evaluated to PT(W,,41) after restoring the gauge:
Wint1 restore gauge
= , C ———— PT(Wp41) - (A.3)

(3) if a trace W; appears in the mid of a path, blow it up according to

Wi a bi (A.4)

° — e NN NNNe )

where by our convention b; is the end closer to the root. We will sum over all pairs
of a; and b; in W;.

8In [83], it is called the Cayley function. For a trivial tree with a single node, we define C[¢] = 1.
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(4) if a trace W; appears at the start of a path, still blow it up as (A.4). However, only b;
will be summed in W;, while a; € W; is arbitrary but fixed. Across our construction,

we keep the same choice of a; if this situation happens.’

(5) if a path ends on a trace W;, then the end point can take any value in W.

Accordingly, the three spanning trees in Eq. (A.2) generate the following labeled trees
relevant to the logarithmic CHY integrand:

b1 a1 i i b1 a1 a1 by i
T(Ws) : (72 ; (72 ; 2 Yj, |, (A.5)
a1,br € Wq b1 € Wy by € Wy
J2 € Wa Jj2 € Wa J2,l2 € Wa

in which we have used the reference order R = i < Wj. All the paths are directed towards
the root, and different ones are illustrated by different colors. For each T € T(W,,1), the
map C is defined as

;—>—3 — ;j, o PT(W;)zb,q, - (A.6)
This definition is compatible with the one introduced in section 2.1. On the other hand,
for each path p in the path set P[T], we can define a path factor ¢(p) obtained from the
following rule:

position in the path
start | middle | end

gluon 7 et i kY

trace W; | ki kb, ky, | k7,

node

: (A.7)

where the Lorentz indices are contracted with their neighbors on the path. The map Ng(T)
is given by the product of all these path factors:

Nr(T) =[] #(). (A.8)
pEP[T]

The outcome of Ngr depends on the reference order R, since different R’s lead to different
path sets for a given tree.

According to Eq. (A.6) and (A.7), the labeled trees in Eq. (A.5) are evaluated as

9This choice eliminates some redundancy in the construction. In [61], a; is called a fiducial particle.
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follows under the reference order R =17 < Wi:

2t Ng(T) C(T)

‘ PT .
Z Z (€ikay ) (b, k) %
J2 a1,b1 €W j2€Ws a1 “b1 jo

i b1 a1
PT Al
Z Z (Ei'ka)(kb1'ki) % ’ ( 9)
J2 b1eWy joeWs b11<ij2
ar b1 4

4 PT W1 Zh
§ E (ei'ka)(kbl'kb) Z( ] ) =
| bieWn jolaeW b1jaZila
2 ¥ j2 1 1.J25t2 2

such that the logarithmic integrand Ty, (i, W7) is obtained simply by adding the three

rows together. In particular, the a; € Wi in the second and third row is the same, and not
summed over. Different choice of a; leads to equivalent Ty, and thus it exposes certain
redundancy in both the string and CHY integrand. We note that if we choose R = Wy < i
instead, the first two classes of labeled trees in the above table are modified into

b1 J1 a1 i

PT(WI)Zb a
- Z Z (kb1 'ka)(ei'kjl)ﬁ s (A.lOa)
J2 J1,b1EW7 ja€W> 1j1~b1j2
i b a1 ( )
PT W1 Zbia
- Z Z (kbl‘fi‘ka)T””, (A.10Db)
J2 b1 €Wy joEWo b1i<ij2

while the third class remains the same. The resultant integrand Tyy,(W7i,4) is of course
equivalent to Ty, (7, W1) both as string and CHY integrand.

B 1IBP reduction of multibranch graphs

In our previous letter [1], we have shown that generic multibranch graphs can be alge-
braically rearranged into tadpoles and then processed by using Eq. (3.2). In this section,
we introduce a new IBP reduction for multibranch graphs that naturally leads to our
recursive expansion (3.23).

We may view a multibranch graph as a collection of subtrees planted on a subcycle
consisting of a color trace and/or gluons. If we denote the subcycle as W, each node i € W
is the root of a tree B;. Moreover, we use s; to denote the immediate successors of ¢ in the
tree B;. By definition, the set s; can be empty while B; at least contains one node, the root
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1. For generic multibranch graphs, we have

where C is defined in Appendix A. As special cases, single subcycles correspond to all
B; = {i} while tadpoles have exactly one nontrivial B; that at the same time is a chain.

For any multibranch graph, we can absorb all the % factors with b € W and j € s
J
into the Koba-Nielsen factor. Then using directly Eq. (3.2), we get

Sbj Sbj—l
S — PT(W — — B;
S PTW)aa| 3o Th4 3| [ ClBi.
beWw jeWus, 7 jesy 7 icw
(B.2)

where as before a € W is arbitrary and (---) does not involve any punctures in W. Both
terms on the right hand side of Eq. (B.2) contain induced subcycles, which are not present in
the original integrand but appear as a result of IBP. Here, they consists of nodes originally
in the branches but only part of the nodes in W. To manifest the recursive pattern, we
need further operations to make all the nodes in W to appear in the induced subcycles.
We first demonstrate this process by an example.

We can treat the simplest tadpole PT(W)-:- as multibranch and apply Eq. (B.2). The

Zpq
generalization is that we can now break the subcycle at any point, not just the tail attach

point p. The result is

PT(W)(---) I]ép PT(W)(--+) Z ZbaShj Zbashg Zpa(l — Spq) (B.3)
Zpq L —sw beny  bicpa bW\ {p} “bgZqp “pq~qp
JEWU{q}

where p € W and B, = £, ¢ . The last term is a tadpole, and the numerator cancels the
tachyon pole introduced by the IBP relation (3.2),

PT(W)zpa (L~ 5p) () B

3 Zpasbg > M](...)_ (B.4)

Zpa2 Zpba % } ZpaZai
Pq<qp beW\{p} PP ewigqy “PIC

Noticing that zp, — 2pa = 2bp, We can collapse the first term of (B.4) and the second term
of (B.3) into a single subcycle. The final result is

PT(W)(---) B8P PT(W)(---) S ety Zpotej | T ZpbSha | (g g
Zpg 1 —sw b FiFPe oD FpaRai oy Phatap
JEWU{g}

The first two terms are trees planted on the remaining integrand. The third term features
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Figure 4: The IBP reduction of PT(VV)%7 where GG denotes other parts of the graph
disconnected to the tadpole.

a “fusion” between the subcycle W and the branch, and it can be further broken by using
Eq. (3.2). Schematically, we can represent the above reduction process as in figure 4.

The example gives some important ideas on the reduction of generic multibranch
graphs. As discussed before, the goal is to include all nodes in the original subcycle W
(represented by the wavy line) into the induced subcycles. In Eq. (B.2), we have generated
a family of length-two subcycles PT(b, j) featuring a numerator (sp; — 1), where b € W and
J € sj C By. Further IBP reduction on them will not lead to new tachyon poles. Next, we
can absorb all the edges connecting j and its immediate successors s; into the Koba-Nielsen
and break the subcycle at b. In this way, we can push the induced length-two subcycles
with numerators (sp; — 1) towards the end of the branches. This process ends at the leaves
of each branch B, where length-two tadpoles are generated and processed using relations
like Eq. (B.4). Then after using some algebraic identities, we arrive at

PT(W)(---) HC[Bi] I&Pm

iew 1= sw
ZpaSﬁj 1 ZpT‘Sﬁf C B, B 6
xlz Yoy 3 ]H B, (B)
peEW peB, peW peB,,7€B;- €W
JEUiB; reW (5,7)#(p,r)

where the % in the second term cancels a double counting in the summation. The two
terms in Eq. (B.6) can be represented by two kinds of graphs

where we represent each branch B; by a blob. Very nicely, the first term has a tree topology
and there exists an arbitrary choice a € W, while the second term has a multibranch
topology and no arbitrary choice is involved.'? This resembles the structure of our recursive

10Tn practice, we often choose a to be the attach point of a certain branch, see Appendix C.
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expansion (3.23). The induced subcycles all contain the original subcycle W as a whole
(the wavy line) and at least one node from the branches, such that the total number of

nodes in the branches is reduced. We end our discussion with an example,

PT(W)(--+) IB%P PT(W)(--+) [ Z Z % Sby | Flad2y | ZlaS3j Z4a85j>

212223245 (1 — sw)z12223245 2pj 29; 23; 255

jEWU{2,3,5} bew

z214S 2148 Zb1S Zb1S ZbaS
n 1425+ 1435+Z(b1b2+ b1b3+ b4b5) ’ (B.8)

225 235 b2 2b3 2b5

beWw

where 1,4 € W and 2,3,5 ¢ W. The branches are By = 1, 2,3 and By = 4, 3. As
before a € W is arbitrary and (---) does not involve any punctures in W U {2, 3,5}.

C Towards the generic recursive expansion

In this section, we try to derive the generic recursive expansion (3.23) from the string
integrand (1.6) with r gluons and m+1 traces. The reduced gluon integrand R(i1,...,1,)
gives rise to several new features compared with the pure-scalar case. Besides the traces
PT(W;), there are new length-two gluon subcycles introduced by the R;;) = — I PT(i, 5)

«

factors. There are additional gluon subcycles contributed by the product of C;’s, which
are of the form C;;Cj;,Cy;. To derive the generic recursive expansion, a very useful start
point is to rewrite the gluon part algebraically into the following form:

Rl i) == 3 (=) =OR(sg(A) TT Sola) T [So(A))eemo]

A€EP[i1,...,ir] ‘Aj|=2 ‘Aj|>3
|Al<r
+ ) det(—Cygay) J] (1—sa)Ra,) (C.1)
AEP[i1 ... ir] |A;|=2

with all |A;|<2

where the summation in the first line is over all the partitions A = {A1,As,... ,A|A‘} of
the gluon set {i1,--- ,i,} except for the all-singleton partition A = {iy,--- ,7,}. The set
sg(A) == {A; €A ‘ |A;| = 1} is the collection of all the singleton blocks in A. Suppose there
are exactly s gluons {4,145, -+ ,i%} C {i1,42,-- ,i,} which are singleton blocks in a certain
partition A, then we have R(sg(A)) = R(i{,--- ,i,). The second factor [1ja,j=2 So(A;) is
a product of all length-two blocks in the certain partition A. The third factor comes from
the gluon subcycles of the form C;;C};Cy; mentioned before. For example,

So(7, J, k)eeso = ((i,j, k) + (i, k,j>> 0= CiiCikCri + CirsCr; Cjis . (C.2)

€€—
The summation in the second line is over all the partitions with only singleton and length-
two blocks. The matrix Cga) = C'i/l i 1s an s X s matrix whose off-diagonal en-
tries are Cj; and the diagonal ones are —Cj;. According to the matrix-tree theorem [63],

det(—Cj ... i) is a combination of labeled trees rooted on the complement set of {4}, - - - , i

’ Vs
in {’il,... ,’ir,Wl,...,Wm+1}.
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The benefit of this rewriting is the following. Comparing with the recursive expan-
sion (3.23), one can easily see that the first line of Eq. (C.1) is already part of the J
in Eq. (3.23). More precisely, it is the part that only gluons are involved in the fusions.
However, the € - € contributions in the fusions with length-three and beyond are missing.
Therefore, to reach the recursive expansion, this line does not need any further manipula-
tion and we only need to perform IBP reduction on the second line of Eq. (C.1). Interest-
ingly, all the gluon subcycles there are length-two and dressed by a numerator (1 — s;;),
which cancels the tachyon pole generated by the IBP. For convenience, we later refer the
length-two gluon subcycles in the second line of Eq. (C.1) as B-type, and all the subcycles
in the first line of Eq. (C.1) as C-type.

We are now ready to give the IBP algorithm that leads to the generic recursive ex-
pansion (3.23). We need to first gauge fix a puncture in W,,,11 to infinity and then fix a
reference order R for gluons and the rest of traces as the priority list of being processed
by IBP. It is convenient to put gluons before traces, for example, using the order (3.24),
although there are no restrictions in principle. Starting with the first element in R,

e If it is a gluon, say i, for each term in the string integrand, we do the following:

(gl) If ¢ appears in the B-type subcycle (1 — sij)R(ij), choose a = i and break it
using (B.6).

g2) If i appears in a branch of a trace W; or B-type subcycle (1 — s;5)R i), We
j Tk (jk)
choose a as the attach point of that branch and break the subcycle using (B.6).

(g3) Repeat this process until in every term ¢ is connected to the root W, 11 or an
induced subcycle.!! Then proceed to the next element in R.

e If it is a trace, say W;, we choose the same a; € W; for every term in the string
integrand and do the following:

(t1’) If W; is in its original form and has not been processed, break it at a; using (B.6).
This turns W;, together with its branches, into a tree planted on the other part
of the integrand.

(t2%) If the tree generated in step (t1’) appears in a branch of another trace or B-type
subcycle in its original form, choose a as the attach point of the branch and
break the subcycle using (B.6).

(t3") Repeat this process until in every term Wj is connected to the root W, 1 or an
induced subcycle. Then proceed to the next element in R.

We note that the trace rules are the direct generalization of (t1), (t2) and (t3) for pure-
scalar cases. The algorithm terminates when all the elements in R are traversed. the
outcome will provide the € - € terms in the labeled trees and in the gluon fusions together
with the fusions involving traces. We will then arrive at the recursive expansion (3.23)
after some straightforward algebra.

See the definition of induced subcycles below Eq. (B.2). We note that 4 can never connect to a C-type
subcycle since they do not appear in the second line of Eq. (C.1).
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C.1 Examples: two and three gluons with a single trace

We will demonstrate by two examples that the above algorithm indeed leads to the correct
expansion (3.23).

The single-trace two-gluon string integrand is R(1, 2)PT(W1) = (C1C2+R12))PT(W1).
We can expand the C1CoPT(W7) part as

€1-ko € €1-koex-k
0102PT W1 Z 01410242 + Z 1Z 222 +C91 Z 01] LN . 222 ! PT(Wl),
01,02€Wy JEWI 1222, , JjeEW, 12721
C12C2; C12C21
(C.3)

where the first three terms of the right hand side are combinations in labeled trees and the
last term is a C-type subcycle. We rewrite the subcycle R19) as R12)(1 — s12) + R(12)512
and perform IBP on the the first part,

IBP Z er-eakakj  eeakyh T(Wh) (C.4)

z 294 2122
jeWL 12 2] 12421

Combining these two equations, we have

R(1L2)PT(W;) = < > CiCon+ Y ;fi +Cn Y Oyt 2>)PT(W1)
£1,2eWy jeEW; 1242, jewW;

/

TW;(rl,2)
(C.5)

which agrees with the general formula (3.23). The result corresponds to the reference order
1 < 2 because we choose to break the subcycle at gluon 1 in Eq. (C.4), ¢f. the rule (gl).

We then try to derive the recursive expansion for the single-trace three-gluon string
integrand. According to Eq. (3.23), it is

IBP
[

R(1,2,3)PT(W1) = [T, (1,2,3) + (1,2,3>+(1,3,2>+<(1,2>Cg+cyclic>}PT(W1).

(C.6)

As described in Appendix A, there are 16 relevant spanning trees rooted on Wj. Each
such spanning tree can be decomposed into a collection of paths according to the reference
ordering 1 < 2 < 3. In the following, we will use a set of paths to denote a spanning tree.
For examples,

1 2 3 1 2 3
\\}/ — (LW, 2, g, { — (L2, 82}, (C)
W1 Wi

where different paths are drawn with different colors.
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We rewrite the string integrand this way,

R(l, 2, 3)PT(W1) = {det(—Cmg) + <<1, 2>Cg + CyCliC) + C19C93C31 + C13C32C9

+ <(1 — 512)R(12)C3 + cyclic)] PT(Wy), (C.8)

where C123 is the 3 x 3 matrix where the off-diagonal elements are C;; and the diagonal ones
are —C;. According to matrix tree theorem [63], det(—C123) is a combination of labeled
trees rooted on Wi. Actually, det(—C1a3) is the part of Ty, (1,2,3) with € - € absent,

det(—Cmg) = Twl(l, 2,3) . (C.9)
e-e—0
Equivalently, they are the reference order independent part of Tyy,. Therefore, they are
already part of the final recursive expansion. Similarly, (1,2)C5 and its cyclic are the
ingredient of the recursive expansion, while C12C53C3; 4+ C13C32Co1 is the part of (1,2,3) +
(1,3,2) with € - e absent according to Eq. (C.2).

All that left to be done is to perform IBP on (1 — s12)R(12)C3 and its cyclic to get
the missing € - € pieces. For this simple example, Eq. (B.5) is adequate since only tadpoles
appear after expanding C;. We proceed with the reference order 1 < 2 < 3.

For (1 — s12)R12)C3, we set a = 1 according to (g1) and break the subcycle PT(1,2)
using Eq. (B.5). Note that C3 = C31 + C39 + zjeW& ng. For C31, we have

IBP  ¢;-€ ko-k ko k;
(1 — Slg)R(lg)CglpT(Wl) = — ! 2031 2773 + Z 2 PT(Wl) (C.lO)
Z12 223 jew, %

where the first term contains a subcycle PT (1,2, 3), which contributes to (1,2,3) +(1,3,2).
The second term contributes to the tree {1, 2 W1 3 1} in Ty, (1,2,3). According to the
rule (A.7), the path 1, 2 Wi has the kinematic factor €; - fo-kj = €1 -kaea-kj — €1 - €2k - k;
with j € Wi. Indeed, the first part €;-kaep-k; is given by Eq. (C.9), while the second part
is supplemented by Eq. (C.10). Similarly, for Csa, we have

Byhi Z<k2-k ks-k;j )

zZ. z z
31 jews 27 37

IBP ¢ .¢
(1 = 812)R12)C32PT(W7) = — 2122032

PT(W,), (C.11)

where the first term contributes to (1,2, 3) + (1, 3,2), and second term contributes to the
labeled tree {1, 2 W1, 3, 2} and {1, 2,3 Wi} Finally, for 3.y, C35, we have

IBP €162 ko kg
(1-s12)Rpz) Y Cs,PT(W) = — o~ TN PT(Wy), (C.12)
JEW JEWS LeW1U{3}

which contributes to the labeled tree {1, 2 Wi 3 Wil and {1, 2, 3 Wi} .
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Next, (1 — s1,3)R(13)C2 can be processed similarly by Eq. (B.5) with a = 1,

IBP  ¢-¢ ks-k ko-k
(1 - 513)Raz)CoPT(W1) = — Z2PT(Wy) | Coy o2 4 Cogot
213 232 221
ks-k k k k
+Cy Y 2L 4Oy z 2 QZCQJ , (C.13)
jew, 3 jew, % jewn

where the first line contributes to (1,2, 3) + (1,3,2) and the second line contributes to the
labeled tree {1, 3 Wi 2 1} {1, 3 Wi 2 3} {1 3 Wi 2Wiland{1,3, 2Wi}

Finally, for (1 — 323)72(23)01 =(1- 323)R(23) (C12 +Ci3+ ZjEWI Clj), we invoke (g2)
to set @ = 2 and 3 for the first two terms. In the last term, since 1 is connected to the
root, we move on to the next particle in the reference order, which is 2, according to (g3).
For the first two terms, using (B.5) with the proper a, we get

IBP €r-€3 [ ko-k ko -k;
(1 — 523)R 23 C13PT(W1) & —Cp3—= 3( ) )PT(Wl)
293 Z91 ; 29j
JEWL
IBP €r-€3 [ ka-k k3-k;
(1—823)R(23)012PT(W1) >~ (9 2°%3 3 + Z 3 PT(Wl) (C.14)
223 Z31 jemn Z3j

In both results, the first term contributes to (1,2,3) + (1, 3,2), while the second term con-
tributes to the labeled tree {1, 3, 2 W1} and {1, 2, 3 W1} respectively. For the >_. Cy;
part, we set a = 2 to break the subcycle PT(2,3) because of the rule (gl),

IBP g€ ks-k
(1 - 823 23 Z CUPT(Wl = — 2773 Z Cl] Z 3 EPT(Wl) (015)
JEWL JEWL LeWrU{1}

We see that this choice of a, the result contributes to the labeled tree {2, 3 W1 1 Wi}
and {2, 3 1 Wi}

The six terms containing subcycle PT(1,2,3) in Eq. (C.10), (C.11), (C.13) and (C.14)
are the exact the remaining components to make up (1,2,3) + (1,3,2) together with
C12023C31 + C13C32C1. According to the definition of fusion (2.7), we have

€1-€ ko k ks -k
(1,2,3) +(1,3,2) =C12023C31 + C13C3201 — L [031 275 4 Oy 1]
2923 231
_6163013 2+0232 1}_6263[0132 1 0123 1]
213 232 221 223 221 z31

(C.16)

Meanwhile, summing over all the aforementioned labeled trees, we exactly reproduce
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Tw, (1,2,3) constructed from the rules in Appendix A. The explicit expression is

T, (1,2,3) =det(~Chzs) — —2|C3 Y 2 40y Y 2 L 28N oy
. Z2j . 235 293
JEWL JjeEW, JEWL
€1-€ ks-k; ko-ki ks -k
Sale 3 g, 3 el Bk s
13 jew, 3 jewy 32 jew
€9-€3 kg-kj kz-kj kg-kj
— C C C . (C.aT7
3 Z 14, ‘ Z 25 + C13 Z 2 + C12 Z 2 ( )
L1eWn jeW1U{1} JEWT JEWL

This finishes the derivation of the recursive expansion (C.6) for three gluons and one trace

from the the string integrand (1.6) .
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