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Ordinal pattern probabilities for symmetric random walks

Hugh Denoncourt ∗

Abstract

An ordinal pattern for a finite sequence of real numbers is a permutation that records
the relative positions in the sequence. For random walks with steps drawn uniformly from

[−1, 1], we show an ordinal pattern occurs with probability |[1,w]|
2nn! , where [1, w] is a weak

order interval in the affine Weyl group Ãn. For random walks with steps drawn from a sym-
metric Laplace distribution, the probability is 1

2n
∏

n
j=1

lev(π)j
, where lev(π)j measures how

often j occurs between consecutive values in π. Permutations whose consecutive values are
at most two positions apart in π are shown to occur with the same probability for any choice
of symmetric continuous step distribution. For random walks with steps from a mean zero
normal distribution, ordinal pattern probabilities are determined by a matrix whose ij-th
entry measures how often i and j are between consecutive values.

Keywords: ordinal patterns; hyperplane arrangements; weak order; affine symmetric group.

1 Introduction

Let (a1, . . . , an) ∈ Rn be an arbitrary finite sequence of real numbers. A permutation π such
that π(i) = j if ai is the j-th largest position is called the ordinal pattern for (a1, . . . , an).

For a given sequence Z1, Z2, . . . of continuous random variables, it is natural to ask what
the probability is that a given permutation π ∈ Sn occurs as an ordinal pattern in a length n
subsequence of outcomes. It is known [7] that for exchangeable random variables, such as those
that are independent and identically distributed, this probability is 1/n! for all π ∈ Sn. By
contrast, the distribution on Sn is never uniform for ordinal patterns in positions of a random
walk when n ≥ 3.

Exact probabilities have been calculated for ordinal pattern occurrence in a random walk
for a few cases. For n = 3, 4, Bandt and Shiha [7], DeFord and Moore [12], and Zare [30] gave
values for the case of normally distributed steps of mean zero. For n = 3, 4, DeFord and Moore
[12] gave piece-wise polynomials for the case of uniform distributions on [b− 1, b] for b ∈

[
1
2 , 1
)
.

In [15] and [21], Elizalde and Martinez showed that certain pairs of permutations have the
same probability of occurring as an ordinal pattern in a random walk regardless of choice of
continuous step distribution. Furthermore, Martinez [21] gave a detailed description of regions
of steps that generate a given ordinal pattern π in terms of a hyperplane arrangement equivalent
to the braid arrangement. In this paper, we use hyperplane arrangements and the tools developed
in [15] and [21] to find probabilities for ordinal pattern occurrence in certain random walks.
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1.1 Main results

Let X1,X2, . . . be independent and identically distributed continuous random variables called
steps with probability density function f : R → R. Let Zi :=

∑i−1
j=1Xj be the positions of the

random walk. For π ∈ Sn+1, let P(f, π) denote the probability that π occurs as an ordinal
pattern in a length n+1 consecutive subsequence of positions generated by n steps drawn from
f . All of the main results of the paper are statements about P(f, π) for various choices of density
function f .

Let lev(π)j denote the number of positions i such that π(i) ≤ j < π(i + 1) or such that
π(i+ 1) ≤ j < π(i). In Section 3, we use a direct calculation to show that when f is a Laplace
distribution, the value of P(f, π) is computed from the values of lev(π)1, . . . , lev(π)n.

Theorem 3.3. Let π ∈ Sn+1 and let f be the density function for a Laplace distribution
with mean zero. Then

P(f, π) =
1

2n
∏n

j=1 lev(π)j
.

We say a permutation is almost consecutive if its consecutive values are at most two positions
apart in its 1-line notation. Recall that a function is symmetric if f(−x) = f(x) for all x ∈ R. In
Section 4, we show that P(f, π) does not depend upon the choice of symmetric density function
f if π is almost consecutive.

Theorem 4.13. Let π ∈ Sn+1 be an almost consecutive permutation. Let f : R → R be
a symmetric density function for a continuous probability distribution. Then

P(f, π) =
1

2n
∏n

i=1 lev(π)i
.

In Section 5, we show that when f is the density function for the uniform distribution on
[−1, 1], we calculate P(f, π) by counting regions of the affine arrangement of type An inside a
rational polytope constructed from π. The counted regions correspond to elements in a weak
order interval of the affine Weyl group Ãn.

Theorem 5.33. Let f = 1
2X[−1,1] be the uniform density function on [−1, 1]. Let π ∈ Sn+1.

Then

P(f, π) =
|[1, w]|

2nn!
,

where [1, w] is a weak order interval of the affine Weyl group Ãn.

A corollary is that 1(n + 1) or (n + 1)1 appears in the 1-line notation for π ∈ Sn+1 if and
only if P(f, π) = 1

2nn! . By contrast, for the Laplace and normal distributions, the other values
in the 1-line notation for π typically influence the value of P(f, π).

In Section 6, we show that when f is the density function for a mean zero normal distribu-
tion, we can sometimes compare P(f, π) to P(f, τ). Let lev(π)i,j be the number of positions
k ∈ [n] satisfying π(k) ≤ i, j < π(k + 1) or π(k + 1) ≤ i, j < π(k).

Theorem 6.3. Let f : R → R be the density function for the normal distribution with mean
zero and any variance. Let π, τ ∈ Sn+1. Suppose lev(π)i,j ≤ lev(τ)i,j for all (i, j) ∈ Φ+. Then
P(f, π) ≥ P(f, τ).
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1.2 The larger context for these results

Using ordinal patterns to analyze a time series is sometimes called ordinal analysis. Bandt and
Pompe [6] introduced permutation entropy, which involves computing ordinal pattern frequencies
in a time series. Subsequently, many papers suggested applying ordinal analysis to a variety of
applied contexts. The survey [2] shows that ordinal pattern frequency often captures qualitative
features of a time series. For example, iterated map dynamical systems with deterministic
chaotic behavior tend to have forbidden ordinal patterns, whereas white noise does not.

We can interpret the results of this paper as providing a kind of fingerprint for certain random
processes. DeFord and Moore [12] define KL divergence for the distribution of patterns of length
n in Z from those in X by

DKLn
(X||Z) =

∑

π∈Sn

PX(π) log

(
PX(π)

PZ(π)

)
,

where X and Z are random variables. Thus, comparisons to walks with steps from symmetric
uniform and Laplace densities can be made via this version of KL divergence.

By Theorem 4.13, there exists a value pn for the probability that an almost consecutive
permutation arises from a length n sequence generated by n− 1 steps from a symmetric density
function. Thus, for fixed n, we have a Bernoulli trial whose “success” probability is the same for
any random walk whose steps have a symmetric density function. In [13], the following values
are determined for pn:

n pn
2 1
3 1
4 2/3
5 5/12
6 251/960
7 463/2880
8 15281/161280

Although the symmetric density function hypothesis is limited in scope, the above values hold
for the mean zero Gaussian distribution. Thus, after transforming a sequence generated by a
random walk to have mean zero steps, it is reasonable to expect to see values close to those
given above on a long enough time scale.

2 Ordinal pattern preliminaries

Throughout the paper, random walks have n steps and n+1 positions. The n steps are outcomes
of n independent and identically distributed continuous random variables X1, . . . ,Xn. Every
tuple (x1, . . . , xn) ∈ Rn of steps generates a tuple (z1, . . . , zn+1) ∈ Rn+1 of walk positions, where
z1 = 0, and zi = x1 + · · · + xi−1 for i > 1. We say a walk (z1, . . . , zn+1) has ordinal pattern
π ∈ Sn+1 if π(i) = j whenever zi is the j-th largest position of (z1, . . . , zn+1). We refer to
(x1, . . . , xn) as step coordinates for the random walk and the generated tuple (z1, . . . , zn+1) as
walk coordinates for the random walk. Ordinal pattern probabilities are calculated as integrals
over regions of Rn, but the ordinal patterns themselves are permutations in Sn+1 derived from
walk coordinates in Rn+1.
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Following [15], we define a map p : Rn \ Z → Sn+1 by

p(x1, . . . , xn) = π,

where
π(i) = |{j ∈ {1, . . . , n+ 1} : zi ≥ zj}|

and Z is the measure zero set of steps (x1, . . . , xn) such that zi = zj for some i 6= j.

Definition 2.1. Let π ∈ Sn+1. Let x ∈ Rn. We say x generates π if p(x) = π. We denote the
region of tuples that generate π by Dπ. Thus,

Dπ = {x ∈ Rn : p(x) = π}.

We interpret p as mapping a tuple of steps to the ordinal pattern of the generated walk
positions. The region Dπ contains all such tuples for a fixed π ∈ Sn+1.

In [15, Section 2], Elizalde and Martinez define an edge diagram as a collection of oriented
vertical line segments connecting (i, π(i)) and (i, π(i + 1)). The orientation is downward if
π(i) > π(i + 1) and upward otherwise. A level is a vertical interval, denoted j, whose y-

coordinates are in [j, j+1]. In the edge diagram, the edge ei is a formal sum ei =
∑π(i+1)−1

j=π(i) j if

π(i) < π(i+1) and ei = −
∑π(i)−1

j=π(i+1) j if π(i) > π(i+1). In Section 3, we introduce a tuple lev(π)

that records the number of edges that contain j or its negation. (See figure 1 for an example
of an edge diagram and lev(π).) An edge ei contains j or its negation if π(i) ≤ j < π(i+ 1) or
π(i+ 1) ≤ j < π(i).

We primarily use the edge diagram as a visual description of lev(π). The edge diagram can
be read off from the matrix given in the next definition, as can properties of the region Dπ.

=⇒ lev(π) = (2, 4, 3, 2, 2)
3

1

5

6

2

4

Levels

Edge diagram

for π = 315624 Level count

1

2

3

4

5

2

4

3

2

2

Figure 1: The edge diagram for a permutation and its level count. Figure adapted from [15].

Definition 2.2. (Martinez [21, Section 2.1]) Let L : Sn+1 → GLn(C) be defined by L(π) = Lπ,
where Lπ is a matrix whose entries are given by

(Lπ)ij :=





1, if π(i) ≤ j < π(i+ 1),

−1, if π(i+ 1) ≤ j < π(i),

0 otherwise.

Thus, the i-th coordinate of Lπ(x1, . . . , xn) is given by

Lπ(x1, . . . , xn)i =

{
xπ(i) + · · ·+ xπ(i+1)−1, if π(i) < π(i+ 1),

−(xπ(i+1) + · · ·+ xπ(i)−1), if π(i+ 1) < π(i).
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Thus, the edges in the edge diagram may be expressed as ei =
∑n

j=1(Lπ)i,jj. That is, the
orientation of edges and which levels appear in edges of an edge diagram can be read from the
rows of Lπ.

Example 2.3. Let π = 315624. Then

Lπ =




−1 −1 0 0 0
1 1 1 1 0
0 0 0 0 1
0 −1 −1 −1 −1
0 1 1 0 0



.

The next three lemmas capture the basic properties of the representation L.

Lemma 2.4. (Martinez [21, Lemma 2.1.3]) The function L : Sn+1 → GLn(C) given in Defini-
tion 2.2 is a homomorphism.

Lemma 2.5. (Martinez [21, Lemma 2.1.4]) Let π ∈ Sn+1. Then

Lπ (R
n
>0) = Dπ.

Lemma 2.6. (Martinez [21, Lemma 2.1.3]) Let π ∈ Sn+1. Then det(Lπ) = ±1.

Since steps are given by independent and identically distributed continuous random variables,
the probability that an ordinal pattern π occurs depends only on π and the associated probability
density function f : R → R. The associated joint density function for a walk of n steps is always
the function g : Rn → R defined by g(x1, . . . , xn) =

∏n
i=1 f(xi). Suppose f : R → R is a density

function. Denote the probability that an ordinal pattern π ∈ Sn+1 occurs in a random walk of
n steps by P(f, π), where f is the density function for the steps. Thus,

P(f, π) =

∫

Dπ

f(x1)f(x2) · · · f(xn) dx1dx2 · · · dxn. (2.7)

Since Lπ is invertible and linear, the change-of-variables theorem applies. Since the determinant
of Lπ is ±1, the absolute value of the Jacobian is always 1.

Lemma 2.8. Let π ∈ Sn+1. Let f : R → R be a density function for a continuous distribution.
Let g : Rn → R be the joint density function for the independent steps produced by f defined by
g(x1, . . . , xn) =

∏n
i=1 f(xi). Then

P(f, π) =

∫

Dπ

g(x) dx =

∫

Rn
>0

g(Lπ(x)) dx =

∫

Rn
>0

n∏

i=1

f(Lπ(x)i) dx,

where Lπ(x)i is the i-th coordinate of Lπ(x).

Proof. The second equality follows from Lemma 2.5, Lemma 2.6, and the change-of-variables
theorem.

Example 2.9. Suppose f is the density function of a continuous distribution. Lemma 2.8
implies

P(f, 2413) =

∞∫

0

∞∫

0

∞∫

0

f(y + z) · f(−x− y − z) · f(x+ y) dx dy dz.
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In principle, Lemma 2.8 allows for the calculation of P(f, π) for any suitable density function
f . However, evaluation of the integral is probably computationally infeasible in general. The
main reason to use the second integral of Lemma 2.8 instead of the first is that the integration
always occurs over Rn

>0.
Since all probability distributions in this paper are assumed to be continuous, the existence

of a (not necessarily continuous) density function is guaranteed. Also, walk positions overlap
with probability zero, which implies that ordinal pattern probabilities add to 1. This is also
true of many discrete distributions, but we do not address the discrete distribution case in this
paper.

Ordinal pattern probabilities are invariant under changes in scale. If x ∈ Dπ, then cx ∈ Dπ

for any c > 0. Thus, the region of integration in (2.7) does not change under the substitution of
cx for x, which proves the next lemma. This property is called scale invariance.

Lemma 2.10. Let f : R → R be a density function of a continuous probability distribution. Let
c ∈ R>0 and let h : R → R be defined by h(x) = cf(cx). Then h is also a density function and
P(f, π) = P(h, π) for all π ∈ Sn+1.

3 Pattern probabilities when steps are from Laplace densities

The Laplace distribution, also called the double exponential distribution, has density function
f : R → R given by

f(x) =
1

2b
exp

(
−
|x− µ|

b

)
,

where µ is the mean and b is a scale parameter. In this section, we restrict our attention to
the mean zero case. A mean zero Laplace distribution arises as the distribution for a random
variable expressed as the difference of two identically distributed exponential random variables.

By Lemma 2.10, ordinal pattern probabilities are scale invariant. Thus, we lose no generality
by restricting our attention to the choice b = 1. For the remainder of the section, the density
function f is defined by

f(x) =
1

2
exp (−|x|) .

Definition 3.1. Let π ∈ Sn+1. Denote the number of i ∈ [n] such that π(i) ≤ j < π(i + 1) or
π(i+ 1) ≤ j < π(i) by lev(π)j . We call the tuple (lev(π)1, . . . , lev(π)n) the level count of π.

Note that lev(π)j counts the number of times level j is contained in an edge of the edge
diagram of π. (See figure 1.) Alternativly, it is the sum of the absolute values of the entries in
column j of Lπ.

Example 3.2. Let π = 315624. Then lev(π) = (2, 4, 3, 2, 2) as shown in Figure 1.

Recall from Lemma 2.8 that P(f, π) =
∫
Rn
>0

∏n
i=1 f(Lπ(x)i)dx.

Theorem 3.3. Let π ∈ Sn+1 and let f be the density function for a mean zero Laplace distri-
bution. Then

P(f, π) =
1

2n
∏n

j=1 lev(π)j
.

6



Proof. Every factor of the last integrand in Lemma 2.8 has the form f(±(xa + · · ·+ xb)), where
each xk > 0. Thus,

f(±(xa + · · ·+ xb)) = exp (− |±(xa + · · ·+ xb)|) = exp (−(xa + · · ·+ xb)) .

The term −xj appears in the above sum whenever π(i) ≤ j < π(i + 1) or π(i + 1) ≤ j < π(i).
Thus, by Definition 3.1, there are lev(π)j factors of

∏n
i=1 f(Lπ(x)i) contributing −xj inside the

exponential for the overall product. By Lemma 2.8,

P(f, π) =

∫

Rn
>0

n∏

i=1

f(Lπ(x)i) dx

=

∫

Rn
>0

1

2n

n∏

j=1

exp (−lev(π)j xj) dx1 · · · dxn

=
1

2n

n∏

j=1

∞∫

0

exp (−lev(π)j xj) dxj

=
1

2n
∏n

j=1 lev(π)j
.

4 Universal pattern probabilities for symmetric step densities

Martinez [21, Section 5] introduced a hyperplane arrangement Dn in Rn such that for any
π ∈ Sn+1, the set Dπ is a region of Dn. Furthermore, in [21, Lemma 5.1.2] it was shown that
the walls of Dπ are defined by the row vectors of Lπ−1 . This allows us to show that for certain
π, we may express Dπ as a union of cells of the type B Coxeter arrangement, which establishes
the main result of this section. Namely, permutations whose consecutive values are at most two
positions apart have the same ordinal pattern probabilities as the Laplace distribution. Thus,
when π is such a permutation, we have P(f, π) = 1

2n
∏n

j=1
lev(π)j

, regardless of choice of symmetric

density function for the steps in the random walk.

4.1 Hyperplane arrangement preliminaries, notation, and terminology

The hyperplane arrangement notation and terminology we use in this section is similar to that
found in [3, Section 1.4] or [10, Chapter 2]. In particular, a hyperplane arrangement is a set
H = {Hi}i∈I of finitely many hyperplanes. In this section, the arrangements under consideration
are central, which means they pass through the origin. Thus, associated to each Hi is a linear
function fi : R

n → R such that Hi = {x ∈ Rn : fi(x) = 0}. For each Hi ∈ H, let

H+
i := {x ∈ Rn : fi(x) > 0};

H0
i := {x ∈ Rn : fi(x) = 0}; and

H−
i := {x ∈ Rn : fi(x) < 0}.

7



A cell with respect to H is a nonempty set C obtained by choosing for each i ∈ I a sign
σi ∈ {+, 0,−} such that x ∈ Hσi

i for all x ∈ C. The sequence (σ1, . . . , σn) is called the sign
sequence for C. The cell C is represented by

C =
⋂

i∈I

Hσi

i . (4.1)

The intersection may be redundant. Cells such that σi 6= 0 for all i ∈ I are called regions. The
regions of H, denoted R(H), are the nonempty convex open subsets that partition Rn \ ∪i∈IHi.
Note that the collection of all cells partition Rn. However, the cells that are not regions have
measure zero and thus contribute nothing to the probability calculations of this section.

4.2 A hyperplane arrangement for steps of a random walk

Let Hi,j be the hyperplane defined by

Hi,j = {(x1, . . . , xn) ∈ Rn : xi + xi+1 + · · ·+ xj−1 = 0} .

Let
Dn := {Hi,j : i, j ∈ [n] and i < j}

be the hyperplane arrangement defined in [21, Section 5.1].
As noted in [21, Section 5.1], the arrangement Dn is obtained from the standard braid

arrangement via a linear substitution. The arrangements have the same face poset and the
same number of regions. However, since the geometry is different and the calculation of P(f, π)
is not always uniform across regions, we distinguish between the two arrangements in this paper.
The next lemma motivates the choice of the arrangement Dn.

Lemma 4.2. (Martinez [21, Lemma 5.1.1]) The set of regions of Dn is {Dπ : π ∈ Sn+1}.

We say a cell is a face of the region R if the cell’s sign sequence matches R’s sign sequence
except for one hyperplane H whose sign is 0. In this case, we say that H is a wall of R. For
convenience, let Hj,i = Hi,j when j > i.

Lemma 4.3. (Martinez [21, Lemma 5.1.2]) Let π ∈ Sn+1. The set of walls of Dπ is

{
Hπ−1(i),π−1(i+1) ∈ Dn : i ∈ [n]

}
.

Suppose H and H′ be hyperplane arrangements such that H ⊆ H′. Then, the cells of H may
be written as a union of cells of H′. The next lemma follows from the fact that the collection of
walls HR of a region R forms a hyperplane arrangement in its own right. We use this in Section
4.3 to express Dπ as a union of cells from the type B Coxeter arrangement.

Lemma 4.4. Let HR be the collection of walls for a region R of a hyperplane arrangement H.
If H′ is any hyperplane arrangement such that HR ⊆ H′, then

R =

k⋃

j=1

Cj,

for some collection of cells C1, . . . , Ck of H′.
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4.3 The type B Coxeter arrangement

We represent a signed permutation on [n] as a pair (ω, ǫ), where ω ∈ Sn is a permutation on [n]
and ǫ ∈ {−1,+1}n is a choice of sign for each position. A signed permutation (ω, ǫ) acts on Rn

by mapping (x1, . . . , xn) to
(
ǫ1xω(1), . . . , ǫnxω(n)

)
. The type B Coxeter arrangement is defined

by the following hyperplanes:

Xi,j,+ = {(x1, . . . , xn) ∈ Rn : xi + xj = 0}; (4.5)

Xi,j,− = {(x1, . . . , xn) ∈ Rn : xi − xj = 0}; and (4.6)

Xi = {(x1, . . . , xn) ∈ Rn : xi = 0}, (4.7)

where i, j ∈ [n] and i < j. It is known that the group Bn of all signed permutations acts simply
transitively on the regions of the type B hyperplane arrangement, which implies that there are
2nn! regions. See [11, Section 7] or [16, Section 1.15], for example. Furthermore, the group
Bn is generated by reflections so that every group element can be represented as a matrix with
determinant ±1.

For a symmetric density function f : R → R, we have f(−x) = f(x) for all x ∈ R. Let
g : Rn → R be the joint density function defined by g(x1, . . . , xn) =

∏n
i=1 f(xi). Since f is

symmetric and products are invariant under permutations, we have g(w · x) = g(x) for any
signed permutation w ∈ Bn.

Lemma 4.8. Let f : R → R be a symmetric density function of a continuous probability
distribution. Let g : Rn → R be the joint density for the random walk of n steps given by
g(x1, . . . , xn) =

∏n
i=1 f(xi). Then, for any signed permutation w ∈ Bn, and any region R of the

type B hyperplane arrangement, we have

∫

R

g(x)dx =
1

2nn!
.

Proof. Let Ri and Rj be arbitrary regions. Since Bn acts simply transitively on regions, there
exists w ∈ Bn such that w(Ri) = Rj . Since the absolute value of the Jacobian for w is 1, the
fact that g(w · x) = g(x) and the change-of-variables theorem imply

∫

Ri

g(x)dx =

∫

Ri

g(w · x)dx =

∫

Rj

g(x)dx.

Since there are 2nn! regions, the result follows.

Recall Lemma 4.4: If the walls of a region R lie in an arrangement H′ distinct from the
one that defined R, then we can write R as a union of cells from H′. Thus, if the walls of a
region Dπ ∈ Dn are type B hyperplanes, the value P(f, π) can be calculated by counting type
B regions contained in Dπ.

Lemma 4.9. Suppose f : R → R is a symmetric density function. Suppose the walls of Dπ are
hyperplanes in the type B Coxeter arrangement. Then

P(f, π) =
1

2n
∏n

i=1 lev(π)i
.

9



Proof. The hypothesis and Lemma 4.4 imply that

Dπ =

k⋃

i=1

Ri ∪
ℓ⋃

j=1

Cj ,

where each Ri is a region of the type B Coxeter arrangement and each cell Cj is a measure 0
cell of the arrangement. Thus,

P(f, π) =

∫

Dπ

f(x1) · · · f(xn)dx1 · · · dxn =
k∑

i=1

∫

Ri

f(x1) · · · f(xn)dx1 · · · dxn.

Since f is symmetric, the joint density function g(x1, . . . , xn) =
∏n

i=1 f(xi) is invariant under
the action of Bn. By Lemma 4.8, the hypotheses imply P(f, π) = k

2nn! , where k is the number
of type B regions contained in Dπ. Since k depends only on π, not on the choice of symmetric
density function, we may choose f to be the Laplace distribution. The result then follows from
Theorem 3.3.

4.4 Almost consecutive permutations

It remains to identify the permutations π ∈ Sn+1 such that the walls of Dπ are hyperplanes of
the type B Coxeter arrangement. Recall from Lemma 4.3 that the set of walls for Dπ is the set
of all Hπ−1(i),π−1(i+1) such that i ∈ [n]. In Lemma 4.12, we show the walls of Dπ are type B
hyperplanes if π is a permutation whose consecutive values occur no more than two positions
apart in its 1-line notation. These permutations (or their inverses) are called key permutations
in [23] and 3-determined permutations in [5]. In both papers it is shown that the counting
sequence for these permutations, which is sequence A003274 of the OEIS, grows asymptotically
like (1.4655 . . .)n.

Definition 4.10. We say π ∈ Sn+1 is almost consecutive if |π−1(i + 1) − π−1(i)| ≤ 2 for all
i ∈ [n].

Example 4.11. Let π = 1423. Then π is almost consecutive since all instances of consecutive
values are at most two positions apart in the 1-line notation. By contrast, the permutation 2413
is not almost consecutive, since the values 2 and 3 are three positions apart.

Lemma 4.12. Let π ∈ Sn+1 be an almost consecutive permutation. Then the walls of Dπ are
hyperplanes of the type B Coxeter arrangement.

Proof. By Lemma 4.3, the walls of Dπ are Hπ−1(i),π−1(i+1), where i ∈ [n]. Definition 4.10 then
implies that every wall of Dπ has the form Hk,k+1 or Hk,k+2 for some k. Thus, a given wall
of Dπ is defined by an equation of the form xk = 0 or xk + xk+1 = 0, which is a hyperplane
of the form (4.7) or (4.5). In either case, a wall of Dπ is a hyperplane in the type B Coxeter
arrangement.

Theorem 4.13. Let π ∈ Sn+1 be an almost consecutive permutation. Let f : R → R be a
symmetric density function. Then

P(f, π) =
1

2n
∏n

i=1 lev(π)i
.

Proof. The result follows from Lemma 4.12 and Lemma 4.9.
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5 Uniform random walk patterns and Affine A

Throughout this section, the only density function f : R → R under consideration is the uniform
density function on [−1, 1]. It is defined by f(x) = 1

2 for x ∈ [−1, 1] and f(x) = 0 otherwise.
In Section 5.1, we show that P(f, π) is related to the volume of a rational polytope derived

from π. This rational polytope turns out to be an alcoved polytope, which is a union of the
regions (called alcoves) of the affine arrangement of type An. A lot is known about the affine
arrangement of type An and the affine Weyl group Ãn that acts upon its regions. Thus, the
early sections of the chapter are devoted to translating everything into the language of type A
root systems. The main result, Theorem 5.33, states that P(f, π) can be computed by counting
the number of elements of a weak order interval of Ãn.

5.1 The polytope of steps that generate π

We now define a rational polytope Pπ that is used to reduce the problem of calculating P(f, π)
to the problem of calculating the volume of Pπ.

Definition 5.1. Let π ∈ Sn+1. Let mi = min{π(i), π(i + 1)} and Mi = max{π(i), π(i + 1)}.
We call the rational polytope Pπ satisfying

xi ≥ 0, (5.2)

0 ≤xmi
+ · · ·+ xMi−1 ≤ 1, (5.3)

for all i ∈ [n] the polytope of steps for π.

Example 5.4. Let π = 2413. The system of inequalities defining Pπ is given by

0 ≤ x2 + x3 ≤ 1,

0 ≤ x1 + x2 + x3 ≤ 1,

0 ≤ x1 + x2 ≤ 1, and

x1, x2, x3 ≥ 0.

Recall that Lemma 2.8 expresses P(f, π) as
∫
Rn
>0

∏n
i=1 f(Lπ(x)i)dx. Also recall Definition

2.2, which expresses the i-th coordinate of Lπ(x1, . . . , xn) as

Lπ(x1, . . . , xn)i =

{
xπ(i) + · · ·+ xπ(i+1)−1, if π(i) < π(i+ 1),

−(xπ(i+1) + · · ·+ xπ(i)−1), if π(i+ 1) < π(i).

Lemma 5.5. Let f = 1
2X[−1,1] be the uniform density function on [−1, 1]. Let π ∈ Sn+1. Let

Pπ be the polytope of steps for π. Then

P(f, π) =
1

2n
· volume(Pπ).

Proof. Let mi = min{π(i), π(i + 1)} and Mi = max{π(i), π(i + 1)}. By Lemma 2.8, we have

P(f, π) =

∫

Rn
>0

n∏

i=1

1

2
X[−1,1](Lπ(x)i) dx =

1

2n

∫

Rn
>0

n∏

i=1

X[−1,1](Lπ(x)i) dx. (5.6)

11



Let x = (x1, . . . , xn) ∈ Rn
≥0. Then xj ≥ 0 for all j ∈ [n]. Thus Lπ(x1, . . . , xn)i ∈ [−1, 1] if and

only if
0 ≤ xmi

+ · · ·+ xMi−1 ≤ 1.

The last integrand of (5.6) is 1 if the system of inequalities defining Pπ in Definition 5.1 is
satisfied, and 0 otherwise. Thus, the last integral of (5.6) calculates the volume of Pπ.

Remark 5.7. A consequence of the coordinate inequalities xi ≥ 0 and those that have the form
0 ≤ xmi

+ · · ·+ xMi−1 ≤ 1 is that xa + · · ·+ xb ≤ 1 for any a, b ∈ [mi,Mi). In particular, it is a
consequence of Lemma 5.31 that xi ≤ 1 for all i ∈ [n], which implies Pπ ⊆ [0, 1]n.

5.2 Type A root system preliminaries

Let ǫ1, . . . , ǫn+1 be the standard basis of Rn+1. Let (·, ·) be the standard inner product on Rn+1.
Let

V =
{
λ ∈ Rn+1 : (λ, ǫ1 + · · ·+ ǫn+1) = 0

}
.

The set
Φ = {ǫi − ǫj ∈ V : i, j ∈ [n+ 1] and i < j}

is called the root system of type An. The sets

Φ+ = {ǫi − ǫj ∈ V : i, j ∈ [n+ 1] and i < j} and

Φ− = {−λ ∈ V : λ ∈ Φ+},

respectively, are called the set of positive roots and the set of negative roots, respectively.

Notation. We often abbreviate ǫi − ǫj ∈ Φ+ by (i, j) ∈ Φ+.

Let αi = ǫi − ǫi+1. Then

∆ = {ǫi − ǫi+1 ∈ V : i ∈ [n]} = {αi ∈ V : i ∈ [n]}

is a basis for V . The vectors α1, . . . , αn contained in ∆ are called simple roots. There is a dual
basis to ∆ consisting of vectors ω1, . . . , ωn satisfying (ωi, αj) = δij . The dual basis is called the
basis of fundamental coweights.

The Weyl group of type An is the group generated by reflections about the hyperplanes
orthogonal to the simple roots. Explicitly, the reflection si about the hyperplane orthogonal to
αi is given by

si(λ) = λ− (λ, αi)αi. (5.8)

The map that sends the adjacent transposition (i i + 1) ∈ Sn+1 to the reflection si ∈ An is
called the geometric representation. It is a faithful representation of the symmetric group as a
Coxeter group. See [9, Section 4.2], for example.

The representation L given in Definition 2.2 is closely related to the geometric representation
of Sn+1 as the Weyl group of type An.

Lemma 5.9. The matrix representation of si in the basis of simple roots is I +M , where I is
the identity matrix, and M is the matrix whose only nonzero entries A are given by Mi,i−1 = 1,
Mi,i = −2, and Mi,i+1 = 1.

12



Proof. This follows directly from (5.8) and appears in the proof of [9, Proposition 4.2.1].

Lemma 5.10. Let π ∈ Sn+1. The matrix representation of π in the basis of simple roots is
LT
π . Consequently, the matrix Lπ is the matrix representation of π in the basis of fundamental

coweights.

Proof. Recall from Lemma 2.4 that the function L : Sn+1 → GLn(R) that maps π to Lπ is a
representation. Thus, it suffices to check the result for the adjacent transpositions.

Let π be the adjacent transposition (i i + 1). We may exhaustively check that LT
π is the

geometric representation given in Lemma 5.9.
Note that π(j) = j and π(j + 1) = j + 1 except for j ∈ {i− 1, i, i + 1}. Thus all rows of Lπ

match the identity matrix except rows i− 1, i, and i+ 1.
Since π(i−1) = i−1, and π(i) = i+1, the (i−1)-st row of Lπ, if it exists, has a 1 in columns

i− 1 and i and 0’s in all other positions. Similarly, if row i+ 1 exists, there is a 1 in columns i
and i+ 1 and 0’s in all other positions. Since π(i) = i+ 1 and π(i) = i, the only nonzero entry
of row i is a −1 in column i.

In summary, we may wite Lπ as I + N , where the only nonzero entries of N are given by
Ni−1,i = 1, Ni,i = −2, and Ni+1,i = 1. This is the transpose of the matrix for the geometric
representation given in Lemma 5.9.

5.3 The affine arrangement of type An in step coordinates

The definition of the affine arrangement of type An and its connected components involve inner
products of the form (λ, ǫi − ǫj). Note that λ, expressed in the basis of fundamental coweights
as x1ω1 + · · ·+ xnωn, satisfies

(λ, ǫi − ǫj) = (x1ω1 + · · ·+ xnωn , αi + · · ·+ αj−1)

= xi + · · ·+ xj−1.

The linear isomorphism mapping x1ω1 + · · ·+ xnωn to (x1, . . . , xn) translates results about the
affine arrangement of type An to results about Pπ. We refer to the image (x1, . . . , xn) ∈ Rn of
this isomorphism as step coordinates in reference to the steps of the random walk. Whenever
it makes sense, we expand the standard results and definitions about the affine arrangement of
type An into the basis ω1, . . . , ωn in anticipation of what is needed to calculate the volume of
Pπ.

Definition 5.11. Let (i, j) ∈ Φ+ and a ∈ Z. Let

Ha
ij = {λ ∈ V : (λ, ǫi − ǫj) = a}

= {x1ω1 + · · · + xnωn ∈ V : xi + · · · + xj−1 = a}.

The collection of all hyperplanes of the form Ha
ij is called the affine arrangement of type An.

The connected components of V \ ∪Ha
ij are called alcoves. The group generated by the set of

reflections about hyperplanes of the form Ha
ij is the affine Weyl group Ãn.

Let A be an alcove of the affine walk arrangement. For any λ ∈ A, and any pair (i, j) ∈ Φ+,
Definition 5.11 implies the existence of an integer kA(i, j) such that (λ, ǫi−ǫj) is strictly between
kA(i, j) and kA(i, j) + 1.
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Definition 5.12. Let A be an alcove of the affine walk arrangement. Let Φ+ be the set of
positive roots. The function kA : Φ+ → Z such that

A =
{
λ ∈ V : kA(i, j) < (λ, ǫi − ǫj) < kA(i, j) + 1 for all (i, j) ∈ Φ+

}

=
{
x1ω1 + · · ·+ xnωn ∈ V : kA(i, j) < xi + · · · + xj−1 < kA(i, j) + 1 for all (i, j) ∈ Φ+

}

is called the address of A. The alcove

A◦ =
{
λ ∈ V : 0 < (λ, ǫi − ǫj) < 1 for all (i, j) ∈ Φ+

}

=
{
x1ω1 + · · · + xnωn ∈ V : 0 < xi + · · · + xj−1 < 1 for all (i, j) ∈ Φ+

}

is called the fundamental alcove.

Thus, the fundamental alcove is the unique alcove whose address is the constant zero function
from Φ+ to Z.

Example 5.13. Every point in the unit hypercube that is not in the measure zero union
of hyperplanes of the affine walk arrangement lies in some alcove. For example, the point
(0.2, 0.05, 0.8, 0.4, 0.7) in step coordinates is in the alcove A whose address is shown in Figure 2.

12

13

14

15

16

23

24

25

26

34

35

36

45

46 56

kA

0

0

1

1

2

0

0

1

1

0

1

1

0

1 0

Figure 2: The address of the alcove A containing the point in Example 5.13.

The group Ãn has generating set s1, . . . , sn+1, where s1, . . . , sn are the same generators from
An that reflect about the hyperplanes H0

i i+1. The generator sn+1 reflects about the hyperplane
H1

1n. Thus, the action of si is to swap the i-th and (i + 1)-st coordinates of elements of V .
The action of sn+1 is to swap the first and last coordinates, add one to the first coordinate and
subtract one from the last coordinate. See [25, page 86] or [16, Section 4.3], for example.

The first part of the next lemma provides a correspondence between the the group Ãn and
the alcoves of the affine arrangement of type An. The last part provides the link to calculating
the volume of Pπ. Recall that Lemma 5.10 identifies LT

π as the matrix representing π in the
geometric representation. Also recall from Lemma 2.6 that the determinant of Lπ is ±1.

Lemma 5.14. The following are true about the affine Weyl group Ãn.

(i) The affine Weyl group Ãn acts simply transitively on the alcoves of the affine arrangement
of type An.

(ii) Every element of Ãn is a product of an element of An and a translation.

(iii) Elements of Ãn acting on step coordinates are volume-preserving on Rn relative to the
standard inner product on Rn and Lebesgue measure.
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Proof. Part (i) is [16, Theorem 4.5]. Part (ii) is [16, Proposition 4.2].
Lemma 5.10 shows that elements of An expressed as matrices relative to the basis of funda-

mental coweights have the form Lπ for some π ∈ Sn+1. Since translation preserves volume in
any basis under any inner product, part (ii) and Lemma 2.6 prove part (iii).

Remark 5.15. When we convert to coordinates in Rn via the basis of fundamental coweights,
we are calculating volumes and integrals with a standard Lebesgue measure on Rn equipped with
the standard inner product. This is not the same inner product as the one on V . To see this
difference in inner product visually, compare [21, Figure 5.1] to a standard centrally-symmetric
representation of the braid arrangement in the plane.

Part (i) of Lemma 5.14 ensures that w(A◦) in the next definition is an alcove.

Definition 5.16. Let w ∈ Ãn. The alcove of w, denoted Aw, is the alcove w(A◦).

5.4 Computing the volume of Pπ by counting alcoves

Lemma 5.17. Let π ∈ Sn+1 and let Pπ be the polytope of steps for π. Let A be an alcove of the
affine arrangement of type An expressed in step coordinates. Then A ⊆ Pπ or A ∩ Pπ = ∅.

Proof. The address kA : Φ+ → Z for A determines a system of inequalities where each inequality
has the form kA(i, j) < xi + · · · + xj−1 < kA(i, j) + 1, for each (i, j) ∈ Φ+. This includes the
pairs (mi,Mi − 1) ∈ Φ+ in Definition 5.1. If kA(mi,Mi − 1) = 0 for all i ∈ [n], then every
x ∈ A satisfies all the inequalities that define Pπ, which implies A ⊆ Pπ. Otherwise, the
sum of coordinates xmi

+ · · · + xMi−1 is incompatible with Pπ for some i ∈ [n], which implies
A ∩ Pπ = ∅.

Lemma 5.18. Let

P = {λ ∈ V : 0 < (λ, αi) < 1 for all i ∈ [n]}

= {x1ω1 + · · ·+ xnωn : 0 < xi < 1 for all i ∈ [n]} .

In step coordinates, the parallelepiped P is the unit cube [0, 1]n. There are n! alcoves of the affine
arrangement of type An contained in P .

Proof. See the proof of [16, Theorem 4.9] or [19, Section 3].

Corollary 5.19. In step coordinates, each alcove of the affine arrangement of type An has
volume 1/n!. Thus,

P(f, π) =
Kπ

2nn!
,

where Kπ is the number of alcoves contained in Pπ.

Proof. The set of points not in any alcove has measure zero. Thus part (iii) of Lemma 5.14 and
Lemma 5.18 show that alcoves have volume 1/n! in step coordinates. The result then follows
from Lemma 5.17 and Lemma 5.5.

Not every function from Φ+ to Z is the address of an alcove. A characterization of such
functions is given by Shi’s Theorem. See [25, Lemma 6.1.3] or [26, Theorem 5.2].
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Theorem 5.20. (Shi’s Theorem) A function k : Φ+ → Z is the address of an alcove if and only
if

k(i, t) + k(t, j) ≤ k(i, j) ≤ k(i, t) + k(t, j) + 1

for all i, t, j satisfying 1 ≤ i < t < j ≤ n+ 1.

Shi’s Theorem and Corollary 5.19 provide a straightforward, though inefficient, method for
computing P(f, π). This method, and an alternative one based on [29], is given in [13].

Proposition 5.21. Let π ∈ Sn+1. Let f be the uniform density function on [−1, 1]. Let Kπ

denote the number of functions k : Φ+ → N satisfying the inequalities

k(i, t) + k(t, j) ≤ k(i, j) ≤ k(i, t) + k(t, j) + 1,

where i < t < j, and also satisfying the equalities k(i, j) = 0 whenever there exists c such that
π(c) ≤ i < j ≤ π(c+ 1) or π(c+ 1) ≤ i < j ≤ π(c). Then

P(f, π) =
Kπ

2nn!
.

5.5 A characterization of the weak order in terms of alcove addresses

Recall that Ãn is generated by reflections s1, . . . , sn+1. The length of w, denoted ℓ(w), is the
smallest number of generators in an expression of w as a product of generators. Define a relation
→ by the condition w → ws if s is a generator and ℓ(ws) > ℓ(w). The weak order on Ãn is
defined as the transitive closure of the relation →.

The main result of this section, Lemma 5.24, characterizes the weak order on Ãn in terms of
alcove addresses. It might be folklore or known. There is an indirect way to prove the lemma by
combining [27, Theorem 4.1] with [9, Theorem 5.3]. The approach given below uses a geometric
characterization of the weak order on Ãn given in [16].

For a given hyperplane Ha
ij of the affine arrangement of type An, two sides of the hyperplane

are determined by the conditions (λ, ǫi − ǫj) > a and (λ, ǫi − ǫj) < a. We say a hyperplane H
separates A from A◦ if A and A◦ lie on two sides of H. Based on the conditions for determining
sides, we determine whether Ha

ij separates A and A◦ from the the address of A.

Lemma 5.22. Let Ha
ij be a hyperplane in the affine arrangement of type An, let A◦ denote the

fundamental alcove, and let A be an arbitrary alcove. If a > 0, then Ha
ij separates A from A◦ if

and only if kA(i, j) ≥ a. If a ≤ 0, then Ha
ij separates A from A◦ if and only if kA(i, j) ≤ a− 1.

Proof. Suppose a > 0. Since kA◦
(i, j) = 0, we have A◦ on the side of Ha

ij where (λ, ǫi − ǫj) < a.
Note that A is on the side where (λ, ǫi − ǫj) > a if and only kA(i, j) ≥ a. Thus Ha

ij separates
A◦ and A if and only if kA(i, j) ≥ a.

The argument for a < 0 is similar.

Lemma 5.23. Let L(w) be the set of hyperplanes separating Aw from A◦. Then u ≤ w in the
weak order if and only if L(u) ⊆ L(w).

Proof. This is [16, Theorem 4.5].

Let k : Φ+ → Z and k′ : Φ+ → Z be addresses. We write k′ ≤A k if k′(i, j) ≤ k(i, j) whenever
both are nonnegative or k′(i, j) ≥ k(i, j) whenever both are nonpositive. We write k′ ≤ k if
k′(i, j) ≤ k(i, j) for all (i, j) ∈ Φ+, which is the standard notation for function comparison.
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Lemma 5.24. Let u,w ∈ Ãn. Then u ≤ w if and only if ku ≤A kw.

Proof. The result follows from Lemma 5.22 and Lemma 5.23.

The addresses of alcoves in Pπ are all greater than equal to 0. Thus, we simplify the previous
lemma to characterize weak order as a comparison of addresses as functions.

Corollary 5.25. Let u,w ∈ Ãn. Suppose ku(i, j) ≥ 0 and kw(i, j) ≥ 0 for all (i, j) ∈ Φ+. Then
u ≤ w if and only if ku ≤ kw.

5.6 Ideals in the root poset determine the alcoves in Pπ

If we set k(i, j) = 0 whenever required by Proposition 5.21, and greedily set k(i, j) to the
maximum amount allowed by Shi’s theorem, then we obtain a maximal address satisfying the
system of linear inequalities defining the polytope Pπ. By Corollary 5.25, if this turns out to be
a unique maximum address satisfying the system, then the alcoves in Pπ correspond to a weak
order interval of Ãn. We use a construction due to Sommers [28] to show that this is the case.

There is a standard order ≤ on Φ+, called the root poset, such that (i′, j′) ≤ (i, j) if and only
if i ≤ i′ < j′ ≤ j, which is equivalent to [i′, j′] ⊆ [i, j]. Recall that an ideal is a down-closed
subset of a poset.

Definition 5.26. Let π ∈ Sn+1. For i ∈ [n], we say (π(i), π(i+1)) is a consecutive root for π if
π(i) < π(i + 1). Similarly, if π(i + 1) < π(i), we say (π(i + 1), π(i)) is a consecutive root for π.
Denote the collection of consecutive roots for π by Cπ. Define the root ideal of π, denoted Iπ,
by

Iπ := {(i′, j′) : (i′, j′) ≤ (i, j) for some (i, j) ∈ Cπ}

The motivation for defining Iπ comes from the next lemma, which states that the address
of any alcove in Pπ is 0 on the ideal Iπ.

Lemma 5.27. Let kA : Φ+ → Z be the address of an alcove A in the polytope Pπ of steps for
π. For any (i′, j′) ∈ Iπ and any (i, j) ∈ Cπ such that k(i, j) = 0, we have k(i′, j′) = 0.

Proof. Given that (i, j) ∈ Cπ, we know xi + · · ·+ xj−1 ≤ 1. Thus, if i′ > i and j′ < j, we know
xi′ + · · ·+ xj′−1 ≤ 1. It follows that k(i′, j′) = 0.

In the next definition, it is more convenient to regard elements of Φ+ as vectors, rather than
using our abbreviation as pairs (i, j) of integers.

Definition 5.28. For a fixed root α ∈ Φ+ and a fixed ideal I of Φ+, let αI be defined by

αI = min

{
k :

k+1∑

i=1

γi = α with γi ∈ I

}
.

In other words, the smallest number of joins needed to express α as a join in the root poset
using only elements of I is αI + 1. The value of αI is zero for any element of I.

As in Section 5.5, we write k′ ≤ k if k′(i, j) ≤ k(i, j) for all (i, j) ∈ Φ+ for addresses that are
always nonnegative. The next lemma is a dual version of [4, Theorem 2].
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Lemma 5.29. (Sommers [28, Section 5]) For any ideal I of Φ+ that contains all the simple
roots, there exists a unique maximum address kI : Φ+ → Z such that kI(i, j) = 0 for all
(i, j) ∈ I. It is defined by

kI(i, j) = (i, j)I .

Proof. In the proof of [28, Lemma 5.1 part (2)], it is shown that k(i, j) ≤ (i, j)I for any address
satisfying k(i, j) = 0 for all (a, b) ∈ I. In [28, Lemma 5.2 part (2)], it is shown that there
exists an address k such that k(i, j) = (i, j)I for all (i, j) ∈ Φ+. Since any address k′ satisfying
k′(i, j) = 0 for all (i, j) ∈ I must also satisfy k′(i, j) ≤ (i, j)I = k(i, j), it follows that k is the
unique maximum address such that k(i, j) is zero on I.

Example 5.30. The alcove address of Figure 2 has k(i, j) = 0 for any (i, j) where j = i+ 1 as
well as (1, 3) and (2, 4). The maximum alcove guaranteed by Lemma 5.29 is obtained by filling
the entries with the maximum possible value that the conditions of Shi’s theorem allows. The
address of this alcove is given in Figure 3. Its values are, as expected, larger than those of Figure
2.
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Figure 3: The maximum address that is zero on the ideal I of Example 5.30.

To apply Lemma 5.29 to Iπ requires that Iπ contain all the simple roots.

Lemma 5.31. Let π ∈ Sn+1. Let mi = min{π(i), π(i + 1)} and Mi = max{π(i), π(i + 1)}. For
any j ∈ [n], there exists i ∈ [n] such that mi ≤ j < Mi. Thus every (j, j + 1) ∈ ∆ is in Iπ.

Proof. Suppose otherwise. Let k be such that π(k) = j. Then both π(k − 1) and π(k + 1), if
defined, must be greater than j. If there exists an index b such that π(b) > j and π(b+ 1) < j,
or vice versa, then i = b is such that mi ≤ j < Mi. Thus, to the left of k − 1 and to the right
of k + 1, the values must stay above j. Since π is a permutation, this implies j = 1. However,
one of π(k− 1) or π(k+1) is defined, and π(k) is the minimum of the two values, which implies
mi ≤ j < Mi for either i = k − 1 or i = k.

Corollary 5.32. Let f = 1
2X[−1,1] be the uniform density function on [−1, 1]. Let τ, π ∈ Sn+1.

Suppose Iπ ⊆ Iτ . Then
P(f, π) ≥ P(f, τ).

Proof. Lemma 5.31 implies that Iπ and Iτ contain all the simple roots. The hypothesis Iπ ⊆ Iτ
implies that kIτ (i, j) = 0 whenever kIπ(i, j) = 0. Lemma 5.29 implies that kIτ (i, j) ≤ kIπ (i, j)
for all (i, j) ∈ Φ+. The result then follows from Corollary 5.25.

Theorem 5.33. Let f = 1
2X[−1,1] be the uniform density function on [−1, 1]. Let π ∈ Sn+1 and

let Iπ be the root ideal of π. Let the address of w ∈ Ãn be given by kw(i, j) = (i, j)Iπ for all
(i, j) ∈ Φ+. Then,

P(f, π) =
|[1, w]|

2nn!
,
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where [1, w] consists of all v ∈ Ãn such that v ≤ w in the weak order on Ãn.

Proof. Lemma 5.31 implies that we may apply Lemma 5.29 to Iπ. The result then follows from
Lemma 5.29 and Corollary 5.25.

Weak order intervals of Ãn satisfy condition (1) of [19, Proposition 3.5], which implies Pπ

is an alcoved polytope in the sense of [18] and [19]. Thus [18, Theorem 3.2] provides yet an-
other computational approach to calculating the volume of Pπ, although we do not pursue that
approach in this paper.

The next proposition is somewhat surprising, in the sense that two consecutive entries of
π can completely determine P(f, π). This is not the case for the Laplace or normal density
functions, and it is reasonable to suspect that a typical density function does not exhibit this
property.

Proposition 5.34. Let f = 1
2X[−1,1] be the uniform density function on [−1, 1]. Let π ∈ Sn+1.

Then 1(n+1) or (n+1)1 occur in consecutive positions in the 1-line notation for π if and only
if

P(f, π) =
1

2nn!

Proof. If 1 and n+1 are consecutive in the 1-line notation, then Iπ is all of Φ+. Thus w = 1 in
Theorem 5.33, which implies there is only one element of Ãn in the interval [1, w].

Conversely, if there are no consecutive occurrences of 1 and (n + 1), then the ideal Iπ does
not contain (1, n). Thus (1, n) is the join of at least 2 elements of Iπ, which implies kIπ (1, n) > 0.
This implies [1, w] contains more than one element.

6 Pattern probability comparisons for the normal distribution

=⇒ lev(π) =




2 2 1 1 0
0 4 3 2 1
0 0 3 2 1
0 0 0 2 1
0 0 0 0 2


3

1

5

6

2

4

Levels

Edge diagram

for π = 315624

1

2

3

4

5

Figure 4: The edge diagram for a permutation and its level count matrix. Figure adapted from
[15].

As Zare [30] suggested, when f is a normal distribution, we calculate P(f, π) by finding the
volume of a spherical simplex. General equations exist to compute such volumes. See [1] or [24],
for example. However, they appear to be computationally intensive, as is Lemma 2.8 when it
is applied to the normal distribution. Nonetheless, there are a few direct comparisons we can
make involving alcoves and levels of the edge diagram.

Recall that the alcoves of Section 5 are simplices of volume 1/n!, by Corollary 5.19. For
a given origin-centered ball B in Rn, we obtain an underestimate for P(f, π) by counting all
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alcoves in Dπ that are fully contained in B. Similarly, we obtain an overestimate for P(f, π)
by counting all alcoves in Dπ that intersect B or are fully contained in B. The address of an
alcove and the radius of the ball suffice to determine whether an alcove is fully contained in B
or intersects B or is disjoint from B.

Proposition 6.1. Let B be an origin-centered ball in Rn. Let mπ be the number of alcoves
fully contained in Dπ and B. Let Mπ be the number of alcoves fully contained in Dπ that have
nonempty intersection with B. Then

mπ

n! volume(B)
≤ P(f, π) ≤

Mπ

n! volume(B)
.

Note that hypercubes with integer-valued vertices could be used instead of alcoves, but one
would need to determine whether the hypercube is fully contained in Dπ or intersects Dπ or is
disjoint from Dπ. For alcoves, this is directly determined from the alcove’s address.

For π ∈ Sn+1, we defined lev(π) on [n] to measure how often a value lies between two
consecutive values of π. We extend the definition of lev(π) to arbitrary pairs of [n].

Definition 6.2. Let π ∈ Sn+1. Denote the number of positions k such that π(k) ≤ i, j < π(k+1)
or π(k + 1) ≤ i, j < π(k) by lev(π)i,j . Note that lev(π)i,i is the same as lev(π)i defined in
Definition 3.1.

The measure of the spherical simplex that determines P(f, π) for the normal distribution
is completely determined by the values of lev(π), as will be seen in the proof of Theorem 6.3.
Although such measures may be difficult to calculate, we can sometimes use lev(π) and lev(τ)
to compare P(f, π) and P(f, τ).

Recall that Lemma 2.8 expresses P(f, π) as
∫
Dπ

g(Lπ(x))dx, where g is the joint density
function defined by g(x1, . . . , xn) = f(x1)f(x2) · · · f(xn).

Theorem 6.3. Let f : R → R be the density function for a normal distribution with mean zero
and any variance. Let π, τ ∈ Sn+1 and suppose lev(π)i,j ≤ lev(τ)i,j for all (i, j) ∈ Φ+. Then
P(f, π) ≥ P(f, τ).

Proof. By scale invariance (Lemma 2.10), we may assume f is given by f(x) = Ke−x2

for some
K ∈ R. Every factor in Lemma 2.8 has the form f(±(xa + · · ·+ xb)). We have

f(±(xa + · · ·+ xb)) = exp
(
−(xa + · · ·+ xb)

2
)

= exp

(
−

b∑

k=a

x2k

)
· exp

(
−
∑

2xkxk′
)
,

where the sum in the second exponential is over all pairs between a and b (inclusive). By
Definition 6.2, there are lev(π)j,j factors contributing one term of the form −x2j and lev(π)i,j
factors contributing one term of the form −2xixj to the overall product of exponentials. Thus,
if lev(π)i,j ≤ lev(τ)i,j for all (i, j), the integrand in Lemma 2.8 for π is always at least as large
as the integrand for τ .

In [15, Lemma 2.3], Elnitsky and Martinez showed that if Lπ can be obtained from Lτ by a
permutation of rows and columns, then P(f, π) = P(f, τ) for any choice of density function f ,
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symmetric or otherwise. By including their guaranteed equalities, we obtain more comparable
pairs of permutations than what is guaranteed by Theorem 6.3.

Write π ≡ τ if Lπ can be obtained from Lτ by a permutation of rows and columns. Write
π ≤lev τ if lev(π)i,j ≤ lev(τ)i,j for all i, j ∈ [n]. Define 6 as the transitive closure of of the
relation ≡ and the partial order ≤lev. We then have a broader collection of comparable pairs of
permutations for the normal distribution.

Corollary 6.4. Let f be a normal distribution with mean zero. Let π, τ ∈ Sn+1. If π 6 τ , then
P(f, π) ≥ P(f, τ).

7 Concluding remarks and problems

In [30], Zare asks which permutations occur most frequently in random walks with a normal
or uniform distribution of mean zero for its steps. Our results provide an imprecise heuristic:
permutations with large consecutive changes in its 1-line notation are less likely to occur than
permutations with small consecutive changes. In other words, for permutations where lev(π)i,j
is large, we expect P(f, π) to be small, and vice versa, for a large class of symmetric density
functions of a continuous probability distribution.

As a general problem, we would like to know what general hypotheses are needed to prove
P(f, π) ≥ P(f, τ) whenever lev(π)i,j ≤ lev(τ)i,j for all (i, j) ∈ Φ+. However, this question is
probably too open-ended. We have evidence for the following more precise conjecture.

Conjecture: Let f : R → R be a density function that is log-concave on R>0 and symmetric on
R. Let π, τ ∈ Sn+1 and suppose lev(π)i,j ≤ lev(τ)i,j for all (i, j) ∈ Φ+. Then P(f, π) ≥ P(f, τ).

From the perspective of computation, Proposition 5.21 provides a direct approach to computing
ordinal pattern probabilities when the steps are uniform. Theorem 5.33 reduces the problem to
finding the size of a weak order interval in Ãn. A lot is known about these intervals, which is
enough to make the computation easier in some cases. For example, in [20], Lapointe and Morse

show that the weak order on the quotient S̃k+1/Sk+1 is order-isomorphic to the k-Young lattice.
Furthermore, some intervals of the k-Young lattice are intervals of the Young lattice. The size
of intervals of the Young lattice is given by a classical determinant formula due to Kreweras,
thus providing an alternative calculation to Proposition 5.21 for some permutations. (See [17,
Section 2.3.7].)

However, the affine symmetric group contains many weak order intervals isomorphic to weak
order intervals of the symmetric group. By [14, Theorem 1.4], computing the size of weak order
intervals in Sn is #P -complete. Unless there is something special about the weak order intervals
in Theorem 5.33, computing P(f, π) is hard when f is uniform.

Conjecture: Computing P(f, π) for the uniform density function f on [−1, 1] and arbitrary
π ∈ Sn is #P -complete.
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