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Abstract

The Landau function g(n) is the maximal order of an element of the sym-

metric group Sn; it is also the largest product of powers of primes whose sum

is ≤ n. The main result of this article is that the property “ For all n ≥ 1,

log g(n) <
√
li−1(n) ” (where li−1 denotes the inverse function of the loga-

rithmic integral) is equivalent to the Riemann hypothesis.
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1 Introduction

Let n be a positive integer. In [13], Landau introduced the function g(n) as the

maximal order of an element in the symmetric group Sn; he showed that

g(n) = max
l(M)≤nM (1.1)

where l is the additive function such that l(p�) = p� for p prime and � ≥ 1.

In other words, if the standard factorization of M is M = q
�1
1
q
�2
2
⋯ q

�j
j we have

l(M) = q
�1
1
+ q

�2
2
+⋯ + q

�j
j and l(1) = 0. He also proved that

log g(n) ∼
√
n log n, n→ ∞.

∗Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.
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A function close to the Landau function is the function ℎ(n) defined for n ≥ 2 as

the greatest product of a family of primes q1 < q2 < ⋯ < qj the sum of which

does not exceed n. If � denotes the Möbius function, ℎ(n) can also be defined by

ℎ(n) = max
l(M)≤n
�(M)≠0

M. (1.2)

The above equality implies ℎ(1) = 1. Note that

l(g(n)) ≤ n and l(ℎ(n)) ≤ n. (1.3)

From (1.2) and (1.1), it follows that

ℎ(n) ≤ g(n), (n ≥ 1). (1.4)

Sequences (g(n))n≥1 and (ℎ(n))n≥1 are sequences A000793 and A159685 in the

OEIS (On-line Encyclopedia of Integer Sequences). One can find results about

g(n) in [15, 17, 7, 11, 20], see also [18] and [4, §10.10]. In the introductions of

[7, 11], other references are given. The three papers [8, 9, 10] are devoted to ℎ(n).
A fast algorithm to compute g(n) (resp. ℎ(n)) is described in [11] (resp. [8, §8]).

In [9, (4.13)], it is shown that

logℎ(n) ≤ log g(n) ≤ logℎ(n) + 5.68 (n log n)1∕4, n ≥ 1. (1.5)

Let li denote the logarithmic integral and li−1 its inverse function (cf. below §2.2).

In [15, Theorem 1 (i)], it is proved that

log g(n) =

√
li−1(n) + (√

n exp(−a
√
log n)

)
(1.6)

holds for some positive a. The asymptotic expansion of log g(n) does coincide

with the one of
√
li−1(n) (cf. [15, Corollaire, p. 225]) and also, from (1.5), with

the one of logℎ(n) :

logℎ(n)

log g(n)√
li−1(n)

⎫
⎪⎬⎪⎭
=

√
n log n

(
1 +

log log n − 1

2 log n
−

(log log n)2 − 6 log log n + 9 + o(1)

8 log2 n

)
(1.7)

In [15, Théorème 1 (iv)], it is proved that under the Riemann hypothesis the

inequality

log g(n) <

√
li−1(n) (1.8)
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holds for n large enough. In August 2009, the second author received an e-mail

of Richard Brent asking whether it was possible to replace “n large enough” by

“n ≥ n0” with a precise value of n0. The aim of this paper is to anwer this question

positively. For n ≥ 2, let us introduce the sequences

log g(n) =

√
li−1(n) − an(n log n)

1∕4 i.e. an =

√
li−1(n) − log g(n)

(n log n)1∕4
, (1.9)

logℎ(n) =

√
li−1(n) − bn(n log n)

1∕4 i.e. bn =

√
li−1(n) − logℎ(n)

(n log n)1∕4
, (1.10)

and the constant

c =
∑
�

1

|�(� + 1)| = 0.046 117 644 421 509… (1.11)

where � runs over the non trivial zeros of the Riemann � function. The computation

of the above numerical value is explained in [10, Section 2.4.2]. We prove

Theorem 1.1. Under the Riemann hypothesis,

(i) log g(n) <

√
li−1(n) for n ≥ 1,

(ii) an ≥ 2 −
√
2

3
− c −

0.43 log log n

log n
> 0 for n ≥ 2,

(iii) an ≤ 2 −
√
2

3
+ c +

1.02 log log n

log n
for n ≥ 19425,

(iv) 0.11104 < an ≤ a2 = 0.9102… for n ≥ 2,

(v) 0.149… =
2 −

√
2

3
− c ≤ lim inf an ≤ lim sup an ≤ 2 −

√
2

3
+ c = 0.241…

(vi) When n→ ∞,

(2 −
√
2

3
− c

)(
1 +

log log n + (1)
4 log n

) ≤ an

≤ (2 −
√
2

3
+ c

)(
1 +

log log n +(1)
4 log n

)
.

Remark 1.2. It does not seem easy to calculate infn≥2 an, and to decide whether

it is a minimum or not.
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Corollary 1.3. Each of the six points of Theorem 1.1 is equivalent to the Riemann

hypothesis.

Proof. If the Riemann hypothesis fails, it is proved in [15, Theorem 1 (ii)] that

there exists b > 1∕4 such that

log g(n) =

√
li−1(n) + Ω±((n log n)

b) (1.12)

which contradicts (i), (ii), …, (vi) of Theorem 1.1.

In the paper [10], the following theorem is proved:

Theorem 1.4. Under the Riemann hypothesis,

(i) logℎ(n) <

√
li−1(n) for n ≥ 1,

(ii) b17 = 0.49795… ≤ bn ≤ b1137 = 1.04414… for n ≥ 2,

(iii) bn ≥ 2

3
− c −

0.23 log log n

log n
for n ≥ 18,

(iv) bn ≤ 2

3
+ c +

0.77 log log n

log n
for n ≥ 4 422 212 326,

(v) 2∕3 − c = 0.620… ≤ lim inf bn ≤ lim sup bn ≤ 2∕3 + c = 0.712…

(vi) and, when n→ ∞,

(
2

3
− c

)(
1 +

log log n +(1)
4 log n

)
≤ bn

≤ (
2

3
+ c

)(
1 +

log log n +(1)
4 log n

)
.

The main tools in the proof of Theorem 1.4 in [10] are the explicit formulas

for
∑

pm≤x p and
∑

pm≤x log p.

We deduce Theorem 1.1 about g(n) from Theorem 1.4 about ℎ(n) by studying

the difference log g(n) − logℎ(n) in view of improving inequalities (1.5). More

precisely, we prove

Theorem 1.5. Without any hypothesis,
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(i) For n tending to infinity,

log
g(n)

ℎ(n)
=

√
2

3
(n log n)1∕4

(
1 +

log log n − 4 log 2 − 11∕3

4 log n

−

3

32
(log log n)2 −

(
3 log 2

4
+ 15

16

)
log log n +

(log 2)2

2
+

29 log 2

12
+ 635

288

(log n)2

)

+
(
(log log n)3

(log n)3

)

(ii)

log
g(n)

ℎ(n)
≤

√
2

3
(n log n)1∕4

(
1 +

log log n + 2.43

4 log n

)

for n ≥ 3 997 022 083 663,

(iii) log
g(n)

ℎ(n)
≥

√
2

3
(n log n)1∕4

(
1 +

log log n − 11.6

4 log n

)
for n ≥ 4 230,

(iv) For n ≥ 1 we have
g(n)

ℎ(n)
≥ 1 with equality for

n = 1, 2, 3, 5, 6, 8, 10, 11, 15, 17, 18, 28, 41, 58, 77.

(v) For n ≥ 1, we have log
g(n)

ℎ(n)
≤ 0.62066… (n logn)1∕4 with equality for

n = 2243.

Remark 1.6. From the asymptotic expansion (i), it follows that, for n very large,

the inequality log(g(n)∕ℎ(n)) > (
√
2∕3)(n log n)1∕4 holds. But finding the largest

n for which

(log(g(n)∕ℎ(n)))∕(n log n)1∕4 does not exceed
√
2∕3 = 0.471… seems difficult.

Theorem 1.7. For n ≥ 373 623 863,

√
n log n

(
1 +

log log n − 1

2 log n
−

(log log n)2

8 log2 n

)
≤ logℎ(n) ≤ log g(n) (1.13)

and, for n ≥ 4,

logℎ(n) ≤ log g(n) ≤ √
n log n

(
1 +

log log n − 1

2 log n

)
(1.14)
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The lower bound (1.13) of logℎ(n) improves on [9, Theorem 4] where it was

shown that, for n ≥ 77 615 268, we have logℎ(n) ≥ √
n log n

(
1 +

log log n−1.16

2 log n

)
.

Inequality (1.14) improves on the result of [15, Corollaire, p. 225], where −1 was

replaced by −0.975. From the common asymptotic expansion (1.7) of logℎ(n) and

log g(n), one can see that the constants 8 in (1.13) and −1 in (1.14) are optimal.

1.1 Notation

− �r(x) =
∑
p≤x

pr. For r = 0, �(x) = �0(x) =
∑
p≤x

1 is the prime counting

function. �−
r
(x) =

∑
p<x

pr.

− �(x) =
∑
p≤x

log p is the Chebichev function. �−(x) =
∑

p<x log p.

−  = {2, 3, 5,…} denotes the set of primes. p1 = 2, p2 = 3,… , pj is the j-th
prime. For p ∈  and n ∈ ℕ, vp(n) denotes the largest exponent such that

pvp(n) divides n.

− P+(n) denotes the largest prime factor of n.

− li(x) denotes the logarithmic integral of x (cf. below Section 2.2). The

inverse function is denoted by li−1.

− If lim
n→∞

un = +∞, vn = Ω±(un) is equivalent to lim sup
n→∞

vn∕un > 0 and

lim inf
n→∞

vn∕un < 0.

− We use the following constants:

– x1 takes three values (cf. (2.3)),

– x0 = 1010+19 is the smallest prime exceeding 1010, log(x0) = 23.025 850…,

– �0 = 2 220 832 950 051 364 840 = 2.22…1018 is defined below in

(3.17),

– log �0 = 42.244414… , log log �0 = 3.743472…

– The numbers (�j)j≥2 described in Lemma 3.8 and (x(0)j )2≤j≤29 defined

in (3.18).

– For convenience, we sometimes write L for log n, � for log log n, L0

for log �0 and �0 for log log �0.
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We often implicitly use the following result : for u and v positive and w real,

the function

t ↦
(log t −w)u

tv
is decreasing for t > exp(w + u∕v). (1.15)

Also, if � and �0 are real numbers satisfying 0 ≤ � ≤ �0 < 1 we shall use the

following upper bound

1

1 − �
= 1 +

�

1 − �
≤ 1 +

�

1 − �0
. (1.16)

Let us write �0 = 0, N0 = 1, and, for j ≥ 1,

Nj = p1p2 ⋯ pj and �j = p1 + p2 +⋯ + pj = l(Nj). (1.17)

For n ≥ 0, let k = k(n) denote the integer k ≥ 0 such that

�k = p1 + p2 +⋯ + pk ≤ n < p1 + p2 +⋯ + pk+1 = �k+1. (1.18)

In [8, Proposition 3.1], for j ≥ 1, it is proved that

ℎ(�j) = Nj . (1.19)

In the general case, one writes n = �k+mwith 0 < m < pk+1 and, from [8, Section

8], we have

ℎ(n) = NkG(pk, m) (1.20)

where G(pk, m) can be calculated by the algorithm described in [11, Section 9].

1.2 Plan of the article

− In Section 2, we recall some effective bounds for the Chebichev function

�(x) and for �r(x) =
∑

p≤x pr. We give also some properties of the logarith-

mic integral li(x) and its inverse li−1.

− Section 3 is devoted to the definition and properties of l-superchampion

numbers. These numbers, defined on the model of the superior highly com-

posite numbers introduced by Ramanujan in [22], are crucial for the study

of the Landau function. They allow the construction of an infinite number

of integers n for which g(n) is easy to calculate. To reduce the running time

of computation, an argument of convexity is given in Section 3.3 and used

in Section 5.5 and in Lemma 8.1 in conjunction with the tools presented in

Section 4.
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− In Section 4 we present some methods used to compute efficiently: how

to quickly enumerate the superchampion numbers, how to find the largest

integer n in a finite interval [a, b] which does not satisfy a boolean property

ok(n), by computing only a small number of values ok(n).

− In Section 5 we prove Theorem 1.7.

− In Section 6, in preparation to the proof of Theorem 1.5, we study the func-

tion log g(n) − logℎ(n) for which we give an effective estimate for n ≥ �0
(defined in (3.17)) and also an asymptotic estimate.

− In Section 7, we prove Theorem 1.5, first for n ≥ �0, by using the results of

Section 6, and further, for n < �0, by explaining the required computation.

− In Section 8, we prove Theorem 1.1. For n ≥ �0, it follows from the reunion

of the proofs of Theorem 1.4 (given in [10]) and of Theorem 1.5. For n < �0,

some more computation is needed.

All computer calculations have been implemented in Maple and C++. Maple pro-

grams are slow but can be executed by anyone disposing of Maple. C++ programs

are much faster. They use real double precision, except for the demonstration of

the Lemma 8.1 where we used the GNU-MPFR Library to compute with real num-

bers with a mantissa of 80 bits. The most expensive computations are the proof of

theorem 1.5.(ii) and the proof of Lemma 8.1 which took respectively 40 hours and

10 hours of CPU (with the C++ programs). The Maple programs can be loaded on

[27].

2 Useful results

2.1 Effective estimates

In [5], Büthe has proved

�(x) =
∑
p≤x

log p < x for x ≤ 1019 (2.1)

while Platt and Trudgian in [21] have shown that

�(x) < (1 + 7.5 ⋅ 10−7) x for x ≥ 2 (2.2)

so improving on results of Schoenfeld [26]. Without any hypothesis, we know that

|�(x) − x] < � x

log3 x
for x ≥ x1 = x1(�) (2.3)

8



with

� =

⎧⎪⎨⎪⎩

1 and x1 = 89 967 803 (cf. [12, Theorem 4.2])

0.5 and x1 = 767 135 587 (cf. [12, Theorem 4.2])

0.15 and x1 = 19 035 709 163 (cf. [3, Theorem 1.1]) .

Lemma 2.1. Let us denote �−(x) =
∑

p<x log p. Then

�(x) ≥ �−(x) ≥ x − 0.0746
x

logx
(x > 48757) (2.4)

�(x) ≤ x
(
1 +

0.000079

logx

)
(x > 1) (2.5)

�(x) < 1.26
x

logx
(x > 1). (2.6)

Proof. − From [26, Corollary 2*, p. 359], for x ≥ 70877, we have �(x) >
F (x) with F (t) = t(1 − 1∕(15 log t)). As F (t) is increasing for t > 0, this
implies that if x > 70877 then �−(x) ≥ F (x) holds. Indeed, if x is not prime,
we have �−(x) = �(x) while if x > 70877 is prime then x−1 > 70877 holds
and we have �−(x) = �(y) > F (y) for y satisfying x − 1 < y < x. When y
tends to x, we get �−(x) ≥ F (x) and, as 1∕15 < 0.0746 holds, this proves
(2.4) for x > 70877. Now, let us assume that 48757 < x ≤ 70877 holds.
For all primes p satisfying 48757 ≤ p < 70877 and p+ the prime following
p we consider the function f (t) = t(1 − 0.0746∕ log t) for t ∈ (p, p+]. As f
is increasing, the maximum of f is f (p+) and �−(t) is constant and equal to
�(p). So, to complete the proof of (2.4), we check that �(p) ≥ f (p+) holds
for all these p’s.

− (2.5) follows from (2.1) for x ≤ 1019, while, for x > 1019, from (2.3), we
have

�(x) ≤ x

(
1 +

0.15

log3 x

)
≤ x

(
1 +

0.15

(log2 1019)(logx)

)

= x

(
1 +

0.0000783…

logx

)
.

− (2.6) is stated in [24, (3.6)].

Lemma 2.2. Let us set

W (x) =
∑
p≤x

log p

1 − 1∕p
. (2.7)
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Then, for x > 0,

W (x)

x
≤ ! =

{
W (7)∕7 = 1.045 176… if x ≤ 7.32

1.000014 if x > 7.32.
(2.8)

Proof. First, we calculate W (p) for all primes p < 106. For 11 ≤ p < 106,
W (p) < p holds while, for p ∈ {2, 3, 5, 7}, the maximum of W (p)∕p is attained
for p = 7. If p and p+ are consecutive primes, W (x) is constant and W (x)∕x is
decreasing on [p, p+). As W (7) = 7.316… this proves (2.8) for x ≤ 7.32 and
W (x) < x for 7.32 < x ≤ 106.

Let us assume now that x > y = 106 holds. We have

W (x) = W (y) +
∑
y<p≤x

log p

1 − 1∕p
≤ W (y) +

y

y − 1

∑
y<p≤x

log p

= W (y) −
y

y − 1
�(y) +

y

y − 1
�(x) = 12.240 465…+

106

106 − 1
�(x)

and, from (2.2),

W (x) ≤ 12.241
x

106
+

106

106 − 1
(1 + 7.5 × 10−7)x < 1.00001399… x,

which completes the proof of Lemma 2.2.

Lemma 2.3. Let K ≥ 0 and � > 0 be two real numbers. Let us assume that there

exists X0 > 1 such that, for x ≥ X0,

x −
�x

logK+1 x
≤ �(x) ≤ x +

�x

logK+1 x
. (2.9)

If a is a positive real number satisfying a < logK+1X0, for x ≥ X0, we have

�

(
x +

a x

logK x

)
− �(x) ≥ b

x

logK+1 x
(2.10)

with

b =

(
1 −

a

logK+1X0

)(
a −

2�

logX0

−
� a

logK+1X0

)
.

Proof. Let us set y = x(1 + a∕ logK x). For x ≥ X0, we have

1 < X0 ≤ x < y = x

(
1 +

a

logK x

)
≤ x

(
1 +

a

logK X0

)

10



and

0 < logx < log y < logx +
a

logK x
= (logx)

(
1 +

a

logK+1 x

)

≤ (logx)

(
1 +

a

logK+1X0

)
<

logx

1 − a∕ logK+1X0

. (2.11)

Further,

�(y) − �(x) =
∑
x<p≤y

1 ≥ ∑
x<p≤y

log p

log y
=

1

log y
(�(y) − �(x))

and, from (2.9),

�(y) − �(x) ≥ 1

log y

(
y − x −

� y

logK+1 y
−

� x

logK+1 x

)

=
1

log y

(
a x

logK x
−

� y

logK+1 x
−

� x

logK+1 x

)

=
x

(log y) logK x

(
a −

2�

logx
−

� a

logK+1 x

)

≥ x

(log y) logK x

[
a −

2�

logX0

−
� a

logK+1X0

]
.

If the above bracket is ≤ 0 then b is also ≤ 0 and (2.10) trivially holds. If the
bracket is positive then (2.10) follows from (2.11), which ends the proof of Lemma
2.3.

Corollary 2.4. For x ≥ x0 = 1010 + 19,

�(x(1 + 0.045∕ log2 x)) − �(x) ≥ 0.012
√
x. (2.12)

Proof. Since, for x ≥ x0, (2.3) implies (2.9) with � = 1∕2, K = 2 and X0 = x0,
we may apply Lemma 2.3 that yields �(x(1+ 0.045∕ log2 x)) − �(x) ≥ b x∕ log3 x
with b = 0.001568…

From (1.15), for x ≥ x0,
√
x∕ log3 x is increasing and

√
x0∕ log

3 x0 = 8.19…,

so that �(x(1+0.045∕ log2 x))−�(x) ≥ b x∕ log3 x ≥ 8.19 b
√
x ≥ 0.012

√
x.

2.2 The logarithmic integral

For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) = ⨍
x

0

dt

log t
= lim

"→0+

(
∫

1−"

0

+∫
x

1+"

dt

log t

)
= ∫

x

2

dt

log t
+ li(2).

11



From the definition of li(x), it follows that

d

dx
li(x) =

1

logx
and

d2

dx2
li(x) = −

1

x log2 x
.

For x → ∞, the logarithmic integral has the asymptotic expansion

li(x) =

N∑
k=1

(k − 1)!x

(logx)k
+

(
x

(logx)N+1

)
. (2.13)

The function t ↦ li(t) is an increasing bijection from (1,+∞) onto (−∞,+∞).
We denote by li−1(y) its inverse function that is defined for all y ∈ ℝ. Note that
li−1(y) > 1 always holds.

To compute numerical values of li(x), we used the formula, due to Ramanujan
(cf. [6, p. 126-131]),

li(x) = 0 + log logx +
√
x

∞∑
n=1

an(logx)
n with an =

(−1)n−1

n! 2n−1

⌊ n−1
2
⌋∑

m=0

1

2m + 1
.

The computation of li−1 y is carried out by solving the equation li(x) = y by the
Newton method.

2.3 Study of �r(x) =
∑

p≤x pr
In the article [10], we have deduced from (2.3) the following proposition:

Proposition 2.5. Let �, x1 = x1(�) be two real numbers such that 0 < � ≤ 1,

x1 ≥ 89 967 803 and |�(x) − x| < � x∕ log3 x for x ≥ x1. Then, for r ≥ 0.6 and

x ≥ x1,

�r(x) ≤ C0 +
xr+1

(r + 1) logx
+

xr+1

(r + 1)2 log2x
+

2xr+1

(r + 1)3 log3x

+
(51�r4 + 176�r3 + 222�r2 + 120�r + 23� + 168)xr+1

24(r + 1)4 log4 x
(2.14)

with

C0 = �r(x1) −
xr
1
�(x1)

logx1
−

3� r4 + 8� r3 + 6� r2 + 24 − �

24
li(xr+1

1
)

+
(3� r3 + 5� r2 + � r + 24 − � )xr+1

1

24 logx1

+
� (3r2 + 2r − 1)xr+1

1

24 log2 x1
+
� (3r − 1)xr+1

1

12 log3 x1
−

� xr+1
1

4 log4 x1
. (2.15)
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The unique positive root r0(�) of the equation 3r4 + 8r3 + 6r2 − 24∕� − 1 =

0 is decreasing on � and satisfies r0(1) = 1.1445…, r0(0.5) = 1.4377… and

r0(0.15) = 2.1086… For 0.06 ≤ r ≤ r0(�) and x ≥ x1(�), we have

�r(x) ≥ Ĉ0 +
xr+1

(r + 1) logx
+

xr+1

(r + 1)2 log2 x
+

2xr+1

(r + 1)3 log3 x

−
(2� r4 + 7� r3 + 9� r2 + 5� r + � − 6)xr+1

(r + 1)4 log4 x
(2.16)

while, if r > r0(�) and x ≥ x1(�), we have

�r(x) ≥ Ĉ0 +
xr+1

(r + 1) logx
+

xr+1

(r + 1)2 log2x
+

2xr+1

(r + 1)3 log3x

−
(51� r4 + 176� r3 + 222� r2 + 120� r + 23� − 168)xr+1

24(r + 1)4 log4 x
, (2.17)

with

Ĉ0 = �r(x1) −
xr
1
�(x1)

logx1
+

3� r4 + 8� r3 + 6� r2 − � − 24

24
li(xr+1

1
)

−
(3� r3 + 5� r2 + � r − � − 24)xr+1

1

24 logx1

−
� (3r2 + 2r − 1)xr+1

1

24 log2 x1
−
� (3r − 1)xr+1

1

12 log3 x1
+

� xr+1
1

4 log4 x1
. (2.18)

Corollary 2.6. For x ≥ 110 117 910, we have

�1(x) ≤ x2

2 logx
+

x2

4 log2 x
+

x2

4 log3 x
+

107 x2

160 log4 x
(2.19)

and, for x ≥ 905 238 547,

�1(x) ≥ x2

2 logx
+

x2

4 log2 x
+

x2

4 log3 x
+

3 x2

20 log4 x
. (2.20)

Proof. It is Corollary 2.7 of [10], cf. also [2, Theorem 6.7 and Proposition 6.9].

Corollary 2.7. For x ≥ 60 173,

�2(x) ≤ x3

3 logx
+

x3

9 log2 x
+

2x3

27 log3 x
+

1181x3

648 log4 x
(2.21)
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and for x ≥ 60 297,

�2(x) ≤ x3

3 logx

(
1 +

0.385

logx

)
(2.22)

while, for x ≥ 1 091 239, we have

�2(x) ≥ x3

3 logx
+

x3

9 log2 x
+

2x3

27 log3 x
−

1069x3

648 log4 x
. (2.23)

and for x > 32 321, with �−
2
(x) =

∑
p<x p

2,

�2(x) ≥ �−
2
(x) ≥ x3

3 logx

(
1 +

0.248

logx

)
. (2.24)

Proof. From (2.3), the hypothesis |�(x) − x| ≤ �x∕ log3 x is satisfied with � = 1

and x1 = 89 967 803. By computation, we find �2(x1) = 13 501 147 086 873 627

946 348, �(x1) = 89 953 175.416 013 726… and C0, defined by (2.15) with
r = 2 and � = 1 is equal to −1.040… × 1018 < 0 so that (2.21) follows from
(2.14) for x ≥ x1. From (1.15), the right-hand side of (2.21) is increasing on x
for x ≥ e4∕3 = 3.79… We check that (2.21) holds when x runs over the primes
p satisfying 60209 ≤ p ≤ x1 but not for p = 60169. For x = 60172.903…,
the right-hand side of (2.21) is equal to �2(60169), which completes the proof of
(2.21).

Let us set x2 = 315 011. From (2.21), for x ≥ x2, we have

�2(x) ≤ x3

3 logx

(
1 +

1

logx

(
1

3
+

2

9 logx2
+

1181

216 log2 x2

))

≤ x3

3 logx

(
1 +

0.385

logx

)

which proves (2.22) for x ≥ x2. Further, we check that (2.22) holds when x runs
over the primes p such that 60317 ≤ p ≤ x2 but does not hold for p = 60293. Solv-
ing the equation �2(60293) = t3∕(3 log t)(1+0.385∕ log t) yields t = 60296.565…
which completes the proof of (2.22).

Similarly, Ĉ0 defined by (2.18) is equal to 8.022… × 1018 > 0 which implies
(2.23) from (2.17) for x ≥ x1. Let us define F (t) = t3

3 log t
+

t3

9 log2 t
+

2t3

27 log3 t
−

1069t3

648 log4 t
.

We have F ′(t) = t2

648 log5 t
(648 log4 t−3351 log t+4276) which is positive for t > 1

and thus, F (t) is increasing for t > 1. For all primes p satisfying 1 091 239 ≤ p ≤
x1, we denote by p+ the prime following p and we check that �2(p) ≥ F (p+), which
proves (2.23).
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Let us set f (t) = t3

3 log t
(1 +

0.248

log t
), so that F (t) − f (t) = t3

81000 log4 t
(2304 log2 t

+ 6000 log t − 133625). The largest root of the trinomial on log t is 6.424… so
that F (t) > f (t) holds for t ≥ 618 > exp(6.425), which, as (2.23) holds for
x ≥ 1 091 239, proves (2.24) for x ≥ 1 091 239.

After that, we check that �2(p) ≥ f (p+) for all pairs (p, p+) of consecutive
primes satisfying 32321 ≤ p < p+ ≤ 1 091 239, which, for x ≥ 32321, proves
that �2(x) ≥ f (x) and (2.24) if x is not prime. For x prime and x > 32321, we
have x − 1 > 32321 and we consider y satisfying x − 1 < y < x. We have
�−
2
(x) = �2(y) ≥ f (y), which proves (2.24) when y tends to x.

Corollary 2.8. We have

�3(x) ≤ 0.271
x4

logx
for x ≥ 664, (2.25)

�4(x) ≤ 0.237
x5

logx
for x ≥ 200, (2.26)

�5(x) ≤ 0.226
x6

logx
for x ≥ 44 (2.27)

�r(x) ≤ log 3

3

(
1 +

(
2

3

)r) xr+1

logx
for x > 1 and r ≥ 5. (2.28)

Proof. First, from (2.15), with r ∈ {3, 4, 5}, � = 1 and x1 = 89 967 803, we
calculate

C0(3) = −1.165…1026, C0(4) = −1.171…1034, C0(5) = −1.123…1042.

As these three numbers are negative, from (2.14), for r ∈ {3, 4, 5} and x ≥ x1, we
have

�r(x) ≤ xr+1

(r + 1) logx

(
1 +

1

(r + 1) logx1
+

2

(r + 1)2 log2x1

+
51r4 + 176r3 + 222r2 + 120r + 191

24(r + 1)3 log3 x1

)
(2.29)

and

�3(x) ≤ 0.254
x4

logx
, �4(x) ≤ 0.203

x5

logx
and �5(x) ≤ 0.169

x6

logx
.

If p and p+ are two consecutive primes, for r ≥ 3, it follows from (1.15) that the
function t ↦ �r(t) log t

tr+1
is decreasing on t for p ≤ t < p+. Therefore, to complete the
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proof of (2.25), one checks that �3(p) log p

p4
≤ 0.271 holds for 673 ≤ p ≤ x1 and we

solve the equation �3(t) log t = 0.271 t4 on the interval [661, 673) whose root is
663.35… The proof of (2.26) and (2.27) are similar.

Since the mapping t ↦ (log t)∕t6 is decreasing for t ≥ 2, the maximum of
�5(x)(log x)∕x

6 is attained on a prime p. In view of (2.27), calculating�5(p)(log p)∕p
6

for p = 5, 7,… , 43 shows that the maximum for x ≥ 5 is attained for x = 5 and
is equal to 0.350… < (log 3)∕3. Let r be a number ≥ 5. By applying the trivial
inequality

�r(x) ≤ xr−5�5(x), r ≥ 5,

we deduce that �r(x) < (log 3) xr+1∕(3 logx) for x ≥ 5, and, by calculating

�r(2)(log 2)∕2
r+1 = (log 2)∕2 and �r(3)(log 3)∕3

r+1 =
(
1 +

(
2

3

)r)
log 3

3
, we ob-

tain (2.28).

3 l-superchampion numbers

3.1 Definition of l-superchampion numbers

Definition 3.1. An integer N is said l-superchampion (or more simply super-

champion) if there exists � > 0 such that, for all integer M ≥ 1

l(M) − � logM ≥ l(N) − � logN. (3.1)

When this is the case, we say that N is a l-superchampion associated to �.

Geometrically, if we represent logM in abscissa and l(M) in ordinate for all
M ≥ 1, the vertices of the convex envelop of all these points represent the l-
superchampion numbers (cf. [11, Fig. 1, p. 633]). If N is an l-superchampion,
the following property holds (cf. [11, Lemma 3]):

N = g(l(N)). (3.2)

Similar numbers, the so-called superior highly composite numbers were first
introduced by S. Ramanujan (cf. [22]). The l-superchampion numbers were also
used in [19, ?, 16, 15, 17, 20, 7]. Let us recall the properties we will need. For
more details, cf. [11, Section 4].

Lemma 3.2. Let � satisfy � ≥ 5∕ log 5 = 3.11…. Then, depending on �, there

exists an unique decreasing sequence (�j)j≥1 such that �1 > exp(1) and, for all

j ≥ 2,

�j > 1 and
�jj − �

j−1
j

log �j
=

�1
log �1

= �. (3.3)

We have also � = �1 ≥ 5 and �2 ≥ 2.
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Definition 3.3. For each prime p ∈  , let us define the sets

p =
{

p

log p
,
p2 − p

log p
,… ,

pi+1 − pi

log p
,…

}
,  =

⋃
p∈

p. (3.4)

Remark 3.4. Note that all the elements of p are distinct at the exception, for

p = 2, of
2

log 2
=

22 − 2

log 2
and that, for p ≠ q, p ∩ q = ∅ holds.

Furthermore if � ∈ p, there is an unique ĵ = ĵ(�) ≥ 1 such that �ĵ is an

integer; this integer is p and ĵ is given by

ĵ =

{
1 if � = p∕ log p

j if � = (pj − pj−1)∕ log p (j ≥ 2).
(3.5)

Proposition 3.5. Le � > 5∕ log 5, �j = �j(�) defined by (3.3) and N�, N
+
�

defined

by

N� =
∏
j≥1

(∏
p<�j

p
)
=
∏
j≥1

( ∏
�j+1≤p<�j

pj
)

(3.6)

and

N+
�
=
∏
j≥1

(∏
p≤�j

p
)
=
∏
j≥1

( ∏
�j+1<p≤�j

pj
)

(3.7)

Then,

1. If � ∉  , N� = N+
�

is the unique superchampion associated to �.

2. If � ∈ p, N� and N+
�

are two consecutive superchampions, they are the

only superchampions associated to �, and

N+
�
= pN� = �ĵ(�)N�. (3.8)

From (3.3) we deduce that the upper bound for j in (3.6) and (3.7) is ⌊J⌋ with
J defined by

2J − 2J−1

log 2
= � =

�

log �
i.e. J =

log � + log(2 log 2) − log log �

log 2
<

log �

log 2
,

(3.9)
as � ≥ 5 is assumed.

Definition 3.6. Let us suppose n ≥ 7. Depending on n, we define �, N ′, N ′′, n′,

n′′, �, and (�j)j≥1.
1. � is the unique element of  such that

l(N�) ≤ n < l(N+
�
). (3.10)
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2. N ′, N ′′, n′, n′′ are defined by

N ′ = N�, N ′′ = N+
�

n′ = l(N ′), and n′′ = l(N ′′). (3.11)

3. For j ≥ 1, �j is defined by (3.3) and � is defined by � = �1 i.e. log �∕� = �.

Proposition 3.7. Let us suppose n ≥ 7, �,N ′,N ′′, n′, n′′ and � defined by Definiton

3.6. Then

n′ ≤ n < n′′ and N ′ = g(n′) ≤ g(n) < N ′′ = g(n′′) = pN ′. (3.12)

l(N ′) − � logN ′ = l(N ′′) − � logN ′′. (3.13)

N ′′ ≤ �N ′. (3.14)

l(N ′′) − l(N ′) ≤ �. (3.15)

Proof. − (3.12) results of (3.10), (3.11) and (3.8).

− By applying (3.1) first to M = N ′ , N = N ′′ and further to M = N ′′,
N = N ′ we get (3.13).

− Equality (3.8) gives N ′′ = �ĵ(�)N
′; with the decreasingness of (�j) and the

definiton � = �1 we get (3.14).

− By using (3.13) and (3.14) we have l(N ′′) − l(N ′) = � log(Nε∕N ′)) ≤
� log � = �.

In the array of Fig. (1), for a small n, one can read the value of N ′, N ′′, � and
� as given in Definition 3.6. For instance, for n = 45, we have N ′ = 60 060,
N ′′ = 180 180, � = 6∕ log 3 and � = 14.667… We also can see the values of the
parameter associated to a superchampion number N . For instance, N = 360 360

is associated to all values of � satisfying 4∕ log 2 ≤ � ≤ 17∕ log 17.
As another example, let us consider x0 = 1010 + 19, the smallest prime ex-

ceeding 1010, and the two l-superchampion numbers N ′
0

and N ′′
0

associated to
� = x0∕ logx0 ∈ x0. We have

N ′
0
= 229318512710118138177197236…316375 …715734 …21142233…14593

14712 …69557269593…9 999 999 967 and N ′′
0
= x0N

′
0
, (3.16)

�0 = l(N ′
0
) = 2 220 832 950 051 364 840 = 2.22…1018, J = 29.165…

(3.17)
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n N l(N) � �

12 = 22 ⋅ 3 7

7..11 5∕ log 5 = 3.11 5

60 = 22 ⋅ 3 ⋅ 5 12

12..18 7∕ log 7 = 3.60 7

420 = 22 ⋅ 3 ⋅ 5 ⋅ 7 19

19..29 11∕ log 11 = 4.59 11

4 620 = 22 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 30

30..42 13∕ log 13 = 5.07 13

60 060 = 22 ⋅ 3…13 43

43..48 (9 − 3)∕ log 3 = 5.46 14.66
180 180 = 22 ⋅ 32 ⋅ 5…13 49

49..52 (8 − 4)∕ log 2 = 5.77 16

360 360 = 23 ⋅ 32 ⋅ 5…13 53

53..69 17∕ log 17 = 6.00 17

6 126 120 = 23 ⋅ 32 ⋅ 5…17 70

70..88 19∕ log 19 = 6.45 19

116 396 280 = 23 ⋅ 32 ⋅ 5…19 89

Figure 1: The first superchampion numbers

and, for 2 ≤ j ≤ 29, �j = x(0)j with

x(0)
2

= 69588.8… , x(0)
3

= 1468.8… , x(0)
4

= 220.2… , x(0)
5

= 71.5…

and x(0)
29

= 2.0… (3.18)

A complete table of values of x(0)j is given in [27].
Let n be an integer, and � = �(n) (Definition 3.6). Let us suppose n ≥ �0 =

l(N ′
0
); then, by (3.10), � ≥ �0, ie �∕ log � ≥ x0∕ logx0. So that

� ≥ x0. (3.19)

3.2 Estimates of �j defined by (3.3)

Lemma 3.8. (i) For � ≥ 5 and j ≥ 2, we have

�j ≤ �1∕j . (3.20)

(ii) For 2 ≤ j ≤ 8 and � ≥ �j , we have

�j ≤
(
�

j

)1∕j

, (3.21)
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with �2 = 80, �3 = 586, �4 = 6381, �5 = 89017, �6 = 1 499 750, �7 = 29 511 244,

�8 = 663 184 075.

(iii) For � ≥ 5 and j such that �j ≥ x(0)j ≥ 2 (where x(0)j is defined in (3.18)),
we have

�j ≤
(

�

j(1 − 1∕x(0)j )

)1∕j

≤
(
2�

j

)1∕j

. (3.22)

Proof. (i) As the function t ↦ tj−tj−1

log t
is increasing, it suffices to show that

(�1∕j)j − (�1∕j)j−1

log(�1∕j)
=
� − �(j−1)∕j

(1∕j) log �
≥ �

log �

which is equivalent to

� ≥
(
1 +

1

j − 1

)j

. (3.23)

But the sequence (1+1∕(j−1))j decreases from 4 to exp(1) when j increases from
2 to ∞, and � ≥ 5 is assumed, which implies (3.23) and (3.20).

(ii) Here, we have to prove

�∕j − (�∕j)(j−1)∕j

(1∕j) log(�∕j)
≥ �

log �

which is equivalent to
�1∕j

log �
≥ j1∕j

log j
. (3.24)

For 2 ≤ j ≤ 8, we have �j > ej and, from (1.15), the function � ↦ �1∕j∕ log � is
increasing for � ≥ �j and its value for � = �j exceeds j1∕j∕ log j so that inequality
(3.24) is satisfied.

(iii) Let us suppose that � ≥ 5 and �j ≥ x(0)j ≥ 2 hold. From (3.3) and (3.20),
we have

�jj =
� log �j

log �(1 − 1∕�j)
≤ �

j(1 − 1∕�j)
≤ �

j(1 − 1∕x(0)j )
≤ 2�

j

which proves (3.22).

Corollary 3.9. For n ≥ 7, � = �(n), �=�(n) defined in Definition 3.6, the powers

pj of primes dividing N ′ = N� or N ′′ = N+
�

in (3.6) or (3.7) do not exceed �.

Proof. This follows from (3.20), (3.6) and (3.7).
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3.3 Convexity

In this paragraph we prove Lemma 3.13 which is used to speed-up the computa-
tions done in Section 5.5 to prove Inequality (1.14) of Theorem 1.7, and and in
Section 8.4 to prove Theorem 1.1 (iv).

Lemma 3.10. The function t ↦
√
li−1(t) is concave for t > li(e2) = 4.954….

Let a ≤ 1 be a real number. Then, for t ≥ 31, the function t ↦
√
li−1(t) −

a(t(log t))1∕4 is concave.

Proof. The proof is a good exercise of calculus: cf. [10, Lemma 2.5].

Lemma 3.11. Let u be a real number, 0 ≤ u ≤ e. The function Φu defined by

Φu(t) =
√
t log t

(
1 +

log log t − 1

2 log t
− u

(log log t)2

log2 t

)
(3.25)

is increasing and concave for t ≥ ee = 15.15…

Proof. Let us write L for log t and � for log log t. One calculates (cf. [27])

dΦu

dt
=

1

4L2
√
tL

(
2L(L2 − u�2) + L(L − � + 3) + �(L2 − 2u) + 6u�(� − 1)

)

d2Φu

dt2
=

−1

8L2(tL)3∕2
(L2(L2−2u�2)+L3(�−1)+L(2L−3�)+(L4+11L−22u�)

+ 2u(15�2 − 21� + 8)).

For t ≥ ee, we have L ≥ e, � ≥ 1, L = e� > e� ≥ u�, so that Φ′
u

is positive.
InΦ′′

u
,L4+11L ≥ (e3+11)L ≥ (e3+11)u� > 22u�, the trinomial 15�2−21�+8

is always positive and the three first terms of the parenthesis are also positive, so
that Φ′′

u
is negative.

Lemma 3.12. Let n′ = l(N ′), n′′ = l(N ′′) where N ′ and N ′′ are two consec-

utive l-superchampion numbers associated to the same parameter �. Let Φ be a

concave function on [n′, n′′] such that logN ′ ≤ Φ(n′) and logN ′′ ≤ Φ(n′′). Then,

For n ∈ [n′, n′′], log g(n) ≤ Φ(n).

Proof. From (3.2), it follows thatN ′ = g(n′) andN ′′ = g(n′′). Let us setN = g(n)
so that, from (1.3), we have n ≥ l(N). From the definition (3.1) of superchampion
numbers and (3.13), we have

n − � logN ≥ l(N) − � logN ≥ n′ − � logN ′ = n′′ − � logN ′′. (3.26)
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Now, we may write

n = �n′ + �n′′ with 0 ≤ � ≤ 1 and � = 1 − � (3.27)

and (3.26) implies

logN ≤ 1

�
(n − (n′ − � logN ′))

=
1

�
(�n′ + �n′′ − �(n′ − � logN ′) − �(n′′ − � log n′′))

= � logN ′ + � logN ′′. (3.28)

From the concavity of Φ, logN ′ ≤ Φ(n′) and logN ′′ ≤ Φ(n′′), (3.28) and (3.27)
imply

log g(n) = logN ≤ � Φ(n′) + � Φ(n′′) ≤ Φ(�n′ + �n′′) = Φ(n),

which completes the proof of Lemma 3.12.

For n ≥ 2, let us define zn by

log g(n) =
√
n log n

(
1 +

log log n − 1

2 log n
− zn

(log log n)2

log2 n

)
. (3.29)

Lemma 3.13. Let N ′ and N ′′ be two consecutive l-superchampion numbers and

l(N ′) ≤ n ≤ l(N ′′).

(i) If n′ ≥ 43 and if an′ and an′′ (defined by (1.9)) both belong to [0, 1] then

an ≥ min(an′ , an′′).

(ii) If n′ ≥ 19 and if zn′ and zn′′ (defined by (3.29)) both belong to [0, e] then

zn ≥ min(zn′ , zn′′).

Proof. From (3.2), it follows thatN ′ = g(n′) andN ′′ = g(n′′). Let us setN = g(n)

and

Φ(t) =

√
li−1(t) − min(an′ , an′′)(t log t)

1∕4.

From Lemma 3.10, Φ is concave on [n′, n′′]. Moreover, from the definition (1.9)
of an′ and an′′ , we have logN ′ ≤ Φ(n′) and logN ′′ ≤ Φ(n′′) which, from Lemma
3.12, implies log g(n) ≤ Φ(n) and, from (1.9), an ≥ min(an′ , an′′) holds, which
proves (i).

The proof of (ii) is similar. We set u = min(zn′ , zn′′). From Lemma 3.11, Φu

is concave on [n′, n′′], log g(n′) ≤ Φu(n
′) and log g(n′′) ≤ Φu(n

′′) so that, from
Lemma 3.12, we have log g(n) ≤ Φu(n) and, from (3.29), zn ≥ u holds, which
completes the proof of Lemma 3.13.
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3.4 Estimates of �2 defined by (3.3)

By iterating the formula �2 =
√

� log �2

log �
+ �2 (cf. (3.3)), for any positive integer K ,

we get

�2 =

√
�

2

(
1 +

K−1∑
k=1

�k

logk �
+ 

(
1

logK �

))
, � → ∞, (3.30)

with

�1 = −
log 2

2
, �2 = −

(log 2)(log 2 + 4)

8
, �3 = −

(log 2)(log2 2 + 8 log 2 + 8)

16

Proposition 3.14. We have the following bounds for �2 :

�2 <

√
�

2

(
1 −

log 2

2 log �

)
<

√
�

2

(
1 −

0.346

log �

)
for � ≥ 31643 (3.31)

�2 >

√
�

2

(
1 −

0.366

log �

)
for � ≥ 4.28 × 109. (3.32)

Proof. Let us suppose � ≥ 4 and a ≤ 0.4. We set

Φ = Φa(�) =

√
�

2

(
1 −

a

log �

)
≥
√

4

2

(
1 −

0.4

log 4

)
= 1.006… > 1

and

W = Wa(�) =
(Φ2 − Φ) log �

�
− logΦ =

(logΦ)(log �)

�

(
Φ2 − Φ

logΦ
−

�

log �

)

=
(logΦ)(log �)

�

(
Φ2 − Φ

logΦ
−
�2
2
− �2

log �2

)
.

As Φ > 1 and t ↦ (t2 − t)∕ log t is increasing, we have

Wa(�) > 0 ⟺ �2 < Φ(�) =

√
�

2

(
1 −

a

log �

)
. (3.33)

By the change of variable

� = exp(2t), t =
1

2
log � ≥ log 2,
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with the help of Maple (cf. [27]), we get

W = −a +
a2

4t
+

3

2
log 2 + log t − log(2t − a) − e−t

√
2

2
(2t − a),

W ′ =
dW

dt
=

U

4t2(2t − a)
with

U = −2a(a + 2)t + a3 + 2
√
2e−tV (4t4 − 4(a + 1)t3 + a(a + 2)t2),

U ′ =
dU

dt

= −2a(a + 2) + 2
√
2e−t(−4t4 + 4(a + 5)t3 − (a2 + 14a + 12)t2 + 2a(a + 2)t)

U ′′ =
d2U

dt2
= 2

√
2e−tV

with V = 4t4 − 4(a + 9)t3 + (a2 + 26a + 72)t2 − 4(a2 + 8a + 6)t + 2a(a + 2).

The sign of U ′′ is the same than the sign of the polynomial V that is easy to find.
For a fixed and t ≥ log 2 (i.e. � ≥ 4), one can successively determine, the variation
and the sign of U ′, U and W .

For a = (log 2)∕2 = 0.346…

t log 2 0.96 2.39 4.23 6.38 ∞

U ′′ + + 0 − − 0 +

16.09 −1.62

U ′ ↗ 0 ↗ ↘ 0 ↘ ↗

−2.79 −10.03

t log 2 0.96 1.49 4.23 8.0 ∞

U ′ − 0 + + 0 − −

−1.76 29.6
U ↘ ↗ 0 ↗ ↘ 0 ↘

−2.18 −∞

t log 2 1.49 5.18 8.0 ∞

U or W ′ − 0 + + 0 −

−0.036 0.021

W ↘ ↗ 0 ↗ ↘

−0.27 0

(3.34)

The root of W is w0 = 5.1811243… and exp(2w0) = 31642.25…. Therefore,
(3.31) follows from array (3.34).
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For a = 0.366

t log 2 0.97 2.39 4.23 6.39 ∞

U ′′ + + 0 − − 0 +

15.91 −1.731
U ′ ↗ 0 ↗ ↘ 0 ↘ ↗

−2.957 −10.09

t log 2 0.9797 1.5208 4.231 7.892 ∞

U ′ − 0 + + 0 − −

−1.830 29.04

U ↘ ↗ 0 ↗ ↘ 0 ↘

−2.308 −∞

t log 2 1.52 6.37 7.89 11.08 ∞

W ′ − 0 + + 0 − −

−0.025 0.004
W ↘ ↗ 0 ↗ ↘ 0 ↘

−0.28 −0.019
(3.35)

The root w0 of W is equal to 11.08803… and exp(2w0) = 4.27505… × 109 so
that (3.32) follows from (3.33) and from array (3.35).

Remark 3.15. By solving the system W = 0, U = 0 on the two variables t and a,

one finds

a = a0 = 0.370612465… , t = t0 = 7.86682407…

and for a = a0, t = t0 is a double root ofWa0
. By studying the variation ofWa0

, we

find an array close to (3.35), butWa0
(t0) =W ′

a0
(t0) = 0, so thatWa0

is nonpositive

for t ≥ log 2, which proves

�2 ≥
√
�

2

(
1 −

a0
log �

)
>

√
�

2

(
1 −

0.371

log �

)
for � ≥ 4.

Corollary 3.16. If � ≥ x0 = 1010 + 19 holds and �2 is defined by (3.3), then

2

log �
≤ 2

log �

(
1 +

log 2

log �

)
≤ 1

log �2
≤ 2

log �

(
1 +

0.75

log �

)
≤ 2.07

log �
. (3.36)

Proof. Since � ≥ x0 holds and �2 is increasing on �, we have �2 ≥ x(0)
2

= 69588.859…

(cf. (3.18)) and (3.21) implies �2 ≤ √
�∕2, i.e.

log �2 ≤ 1

2
log � −

1

2
log 2 =

log �

2

(
1 −

log 2

log �

)
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and

1

log �2
≥ 2

(log �)(1 − (log 2)∕ log �)
≥ 2

log �

(
1 +

log 2

log �

)
≥ 2

log �
.

On the other hand, (3.32) implies

log �2 ≥ 1

2
log � −

1

2
log 2 + log

(
1 −

0.366

log �

)

≥ 1

2
log � −

1

2
log 2 + log

(
1 −

0.366

logx0

)

≥ 1

2
log � − 0.363 =

log �

2

(
1 −

0.726

log �

)
≥ log �

2

(
1 −

0.726

logx0

)
≥ log �

2.07

and by (1.16),

1

log �2
≤ 2

(log �)(1 − 0.726∕ log �)
≤ 2

log �

(
1 +

0.726

(log �)(1 − 0.726∕ logx0)

)

≤ 2

log �

(
1 +

0.75

log �

)
≤ 2

log �

(
1 +

0.75

logx0

)
≤ 2.07

log �
,

which completes the proof of (3.36).

Corollary 3.17. If � ≥ x0 = 1010 + 19 holds and �2 is defined by (3.3), then
√
�

2

(
1 −

0.521

log �

)
≤ �−(�2) =

∑
p<�2

log p ≤ �(�2) ≤
√
�

2

(
1 −

0.346

log �

)
. (3.37)

Proof. We have �2 > x
(0)

2
> 69588 and (2.4), (3.36) and (3.32) imply

�−(�2) ≥ �2

(
1 −

0.0746

log �2

)
≥ �2

(
1 −

0.0746 × 2.07

log �

)
≥ �2

(
1 −

0.155

log �

)

≥
√
�

2

(
1 −

0.366

log �

)(
1 −

0.155

log �

)
≥
√
�

2

(
1 −

0.521

log �

)
.

Similarly, for the upper bound, we use (2.5), (3.36) and (3.31) to get

�(�2) ≤ �2

(
1 +

0.000079

log �2

)
≤ �2

(
1 +

0.000079 × 2.07

log �

)

≤ �2

(
1 +

0.000164

log �

)
≤
√
�

2

(
1 −

log 2

2 log �

)(
1 +

0.000164

log �

)

≤
√
�

2

(
1 −

0.346

log �

)

which proves the upper bound of (3.37)
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Corollary 3.18. Let � ≥ x0 = 1010 + 19 be a real number and �2 be defined by

(3.3). Then

�3∕2

3
√
2 log �

(
1 +

0.122

log �

)
≤ �−

2
(�2) =

∑
p<�2

p2 ≤ �2(�2)

≤ �3∕2

3
√
2 log �

(
1 +

0.458

log �

)
. (3.38)

Proof. First, from (3.3), we observe that

�3
2

log �2
= �2

(
�2
2
− �2

log �2

)
+

�2
2

log �2
= �2

�

log �
+

�2
2

log �2
≥ �2

�

log �
, (3.39)

whence, from (2.24) and (3.36), since � ≥ x0 and �2 ≥ x(2)
0

are assumed,

�−
2
(�2) ≥ �3

2

3 log �2

(
1 +

0.248

log �2

)
≥ �2

�

3 log �

(
1 +

0.496

log �

)

and, from (3.32),

�−
2
(�2) ≥ �3∕2

3
√
2 log �

(
1 +

0.496

log �

)(
1 −

0.366

log �

)

=
�3∕2

3
√
2 log �

(
1 +

0.13

log �
−

0.496 × 0.366

log2 �

)

≥ �3∕2

3
√
2 log �

(
1 +

0.13

log �
−

0.496 × 0.366

(logx0) log �

)
≥ �3∕2

3
√
2 log �

(
1 +

0.122

log �

)
,

which proves the lower bound of (3.38).

To prove the upper bound, as (3.20) implies �2 ≤ √
� and �2∕ log �2 ≤ 2

√
�∕ log �,

from (3.39), we observe that

�3
2

log �2
= �2

�

log �
+

�2
2

log �2
= �2

�

log �
+
�2
2
− �2

log �2
+

�2
log �2

=
�

log �
(�2 + 1) +

�2
log �2

≤ �

log �

(
�2 + 1 +

2√
�

)
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and, from (3.31) and (3.36),

�3
2

log �2
≤ �

log �

(
1 +

2√
�
+

√
�

2

(
1 −

log 2

2 log �

))

=
�3∕2√
2 log �

(
1 −

1

log �

(
log 2

2
−

√
2(1 + 2∕

√
�) log2 �√

�

))

≤ �3∕2√
2 log �

(
1 −

1

log �

(
log 2

2
−

√
2(1 + 2∕

√
x
0
) log2 x0√

x
0

))

≤ �3∕2√
2 log �

(
1 −

0.339

log �

)
.

Further, from (3.36), we have 0.385∕ log �2 ≤ 2.07 × 0.385∕ log � ≤ 0.797∕ log �,
whence from (2.22),

�2(�2) ≤ �3
2

3 log �2

(
1 +

0.385

log �2

)
≤ �3∕2

3
√
2 log �

(
1 −

0.339

log �

)(
1 +

0.797

log �

)

≤ �3∕2

3
√
2 log �

(
1 +

0.458

log �

)
,

which completes the proof of Corollary 3.18.

3.5 The additive excess and the multiplicative excess

3.5.1 The additive excess

Let N be a positive integer and Q(N) =
∏

p∣N p be the squarefree part of N . The
additive excess E(N) of N is defined by

E(N) = l(N) − l(Q(N)) = l(N) −
∑
p∣N

p =
∑
p∣N

(pvp(N) − p). (3.40)

If N ′ andN ′′ are two consecutive superchampion numbers of common parameter
� = �∕ log � (cf. Proposition 3.5), then, from (3.40) and (3.6),

l(N ′) =
∑
p∣N ′

p + E(N ′) =
∑
p<�

p + E(N ′). (3.41)

Proposition 3.19. Let n be an integer satisfying n ≥ �0 (defined by (3.17)) andN ′

and � defined by Defintion 3.6 so that � ≥ x0 = 1010 + 19 holds, then the additive

excess E(N ′) satisfies

�3∕2

3
√
2 log �

(
1 +

0.12

log �

)
≤ E(N ′) ≤ �3∕2

3
√
2 log �

(
1 +

0.98

log �

)
. (3.42)
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Proof. With J defined by (3.9), from (3.6), we have

E(N ′) =
∑
p∣N ′

(
pvp(N

′) − p
)
=

J∑
j=2

∑
�j+1≤p<�j

(pj − p). (3.43)

For an asymptotic estimates of E(N ′) see below (6.13).

The lower bound. From (3.43), we deduce

E(N ′) ≥ ∑
p<�2

p2 −
∑
p≤�2

p = �−
2
(�2) − �1(�2). (3.44)

As �2 ≥ x(0)
2

> 69588 holds, from (3.21) we have �2
2
≤ �∕2 and from (2.6),

�1(�2) ≤ �2�(�2) ≤ 1.26�2
2
∕ log �2 ≤ 0.63�∕ log 69588 ≤ 0.057�. From (3.44) and

(3.38), it follows that

E(N ′) ≥ �3∕2

3
√
2 log �

(
1 +

0.122

log �

)
− 0.057�

=
�3∕2

3
√
2 log �

(
1 +

1

log �

(
0.122 −

0.057 × 3
√
2 log2 �√

�

))

≥ �3∕2

3
√
2 log �

(
1 +

1

log �

(
0.122 −

0.057 × 3
√
2 log2 x0√

x
0

))

≥ �3∕2

3
√
2 log �

(
1 +

0.12

log �

)

which proves the lower bound of (3.42).

The upper bound. Let us consider an integer j0, 3 ≤ j0 ≤ 29, that will be fixed
later; (3.43) implies

E(N ′) =
∑
p<�j0

(
pvp(N

′) − p
)
+

j0−1∑
j=2

∑
�j+1≤p<�j

(pj − p) ≤ S1 + S2. (3.45)

with

S1 =
∑
p<�j0

pvp(N
′) and S2 =

j0−1∑
j=2

�j(�j).

Let � = �∕ log � be the common parameter ofN ′ and N ′′. From (3.6), for p < �j0 ,
we have pvp(N

′) ≤ �(log p)∕(1 − 1∕p) so that Lemma 2.2 leads to S1 ≤ �W (�j0) ≤
29



!��j0 with ! = 1.000014 if j0 ≤ 10 and ! = 1.346 if j0 ≥ 11, since x(0)
11

=

6.55 < 7.32 < x(0)
10

= 7.96. In view of applying (3.21) and (3.22), we set �j = j

for 2 ≤ j ≤ 8 and �j = j(1 − 1∕x(0)j ) (with x(0)j defined by (3.18)) for 9 ≤ j ≤ 29.
Therefore, from Lemma 2.2, (3.21) and (3.22), we get

S1 ≤ !
��j0
log �

≤ !�1+1∕j0

�
1∕j0
j0

log �
=

�3∕2

3
√
2 log2 �

⎛
⎜⎜⎝
3
√
2! log �

�
1∕j0
j0

�1∕2−1∕j0

⎞
⎟⎟⎠

≤ �3∕2

3
√
2 log2 �

⎛
⎜⎜⎝
3
√
2! logx0

�
1∕j0
j0

x
1∕2−1∕j0
0

⎞
⎟⎟⎠
. (3.46)

In view of applying (2.25)–(2.28), we set �3 = 0.271, �4 = 0.237, �5 = 0.226 and,
for j ≥ 6, �j = (1 + (2∕3)j)(log 3)∕3. Therefore, for 3 ≤ j ≤ 29, it follows from
(2.25)–(2.28), (3.21) and (3.22) that �j(�j) ≤ �j�

j+1
j ∕ log �j , �j ≤ (�∕�j)

1∕j and

�j(�j) ≤ �j
�j+1j

log �j
≤ �j(�∕�j)

1+1∕j

(1∕j) log(�∕�j)
=

j�j(�∕�j)
1+1∕j

(log �)(1 − (log �j)∕ log �)
≤ j

�1+1∕j

log �
(3.47)

with

j =
j�j

�
1+1∕j

j (1 − (log �j)∕ logx0)
.

Further, for 3 ≤ j ≤ j0 − 1, we have

j
�1+1∕j

log �

3
√
2 log2 �

�3∕2
=

3
√
2j log �

�1∕2−1∕j
≤ �j with �j =

3
√
2j logx0

x
1∕2−1∕j

0

which implies from (3.47)

�j(�j) ≤ �j�
3∕2

3
√
2 log2 �

. (3.48)

From the definition of S2, from (3.38) and from (3.48), one gets

S2 ≤
j0−1∑
j=2

∑
�j+1≤p<�j

pj ≤
j0−1∑
j=2

�j(�j)

≤ �3∕2

3
√
2 log �

(
1 +

1

log �

(
0.458 +

j0−1∑
j=3

�j

))
.
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Finally, from (3.45) and (3.46), we conclude

E(N ′) ≤ �3∕2

3
√
2 log �

⎛
⎜⎜⎝
1 +

1

log �

⎛
⎜⎜⎝
3
√
2! logx0

�
1∕j0
j0

x
1∕2−1∕j0
0

+ 0.458 +

j0−1∑
j=3

�j

⎞
⎟⎟⎠

⎞
⎟⎟⎠

which, by choosing j0 = 6, completes the proof of (3.42) (cf. [27]).

Remark 3.20. When n = �0,N
′ = N ′

0
is given by (3.16) andE(N ′

0
) = 10 517 469 635 602.

Observing that E(N ′
0
) is equal to

x
3∕2

0

3
√
2 logx0

(
1 +

0.632…

logx0

)
shows that the con-

stant 0.98 in (3.42) cannot be shortened below 0.632.

3.5.2 The multiplicative excess

Let N be a positive integer and Q(N) =
∏

p∣N p be the squarefree part of N . The
multiplicative excess E∗(N) of N is defined by

E∗(N) = log

(
N

Q(N)

)
= logN −

∑
p∣N

log p =
∑
p∣N

(vp(N) − 1) log p. (3.49)

If N ′ andN ′′ are two consecutive superchampion numbers of common parameter
� = �∕ log � (cf. Proposition 3.5), then from (3.6),

logN ′ =
∑
p∣N ′

log p + E∗(N ′) =
∑
p<�

log p + E∗(N ′). (3.50)

Proposition 3.21. Let n be an integer satisfying n ≥ �0 (defined by (3.17)) and

N ′ and � defined by Definition 3.6 so that � ≥ x0 = 1010 + 19 holds. Then the

multiplicative excess E∗(N ′) satisfies

√
�

2

(
1 −

0.521

log �

)
≤ E∗(N ′) ≤

√
�

2

(
1 +

0.305

log �

)
≤ 0.72

√
�. (3.51)

Remark 3.22. When n = �0,N
′ = N ′

0
is given by (3.16) andE∗(N ′

0
) = 70954.46… =√

x0∕2(1 + (0.079385…)∕ logx0), so that the constant 0.305 in (3.51) cannot be

shortened below 0.079.

Proof. The lower bound. From (3.49), (3.6) and (3.9), we may write

E∗(N ′) =
∑
j≥2

∑
�j+1≤p<�j

(j − 1) log p =

J∑
j=2

�−(�j) (3.52)
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with �−(x) =
∑

p<x log p. From (3.52), we deduce E∗(N ′) ≥ �−(�2) which, from
(3.37), proves the lower bound of (3.51).

The upper bound. From (3.52) and (3.9), it follows that

E∗(N ′) ≤
J∑
j=2

�(�j). (3.53)

Let us fix j0 = 26. From (2.2) with � = 7.5 × 10−7, we write

J∑
j=3

�(�j) ≤ (1 + �)

(
j0−1∑
j=3

�j +

J∑
j=j0

�j

)
= (1 + �)(S1 + S2). (3.54)

From (3.21) and (3.22) with �j = j for 3 ≤ j ≤ 8 and �j = j(1 − 1∕x(0)j ) for
9 ≤ j ≤ j0, we get

S1 =

j0−1∑
j=3

�j ≤
j0−1∑
j=3

(
�

�j

)1∕j

=

√
�

2

(
1

log �

) j0−1∑
j=3

√
2 log �

�
1∕j

j �1∕2−1∕j

≤
√
�

2

(
1

log �

) j0−1∑
j=3

√
2 logx0

�
1∕j

j x
1∕2−1∕j

0

= 0.627703…

√
�

2

(
1

log �

)
. (3.55)

Further, from (3.9) and (3.22), since �j is decreasing on j, we have

S2 =

J∑
j=j0

�j ≤ J�j0 ≤ (log �)�1∕j0

(log 2)�
1∕j0
j0

=

√
�

2

(
1

log �

)⎛
⎜⎜⎝

√
2 log2 �

(log 2)�
1∕j0
j0

�1∕2−1∕j0

⎞
⎟⎟⎠

≤
√
�

2

(
1

log �

)⎛⎜⎜⎝

√
2 log2 x0

(log 2)�
1∕j0
j0

x
1∕2−1∕j0
0

⎞⎟⎟⎠
= 0.022597…

√
�

2

(
1

log �

)
. (3.56)

Finally, from (3.53), (3.37), (3.54), (3.55) and (3.56), we conclude

E∗(N ′) ≤
√
�

2

(
1 +

1

log �
(−0.346 + (1 + �)(0.6278 + 0.0226))

)

<

√
�

2

(
1 +

0.305

log �

)

which ends the proof of Proposition 3.21.
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3.5.3 The number s(n) of primes dividing ℎ(n) but not N ′

Let n ≥ 7 and N ′, N ′′ and � defined by Definition 3.6. Let us denote by pi0 the
largest prime factor of N ′. Note, from (3.6), that pi0 is the largest prime < �. If �
is prime, we have � = pi0+1 while, if � is not prime pi0+1 > �. In both cases, we
have

pi0 < � ≤ pi0+1 (3.57)

From the definition of the additive excess (3.40), we define s = s(n) ≥ 0 by

pi0+1 +…+ pi0+s ≤ n − l(N ′) + E(N ′) < pi0+1 +…+ pi0+s+1. (3.58)

Proposition 3.23. If n ≥ �0 (defined by (3.17)) and � defined in Definition 3.6, we

have

√
�

3
√
2 log �

(
1 +

0.095

log �

)
≤ s ≤

√
�

3
√
2 log �

(
1 +

1.01

log �

)
. (3.59)

Proof. The upper bound. Since pi0+1 ≥ � and n − l(N ′) < l(N ′′) − l(N ′) ≤ �

hold (cf. (3.57) and (3.13)), (3.58) and (3.42) imply

s� ≤ n − l(N ′) + E(N ′) ≤ � +
�3∕2

3
√
2 log �

(
1 +

0.98

log �

)

≤ �3∕2

3
√
2 log �

(
1 +

1

log �

(
0.98 +

3
√
2 log2 �√
�

))

≤ �3∕2

3
√
2 log �

(
1 +

1

log �

(
0.98 +

3
√
2 log2 x0√
x
0

))

≤ �3∕2

3
√
2 log �

(
1 +

1.01

log �

)
(3.60)

which yields the upper bound of (3.59).
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The lower bound. First, from (3.60), we observe that

s + 1 ≤ �1∕2

3
√
2 log �

(
1 +

1.01

log �

)
+ 1

=
�1∕2

3
√
2 log �

(
1 +

1

log �

(
1.01 +

3
√
2 log2 �√
�

))

≤ �1∕2

3
√
2 log �

(
1 +

1

log �

(
1.01 +

3
√
2 log2 x0√
x
0

))

≤ �1∕2

3
√
2 log �

(
1 +

1.033

log �

)
, (3.61)

which implies

s + 1 ≤ �1∕2

3
√
2 logx0

(
1 +

1.033

logx0

)
< 0.011

√
�. (3.62)

From Corollary 2.4, the number of primes between � and �(1 + 0.045∕ log2 �) is
≥ 0.011

√
� > s + 1 so that, in (3.58), we have

pi0+s+1 ≤ �

(
1 +

0.045

log2 �

)
≤ �

(
1 +

0.045

(logx0)(log �)

)
≤ �

(
1 +

0.002

log �

)
. (3.63)

From (3.12), we get n − l(N ′) ≥ 0. Therefore, from (3.42), (3.58) and (3.63), we
have

�3∕2

3
√
2 log �

(
1 +

0.12

log �

)
≤ E(N ′) ≤ n−l(N ′) +E(N ′) ≤ (s+1)�

(
1 +

0.002

log �

)

which yields

s+1 ≥ �1∕2(1 + 0.12∕ log �)

3
√
2(log �)(1 + 0.002∕ log �)

≥ �1∕2

3
√
2 log �

(
1 +

0.12

log �

)(
1 −

0.002

log �

)

≥ �1∕2

3
√
2 log �

(
1 +

0.118

log �
−

0.002 × 0.12

(logx0) log �

)
≥ �1∕2

3
√
2 log �

(
1 +

0.1179

log �

)
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and

s ≥ �1∕2

3
√
2 log �

(
1 +

0.1179

log �

)
− 1

=
�1∕2

3
√
2 log �

(
1 +

1

log �

(
0.1179 −

3
√
2 log2 �√
�

))

≥ �1∕2

3
√
2 log �

(
1 +

1

log �

(
0.1179 −

3
√
2 log2 x0√
x
0

))

≥ �1∕2

3
√
2 log �

(
1 +

0.095

log �

)
(3.64)

and the proof of Proposition 3.23 is completed.

From (3.63), we deduce for � ≥ x0

log pi0+s+1

log �
≤ 1 +

0.002

log2 �
≤ 1 +

0.002

(logx0)(log �)
≤ 1 +

0.0001

log �
(3.65)

and, from (3.61),

(s + 1) log pi0+s+1 ≤
√
�

3
√
2

(
1 +

1.033

log �

)(
1 +

0.0001

log �

)

=

√
�

3
√
2

(
1 +

1.0331

log �
+

0.0001033

log2 �

)

≤
√
�

3
√
2

(
1 +

1.0331

log �
+

0.0001033

(logx0)(log �)

)

≤
√
�√
2

(
1

3
+

0.345

log �

)
. (3.66)

We shall also deduce from (3.64) the following inequality valid for � ≥ x0:

(s−1) log � ≥
√
�

3
√
2

(
1 +

0.095

log �

)
− log � =

√
�

3
√
2

(
1 +

0.095

log �
−

3
√
2 log2 �

(log �)
√
�

)

≥
√
�

3
√
2

(
1 +

0.095

log �
−

3
√
2 log2 x0

(log �)
√
x
0

)
≥

√
�

3
√
2

(
1 +

0.0724

log �

)
. (3.67)
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4 Some computational points

4.1 Enumeration of superchampion numbers

Let us recall that m is said a squarefull integer if, for every prime factor p of m, p2

divides m. Each n ≥ 1 may be writen in a unique way n = ab, with a squarefull,
b squarefree and a, b coprime. In the case where n is a superchampion number N ,
we will say that a is the prefix1 of N .

Let N ≤ N ′ be two consecutive superchampions, and A,A′ their prefixes. In
most of the cases A′ = A and N ′ = p′N where p′ is the prime following P+(N).

When this is not the case, N ′ = qN and A′ = qAwhere q is a prime facteur of
A, or the prime following P+(A). In this case, we say that N ′ is a superchampion
of type 2.

For example, let us consider the figure 1. In this table two superchampions are
of type 2, 180 180 which is equal to 3 times its predecessor, and 360 360 which is
equal to 2 times its predecessor.

The superchampions of type 2 are not very numerous. There are 455059774

superchampions N satisfying 12 ≤ N ≤ N ′
0

(cf. (3.17)) whose 7265 are of
type 2. We have precomputed the table TabT2, which, for each of these 7265

numbers N , keeps the triplet (l(N), q, logN), where q is the quotient of N by
its predecessor (which, generally, is not of type 2). For example, entries associ-
ated to the superchampions 180 180 and 360 360 are the triplets (49, 3, 12.101…)

and (53, 2, 12.794…). With this table it is very fast to enumerate the increasing
sequence of (l(N), logN) for all the superchampion numbers. Let us associate
to each superchampion N the quadruple (l(N), logN, P+(N), j), where j is the
smallest integer such that TabT2[j][1] > l(N).

The following function, written in Python’s programming language, computes
the quadruple associated to the successor of N .

def next_super_ch (n, logN, pplusN , j):

p = next_prime(pplusN)

if n + p <= TabT2[j][1]:

return (n+p, logN + log(p), p, j)

else

return(TabT2[j][1], logN + log(TabT2[j][2]), pplusN , j+1)

Figure 2: Enumeration of super-champion numbers

Using a prime generator function, which computes the sequence of successive
primes up to n in time O(n log log n), we wrote a C++ function which computes

1In [11] the term prefix is used with a different meaning.
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the pairs (l(N), logN), for all superchampion numbers up to N ′
0
, in time about

22 seconds.

4.2 Computing and bounding g(n) and ℎ(n) on finite intervals

4.2.1 Computating an isolate value of logℎ(n) or log g(n)

The computation of an isolate value logℎ(n) by (1.20) (cf. [8, Section 8]) or
log g(n) (by the algorithm described in [11]) is relatively slow. The table below
shows the time of these computations in ms. for n randomly choosen in intervals
[1, 10j] for j = 9, 12, 15, 16, 17, 18 (on a MacBook 2016 computer).

n 109 1012 1015 1016 1017 1018

log h(n) 5.55 5.78 6.74 7.38 8.39 9.80
log g(n) 10.1 38.2 221. 589. 2 467. 7 980.

For n > 1016 the computation of an isolate value log g(n) takes a few seconds,
and it is impossible to compute more than some thousands of these values.

4.2.2 Bounding by slices

We will need effectives bounds of log g(n) or logℎ(n) on intervals up to �0 = 2.22 ⋅

1018 (cf. (3.17)). It is impossible to compute a lot of these values for ordinary large
integers n. Nethertheless, by using next_super_ch, we can enumerate quickly
the seqence (N, logN) of superchampions and of their logarithms. If, in the same
time, we enumerate the values k(l(N)) (cf. (1.18)), by using lemma 4.1 we get
good estimates of logℎ(n) and log g(n) on the intervals [l(N), l(N ′)], for values
of l(N) up to �0.

Lemma 4.1. Let N1, N2 be two consecutives superchampion numbers. Let us de-

fine n1 = l(N1), k1 = k(n1), m1 = n1−�k1 , n2 = l(N2), k2 = k(n2), m2 = n2−�k2
and q as the smalllest prime not smaller than pk+1 − m1. Then

logℎ(n1) ≥ �(pk1+1) − log q (4.1)

logℎ(n2) ≤ �(pk2+1) − log(pk2 − m2) (4.2)

Proof. The lower bound for ℎ(n1) = Nk1
G(pk1 , m1) (cf. (1.20)) comes from [11,

Proposition 8]), applied toG(pk1 , m1), and the upper bound for ℎ(n2) from the same
proposition applied to G(pk2 , m2).
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4.2.3 A dichotomic algorithm

We recall the algorithm ok_rec(n1, n2), presented in ([10, Section 4.9]), which
we will use several times. Let us suppose that ok(n) is a boolean function with the
following side effect: when it returns false, before returning, it prints n does not

satisfy property ok. We suppose that we also have at our disposal a boolean func-
tion good_interval(n1, n2) such that, when it returns true, the property ok(n)
is satisfied by all n ∈ [n1, n2]; in other words good_intervall(n1, n2) is a sufficient
condition (most often not necessary) ensuring that ok(n) is true on [n1, n2].

Then the procedure ok_rec(n1, n2) returns true if and only ok(n) is true for
every n ∈ [n1, n2], and, when it return false, before returning, it prints the value
of the largest n in [n1, n2] which does not satisfy ok(n).

This procedure is used in Sections 5.3 (Theorem 1.7), 7.2 (Theorem 1.5 (ii)
and (iii)), 7.4 (Theorem 1.5 (v)) and 8.3 (Theorem 1.1 (iii)).

5 Proof of Theorem 1.7

5.1 Estimates of � in terms of n

Lemma 5.1. Let n and � be two numbers satisfying n > e6 = 403.42… and

1 ≤ � ≤ 2. Let us define f ∶ [
√
n, n] ⟶ ℝ by

f (t) = fn,�(t) =
√
n(2 log t − �).

(i) f ([
√
n, n]) is included in (

√
n, n).

(ii) f is increasing and f ′(t) ≤ 1∕2 holds.

(iii) The equation t = f (t) has a unique root R = R(n, �) in (
√
n, n). If R <

t ≤ n, then we have R < f (t) < t while, if
√
n ≤ t < R, R > f (t) > t holds.

Proof. we have f (
√
n) =

√
n(log n − �) ≥ √

n(log n − 2) ≥ √
4n >

√
n. On

the other hand, we have f (n) =
√
n(2 log n − �) <

√
2n log n and by using the

inequality log n ≤ n∕e, f (n) ≤ (
√
2∕e)n, which completes the proof of (i).

The derivative f ′(t) =
√
n

t
√
2 log t−�

is clearly positive and we have

f ′(t) ≤
√
n√

n
√
log n − 2

≤ 1√
log(e6) − 2

=
1

2
,

which proves (ii).
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From (ii), the derivative of t ↦ f (t) − t is negative while, from (i), f (t) − t is
positive for t =

√
n and negative for t = n, whence the existence of the root R and

for
√
n ≤ t ≤ n, the equivalences

f (t) < t ⟺ t > f (t) > R and f (t) > t ⟺ t < f (t) < R,

which proves (iii).

Let us recall that k = k(n) is defined by (1.18) and let us set

x = x(n) = pk+1 (5.1)

so that
�1(x) − x ≤ n < �1(x) (5.2)

holds. Further, n ≥ 7 being given, one defines N ′ and N ′′ by Definition 3.6,
� = �(n) is the common parameter ofN ′ andN ′′ (cf. Proposition 3.5) and � = �(n)
is defined by � = �∕ log �. If pi0 denotes the largest prime factor ofN ′, from (3.57),
we have pi0 < � ≤ pi0+1 and, from (3.6), l(N ′) ≥ �1(pi0). Therefore, from (3.12)
and (5.2), we get

�1(pi0) ≤ l(N ′) ≤ n < �1(x) = �1(pk+1),

which implies pi0 < pk+1, pi0+1 ≤ pk+1 and from (3.57),

� = �(n) ≤ pi0+1 ≤ pk+1 = x = x(n). (5.3)

Note that in N ′′ (cf. (3.7)), from Corollary 3.9, all prime powers dividing N ′′ do
not exceed �, so that n < l(N ′′) ≤ ��(�) ≤ �2 and, with (5.3),

log n ≤ 2 log � ≤ 2 logx. (5.4)

Proposition 5.2 improves on Lemma 2.8 of [10].

Proposition 5.2. For n ≥ �0 (defined by (3.17)),

√
n log n

(
1 +

log log n − 1

2 log n
−

(log log n)2

8 log2 n
+ 0.38

log log n

log2 n

)
≤ � ≤ x (5.5)

while, for n ≥ �1(x0) = 2 220 822 442 581 729 257 = 2.22…1018,

� ≤ x ≤ √
n log n

(
1 +

log log n − 1

2 log n
−

13 (log log n)2

10000 log2 n

)
. (5.6)
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Proof. The lower bound (5.5). First, from the definition of �0 (cf. (3.17)), �, N ′

and N ′′ (cf. Definition 3.6), it follows that n ≥ �0 implies � ≥ x0 and that, from
(3.13) and (3.14),

n < l(N ′′) = l(N ′) + l(N ′′) − l(N ′) = l(N ′) + � log(N ′′∕N ′) ≤ l(N ′) + �

which, from (3.41) and (3.42), yields

n ≤ l(N ′) + � =
∑
p<�

p + E(N ′) + � ≤ �1(�) + � +
�3∕2

3
√
2 log �

(
1 +

0.98

log �

)

= �1(�) +
�2

log4 �

(
log4 �

�
+

log3 �

3
√
2
√
�

(
1 +

0.98

log �

))

≤ �1(�) +
�2

log4 �

(
log4 x0
x0

+
log3 x0

3
√
2
√
x
0

(
1 +

0.98

logx0

))

≤ �1(�) + 0.0301
�2

log4 �
. (5.7)

Further, as 107∕160 + 0.0301 < 7∕10 holds, it follows from (2.19) and (5.7), that

n ≤ �2

2 log �
+

�2

4 log2 �
+

�2

4 log3 �
+

7 �2

10 log4 �
. (5.8)

Let us consider the polynomial

P =

(
t

2
+
t2

4
+
t3

4
+

7 t4

10

)(
2

t
− 1 − 0.584 t

)

= 1 − 0.042 t2 + 1.004 t3 − 0.846 t4 − 0.4088 t5.

The polynomial P − 1 has a double root in 0 and three other roots −2.92… ,

0.0434574… and 0.809…. Therefore, P ≤ 1 holds for 0 ≤ t ≤ 1∕ logx0 =

0.0434294… and (5.8) implies

n ≤ �2

2 log � − 1 − 0.584∕ log �
for � ≥ x0. (5.9)

Therefore, from (5.4), (5.9) yields

n ≤ �2

2 log � − 1 − 1.168∕ log n
,

which implies

� ≥ f (�) with f (t) = fn,�(t) =
√
n(2 log t − �) (5.10)
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with
1 < � = 1 +

1.168

log n
≤ 1 +

1.168

log �0
≤ 1.03. (5.11)

From Lemma 5.1 (ii), the equation t = f (t) has one root R ∈ (
√
n, n). Let us set

t1 =

√
n log n

(
1 +

log log n − �

log n

)
. (5.12)

We have t1 ∈ (
√
n, n) and

f (t1) =
√
n(log n + log log n + log(1 + u) − �) with u =

log log n − �

log n
.

(5.13)
As n ≥ �0 holds, u is positive and f (t1)

2 − t2
1
= n log(1 + u) > 0 so that f (t1) > t1

and, from Lemma 5.1 (iii), the root R satisfies R > f (t1). But, from (5.10), � ≥
f (�), which implies

� ≥ R ≥ f (t1). (5.14)

By Taylor formula, since the third derivative of t ↦ log(1+ t) is positive, we have
log(1 + u) ≥ u − u2∕2. For convenience, from now on, we write L for log n, �
for log n, L0 for log �0 = 42.244414…, and �0 for log log �0 = 3.743472… With
(1.15),

u2

2
=

(� − �)2

2L2
≤ � − 1

2L

(
� − �

L

) ≤ �0 − 1

2L0

(
� − �

L

) ≤ 0.04
� − �

L

and

log(1 + u) ≥ u −
u2

2
≥ � − �

L
− 0.04

� − �

L
= 0.96

� − �

L
,

which, from (5.14) and (5.13), yields

� ≥ f (t1) =
√
n(log n)(1 + v) (5.15)

with

� − �

L

(
1 +

0.96

L

) ≤ v =
� − �

L
+

log(1 + u)

L
≤ � − �

L
+
u

L
=
� − �

L

(
1 +

1

L

)
.

(5.16)
For v > 0, by Taylor formula, since the third derivative of t ↦

√
1 + t is positive,

we have
√
1 + v ≥ 1 + v∕2 − v2∕8 and we need an upper bound for v2∕8. From
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(5.11), we get

v2

8
=

(� − �)2

8L2

(
1 +

1

L

)2

=
(� − �)2

8L2

(
1 +

2

L

(
1 +

1

2L

))

≤ (� − �)2

8L2

(
1 +

2

L

(
1 +

1

2L0

))

≤ (� − �)2

8L2

(
1 +

2.03

L

) ≤ (� − 1)2

8L2
+

2.03 �2

8L3

=
�2 − 2� + 1

8L2
+

�

8L2

(
2.03 �

L

) ≤ �2

8L2
−

2�

8L2
+

�

8�0L
2
+

�

8L2

(
2.03 �0
L0

)

≤ �2

8L2
+

�

8L2
(−2 + 0.27 + 0.18) ≤ �2

8L2
− 0.19

�

L2
. (5.17)

Finally, from (5.15), (5.16), (5.17) and (5.11),

�√
n log n

≥ √
1 + v ≥ 1 +

v

2
−
v2

8

≥ 1 +
� − �

2L
+ 0.48

� − �

L2
−

�2

8L2
+ 0.19

�

L2

≥ 1 +
� − 1

2L
−

1.168

2L2
+ 0.48

� − 1.03

L2
−

�2

8L2
+ 0.19

�

L2

≥ 1 +
� − 1

2L
−

�2

8L2
+ 0.67

�

L2
−

(0.584 + 0.48 × 1.03)�

L2�0

≥ 1 +
� − 1

2L
−

�2

8L2
+
�

L2
(0.67 − 0.29)

= 1 +
� − 1

2L
−

�2

8L2
+ 0.38

�

L2
, (5.18)

which proves (5.5).

The upper bound (5.6). We assume x ≥ x0 = 1010 + 19. As

3x2

20 log4 x
−x =

x2

log4 x

(
3

20
−

log4 x

x

)
≥ x2

log4 x

(
3

20
−

log4 x0
x0

)
≥ 0.149

x2

log4 x
,

(2.20) and (5.2) imply

n ≥ �1(x) − x ≥ x2

2 logx
+

x2

4 log2 x
+

x2

4 log3 x
+ 0.149

x2

log4 x
. (5.19)

Let us set

Q =

(
t

2
+
t2

4
+
t3

4
+ 0.149 t4

)(
2

t
− 1 − 0.492 t

)

= 1 + 0.004 t2 − 0.075 t3 − 0.272 t4 − 0.073308 t5.
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The polynomial Q − 1 has a double root in 0 and three other roots

−3.4052… , −0.3508… , 0.04567… ,

and Q ≥ 1 holds for 0 ≤ t ≤ 1∕ logx0 = 0.0434294…,which, from (5.19), proves

n ≥ x2

2 logx − 1 − 0.492∕ logx
for x ≥ x0.

Further, (5.19) implies n ≥ x2∕(2 logx), whence

log n ≥ 2 logx − log(2 logx) = (logx)

(
2 −

log(2 logx)

logx

)

≥ (logx)

(
2 −

log(2 logx0)

logx0

)
= 1.8336… logx

and, as 1.8336 × 0.492 ≥ 0.902,

n ≥ x2

2 logx − 1 − 0.902∕ log n
for n ≥ �0 (5.20)

and

x ≤ f (x) with f (t) = fn,�(t) =
√
n(2 log t − �), b = 0.902, � = 1 +

b

log n
.

(5.21)
This time, one chooses

t2 = A
√
n log n with A = 1 +

� − 1

2L
≤ 1 +

�0 − 1

2L0

≤ 1.033

and one calculates
f (t2) =

√
B n log n

with

B = 1 +
� − �

L
+

2

L
log

(
1 +

� − 1

2L

) ≤ B′ = 1 +
� − �

L
+
� − 1

L2
.

We have

A2 − B ≥ A2 − B′ =
1

4L2
(�2 − 6� + 5 + 4b) =

1

4L2
(�2 − 6� + 8.608)

and
�2 − 6� + 8.608 = 0.011�2 + (0.989�2 − 6� + 8.608).
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The roots of the above trinomial are 2.327… and 3.738… < �0 so that it is positive
for � ≥ �0 and one gets A2 − B ≥ 0.011�2∕(4L2), A >

√
B and

A −
√
B =

A2 − B

A +
√
B

≥ A2 − B

2A
≥ 0.011�2

4 × 2.066L2
≥ 0.0013

�2

L2
, (5.22)

so that t2 > f (t2) holds. By Lemma 5.1, the root R of the equation t = f (t)
satisfies R < f (t2) and (5.21) implies

x ≤ f (t2) =
√
B n log n =

√
n log n(A − (A −

√
B))

≤ √
n log n(A − 0.0013�2∕L2)

which proves (5.6).

Corollary 5.3. For n ≥ �0,

√
n log n

(
1 +

log log n − 1.019

2 log n

)
≤ � ≤ x ≤ √

n log n

(
1 +

log log n − 1

2 log n

)
.

(5.23)

Proof. The upper bound follows from (5.6). From (5.5),

� ≥ √
n log n

(
1 +

log log n − y(log log n)

2 log n

)

with y(t) = 1 + (t2∕4 − 0.76 t) exp(−t).

The derivative y′(t) = (−0.25 t2+1.26 t−0.76) exp(−t) vanishes for t = 0.7005…
and t = 4.339… so that, for t ≥ �0, y(t) is maximal for t = 4.339… and its value
is 1.01838….

5.2 Proof of the lower bound (1.13) for n ≥ �1(x0).

Let us recall that x0 = 1010 + 19, and let us suppose first that n ≥ �1(x0) =

2 220 822 442 581 729 257, so that x = x(n) = pk+1 defined by (5.1) is ≥ x0. As
the function ℎ is nondecreasing, from (2.3) with � = 1∕2,

logℎ(n) ≥ logNk = �(pk) = �(x) − logx ≥ x −
x

2 log3 x
− logx. (5.24)
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Inequality (5.24) together with (1.15) and (5.4) yield, by noting L for log n, �
for log log n, L′

0
for log�1(x0), �

′
0

for log log�1(x0),

logℎ(n)

x
≥ 1 −

1

2 log3 x
−

logx

x
= 1 −

(
1

2
+

log4 x

x

)
1

log3 x

≥ 1 −

(
1

2
+

log4 x0
x0

)
1

log3 x
≥ 1 −

0.500029

log3 x

≥ 1 −
4.0003

log3 n
≥ 1 −

4.0003 �

(log2 n)�′
0
L′

0

≥ 1 −
0.026 �

L2

and, from (5.5),

logℎ(n)√
n log n

≥
(
1 +

� − 1

2L
−

�2

8L2
+

0.38 �

L2

)(
1 −

0.026 �

L2

)

≥ 1 +
� − 1

2L
−

�2

8L2
+

0.38 �

L2
−

0.026 �

L2

(
1 +

�

2L
+

0.38 �

L2

)

≥ 1 +
� − 1

2L
−

�2

8L2
+

0.38 �

L2
−

0.026 �

L2

(
1 +

�′
0

2L′
0

+
0.38 �′

0

L
′2
0

)

≥ 1 +
� − 1

2L
−

�2

8L2
+

0.35 �

L2
, (5.25)

which proves (1.13) for x ≥ �1(x0).

5.3 Proof of the lower bound (1.13) for n < �1(x0).

Let Φu defined by (3.25) and n1 ≤ n2 such that the following inequality

logℎ(n1) ≥ Φ1∕8(n2) (5.26)

is true. Then, by the non decreasingness of ℎ and Φ1∕8, logℎ(n) ≥ Φ1∕8(n) is true
on the whole interval [n1, n2]. In particular, (1.13) is satisfyed on [�k, �k+1] if the
following inequality is true

�(pk) = logℎ(�k) > Φ1∕8(�k+1), (5.27)

By enumerating pk, �k and �k until pk+1 = x0 = 1010 + 19 we remark that (5.27)
is satisfyied for k ≥ k1 = 9 018. This proves that inequality (1.13) is true for
n ≥ �k1 = 398 898 277.

It remains to compute the largest n in [2, �k1] such that Φ1∕8(n) ≤ logℎ(n)
fails. This is done by dichotomy (cf. Section 4.2.3), calling ok_rec(2, 398 898
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277) with ok(n) which returns true if and and only if logℎ(n) ≥ Φ1∕8(n) and
good_interval(n1, n2) which returns true if and only if (5.26) is true. This gives
the largest n in [2, 398 898 277], which does not satisfy (1.13), n = 373 623 862,
and this call of ok_rec computes 3577 values of good_interval and 2 values of
ok(n).

5.4 Proof of the upper bound (1.14) for n ≥ �0.

For n ≥ �0 (defined by (3.17)), one defines N ′, N ′′ and � by Definition 3.6. The
inequalities � ≥ x0 and N ′′ ≤ �N ′ hold (cf. (3.14)). From (3.12), (3.50) and
(3.51),

log g(n) ≤ logN ′′ = logN ′ + log
N ′′

N ′
=
∑
p<�

log p + E∗(N ′) + log
N ′′

N ′

≤ �(�) + 0.72
√
� + log �.

Further, from (5.23), with our notation L = log n, � = logL, L0 = log �0, �0 =

logL0,

log g(n) ≤ �(�) +
√
�

(
0.72 +

log �√
�

)
≤ �(�) +

√
�

(
0.72 +

logx0√
x0

)

≤ �(�) + 0.73
√
� ≤ �(�) + 0.73(n logn)1∕4

(
1 +

� − 1

4L

)

≤ �(�) + 0.73(n logn)1∕4
(
1 +

�0 − 1

4L0

)
≤ �(�) + 0.75(n log n)1∕4. (5.28)

Now, we consider two cases, according to � ≤ 1019 or not.

− If x0 ≤ � ≤ 1019, then (5.28), (2.1) and (5.6) imply

log g(n) ≤ � + 0.75(n logn)1∕4 = � +
�2

L2

√
n log n

(
0.75L7∕4

n1∕4�2

)

≤ � +
�2

L2

√
n log n

(
0.75L

7∕4

0

�
1∕4

0
�2
0

)

≤ √
n log n

(
1 +

� − 1

2L
−
�2

L2

(
13

104
− 10−3

))

=
√
n log n

(
1 +

� − 1

2L
−

3�2

104L2

)

which proves (1.14) for x0 ≤ � ≤ 1019.
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− If � > x6 = 1019, then from (3.6), (3.7) and (2.20),

n ≥ l(N ′) ≥ �1(�) − � ≥ �2∕(2 log �) − � ≥ x2
6
∕(2 logx6) − x6

≥ �1
def
== 1036.

From (5.6), by setting L1 = log �1 = 82.89…, �1 = logL1 = 4.41…,

� ≤ √
n log n

(
1 +

� − 1

2L

) ≤ √
n log n

(
1 +

�1 − 1

2L1

)
≤ 1.021

√
n log n,

and, from (2.3) with � = 0.15 and (5.4),

�(�) − � ≤ 0.15 �

log3 �
≤ 1.2 �

log3 n
≤ 1.2 × 1.021 �2

L2

√
n log n

1

L�2

≤ 1.23 �2

L2

√
n log n

1

L1�
2
1

≤ 8 �2

104L2

√
n log n. (5.29)

We also have

0.75(n log n)1∕4 =
�2

L2

√
n log n

(
0.75L7∕4

n1∕4�2

)

≤ �2

L2

√
n log n

(
0.75L

7∕4

1

�
1∕4

1
�2
1

)
≤ 9 �2

108L2

√
n log n. (5.30)

Finally, from (5.6), (5.28), (5.29) and (5.30),

log g(n) ≤ �(�) + 0.75(n logn)1∕4 ≤ � +
√
n log n

�2

L2

(
8

104
+

9

108

)

≤ √
n log n

(
1 +

� − 1

2L
−
�2

L2

(
13 − 8 − 0.0009

104

))

≤ √
n log n

(
1 +

� − 1

2L
−

4 �2

104L2

)
, (5.31)

which completes the proof of (1.14) for n ≥ �0.

5.5 Proof of the upper bound (1.14) for n < �0.

The inequality (1.14) for 4 ≤ n < �0 will follow from the lemma:
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Lemma 5.4. For 4 ≤ n ≤ �0, zn defined by (3.29) satisfies

z6 = 3.18… ≥ zn ≥ z�2 = 0.005 455 048 036… > 0

with �2 = 6 473 549 497 145 122. (5.32)

Proof. For 4 ≤ n ≤ 18, we calculate zn and obtain z12 = 1.73… ≤ zn ≤ z6 =

3.18… For n ≥ 19, we compute z
l(N) for all superchampion numbersN satisfying

19 ≤ l(N) ≤ �0. The minimum is attained in �2 and the maximum is z19 =

1.53…, which, by applying Lemma 3.13 (ii), completes the proof of (5.32). We
have z2 = −2.05… and z3 = −2.38… It is possible that zn ≥ z�2 holds for all
n ≥ 4 but we have not been able to prove it. We have only proved, from (5.31) and
(5.32), that zn ≥ 0.0004 holds for n ≥ 4.

6 Study of g(n)∕ℎ(n) for large n’s

6.1 Effective estimates of log g(n) − logℎ(n)

Proposition 6.1. If n ≥ �0 (defined by (3.17)), we have

√
2

3
(n log n)1∕4

(
1 +

log log n − 11.6

4 log n

)

≤ log
g(n)

ℎ(n)
≤

√
2

3
(n log n)1∕4

(
1 +

log log n + 2.43

4 log n

)
. (6.1)

Proof. For n ≥ �0, we consider the two superchampion numbers N ′ and N ′′ and
� defined in Definition 3.6. From (3.14), we have N ′′ ≤ �N ′ and from (3.12),
N ′ ≤ g(n) < N ′′.

In view of estimating ℎ(n), we need the value of k = k(n) defined by (1.18).
For that, we have to convert the additive excessE(N ′) (cf. (3.40)) in large primes.
More precisely, if pi0 denotes the largest prime factor ofN ′ and �i0 =

∑
p≤pi0 p (cf.

(1.17), from (3.7) and (3.57), we have
∑

p∣N ′ p =
∑

p<� p = �i0 and from (3.41),
l(N ′) − E(N ′) = �i0 so that, from the definition (3.58) of s = s(n),

�i0+s ≤ n < �i0+s+1 (6.2)

and, from (1.18), k = k(n) = i0 + s. As ℎ is nondecreasing on n, from (1.19), one
deduces

ℎ(�i0+s) = Ni0+s
≤ ℎ(n) ≤ Ni0+s+1

= ℎ(�i0+s+1)

and
N ′

Ni0+s+1

≤ g(n)

ℎ(n)
≤ N ′′

Ni0+s

≤ �N ′

Ni0+s

. (6.3)

48



The lower bound. Observing from (3.50) that logN ′ =
∑

p∣N ′ log p + E∗(N ′) =

logNi0
+ E∗(N ′), from (6.3), (3.51) and (3.66), one gets

log
g(n)

ℎ(n)
≥ log

N ′

Ni0+s+1

= E∗(N ′) −

i0+s+1∑
i=i0+1

log pi ≥ E∗(N ′) − (s + 1) log pi0+s+1

≥
√
�

2

(
1 −

0.521

log �
−

1

3
−

0.345

log �

)
=

√
2�

3

(
1 −

1.299

log �

)
. (6.4)

Now, as the third derivative of u ↦
√
1 + u is positive, from Taylor’s formula and

Corollary 5.3,

√
� ≥ (n log n)1∕4

(
1 +

u

2
−
u2

8

)
with u =

log log n − 1.019

2 log n
. (6.5)

By writing L for log n, � for log log n, L0 for log �0 and �0 for log log �0, from
(1.15),

u2

8
=

(� − 1.019)2

4 × 8L2
≤ (�0 − 1.019)2

4 × 8L0L
≤ 0.022

4L
,

1 +
u

2
−
u2

8
≥ 1 +

� − 1.019

4L
−

0.022

4L
= 1 +

� − 1.041

4L

so that, from (6.5), one gets
√
� ≥ (n log n)1∕4(1 + (� − 1.041)∕(4L)). Further,

from (5.4), 1.299∕ log � < 10.392∕(4L) holds and (6.4) implies

log
g(n)

ℎ(n)
≥

√
2

3
(n log n)1∕4

(
1 +

� − 1.041

4L

)(
1 −

10.392

4L

)

≥
√
2

3
(n log n)1∕4

(
1 +

� − 11.433

4L
−

10.392(�0 − 1.041)

(4L0)(4L)

)

≥
√
2

3
(n log n)1∕4

(
1 +

� − 11.6

4L

)

which proves the lower bound of (6.1).

The upper bound. Similarly, from (6.3), (3.57), (3.51) and (3.67), we have

log
g(n)

ℎ(n)
≤ log

�N ′

Ni0+s

= log � + E∗(N ′) −

i0+s∑
i=i0+1

log pi ≤ E∗(N ′) − (s − 1) log �

≤
√
�

2

(
1 +

0.305

log �
−

1

3
−

0.0724

3 log �

)
=

√
2�

3

(
1 +

0.4213

log �

)
. (6.6)
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Further, by using the inequality
√
1 + t ≤ 1+ t∕2, it follows from (5.23) and (5.4)

that

log
g(n)

ℎ(n)
≤

√
2

3
(n log n)1∕4

(
1 +

� − 1

4L

)(
1 +

3.3704

4L

)

≤
√
2

3
(n log n)1∕4

(
1 +

� + 2.3704

4L
+

3.3704(�0 − 1)

(4L0)(4L)

)

≤
√
2

3
(n log n)1∕4

(
1 +

� + 2.43

4L

)

which ends the proof of Proposition 6.1.

6.2 Asymptotic expansion of log g(n) − logℎ(n)

Proposition 6.2. Let n be an integer tending to infinity. N ′, N ′′, � and �2 are

defined by Definition 3.6. Then, for any real number K , when n and � tend to

infinity, we have

log
g(n)

ℎ(n)
=

(
�2 − li(�3

2
)
log �

�

)(
1 + K

(
1

logK �

))
. (6.7)

Proof. The proof follows the lines of the proof of Proposition 6.1. LetK be a real
number as large as we wish. First, from the Prime Number Theorem, for r ≥ 0, it
is easy to deduce

�r(x) =
∑
p≤x

pr = (li(xr+1))(1 +(1∕ logK x)), x → ∞. (6.8)

From Proposition 3.14, when � → ∞, we know that

�2 ∼
√
�∕2 (6.9)

and, from Proposition 3.23, that

s ∼

√
�

3
√
2 log �

. (6.10)

Note that (6.10) implies

s ± 1 = s(1 + (1∕ logK �)). (6.11)
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By using the crude estimate �j(�j) ≤ �j+1j , from (3.43), (3.20) and (3.9), it follows
that

E(N ′) ≤
J∑
j=2

�j(�j) ≤ �2(�2) +

J∑
j=3

�
j+1
j ≤ �2(�2) +

J∑
j=3

�1+1∕j

≤ �2(�2) + J �
4∕3 = �2(�2) + (�4∕3 log �). (6.12)

In the same way, from (3.44), one gets E(N ′) ≥ �2(�2) + (�) which, together
with (6.12), (6.8) and (6.9) yields

E(N ′) = (li(�3
2
))(1 + (1∕ logK �2)) = (li(�3

2
))(1 +(1∕ logK �)). (6.13)

From (3.52), similarly, we have

E∗(N ′) = �(�2) +(J �3) = �2(1 +(1∕ logK �)). (6.14)

It follows from Lemma 2.3 and (6.10) that the number of primes between � and
�(1 + 1∕ logK �) satisfies, for n and � large enough, �(�(1 + 1∕ logK �)) − �(�) >

�∕(2 logK+1 �) >
√
� > s + 1, which, via (3.57), (3.58) and (3.13), implies

� ≤ pi0+1 ≤ pi0+s+1 ≤ �(1 +(1∕ logK �)) (6.15)

and

(s − 1)� ≤ pi0+1 +…+ pi0+s − � ≤ n − l(N ′) − � + E(N ′)

≤ l(N ′′) − l(N ′) − � + E(N ′ ≤ E(N ′))

≤ n − l(N ′) + E(N ′) ≤ pi0+1 +…+ pi0+s+1

≤ (s + 1)pi0+s+1 ≤ (s + 1) � (1 +(1∕ logK �)).
From (6.11), it follows that E(N ′) = s�(1 + (1∕ logK �)) and, from (6.13) ,

s =
li(�3

2
)

�

(
1 + 

(
1

logK �

))
. (6.16)

From (6.4) and (6.6), we have

E∗(N ′) − (s + 1) log pi0+s+1 ≤ log
g(n)

ℎ(n)
≤ E∗(N ′) − (s − 1) log �, (6.17)

which, from (6.11), (6.15), (6.16) and (6.14), proves (6.7).
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7 Proof of Theorem 1.5

7.1 Proof of Theorem 1.5 (i).

We assume that n tends to infinity. N ′, N ′′ and � are defined by (3.12). From
Proposition 6.2 one deduces

log
g(n)

ℎ(n)
≍ �2 − li(�3

2
)
log �

�
=

√
2�

3
F with F =

3√
2�

(
�2 − li(�3

2
)
log �

�

)
.

(7.1)
By using (3.30) and (2.13), we get the asymptotic expansion of F in terms of
t = 1∕ log � (cf. [27])

F = F (t) = 1 −
2 + 3 log 2

6
t −

32 + 48 log 2 + 9 log2 2

72
t2 +… (7.2)

From (3.6), (3.12), (3.14), (3.50) an d (3.51), we have

�−(�) ≤ logN ′ ≤ log g(n) ≤ logN ′′

≤ logN ′ + log � = �−(�) + E∗(N ′) + log � = �(�) + (√�)
so that, from the Prime Number Theorem and (1.6), for any real number K , we
have

� =
√
li−1 n (1 +K (1∕ log

K n)) (7.3)

that we write � ≍
√
li−1 n. Therefore, from (7.1) and (1.7), we can get the asymp-

totic expansion of log(g(n)∕ℎ(n)). More precisely, we may use Theorem 2 of [25]
to get

log
g(n)

ℎ(n)
≍

√
2

3
(n log n)1∕4

(
1 +

∑
j≥1

Pj(log log n)

logj n

)
(7.4)

where Pj is a polynomial of degree j satisfying the induction relation

d

dt
(Pj+1(t) − Pj(t)) =

(
1

4
− j

)
Pj(t). (7.5)

For that, one sets y = log(li−1(n)), n = li(ey), � ≍ ey∕2 and, from (2.13), n ≍
ey

y

∑
k≥0

k!

yk
so that, from (7.1),

log
g(n)

ℎ(n)
≍

√
2

3
ey∕4F (2∕y)
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holds. Finally, we apply the procedure theorem2_part2 of [25, p. 234] with � =

1, � = 1∕4,  = 0, G(t) = F (2t) (with F defined by (7.2)), d(t) =
∑

k≥0 k!tk and
x = n.

The values of the polynomials Pj can be found on the website [27] (cf. [23]
and [14] for similar results).

7.2 Proof of Theorem 1.5 (ii) and (iii).

Let us define �n as the unique number such that

log
g(n)

ℎ(n)
=

√
2

3
(n log n)1∕4

(
1 +

log log n + �n
4 log n

)
(7.6)

An easy computation gives

�n = 6
√
2(log n)3∕4

log g(n) − logℎ(n)

n1∕4
− 4 log n − log log n. (7.7)

From the non decreasingness of the functions log, log log, g and ℎ we deduce
from (7.7) the following

Lemma 7.1. Let n1 ≤ n2 be two integers. Then, for every n ∈ [n1, n2],

�n ≤ 6
√
2(log n2)

3∕4
log g(n2) − logℎ(n1)

n
1∕4

1

− 4 log n1 − log log n1 (7.8)

and, if g(n1) ≥ ℎ(n2) is satisfied

�n ≥ 6
√
2(log n1)

3∕4
log g(n1) − logℎ(n2)

n
1∕4

2

− 4 log n2 − log log n2 (7.9)

The expensive operations in the computation of the bounds given in (7.8) and
(7.9) are the computations of g(n1), g(n2), ℎ(n1), ℎ(n2). In the particular case where
n1, n2 = l(N1),l(N2) for two consecutive superchampions N1, N2, we will use
the following lemma to quickly bound �n on the slice [n1, n2].

Lemma 7.2. Let n1 = l(N1), n2 = l(N2) where N1, N2 are two consecutive

superchampions, k1 = k(n1) (resp. k2 = k(n2)),m1 = n1−�k1 (resp. m2 = n2−�k2)
and q the first prime not smaller than pk+1 − m1. Then, for every n in [n1, n2],

�n ≤ 6
√
2(log n2)

3∕4
logN2 − �(pk1+1) + log q

n
1∕4

1

− 4 log n1 − log log n1 (7.10)
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and, if logN1 > �(pk2+1) − log(pk2+1 − m2)

�n ≥ 6
√
2(log n1)

3∕4
logN1 − �(pk2+1) + log(pk2+1 − m2)

n
1∕4

2

− 4 log n2 − log log n2.

(7.11)

Proof. − We get (7.10) from (7.8) by noticing that log g(n2) = logN2 and by
using (4.1) to minimize ℎ(n1).

− We get (7.11) from (7.9) by noticing that log g(n1) = logN1 and by using
(4.2) to maximize ℎ(n2).

Proof of Theorem 1.5.(ii). Considering (7.6) we have to prove that �n ≤ 2.43

for n > �5 = 3 997 022 083 662. For n > �0, it results of Proposition 6.1.
We first enumerate all the pairs of consecutive superchampions ≤ N ′

0
, and for

each of these pairs we compute the upper bound given by (7.10). It appears that
for n ≥ �3 = 23 542 052 569 006, �n < 2.43. To get the largest n which does
not satisfy Theorem 1.5.ii we use the dichotomic procedure ok_rec described in
Section 4.2.3 on the interval [2, �3], choosing the functions ok(n)which returns true
if and only if �n ≤ 2.43, and the function good_interval(n1, n2) which returns true
if and only if the right term of (7.10) is not greater than 2.43. The call ok_rec(2,
�3) gives �5 as the largest number n such that �n = 2.430 001 869… > 2.43. This
computation generated 2 calls of ok(n). and 5 017 255 calls of good_interval,
and it took 40h.

Proof of Theorem 1.5.(iii). For n > �0, it results of Proposition 6.1.
As in the previous paragraph, we first enumerate all the pairs of consecutive

superchampionsN1, N2 ≤ N ′
0
. We have checked that, forl(N1) ≥ 1487, logN1 >

�(pk2+1) − log(pk2+1 − m2), so that (7.11) holds, and then, we verify that for n ≥
�4 = 1 017 810, �n > −11.6 holds.

Now the call ok_rec(1487, �4)with the function good_interval(n1, n2)which
returns true if and only if the right term of (7.11) is smaller than −11.6 and the
function ok(n) which returns true if and only if �n > −11.6, we get n = 4 229 as
the largest n sucht that �n < −11.6.

7.3 Proof of Theorem 1.5 (iv).

The inequality g(n) ≥ ℎ(n) follows from (1.1) and (1.2). For n ≥ 4 230, inequality
g(n) > ℎ(n) is an easy consequence of point (iii). We end the proof by computing
g(n) and ℎ(n) for 1 ≤ n < 4 230.
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7.4 Proof of Theorem1.5 (v).

Let dn defined by

dn = bn − an =
log g(n) − logℎ(n)

(n log n)1∕4
=

√
2

3

(
1 +

log log n + �n
4 log n

)
. (7.12)

For n > �5, from point (ii), we have

log
g(n)

ℎ(n)
≤

√
2

3
(n log n)1∕4

(
1 +

log log �5 + 2.43

4 log �5

)
≤ 0.5 (n log n)1∕4.

By the non-decreasingness of g and ℎ, if n1 ≤ n2, dn is bounded above on
[n1, n2] by M(n1, n2), with

M(n1, n2) = (log g(n2) − logℎ(n1)(n1 log n1)
1∕4. (7.13)

Thus, the inequality
M(n1, n2) < 0.62 (7.14)

is a sufficient condition ensuring that dn < 0.62 on the whole interval [n1, n2].
As in paragraph 7.2, for all the pairs n1 = l(N1), n2 = l(N2) where N1, N2

are two consecutive superchampions with l(N2) ≤ �5 we quickly get an upper
bound of M(n1, n2) by using g(n2) = log(N2) and bounding below logℎ(n1) by
(4.1). It appears that this bound is smaller than 0.62 for n ≥ 49 467 083.

Now the call ok_rec(2, 49467083) using ok(n) which returns true if and
only if dn < 0.62059 and good_interval(n1, n2) which returns true if and only
M(n1, n2) < 0.62059, gives us the last value of dn which is greater than 0.62059,
this value is d2243 = 0.620 665 265 68... Note that g(2243) is a superchampion
number associated to � = 139∕ log 139 and 149∕ log 149. Finally, by computing
g(n) and ℎ(n), we checked that dn < 0.62 holds for 2 ≤ n < 2243.

8 Proof of Theorem 1.1

8.1 Proof of Theorem 1.1 (i).

For n ≥ 2, the point (i) of Theorem 1.1 follows from the definition (1.9) of an and
from the point (iv), below. For n = 1, li−1(1) = 1.96… and g(1) = 1 so that
log g(1) <

√
li−1(1) holds.
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8.2 Proof of Theorem 1.1 (ii).

From now on, the following notation is used : L = log n, � = log log n = logL

and �0 = log log �0.
From (1.10), for n ≥ �0 (defined by (3.17)), we have

log g(n) = logℎ(n) + log
g(n)

ℎ(n)
= −bn(n log n)

1∕4 +
√
li−1 n + log

g(n)

ℎ(n)

and, from (1.9), Theorem 1.4 (iii) and Proposition 6.1, one gets

an =

√
li−1 n − log g(n)

(n log n)1∕4
= bn −

log(g(n)∕ℎ(n))

(n log n)1∕4

≥ 2

3
− c −

0.23 �

L
−

√
2

3

(
1 +

� + 2.43

4L

)

=
2 −

√
2

3
− c −

�

L

(
0.23 +

√
2

12
+

2.43
√
2∕�

12

)

≥ 2 −
√
2

3
− c −

�

L

(
0.23 +

√
2

12
+

2.43
√
2∕�0

12

)
≥ 2 −

√
2

3
− c −

0.43 �

L
,

which proves point (ii) for n > �0.

Lemma 8.1. For 2 ≤ n ≤ �0, an defined by (1.9) satisfies

an ≥ a6 473 580 667 603 736 = 0.193938608602… . (8.1)

Proof. For 2 ≤ n ≤ 42, one checks that an ≥ 0.4. For 43 ≤ n < �0, by Lemma
3.13 (i), the minimum is attained in l(N) with N being a superchampion num-
ber satisfying 43 ≤ l(N) ≤ �0 = l(N ′

0
). So, by enumerating (N, logN) =

(N, log g(l(n))) for N ≤ N ′
0

we check that the minimum is 0.193938602…, at-
tained for l(N) = 6 473 580 667 603 736.

For 3 ≤ n < �0, Lemma 8.1 shows that an ≥ (2−
√
2)∕3− c = 0.149… holds,

which, as log log n is positive, proves point (ii). For n = 2, a2 = 0.91… and point
(ii) is still satisfied.

8.3 Proof of Theorem 1.1 (iii).

For n > �
0
. From Theorem 1.4 (iv) and Proposition 6.1, we have

an = bn −
log(g(n)∕ℎ(n))

(n log n)1∕4
≤ 2

3
+ c +

0.77 �

L
−

√
2

3

(
1 +

� − 11.6

4L

)

≤ 2 −
√
2

3
+ c +

�

L

(
0.77 −

√
2

12
+

11.6
√
2∕�0

12

)
≤ 2 −

√
2

3
+ c +

1.02 �

L
.
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For n ≤ �0. Let us suppose 16 ≤ n1 ≤ n2. The non decreasingness of li, g,

the positivity of an (cf. (8.1)) and therefore of
√

li−1(n) − log g(n) imply that, for
n ∈ [n1, n2],

an =

√
li−1(n) − log g(n)

(n log n)1∕4
≤ R(n1, n2) =

√
li−1(n2) − log g(n1)

(n1 log n1)
1∕4

(8.2)

Since n1 ≥ 16, the function log log n∕ log n is decreasing on [n1, n2], and, in view
of (8.2),

R(n1, n2) ≤ 2 −
√
2

3
+ c + m

log log n2
log n2

(8.3)

is a sufficient condition ensuring that, for all n ∈ [n1, n2],

an <
2 −

√
2

3
+ c + m

log log n

log n
. (8.4)

In the case n1 = l(N1), n2 = l(N2), where N1, N2 are consecutive supercham-
pions, g(n1) = log(N1), and, by enumerating all the pairs of consecutive super-
champions ≤ N ′

0
, we check that, if m = 1.02, inequality (8.2) is satisfied for

n ≥ 5 432 420. To compute the largest n which does not satisfy this inequality we
call ok_rec(2, 5432420) with the boolean fonction ok(n) which returns true if
and only if (8.4) is true, and the procedure good_interval(n1, n2) which re-
turns true if and only (8.3) is satisfied. This gives us 19424 as the largest integer
which does not satisfy point (iii).

8.4 Proof of Theorem 1.1 (iv).

For n ≥ �0, from point (ii) it follows that

an ≥ 2 −
√
2

3
− c −

0.43 log log �0
log �0

= 0.11104…

while, by Lemma 8.1, an ≥ 0.1939 for n ≤ �0.
By computing an for 2 ≤ n ≤ 19424, it appears that an < a2 = 0.9102…,

while, for n ≥ 19425, by point (iii) and the decreasingness of log log n∕ log n,

an <
2 −

√
2

3
+ c +

1.02 log log 19425

log 19425
= 0.477…

8.5 Proof of Theorem 1.1 (v).

The point (v) of Theorem 1.1 follows from the points (ii) and point (iii).
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8.6 Proof of Theorem 1.1 (vi).

From (7.12) and Theorem 1.5 (i), we have

bn − an = dn =
log(g(n)∕ℎ(n))

(n log n)1∕4
=

√
2

3

(
1 +

log log n +(1)
4 log n

)

whence, from Theorem 1.4 (vi),

an = bn − dn

≤ (
2

3
+ c

)(
1 +

log log n +(1)
4 log n

)
−

√
2

3

(
1 +

log log n +(1)
4 log n

)

=

(
2 −

√
2

3
+ c

)(
1 +

log log n + (1)
4 log n

)
,

which proves the upper bound of (vi). The proof of the lower bound is similar.
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