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Period mimicry:
A note on the (−1)-evaluation of the peak polynomials
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Let ppkn (t) be the peak polynomial for permutations of size n, i.e. ppkn (t) =
∑

π∈Sn

tpk(π)

(where pk(π) is the number of peaks of π). Define

P pk(z, t) =
∑

n≥0

ppk
n
(t)

zn

n!
and F (z) = P pk(z,−1),

and let fn denote the coefficient of zn/n! in F (z), namely fn = ppk
n
(−1). The sequence fn is

the object of study in this note.

It is well known that

P pk(z, t) =

√
1− t√

1− t− tanh(z
√
1− t)

,

whence

F (z) =

√
2√

2− tanh(z
√
2)
. (1)

Thus fn is the coefficient of zn/n! in

√
2√

2− tanh(z
√
2)
, which is given by A006673 in the

OEIS [2]. Tirrell and Zhuang [3] study this sequence from the point of view of bijective
combinatorics. The purpose of this note is to study it from the point of view of analytic
combinatorics, from which we discover a curious phenomenon.

The first few values of fn (starting at n = 0) are:

1, 1, 2, 2, −8, −56, −112, 848, 9088, 25216, −310528, −4334848, −14701568, . . .

One might conjecture that, for n ≥ 1, fn is positive if (n mod 6) ∈ {1, 2, 3} and negative if
(n mod 6) ∈ {4, 5, 0}. However, the following analysis shows that the sequence’s oscillation
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is irregular, and indeed if we compute enough terms of the power series we can see that

f42 = 356 077 960 394 850 110 410 690 594 606 123 271 850 033 152≈ 3.56× 1044

breaks the apparent pattern of signs (and is the first term to do so).

The asymptotic behavior of fn is determined by the location and nature of the dominant
singularities of F (z), considered as a function of a complex variable. (The dominant singu-

larities are the singularities closest to 0; they lie on the boundary of the disk of convergence.)
What follows is an asymptotic analysis of fn. To skip right to the answer, go to Section 2.

1 Asymptotic analysis

The singularities of F (z) occur where the bottom of the fraction in (1) equals 0, i.e.
√
2 −

tanh(z
√
2) = 0. We solve for z and obtain

z =
log(3 + 2

√
2) + (2k + 1)πi

2
√
2

(k ∈ Z),

of which there are two that are closest to 0:

z =
log(3 + 2

√
2)± πi

2
√
2

.

The fact that there are two dominant singularities means we should expect fn to exhibit
some kind of oscillatory behavior.

Define z0 =
log(3 + 2

√
2) + πi

2
√
2

, so the two dominant singularities of F (z) are z0 and z0.

The asymptotic behavior of fn comes from the behavior of F (z) near z0 and z0. We can
decompose F (z) as

F (z) =

√
2√

2− tanh(z
√
2)

=
−1

z0
A(z) +

−1

(z0)
B(z), (2)

where

A(z) =
2(z − z0)(z − z0)

πi(
√
2− tanh(z

√
2))

· 1

1− z/z0
and B(z) = − 2(z − z0)(z − z0)

πi(
√
2− tanh(z

√
2))

· 1

1− z/z0
.

First consider A(z). We have A(z) ∼ 1

1− z/z0
as z → z0, in the sense that lim

z→z0

A(z)

1/(1− z/z0)
=

1. Therefore, since A(z) is analytic on the domain {|z/z0| < 1 + ε and z 6= z0} (for some
ε > 0), we can apply [1, Cor. VI.1, p. 392] and obtain

[zn]A(z) ∼ (1/z0)
n as n → ∞. (3)
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Furthermore, since A(z)− 1

1 − z/z0
is analytic on the domain {|z/z0| < 1+ε}, the asymptotic

expansion in (3) has an exponentially decaying error term:

[zn]A(z) = (1/z0)
n +O(αn) as n → ∞

for some α satisfying 0 < α < 1/|z0|.
The same argument with B(z) shows that

[zn]B(z) = (1/z0)
n +O(αn) as n → ∞.

We now take these asymptotic formulas for [zn]A(z) and [zn]B(z) and put them into (2):

fn/n! = [zn]F (z) =
−1

z0
[zn]A(z) +

−1

(z0)
[zn]B(z)

= −
[

(z0)
−(n+1) + (z0)

−(n+1)
]

+O(αn).

Furthermore, letting θ denote the angle of z0 from the positive real axis, we obtain z0 = |z0| eiθ
and z0 = |z0| e−iθ, and so

fn/n! = −
[

|z0|n+1 e−i(n+1)θ + |z0|n+1 ei(n+1)θ
]

+O(αn)

= −2 |z0|−(n+1) cos((n+ 1)θ) +O(αn).

2 Conclusion

Those computations show that

fn = −2 ρ−(n+1) cos((n+ 1)θ) · n! +O(αnn!),

where ρ = |z0| =

√

[

log(3 + 2
√
2)
]2

+ π2

2
√
2

≈ 1.274

and θ = arg(z0) = arctan

(

π

log(3 + 2
√
2)

)

≈ 1.012 · π/3

and α is some number in (0, ρ−1).

We remark that this asymptotic formula makes it immediately clear why fn at first
appears to exhibit periodic behavior. If θ were exactly equal to π/3, then the factor of
cos((n+1)θ) would result in precisely the 6-periodic sequence of signs that fn seems to have
for n < 42. Since θ is very close to π/3 but not equal to it, the sequence gradually drifts
away from this 6-periodic pattern. This is a rare sighting of period mimicry in the wild.
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Does our asymptotic formula imply that fn has the same sign as − cos((n+1)θ) for large
enough n? Not quite: cos((n+ 1)θ) may sometimes get very close to 0, and if cos((n+ 1)θ)
is small compared to (αρ)n then the asymptotic expansion may be dominated by the error
term O(αnn!). However, because (αρ)n is decaying exponentially, this almost never occurs
(in the sense that, as n → ∞, the proportion of k ≤ n for which the error term dominates
goes to 0). Thus fn and cos((n+ 1)θ) “usually” have the same sign, and indeed it may well
be true that they have the same sign for all n ≥ 1.

The fact that θ is not a rational multiple of π means that there is no k for which the
sequence’s fluctuations are k-periodic (see [1, “Nonperiodic fluctuations”, pp. 264–266]).
Since the sign of fn is unpredictable, it seems there is little hope of finding a combinatorial
interpretation of fn in which permutations with opposite signs cancel each other out.
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