Finding First and Most-Beautiful Queens by Integer Programming

Matteo Fischetti *
Department of Information Engineering
University of Padova, Italy
matteo.fischetti@unipd.it

Domenico Salvagnin
Department of Information Engineering
University of Padova, Italy
domenico.salvagnin@unipd.it

Abstract

The n-queens puzzle is a well-known combinatorial problem that requires to place n queens on an $n \times n$ chessboard so that no two queens can attack each other. Since the 19th century, this problem was studied by many mathematicians and computer scientists. While finding any solution to the n-queens puzzle is rather straightforward, it is very challenging to find the lexicographically first (or smallest) feasible solution. Solutions for this type are known in the literature for $n \leq 55$, while for some larger chessboards only partial solutions are known. The present paper was motivated by the question of whether Integer Linear Programming (ILP) can be used to compute solutions for some open instances. We describe alternative ILP-based solution approaches, and show that they are indeed able to compute (sometimes in unexpectedly-short computing times) many new lexicographically optimal solutions for n ranging from 56 to 115 . One of the proposed algorithms is a pure cutting plane method based on a combinatorial variant of classical Gomory cuts. We also address an intriguing "lexicographic bottleneck" (or min-max) variant of the problem that requires finding a most beautiful (in a well defined sense) placement, and report its solution for n up to 176 .

Keywords: n-queens problem, mixed-integer programming, lexicographic simplex, lexicographically min-max.

1 Introduction

The n-queens puzzle is a well-known combinatorial problem that requires to place n queens on an $n \times n$ chessboard so that no two queens can attack each other, i.e., no two queens are on the same row, column or diagonal of the chessboard. Initially stated for the regular 8×8 chessboard in 1848 [6], it was soon generalized to the $n \times n$ case [20], and has attracted the interest of many mathematicians (including Carl Friedrich Gauss) and, more recently, by Edsger Dijkstra who used it to illustrate a depth-first backtracking algorithm. As a decision problem, the n-queens puzzle is rather trivial, as a solution exists for all $n>3$, and there are closed formulas to compute such solutions; see, e.g., the survey in [5]. On the other hand, the counting version of the problem, i.e., to determine the number of different ways to put n queens on a $n \times n$ chessboard turns out to be extremely challenging. The sequence, labelled A000170 on the Online Encyclopedia of Integer Sequences (OEIS) [23], is currently known only up to $n=27$. The related problem of finding all solutions to the problem was shown in [16] to be beyond the \#P-class.

Another variant of the problem, which is somewhat related to the one addressed in this paper, is the n-queens completion problem, in which some queens are already placed on the chessboard and

[^0]the solver is required to place the remaining ones, or show that it is not possible. The n-queens completion problem is both NP-complete and \#P-complete, as proved in [12].
Following a suggestion of Donald Knuth [19], in this paper we study another very challenging version of the n-queens problem, namely, finding the lexicographically-first (or smallest) feasible solution. This is sequence A141843 on OEIS. Solutions for this variant are known only for $n \leq 55$ [22], while for some larger chessboards only partial solutions are known.

It is worth noting that the lexicographically optimal solution is known for the case of a chessboard of infinite size. Indeed, such a sequence can be easily computed by a simple greedy algorithm that iterates over the anti-diagonals of the chessboard and places a queen in each anti-diagonal in the first available position (this is sequence A065188 on OEIS). Interestingly, as the size of the chessboard increases, its lexicographically optimal solution overlaps more and more with this greedy sequence.

Finally, we address a very intriguing variant of the problem, also proposed to us by Donald Knuth [18]. This variant calls for a solution where the queens are placed so as to minimize the multiset of distances to the center of the board. This solution (which is not unique) enjoys a number of nice properties (including double symmetry) and was argued to be the "most-beautiful" placement of the queens in a blackboard.
To be more specific, Knuth proposed the following lexicographic bottleneck (or min-max) variant of a classical lexicographic optimization problem: given a ground set of available options and the associated costs, find a feasible solution w.r.t. to a given set of constraints that minimizes (lexicographically) its maximum cost, and then the second-maximum, and so on. At first glance, this problem can be solved first sorting the options in non-increasing order of the associated costs, and then by finding the corresponding lexicographic minimal feasible solution. If the costs are all different, this approach is indeed correct and produces the required min-max optimal solution. When repeated costs are allowed, however, different orderings of the costs can lead to very different (suboptimal) final solutions and the approach, as stated, is wrong-hence a more clever approach has to be applied. This latter situation arises, in particular, in the most-beautiful n-queens problem where the options are the blackboard positions, and the costs measure the distance of each cell from the center of the chessboard. Solutions for this problem are only known for n up to 48 [18].

The outline of the paper is as follows. In Section 2 we describe the basic Integer Linear Programming (ILP) formulation for the n-queens model, as well as potential families of valid inequalities. In Section 3 we describe the different methods developed to solve the instances to lexicographic optimality, and computationally compare them in Section 4. In Section 5 we show how to solve a lexicographic bottleneck problem (and, in particular, the most-beautiful n-queens problem) through a sequence of ILPs. Conclusions and future directions of research are drawn in Section 6. Finally, we list in Appendix all the new lexicographically-first solutions we found for n ranging from 56 to 115 , and also report the most-beautiful solutions for some values of n up to 176 .

A preliminary version of the present paper was presented at the international conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR) held in Delft, The Netherlands, on 5-8 June, 2018 [9].

2 An ILP model

A basic ILP model for the n-queens problem can be obtained by introducing the binary variables $x_{i j}=1$ iff a queen is placed in row i and column j of the chessboard, for each $i, j=1, \ldots, n$. Constraints in the basic model stipulate that (i) there is exactly one $x_{i j}=1$ in each row i; (ii) there is exactly one $x_{i j}=1$ in each column j; and (iii) there is at most one $x_{i j}=1$ in each diagonal of the chessboard. Note that all such constraints are clique constraints.

In principle, it would be possible to encode the (row-wise) lexicographically minimum requirement by just adding the objective function:

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} 2^{n i+j} x_{i j} \tag{1}
\end{equation*}
$$

and solve the problem with a black-box ILP solver. However, the size of the coefficients makes such a method practical only for the smallest chessboards. Still, this simple model, without the objective (1), is the basis of all the methods that will be discussed in Section 3.

Figure 1: Lexicographically optimal solution for $n=10$.

A compact way to represent a feasible solution is to use a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of the integers $1, \ldots, n$ defined as follows:

$$
\begin{equation*}
\pi_{i}:=\sum_{j=1}^{n} j x_{i j}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

Among all permutations π that correspond to a feasible x, we then look for the lexicographically smallest one. For example, the lex-optimal solution for $n=10$, depicted in Figure 1, can be described as

$$
(1,3,6,8,10,5,9,2,4,7)
$$

The n-queens problem can also be easily reformulated as a maximum independent set problem, as noted for example in [10]. Indeed, one just needs to construct a graph in which there is a node for each square of the chessboard and an edge for each pair of conflicting squares, i.e., for any two squares in the same row, column or diagonal. Then any independent set of cardinality n is a solution to the puzzle. The independent set reformulation immediately suggests classes of valid inequalities for the n-queens problem, namely all that are valid for the stable set polytope, such as clique and odd-cycle [15] inequalities.
Among clique inequalities, the following (polynomial in n) family is particularly relevant for our problem:

$$
\begin{align*}
x_{i j}+x_{i, j+h}+x_{i+h, j}+x_{i-h, j}+x_{i, j-h} & \leq 1 \tag{3}\\
x_{i j}+x_{i+h, j+h}+x_{i-h, j+h}+x_{i-h, j-h}+x_{i+h, j-h} & \leq 1 \tag{4}\\
x_{i j}+x_{i+h, j}+x_{i+h, j+h}+x_{i, j+h} & \leq 1 \tag{5}
\end{align*}
$$

where $i, j, h \in\{1, \ldots, n\}$; of course, variables $x_{u v}$ corresponding to a position (u, v) outside the $n \times n$ chessboard are removed from the summations. The three different types of cliques in this family are depicted in Figure 2.
Clique inequalities (3)-(5) can be trivially separated in time that is polynomial in n. In addition, in preliminary experiments we implemented a general-purpose exact clique separator based on the solution of an auxiliary ILP model, and it never produced any additional violated clique inequality for the instances in our testbed.
A second class of inequalities contains the so-called odd-cycle inequalities. Given any odd cycle O in the graph, the following inequality:

$$
\begin{equation*}
\sum_{k \in O} x_{k} \leq \frac{|O|-1}{2} \tag{6}
\end{equation*}
$$

is valid for the stable set polytope. Odd-cycle inequalities can be easily separated as $\{0,1 / 2\}$ cuts with the combinatorial procedures described in [7, 8, 2]. An example of odd-cycle inequality occurring in the n-queens problem is illustrated in Figure 3.

Figure 2: Three different families of clique cuts for n-queens.

Figure 3: Example of odd-cycle inequality for n-queens: no more than two of the five positions can be occupied by a queen.

3 Solution methods

We next describe the solution algorithms that we implemented.

3.1 Using a Constraint Programming solver

The n-queens puzzle can be easily modeled as a Constraint Programming (CP) problem. Indeed, working directly on the variables π_{i}, the puzzle can be formulated by just three alldifferent [21, 24] global constraints:

$$
\begin{array}{r}
\text { alldifferent }\left(\pi_{i}, i=1, \ldots, n\right) \\
\text { alldifferent }\left(\pi_{i}+i, i=1, \ldots, n\right) \\
\text { alldifferent }\left(\pi_{i}-i, i=1, \ldots, n\right) \tag{9}
\end{array}
$$

We implemented the model above with Gecode [11]. In order to enforce the model to find the lexicographically-smallest solution, we use Depth-First Search (DFS) as search strategy, always branching on the first unfixed variable π_{i} and picking values in increasing order-in Gecode terminology, that amounts to using a brancher specified by INT_VAR_NONE() and INT_VALUES_MIN (). In the following, we will refer to this solution method as CP.

3.2 Using an exact ILP solver

A simple algorithm to compute the lex-optimal solution by iteratively using a black-box ILP solver is as follows: We scan all the chessboard positions (i, j) in lexicographical order, i.e., row by row. For each (i, j), we are given the queens already positioned in the previous iterations (i.e., we have a number of fixed x variables), and our order of business is to decide whether a queen can be placed in (i, j) or not. This in turn requires solving the basic ILP model with some variables fixed in the previous iterations, by maximizing $x_{i j}$: if the final optimal solution has value 1 , we place a new
queen in position (i, j) by fixing $x_{i j}=1$, otherwise we fix $x_{i j}=0$ and proceed with the next chessboard position ${ }^{2}$. This approach requires solving n^{2} ILPs.
In our actual implementation, a more effective scheme is used that exploits representation (2). To be specific, we scan the rows $i=1, \ldots, n$, in sequence. For each i, we have already fixed in the previous iterations the lex-optimal sequence $\pi_{1}, \cdots, \pi_{i-1}$ and the corresponding x variables, and we want to compute the smallest feasible integer π_{i}. To this end we solve the basic ILP model, with some variables fixed in the previous iterations, by minimizing the objective function (2), fix all the $x_{i j}$ variables in row i accordingly, and proceed with the next row. In this way, only n ILPs need to be solved. In the following, we will refer to this solution method as ILP-ITER.

3.3 Using a truncated ILP solver

We also implemented an explicit depth-first backtracking algorithm to build the lex-optimal permutation π, very much in the spirit of the CP approach described in Subsection 3.1. At each iteration (i.e., at each node of the branching tree) we have tentatively fixed a lex-minimal, but possibly infeasible sequence, $\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{i-1}\right)$ and the corresponding x variables, and we have to decide the next value in position i. This is in turn obtained by solving a relaxation of the current ILP with objective function (2), to be minimized, i.e., by applying the following three steps:
i) invoke the ILP solver (with its default cutting-plane generation and preprocessing) for a limited number of nodes, say $N N$;
ii) define $\bar{\pi}_{i}$ as the best lower bound available at the node limit (rounded up);
iii) tentatively fix $\bar{\pi}_{i}$, along with the corresponding x variables, as the i-th value in the sequence.

As a lower bound (instead of the true value) is used, it may happen that, at a later iteration, the current ILP becomes infeasible, proving that the current tentative subsequence ($\bar{\pi}_{1}, \cdots, \bar{\pi}_{k}$) till position k (say) is infeasible as well. In this case, a backtracking operation takes place, that consists in imposing that the k-th position must hold a value strictly larger than $\bar{\pi}_{k}$. The latter requirement can easily be enforced in the ILP model by setting $x_{k j}=0$ for $j=1, \ldots, \bar{\pi}_{k}$.The algorithm ends as soon as the first feasible complete permutation $\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{n}\right)$ is found.
After some preliminary tests, we decided to set $N N=0$, i.e., to only solve the root node of the ILP at hand. Note that this is not equivalent to solving the LP relaxation of the ILP, as cutting planes and (most importantly) preprocessing play a crucial role here. According to our computational experience, solving just the LP relaxation is indeed mathematically correct and very fast, as the dual simplex can be used to reoptimize each LP, but the number of backtrackings becomes too large to have a competitive implementation. In the following, we will refer to this solution method as ILP-TRUNC.

3.4 An enumerative method based on lexicographic simplex

Finally, given the strong lexicographic nature of the problem at hand, we decided to implement a custom enumerative algorithm based on the lexicographic simplex method [13, 14]. The lexicographic simplex method not only finds an optimal solution to a given LP, but it guarantees to return the lexicographically smallest (or greatest) one among all optimal solutions. The lexicographic variant of the simplex method can be implemented quite easily on top of a black-box regular simplex solver, as described for example in [3,25]. The idea is as follows. Given an ordered sequence of objective functions f_{k} to optimize lexicographically, at each step we impose to stay on the optimal face of the current objective by fixing all variables (including the artificial variables associated to inequality constraints) with nonzero reduced cost, move to the next objective and reoptimize. Once all objectives have been optimized, in sequence, the original bounds for all variables are restored, which does not change the optimality status of the final basis, which is the lex-optimal one.

In our n-queens case, given our encoding of the permutation variables π as $x_{i j}$, we are interested in the lexicographically maximal solution in the x space or, equivalently, the sequence of objective functions to be minimized is $-x_{i j}$, for all $i, j=1, \ldots, n$.

[^1]Using a lexicographic simplex method within an enumerative DFS scheme, in which again we always branch on the first unfixed variable and explore the 1-branch first, provides the following advantages over using a "regular" simplex method:

- Whenever the LP relaxation turns out to be integer, i.e., there are no fractional variables, we are guaranteed that this is the lex-optimal integer solution within the current subtree, hence we can prune the node. Given our branching and exploration strategy, this also implies that we are done.
- If the first unfixed variable at the current node gets a value strictly less than one, then we can fix the variable to zero. This is easily proved using the lex-optimality of the LP solution as an argument. Being the first unfixed variable, this is the first objective to be considered by the lexicographic simplex at the current node, so a lex-optimal value <1 means that there is no feasible solution (in the current subtree) in which this variable takes value 1. Note that this reduction can be applied iteratively until the first unfixed variable gets a value of 1. We call this process mini-cutloop.

The basic scheme above can be improved with some additional modifications. First of all, we do not need to branch on single variables but we can branch directly on rows, again always picking the first row that contains an unfixed variable. For example, let the first unfixed variable be $x_{i j}$: instead of branching on the binary dichotomy $x_{i j}=1 \vee x_{i j}=0$, we use the n-way branching $x_{i 1}=1 \vee x_{i 2}=1 \vee \ldots \vee x_{i n}=1$. Of course, variables that are already fixed are removed from the list. This basically mimics the branching that would have been done by working directly with the π variables, as done by the CP solver.
Note that, because of our rigid branching strategy, there is no need for a full lexicographic optimization at each node. Indeed, for the purpose of branching, we can stop the lexicographic optimization at the first fractional variable, as we will be forced to branch on its row, or on a previous one. For this very reason, and because of the n-queens structure, we implemented a specialized lexicographic simplex method, where instead of optimizing one variable at the time, we optimize row by row, also integrating the mini-cutloop in the process. In particular, we do the following:

1. Let i^{*} be the first row with an unfixed variable. Set the objective function to $\sum_{j=1}^{n} j x_{i^{*} j}$ and minimize it.
2. Apply the mini-cutloop, by iteratively fixing the first unfixed variable in the row if its fractional value is <1 and by reoptimizing with the dual simplex.
3. If all variables in the current row are fixed this way, then we can move to the next row and go to step (1). Otherwise stop.

Note that the method above does not need to temporarily fix variables as the regular lexicographic simplex would. It is also important to note that, in the loop above, if the current fractional solution is integer, we are no longer guaranteed that this is the lexicographically optimal solution. In this (rare) case, we resort to a full-blown lexicographic simplex method to tell whether we can prune the node or need to branch.

The effectiveness of the node processing above greatly depends on the mini-cutloop, which in turn relies on being able to recognize fixed variables, i.e., to distinguish between a variable that happens to be zero or one in the current fractional solution, and a variable that is actually fixed at that value in the current node. For this purpose, we implemented a specialized propagator for the clique constraints of the basic model-while there is no need to propagate the clique constraints (3)-(5) as those can never lead to additional fixings.

Finally, separation of the clique inequalities (3)-(5) and odd-cycle inequalities has also been implemented and added to the node processing code. In the following, we will refer to this solution method as LEX-DFS.

3.5 A pure cutting plane method based on lexicographic simplex

Another option, still based on the availability of the lexicographic simplex method, is a pure cutting plane method. Being a pure integer model, it is well-known that Gomory cuts, together with lexicographic simplex, yield a cutting plane method converging in a finite number of iterations [13, 14].

Recent computational studies show that the method can indeed converge in practice on some nontrivial models [3, 25, 4]. Unfortunately, a preliminary implementation of the method proved to be numerically unstable on our n-queens models.

However, it turns out that we can obtain a convergent method by using a different family of cutting planes, which we call lexicographic nogoods, and that we now describe. Let x^{*} be the optimal solution obtained by the lexicographic simplex method at the current iteration. If x^{*} is integer, then we are done, otherwise let $x_{i^{*} j^{*}}$ be the first variable with a fractional value, i.e., $0<x_{i^{*} j^{*}}<1$. Finally, let F be the (possibly empty) set of variables that precede $x_{i^{*} j^{*}}$ and that are assigned a value of 1 in x^{*}. Then we can add the following cutting plane to the model:

$$
\begin{equation*}
\sum_{(i, j) \in F} x_{i j}+x_{i^{*} j^{*}} \leq|F| \tag{10}
\end{equation*}
$$

Note that, by definition, F contains exactly one variable for each row $i<i^{*}$. The rationale behind the cut is as follows: x^{*} being a lexicographically optimal solution, if we leave all variables in F set to one, then we must set $x_{i^{*} j^{*}}=0$. Otherwise we must flip at least one of the variables in F to zero. In both cases inequality (10) is valid and cuts the fractional solution x^{*}.

It is easy to show that the family of cuts (10), together with the lexicographic simplex, yields a convergent method: each cut forces a strict worsening of to the lexicographic objective, thus the lexicographic simplex cannot cycle. As there is only a finite (albeit exponential) number of cuts, the process must terminate in a finite number of iterations.

The pure cutting plane method based on cuts (10) did not eventually yield a faster algorithm than LEX-DFS in preliminary experiments, so we will not present it in the computational section. Still, it was able to solve almost as many chessboards as LEX-DFS, which is still remarkable for a pure cutting plane method.

4 Computational comparisons

We implemented our ILP models with the MIP solver IBM-ILOG CPLEX Cplex 12.7.1 [17], while we used Gecode 5.1.0 [11] as the CP solver for model (7)-(9). All experiments were done on a cluster of 24 identical machines, each equipped with an Intel Xeon E3-1220 V2 quad-core PC and 16 GB of RAM.

The testbed is made of all instances with n ranging from 21 to 60 . A time limit of 2 days was given for each instance to each method. Detailed results are given in Table 1, where we report the running time, in seconds, for all of our methods. The last two rows of the table report the shifted geometric mean [1] of the computing time (with a shift of $10 \mathrm{sec} . \mathrm{s}$) and the number of solved instances. According to the table, the CP model is able to solve models up to size 40 in a reasonable amount of time, after which it can no longer solve any model. Comparing with the numbers reported in [22], this can be already considered a good achievement, and a testament to how efficient Gecode's implementation is. On the other hand, all methods based on ILP, while initially slower, turn out to be able to solve almost all models in the testbed. Among the ILP methods, ILP-ITER, while being the easiest to implement, is also the slowest method, while ILP-TRUNC and LEX-DFS are the fastest methods, with very similar average running times.

As already noted in [22], the size of the chessboard is not a direct indicator of instance difficulty, as some bigger chessboards can be solved significantly faster than smaller ones. This is true in particular for ILP-based methods, where for example $n=48$ is unsolved while $n=49$ can be cracked in a few seconds. Interestingly, chessboards with even n seem to be consistently harder than the ones with odd n.

As for the advanced techniques implemented in LEX-DFS, we have to admit that for some of them the overall effect was rather disappointing. In particular, the separation of clique and odd-cycle inequalities, while able to reduce the number of enumerated nodes by more than a factor of 2 , does not lead to a faster algorithm overall. To the contrary, disabling cut separation leads to a slightly faster method with an average runtime of $246 \mathrm{sec} . \mathrm{s}$. Note that this is not due to the complexity of separating cuts, separation being extremely fast for both classes of inequalities, but rather for the reduced node throughput.

n	methods			
	CP	ILP-ITER	ILP-TRUNC	LEX-DFS
21	0.01	0.30	0.45	0.08
22	0.95	1.63	16.67	9.20
23	0.02	0.40	0.60	0.11
24	0.20	0.60	2.95	0.82
25	0.03	0.49	0.79	0.12
26	0.16	0.84	1.59	0.42
27	0.17	0.59	0.90	0.09
28	0.84	1.13	2.08	1.06
29	0.39	1.05	1.36	0.32
30	15.80	13.16	77.05	16.35
31	2.86	1.50	3.31	0.87
32	19.45	4.97	42.73	5.23
33	29.82	28.47	56.76	13.83
34	593.60	342.32	4558.02	228.07
35	33.70	11.21	30.46	4.67
36	5199.27	1882.10	20901.43	1196.59
37	185.37	2.06	7.49	0.54
38	2485.20	101.30	151.86	130.16
39	1642.30	143.02	184.50	44.79
40	t.l.	9604.18	117591.20	7068.84
41	1543.84	20.91	105.47	5.69
42	t.l.	t.l.	t.l.	t.l.
43	23528.50	21.65	162.13	6.08
44	t.l.	1013.43	14838.95	2220.52
45	t.l.	3604.37	4560.69	1388.93
46	t.l.	t.l.	t.l.	t.l.
47	t.l.	1602.10	5057.63	601.54
48	t.l.	t.l.	t.l.	t.l.
49	t.l.	23.26	460.07	10.35
50	t.l.	28011.44	t.l.	61679.70
51	t.l.	4.63	874.16	0.88
52	t.l.	30306.67	27701.60	75659.40
53	t.l.	5.05	285.65	0.96
54	t.l.	64.09	19784.91	67031.40
55	t.l.	44.50	569.58	18.42
56	t.l.	28026.57	13386.85	101936.00
57	t.l.	10.03	3961.54	5.87
58	t.l.	t.l.	129596.69	t.l.
59	t.l.	49647.30	t.l.	18795.70
60	t.l.	t.l.	39143.49	t.l.
shmean	2945.76	780.20	251.85	263.79
\#solved	21	35	35	35

Table 1: Comparison of different methods for $n=21, \ldots, 60$, with a time limit of 172800 sec.s (2 days).

(a)

(b)

Figure 4: Most beautiful n-queens costs and a feasible (actually, optimal) arrangement for $n=6$, with fingerprint $(34,34,26,26,10,10)$.

5 Most-beautiful queens

In the most-beautiful version of the n-queens problem, each blackboard cell (i, j) has a cost defined as

$$
d_{i j}=(2 i-n-1)^{2}+(2 j-n-1)^{2}
$$

that gives (4 times the squared) distance of cell (i, j) from the center of the blackboard, for $i, j=$ $1, \ldots, n$.
Let us define the fingerprint of a feasible solution x as the list

$$
\phi(x)=\left(d_{i j}: x_{i j}=1\right)
$$

sorted in non-increasing order w.r.t. the given input costs $d_{i j}$. Note that the list can contain repeated (consecutive) entries if the cost coefficients are not unique. E.g., for $n=6$ the feasible solution x with $x_{14}=x_{21}=x_{35}=x_{42}=x_{56}=x_{63}=1$ has $d_{14}=26, d_{21}=34, d_{35}=10, d_{42}=10$, $d_{56}=34$ and $d_{63}=26$, hence its fingerprint is $\phi(x)=(34,34,26,26,10,10)$; see Figure 4 for an illustration.

The most-beautiful n-queens problem then calls for a (not necessarily unique) solution x whose fingerprint $\phi(x)$ is lexicographically minimal.

This is a rather general setting, asking for a "lexicographically bottleneck" (or lexicographically $\min -\max$) optimal solution of a given combinatorial problem, hence the solution approach we propose in what follows extends to more general contexts.
When stated in the above way, the most-beautiful n-queens problem can be solved as in Algorithm 1, where the different cost values D_{k} (say) are scanned in decreasing order, and an ILP model is solved to find (and then fix) the minimum number of selected cells (i, j) sharing the same cost $d_{i j}=D_{k}$.

```
Algorithm 1: ILP-based solver for the most-beautiful \(n\)-queens problem.
build an ILP model for the standard \(n\)-queens problem, with no objective function;
sort the costs \(d_{i j}\) 's in decreasing order (removing duplicates) and obtain the list of \(m\) (say) distinct
    costs \(D_{1}>D_{2}>\cdots>D_{m}\);
for \(k=1, \ldots, m\) do
    solve the current ILP model with objective function \(\sum_{i, j: d_{i j}=D_{k}} x_{i j}\) (to be minimized), and let
        \(x^{*}\) be the optimal solution found and \(z^{*}\) its value;
    add the constraint \(\sum_{i, j: d_{i j}=D_{k}} x_{i j}=z^{*}\) to the current ILP model
return \(x^{*}\)
```

At Step 5 , in case $z^{*}=0$ one can more conveniently set $x_{i j}=0$ for all (i, j) such that $d_{i j}=D_{k}$. Note however that, when $z^{*}>0$, one cannot fix $x_{i j}=1$ for $d_{i j}=D_{k}$ and $x_{i j}^{*}=1$, as solution x^{*} is
not necessarily unique-hence this fixing would affect the correctness of the algorithm. In addition, one can exit the for-loop as soon as the sum of the right-hand-side values z^{*} of the cardinality constraints added at Step 5 reaches n.

We observed that most iterations (in particular, the first ones) produce $z^{*}=0$; e.g., for $n=128$ this occurs for the first 397 (out of 1464) iterations. In this situation, the computing time of the overall algorithm is highly affected by the availability of heuristics that are able to find very quickly a solution not using any cell (i, j) with $d_{i j}=D_{k}$-possibly starting from the optimal solution found at the previous iteration. Modern ILP solvers do have such parametric heuristics in their arsenal, which is highly beneficial for the overall computing time.
To gain an additional speedup, we implemented the following simple preprocessing mechanism: We start with $k=1$ and try to find a feasible ILP solution x^{*} with $x_{i j}^{*}=0$ for all (i, j) such that $d_{i j} \geq D_{k+100}$. (To abort the ILP solver as soon as possible, we provide a very small upper cutoff on input to the ILP solver, namely 0.01 in our implementation). If we are successful, we fix to zero all those $x_{i j}$ variables, increase k by 100, and repeat. Otherwise, we just enter the for-loop at Step 4 with the current value of k.

6 Conclusions and future directions of work

Finding a lexicographically minimal (also called "first") solution of the n-queens puzzle is a very difficult problem that attracted some research interest in recent years. Following a suggestion by Donald E. Knuth, we have developed new solution methods based on Integer Linear Programming, and have been able to provide the optimal solution for several open problems.
The two main outcomes of our research are as follows: (1) ILP has been able to solve many previously unsolved models for this problem, sometimes in unexpectedly-short computing times; (2) the yet-unsolved cases provide excellent benchmark examples on which to base the next advances in ILP technology. In addition, we think that improving our understanding on how to solve lexicographic variants of combinatorial problems is an interesting topic on its own. Finally, we developed a convergent pure cutting plane method based on a combinatorial variant of Gomory cuts that we called lexicographic nogood cuts. Though not competitive in our case, this method is theoretically interesting and can be possibly extended to more general binary integer programs.
We also addressed the "most beautiful" version of the problem, that calls for a lexicographically bottleneck (or min-max) solution, and proposed a new ILP-based solution scheme capable of discovering those solutions for some open cases.

Future research should address the unsolved cases, and in particular should try to better understand the reason why, for the lexicographically-first version, the ILP instances with even n seem to be much more difficult to solve than those with n odd.

Acknowledgements

This research was partially supported by MiUR, Italy, through project PRIN2015 "Nonlinear and Combinatorial Aspects of Complex Networks". The research of the first author was also supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-014.. We thank Donald E. Knuth for having pointed out the problem to us, and for inspiring discussions on the role of Integer Linear Programming in solving combinatorial problems arising in digital tomography.

Appendix: Solutions

Here are the lexicographically-first solutions we found for some open problems from the literature:

n	Lexicographically-first solution
56	135249111315681972210252729313342444643
	515355455450475648524912142321323426163017
	2418372840203941353836

n	Lexicographically-first solution
57	135249111315681972210252729311234434547
	505254445749465651485553142817332316183024
	372032212640354139423638
58	135249111315681972210252729311242454852
	544353554944465057475158562826203430181417
	24211635234033363832413937
59	135249111315681972210252729311234364547
	495256534657594851545055581614173223262018
	3335282143413724404430394238
60	135249111315681972210252729311234444648
	455154585059576047495255535618332332281620
	172137352624301442384341393640
61	135249111315681972210252729311214354547
	495254565060466158485153555759233216332117
	26361820382428344030414442373943
63	135249111315681972210252729311214353747
	495153595752606248505463555856613216331721
	263620183828234024303441394446434542
65	135249111315681972210252729311214353739
	495153505659635564626552545760586116301721
	2636332018413823322428484634434044474542
67	135249111315681972210252729311214353739
	415153555258616557666467545659626063161834
	303820241721234332403336262846485044474542
	49
69	135249111315681972210252729311214353739
	414353555754606367596866695658616462651720
	163024334038182134262342492832503651464452
	484547
71	135249111315681972210252729311214353739
	411653555754566268666959706758716164606563
	213017401824362042442634233338322849514547
	5250484643
73	135249111315681972210252729311214353739
	411644555759565863676971736170726560626466
	682034211842173824432328453340362632305447
	50524648535149
77	135249111315681972210252729311214353739
	411618455759615860656872747673756367646277
	706671693840281721242620434642233634323044
	3352554750535654485149
79	135249111315681972210252729311214353739
	411618454759616360626770747177797678646865
	696673757220381721442430234648364240342628
	33503253435752585654514955
85	135249111315681972210252729311214353739
	411618451748506365676466717375808284818372
	706885697874777976202343242149444234462830
	52263851324033614760365358545759566255
91	135249111315681972210252729311214353739
	411618451748205153676971687075777981858790
	869189727476738082847883882134264946244752
	432330335528423254403644645038596165576660
	63565862

n	Lexicographically-first solution
93	135249111315681972210252729311214353739
	411618451748205153556971737072777981838789
	928893917476787582848680859024212346494752
	383056332628433254574244363440506168656259
	635867646660
97	135249111315681972210252729311214353739
	411618451748205153215671737572747981838587
	899395979496768077867882849188909246242852
	234947343026575033614244363255433854606640
	70686358696265676459
101	135249111315681972210252729311214353739
	411618451748205153215658607577797678838587
	899193979910198100808481908286889592949623
	262840435457243247504259333034526268463836
	445566717470497363726761646965
103	135249111315681972210252729311214353739
	411618451748205153215658606277798178808587
	899193959910110310010282868392848890979496
	982326243028364655595254446134663342324749
	403857737163724364707550696776746865
109	135249111315681972210252729311214353739
	411618451748205153215658602363658183858284
	899193958610010410610110910710510888928796
	909710294981039926243228365557406461545030
	663442383349436759627752444775714676807370
	796978727468
115	135249111315681972210252729311214353739
	411618451748205153215658602363246668858789
	8688939597999010210811111310710911211591114
	9810192949610010510311010610426283032365059
	626455433472675233406557444238745461468347
	7769498279758471807881737076

And these are some most-beautiful solutions found by our ILP-based approach (those with $n>48$ are new); the reported computing times are wall-clock seconds on a notebook (Intel Core i7 2.3 GHz with 16GB RAM).

n	time $($ sec.s)	l
16	0.2	91141410251161215731368
32	2.2	1714122318266111342530243151322829382920
		222771510211916
48	21.7	2527292617341238918302174336514453736239
		14841474246841144151932283340102313351631
		202224
64	43.0	33353734404236201748135212273855433982458
		446155215137241646163506256166047592218
		46579410265411531449194529232531283032
80	137.8	414336424831442855575935186515664947681252
		1129105192373566475175211978724180777974
		36260766162025858723071267053691334146732
	1663462224542737503339453840	

(continued on next page)

n	$\begin{array}{r} \text { time } \\ (\sec . \mathrm{s}) \end{array}$	Most-beautiful solution
96	264.6	4951445056593634326268572645742220188037
		8155395867842866117027883089109072625125
		7982941524196939514321779285739123787875
		93169862464133383401654601719787642527143
		2935656361384147534648
112	830.5	5759615849476870727437653481488462278922
		922153461995447136384280131003931102771082
		98881678610798108971539024111210911123110
		96175101625106291052610430103112812784083
		991433756769187394602093912487856351327935
		7650414345666455525456
128	3181.7	6467696357746877508183708641393754345998
		101261052325107782110849531976111885111393
		11443115321394871129109712035899276112124
		15104372125128141271221261171851712310096
		12191930119891184212381161495453616844744
		11082109208075562210610324102283133717392
		904058854648795261557266606265
144	2933.0	737577748082766087899178509747100102104106
		81798634114292711911712084246223901235952
		10119421839175316409510313148131331121137
		101079321371081156205211237241144141143138
		1422813014012513912812481131363513511113444
		99132109144615361299238127579312688499422
		551228312161253026118116313311066641054143
		45989651675456588569636571687072
160	38757.7	818385828890849395979910174571065311011247
		916967721213836127312913233133277526135100
		136605213723541021071051421151810317118145
		46151111474513124441111910419358141139622
		512614937241160157159154158122115612815524
		201534215212315112215011639148120145014643
		1648144581431171911310914096611386563259856
		871343213028301311293412537408994927011449
		511085510459866264666877717379767880
176	10758.2	899193908198851011031051071096611311560119
		5712310012649102739744429538361423214531141
		9914710814828112150636715271122106594821129
		6119158184613212016141154714401641361213311
		1371015592082335639172251433170241176173
		1757174149375151171171571691541682416745166
		13916513413128163121162521643160131159116118
		501271565522125531531142665276977291103078
		146943314434140138831358082130751045112454
		56581176264111687072747692799687848688

References

[1] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin, 2007.
[2] Giuseppe Andreello, Alberto Caprara, and Matteo Fischetti. Embedding \{0, 1/2 $\}$-cuts in a branch-and-cut framework: A computational study. INFORMS Journal on Computing, 19(2):229-238, 2007.
[3] Egon Balas, Matteo Fischetti, and Arrigo Zanette. On the enumerative nature of Gomory's dual cutting plane method. Mathematical Programmming, 125:325-351, 2010.
[4] Egon Balas, Matteo Fischetti, and Arrigo Zanette. A hard integer program made easy by lexicography. Mathematical Programmming, 135(1-2):509-514, 2012.
[5] Jordan Bell and Brett Stevens. A survey of known results and research areas for n-queens. Discrete Mathematics, 309(1):1-31, 2009.
[6] Max Bezzel. Proposal of 8-queens problem. Berliner Schachzeitung, 3:363, 1848.
[7] Alberto Caprara and Matteo Fischetti. $\left\{0, \frac{1}{2}\right\}$-Chvátal-Gomory cuts. Mathematical Programming, 74:221-235, 1996.
[8] Alberto Caprara and Matteo Fischetti. Odd cut-sets, odd cycles, and 0-1/2 Chvatal-Gomory cuts. Ricerca Operativa, 26:51-80, 1996.
[9] Matteo Fischetti and Domenico Salvagnin. Chasing first queens by integer programming. In Willem-Jan van Hoeve, editor, Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages 232-244. Springer, 2018.
[10] L. R. Foulds and D. G. Johnston. An application of graph theory and integer programming: Chessboard non-attacking puzzles. Mathematics Magazine, 57:95-104, 1984.
[11] Gecode Team. Gecode: Generic constraint development environment, 2017. Available at http://www.gecode.org.
[12] Ian P. Gent, Christopher Jefferson, and Peter Nightingale. Complexity of n-queens completion. Journal of Artificial Intelligence Research, 59:815-848, 2017.
[13] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64:275-278, 1958.
[14] Ralph E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The RAND Cooperation, 1960.
[15] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer, 1988.
[16] Jieh Hsiang, D. Frank Hsu, and Yuh-Pyng Shieh. On the hardness of counting problems of complete mappings. Discrete Mathematics, 277(1-3):87-100, 2004.
[17] IBM. ILOG CPLEX 12.7 User's Manual, 2017.
[18] Donald E. Knuth. Private communication, June 2018.
[19] Donald E. Knuth. Private communication, November 2017.
[20] François J.E. Lionnet. Question 963. Nouvelles Annales de Mathématiques, 8:560, 1869.
[21] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In Artificial Intelligence, volume 1, pages 362-367, 1994.
[22] Wolfram Schubert. Wolfram Schubert's N-Queens page, http://m29s20.vlinux.de/ ~wschub/nqueen.html, accessed on December 2017.
[23] Neil J.A. Sloane. The on-line encyclopedia of integer sequences, 2017.
[24] Willem Jan van Hoeve. The alldifferent constraint: A survey. CoRR, 2001.
[25] Arrigo Zanette, Matteo Fischetti, and Egon Balas. Lexicography and degeneracy: can a pure cutting plane algorithm work? Mathematical Programmming, 130:153-176, 2011.

[^0]: *corresponding author: http://www.dei.unipd.it/~fisch

[^1]: ${ }^{2}$ Alternatively, one could fix $x_{i j}=1$, check the resulting model for feasibility, and then move to the next position.

