
AN ALGORITHM AND ESTIMATES FOR THE

ERDŐS-SELFRIDGE FUNCTION

(WORK IN PROGRESS)

BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Abstract. Let p(n) denote the smallest prime divisor of the integer n.
Define the function g(k) to be the smallest integer > k + 1 such that

p(
(
g(k)
k

)
) > k. So we have g(2) = 6 and g(3) = g(4) = 7.

In this paper we present the following new results on the Erdős-
Selfridge function g(k):

(1) We present a new algorithm to compute the value of g(k), and use
it to both verify previous work [1, 16, 12] and compute new values
of g(k), with our current limit being

g(323) = 1 69829 77104 46041 21145 63251 22499.

(2) We define a new function ĝ(k), and under the assumption of our
uniform distribution heuristic we show that

log g(k) = log ĝ(k) + O(log k)

with high “probability”. We also provide computational evidence
to support our claim that ĝ(k) estimates g(k) reasonably well in
practice.

(3) There are several open conjectures on the behavior of g(k) from
[1] which we are able to prove for ĝ(k), namely that for constants
c1 = 0.525 . . . and c2 = 1,

c1 + o(1) ≤ log ĝ(k)

k/ log k
≤ c2 + o(1),

and that

lim sup
k→∞

ĝ(k + 1)

ĝ(k)
=∞.

(4) Let G(x, k) count the number of integers n ≤ x such that p(
(
n
k

)
) >

k. Unconditionally, we prove that for large x, G(x, k) is asymptotic
to x/ĝ(k).

(5) And finally, we show that the running time of our new algorithm
is at most g(k) exp[−c(k log log k)/(log k)2(1+o(1))] for a constant
c > 0. Note that our algorithm deals with two sub-problems that
have both been proven to be NP-complete: the knapsack prob-
lem [4] and finding the smallest solution to a system of modular
congruences [13].

For previous work on the Erdős-Selfridge function, see [1, 2, 16, 12, 11, 5].

1

ar
X

iv
:1

90
7.

08
55

9v
2

 [
m

at
h.

N
T

]
 3

0
A

ug
 2

01
9

2 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

1. Introduction

As stated in the abstract above, let p(n) denote the smallest prime divisor
of the integer n, and define the function g(k) to be the smallest integer> k+1

such that p(
(g(k)
k

)
) > k. So we have g(2) = 6 and g(3) = g(4) = 7.

We begin with a discussion of previous work on g(k), then state our new
results, and finally outline the rest of this paper.

1.1. Previous Work. Paul Erdős introduced the problem of estimating the
function g(k) in 1969 [3]. He, along with Ecklund and Selfridge [1] showed

that g(k) > k1+c for a small constant c, showed that g(k) < ek(1+o(1)), and
tabulated g(k) up to k = 40, plus g(42), g(46), and g(52). They also stated
several conjectures on the behavior of g(k):

(1) lim supk→∞
g(k+1)
g(k) =∞,

(2) lim infk→∞
g(k+1)
g(k) = 0,

(3) g(k) is super-polynomial in k,

(4) limk→∞ g(k)1/k = 1,
(5) and that g(k) < exp[ck/ log k] for a constant c > 0.

So far, only (3) has been proven. Note that (5) implies (4).
Scheidler and Williams [16] described how to use Kummer’s theorem to

construct a sieving problem to compute g(k), and they proceeded to find g(k)
for all k ≤ 140 (they have a typo: g(114) = 59819 90286 02614). Kummer’s
theorem states that a prime p does not divide

(
n
k

)
if and only if the digits of

n’s representation in base p match or exceed the corresponding digits of k’s
representation in base p. Let Mk =

∏
p≤k p

blogp kc+1. This theorem allows

one to set up a sieve problem to search for g(k) as the smallest residue, larger
than k + 1, modulo Mk, that satisfies Kummer’s criteria. Lukes, Scheidler,
and Williams [12] then improved their sieve, used special-purpose hardware,
and computed g(k) for all k ≤ 200.

A complete table of previously known values of g(k) is available online
from the Online Encyclopedia of Integer Sequences (A003458) at
https://oeis.org/A003458.

Erdős, Lacampagne, and Selfridge [2] showed that

g(k)� k2/ log k,

improving the lower bound stated above. Granville and Ramaré [5] improved
this to

g(k) > kc
√

log k/ log log k

for a constant c > 0, thereby proving conjecture (3). Konyagin [11] improved
this even further to

g(k) > kc log k

for a constant c > 0.
See also [6, §B31]. As far as we are aware, no further results on g(k) have

been published since 1999.

THE ERDŐS-SELFRIDGE FUNCTION 3

1.2. New Results. We adapted the sieving techniques from [16, 12] to use
the space-saving wheel sieve, which was described in [17], and was used pre-
viously to find pseudosquares [18], pseudoprimes [19], and primes in patterns
[20]. Our resulting algorithm has, so far, verified all previous computations
for g(k), and extended them for all k ≤ 323. Full tables of results appear
later, but we have

g(323) = 1 69829 77104 46041 21145 63251 22499.

Values of g(k) for k ≤ 272 were found using a single processor core. Subse-
quent values were found using a cluster of 192 cores.

Our analysis makes use of a uniform distribution heuristic. Recall that
Mk :=

∏
p≤k p

blogp kc+1. If we let Rk denote the number of acceptible
residues, under Kummer’s theorem, modulo Mk, and if these residues are, in
a sense, uniformly distributed up to Mk, then we expect g(k) to be roughly
Mk/Rk. In fact, we define

ĝ(k) := Mk/Rk.

Under the assuption of our uniform distribution heuristic, we prove that,
with high probability,

log g(k) = log ĝ(k) +O(log k).

We then show, unconditionally, that conjectures (1), (3), (4), and (5) above
are true for ĝ(k). (Note that it seems possible that conjecture (2) is true for
g(k) but false for ĝ(k).) Specifically, we show that

0.525 . . .+ o(1) ≤ log ĝ(k)

k/ log k
≤ 1 + o(1),

which proves (3), (4), and (5), and we show that

lim sup
k→∞

ĝ(k + 1)

ĝ(k)
=∞.

Let G(x, k) count the number of n ≤ x such that p(
(
n
k

)
) > k. We show

unconditionally that, for x > x0(k),

G(x, k) = x/ĝ(k)(1 + o(1)).

This implies that ĝ(k) should approximate g(k) reasonably well.
With the assumption of our heuristic, we prove a running time for our

algorithm of

g(k) exp

[
−ck log log k

(log k)2

]
for a constant c > 0. We also sketch an more general argument showing our
algorithm running time is sublinear in g(k), unconditionally.

Our paper is organized as follows. In §2 we present tables and graphs of
our newly computed values of g(k). In §3 we present Kummer’s theorem

4 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Figure 1. Logscale plot of g(k) from [1, 15, 12].

and outline how our sieving algorithm works. In §4 we present our algo-
rithm, including a description of the space-saving wheel sieve data struc-
ture, and an extended example. In §5 we discuss the knapsack subproblem
and techniques for splitting prime rings when deciding the sieving modulus
for the algorithm. In §6 we give our uniform distribution heuristic, pro-
vide some statistical evidence for its credibility, show that g(k) is roughly
ĝ(k) = Mk/Rk with high probability, and we give an easy proof of our es-
timate for G(x, k). In §7 we prove conjectures (1) and (3)-(5) for ĝ(k) and
bound the running time of our algorithm.

2. New Values of g(k)

Values of g(k) we computed using a single processor core are listed in
Table 1. Subsequent values of g(k), computed using a small cluster with
192 cores, are in Table 2.

Walls of numbers are not to everyone’s taste. In Figures 1 and 2 are
logscale plots of g(k) values.

3. Kummer’s Theorem

We have the following.

THE ERDŐS-SELFRIDGE FUNCTION 5

k g(k)

200 520 87838 89271 01913 82732
201 235 54612 35023 12966 07453
202 371 93707 68876 94169 93998
203 36 66628 18040 77694 67119
204 178 22243 70804 75634 88989
205 119 23364 21369 70734 19215
206 118 94994 19601 54916 70238
207 4 14102 11738 06206 56623
208 128 63517 97975 53174 93464
209 40 80254 70430 94462 56859
210 3 81063 47274 59626 93595
211 277 19087 51211 86811 93467
212 254 11430 46501 91044 33623
213 941 02942 94951 13843 10999
214 5 42943 43587 62853 77239
215 1 94050 01839 78664 31743
216 43 71951 29369 55065 01119
217 17 60181 71551 23707 20217
218 40 46933 47457 90358 45374
219 4 60119 05176 06932 47999
220 5 07302 74025 33237 33471
221 11 24738 59029 35409 05471
222 11720 13806 06713 22847
223 29 34696 47028 07658 76223
224 51633 58728 02682 87224

k g(k)

225 12369 18109 50028 52853
226 1 33170 49136 16068 80243
227 25 43371 29078 24284 53367
228 4 42953 79137 83327 73614
229 74 31339 46454 40891 68359
230 1795 17836 21533 83405 06863
231 1535 32995 48871 64662 39991
232 111 43965 49911 64968 95483
233 20200 73550 49977 05129 39243
234 9141 02029 72226 64023 95374
235 3353 56843 86952 45592 15615
236 9004 68924 26010 08758 44863
237 128 10339 84890 50088 80623
238 797 67177 19809 53861 33999
239 18991 37758 35752 30838 29999
240 179 81118 13875 42559 25240
241 50194 81877 83204 04927 52119
242 1 05794 00205 01218 84737 54618
243 1675 50917 78080 00171 78623
244 7032 91964 49292 36074 24244
245 35619 19278 93870 30042 55997
246 57819 80943 94360 21432 63998
247 8791 54436 07103 73768 64247
248 1028 52788 08587 24965 75999
249 14 56775 25795 65720 74749

k g(k)

250 276 46926 37489 69206 77374
251 3056 66797 58148 26766 11579
252 10505 00162 90998 95371 30494
253 3103 09358 30344 20590 94269
254 1166 62737 17826 44531 56094
255 1021 56121 82556 87267 01055
256 128 22340 15164 11349 38548
257 7712 29340 10480 52695 50483
258 58587 79034 00801 08562 54858
259 28954 56510 29429 20300 85999
260 9052 78792 60680 37520 93549
261 3752 17161 28291 37355 29917
262 370 44716 59526 93861 95399
263 52789 04430 06789 43127 33639
264 34644 90142 64935 39757 27919
265 29014 53224 87882 19896 83691
266 45629 29239 07110 01927 14698
267 8235 39060 08758 91988 86219
268 68 39739 60096 00722 01118
269 1 61558 09307 54284 34696 01199
270 17012 60056 85638 85052 85598
271 2 37245 88062 88508 66946 32223
272 57 61284 34192 78614 55093 37498

Table 1. Values of g(k), for k up to 272, found with a single
processor core.

6 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

k g(k)

272 57 61284 34192 78614 55093 37498
273 11 93755 72096 07235 88168 84023
274 2 88454 13176 35913 24169 68574
275 17152 34131 63802 94572 85911
276 88030 17168 24411 10341 86038
277 453 93397 13957 10829 21927 70333
278 39 50539 72728 23202 00849 01718
279 2 66648 13175 24792 99862 36799
280 70874 78896 73459 57906 03609
281 123 66293 54022 28562 17374 11069
282 7 38297 70384 67082 65425 71838
283 37813 55429 48519 12235 53898 37243
284 6100 10364 48359 18395 19770 39199
285 78766 18312 18052 31134 42561 68735
286 747 51565 01679 14418 20981 52223
287 992 72191 61150 70855 53665 86719
288 5090 76951 48442 32227 73921 76099
289 4834 99245 99858 90424 83401 35289
290 580 10024 22391 77582 79250 69666
291 209 69391 29197 03178 94977 03719
292 174 18908 52958 77197 48733 28493
293 16639 09980 87532 46018 20569 16799
294 20223 01592 35223 93093 61644 12799
295 14858 57580 15296 66376 70445 68447
296 41418 90259 64755 93533 87671 33096
297 2412 51951 98121 56990 65688 86073
298 25619 63627 54642 94279 56273 35598
299 1832 43102 56640 25079 58634 93499

k g(k)

300 701 85519 63812 11947 39815 22430
301 113 92964 05228 07857 10715 23117
302 1742 88530 64455 07964 88047 54943
303 129 26741 47619 33558 63300 61679
304 13 26053 17393 60472 36038 80314
305 1 72946 53384 73935 85567 11859
306 3 51841 28928 12034 40626 05307
307 1779 34819 88869 76850 45198 63743
308 563 71964 39859 00813 40202 10998
309 98 07021 15457 23811 10525 81749
310 1 24437 81505 29347 17696 51070
311 1560 53896 22680 68278 05256 06711
312 1796 99278 95512 29968 42460 24124
313 3 00996 54176 68374 47827 87101 84313
314 1 87014 93014 72478 06122 67573 88094
315 1361 11485 02742 01184 89157 03743
316 1 03374 01931 39808 86145 47639 65949
317 68 85447 25707 42253 40215 24113 79199
318 6 86881 00807 03611 96229 81358 41598
319 11 86184 98065 18829 52817 06712 46719
320 1 40079 84256 27063 06819 06499 16746
321 2435 79072 21965 54229 62339 49121
322 15 25966 57699 53539 87155 01511 11623
323 1 69829 77104 46041 21145 63251 22499

Table 2. Values of g(k) found with a cluster of 192 processor cores.

THE ERDŐS-SELFRIDGE FUNCTION 7

Figure 2. Logscale plot of our new g(k) values.

Theorem 3.1. Let k < n be positive integers, and let p be a prime ≤ k. Let
t be a positive integer with t ≥ blogp nc. Write

k =
t∑
i=0

aip
i and n =

t∑
i=0

bip
i

as the base-p representations of k and n respectively. Then p does not divide(
n
k

)
if and only if bi ≥ ai for i = 0, . . . , t.

This primarily follows from Legendre’s formula; a detailed proof is given
in [16].

Example. Set k = 10, n = 12, p = 5. Writing in base 5, we have k = 205
and n = 225. This satisfies the theorem, so that

(
12
10

)
is not divisible by 5,

and indeed
(
12
10

)
= 12 · 11/2 = 66. Changing p to 3, we have k = 1013 and

n = 1103. We see that 1 = a0 > b0 = 0, and so 3 divides
(
12
10

)
= 66.

Sieving Example. As was pointed out in [16], this allows us to sieve. We
continue with the example k = 10.

For p = 2, we have k = 10102. We need all the bi ≥ ai, so the choices are
10102, 10112, 11102, and 11112. That is, n must be 10, 11, 14, or 15 modulo
16.

For p = 3, we have k = 1013. This gives the 12 choices

1013, 1023, 1113, 1123, 1213, 1223, 2013, 2023, 2113, 2123, 2213, 2223
modulo 33 = 27.

For p = 5, we have k = 205. This gives the 15 choices

8 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

205, 215, 225, 235, 245, 305, 315, 325, 335, 345, 405, 415, 425, 435, 445

modulo 25.
For p = 7, we have k = 137. This gives the 24 choices

137, 147, 157, 167, 237, 247, 257, 267, 337, 347, 357, 367,
437, 447, 457, 467, 537, 547, 557, 567, 637, 647, 657, 667

modulo 49.
Applying the Chinese remainder theorem, this gives us 4 · 12 · 15 · 24 =

17280 admissible residues modulo 16 · 27 · 25 · 49 = 529200. Note that this
equals M10 as defined in the Introduction. Define Rk to be the number
of admissible residues modulo Mk, so that R10 = 17280. Then g(k) is the
smallest admissible residue > k + 1.

Continuing our example, it so happens that g(10) = 46. Checking, we
have 46 mod 16 = 14, 46 mod 27 = 19 = 2013, 46 mod 25 = 21 = 415, and
46 mod 49 = 46 = 647.

If the admissible residues are, more or less, evenly distributed modulo
Mk, then we would expect g(k) ≈ ĝ(k) = Mk/Rk. This is, in essence, our
uniform distribution heuristic, which we discuss in §6. Note that g(10) = 46
and ĝ(10) = M10/R10 = 30.625, so this is at best a rough approximation.

4. The Algorithm

The naive approach is to search through all the Rk admissible residues
modulo Mk to find the smallest > k + 1. However, Rk is typically too large
for this, making this algorithm practical only for very small k.

Instead, we enumerate residues that satisfy the requirements of Kummer’s
theorem modulo N , where N is a divisor of Mk that is larger than, but near
to g(k).

As we describe our algorithm, we continue our example with k = 10.

(1) Compute Mk, Rk, and estimate of kĝ(k) = k ·Mk/Rk. For k = 10,
this gives M10 = 529200, R10 = 17280, and an estimate of 10 ·
30.625 = 306.25.

(2) Choose a divisor N of Mk just above our estimate. For k = 10, we
choose N = 16 · 3 · 7 = 336.
N is chosen to have a good filtering rate to minimize the number

of residues. Details of how to do this are discussed in §5.
(3) Build a ring data structure for each prime power dividing N . Basi-

cally, this is the list of admissible residues as defined by Kummer’s
theorem.

For k = 10 and N = 336, we have the following rings:
10, 11, 14, or 15 modulo 16
1 or 2 modulo 3
3, 4, 5, or 6 modulo 7

(4) Construct a wheel data structure to generate the residues modulo
N . This algorithm is described in [17]. Below we show the jump
tables computed for k = 10 and N = 336.

THE ERDŐS-SELFRIDGE FUNCTION 9

Ring 16:
residue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
admissible 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
jump +10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +1 +3 +2 +1 +1 +11

Ring 3:
residue 0 1 2
admissible 0 1 1
jump +16 +16 +32

Ring 7:
residue 0 1 2 3 4 5 6
admissible 0 0 0 1 1 1 1
jump +48 +96 +144 +192 +48 +48 +48

Each jump entry is the minimum amount to add that both pre-
serves the residue class modulo earlier rings, and also jumps to an
admissible residue for the current ring.

For speed, it is best to put the ring with the most residues last,
but for correctness, the order does not matter.

(5) Rings for the remaining prime powers are also created, but not a
wheel (the jumps are not needed). We refer to these rings as filters.
A residue passes the filter if, when reduced modulo the ring size,
the corresponding admissible bit is set to one. The smallest residue
generated from the wheel that also passes all the filters is g(k).

So for k = 10 and N = 336, we would build filters for 27, 25,
and 49 at this step. Any prime power ring that is part of the wheel,
where that prime power fully divides Mk, is not needed as a filter.
Or in other words, if a prime divides N but not Mk/N , its prime
power is not needed as a filter. So in our example, we require no
filter for 16.

(6) Now that our data structures are initialized, we generate each residue
modulo N from the wheel to see if it passes the filters. As we go,
we maintain the value of the minimum residue, so far, that passed
all the filters. Once every residue from the wheel is generated, this
minimum is g(k).

Example Continued. To see how the wheel works, we start with k + 2,
12 in our example, the smallest starting point. 12 is not admissible modulo
16, so we appy the jump (+2) to get 14. We pass up to the next ring.
14 mod 3 = 2 is admissible. We pass to the next ring. 14 mod 7 = 0 is not
admissible, so we jump (+48) to get 62. There are 4 total residues in the 7
ring, so we also generate 62 + 48 = 110, 110 + 48 = 158, and 158 + 48 = 206.
All residues produced by the 7 ring are filtered:

62 mod 27 = 8 = 223, fail
110 mod 27 = 2, fail
158 mod 27 = 23 = 2123 pass, but 158 mod 25 = 8 = 135,
fail

10 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

206 mod 27 = 17 = 1223, pass, but 206 mod 25 = 6 = 115,
fail

We then backtrack to ring 3 at 14, and generate 14 + 32 = 46. We pass
to ring 7. The initial value in this ring, 46 mod 7 = 4, is already admissible
and is generated first. We also generate 46 + 48 = 94, 94 + 192 = 286,
and 286 + 48 = 334. These get filtered and 46 passes all filters. We record
this value as a candidate for g(10) and continue the computation to see if
a smaller value exists. Since, g(10) = 46 no such value will be found. Note
that nothing larger than N can be generated.

After 4 residues in the 7 ring, we drop down to the 3 ring, where we have
already done 2 residues, so we drop back to the 16 ring. At the 16 ring, we
generate the next residue 14 + 1 = 15, which is passed up to the 3 ring.

This implies that, at each ring, we need to keep track of the next residue
to generate, and how many have been generated so far so that we know
when to back up to a previous ring.

And so it goes. The amortized cost is a constant number of arithmetic
operations per residue generated by the outermost ring where they are fil-
tered. If we apply the filters in decreasing order of filter rate, on average, a
residue is only tested against a constant number of filters, and so again, the
cost is a constant number of arithmetic operations per residue modulo N .

Finally, we mention that, by keeping track of the minimum residue that
passes the filters, we don’t have to generate any residues larger than this
minimum. In our example, once we see 46 pass the filters, we don’t even
generate the rest of ring 7. This optimization can make a big difference in
practice.

If we run the whole algorithm and fail to find a residue that passes the
filters, this means g(k) > N . In this case, we simply multiply our estimate
for g(k) by k, choose a new, larger N , and try again.

Note that the problem of finding a solution below a given bound y to a sys-
tem of pairwise coprime modular congruences is known to be NP-Complete.
See [4, 13].

5. Prime Splitting and Knapsack

The purpose of this section is to look at how to choose N , a divisor of
Mk that is just larger than our estimate for g(k). We want to choose N so
that the prime powers dividing N give a very low filter rate, thereby giving
fewer residues to enumerate, which makes the algorithm faster.

Note that selecting prime power moduli based on filter rate alone is not
optimal. The size of the modulus matters as well; a smaller modulus with a
higher but still good filter rate can be preferable to a large modulus with a
better filter rate.

We need some notation. Let tp := blogp kc + 1 be the number of digits
required to write k in base p, with the aip representing these digits, so that

k =
∑tp−1

i=0 aipp
i. We have tp ≥ 2, and for most primes tp = 2. Define Tp to

THE ERDŐS-SELFRIDGE FUNCTION 11

be the maximum exponent of p so that pTp | N . This implies 0 ≤ Tp ≤ tp,
and N =

∏
p<k p

Tp . Note that if k happens to be prime, it will have a
terrible filtering rate, and so we never use it in N .

Let rip := p − aip, and let Rxp :=
∏
i≤x rip. Then the number of accep-

tible residues modulo pTp is RTpp. The running time of the algorithm is
proportional to the number of residues modulo N , which, by the Chinese
remainder theorem, is∏

p<k

RTpp =
∏
p<k

pTp
RTpp

pTp
= N ·

∏
p<k

RTpp

pTp
.

We want to minimize the product of the filtering rates for primes included
in N , which is equivalent to maximizing the reciprocal, which we write this
way: ∏

p<k

pTp

RTpp
= exp

∑
p<k

log
pTp

RTpp
.

This allows us to set up a knapsack problem for choosing prime powers to
include in N by setting the overall capacity of the knapsack to logN , and
the size and value of prime powers are set as follows:

size(pT) := log pT = T log p

value(pT) := log(modulus/# residues) = log(pT /RT) = T log p− logRT

The question, then, is how to set T for each prime p to give a good selection
of items to include in the knapsack. Also, we must insure that the same
prime p is not chosen more than once, with different T values, for inclusion
in the knapsack.

Asymptotically, we show in §7 that the expected size of logN is roughly
k/ log k, so that only roughly k/(log k)2 primes are needed in N , allowing
an average filter rate of about 1/ log k for each prime, and that Tp can be
set to 1 for the primes included in N .

In practice, we can often get better results by including prime powers. So
our approach is, for each prime p < k, to compute an optimal value for T
based on filter rate, and then use a greedy algorithm to fill our knapsack.
We call computing this value for T splitting the prime power, and label this
split point sp. We then allow for up to three possible choices for each prime
p: set T = 0 (that is, omit p from N entirely), use T = sp (use the optimal
split point), or use T = tp, the maximum (note that sp = tp is possible).

Next, we show how to compute the optimal split point sp for each prime
power, and then we give an example of its use in constructing N .

5.1. Optimal Splitting. Maximizing the value-to-size ratio, we get

value

size
=

T log p− logRTp
T log p

= 1−
logRTp
T log p

.

12 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

So, in time linear in tp, we can try all possible T values and quickly find the
optimum, sp. Also, since 1 and log p don’t change, it suffices to compute
(1/T) logRTp for each T to find the optimum.

Example. Continuing our example from above with k = 10, let us first
look at p = 2. We have k = 10102. We compute r12 = 2, r22 = 1, r32 = 2,
and r42 = 1. This gives R12 = 2, R22 = 2, R32 = 4, and R42 = 4. We get
value-to-size ratios of 0, 1/2, 1/3, and 1/2. This implies s2 = 2 or 4. In
practice, we normally use the largest value for sp when several values give
the same ratio, since it implies a better filter rate.

For p = 3, we have k = 1013. We have r13 = 2, r23 = 3, and r33 = 2. This
gives R13 = 2, R23 = 6, and R33 = 12. The successive (1/T) logR values
are log 2, (1/2) log 6, and (1/3) log 12. Of these, log 2 is the smallest, giving
s3 = 1.

In a similar fashion, we obtain s5 = 2 and s7 = 1.
We then construct the following table (using the natural logarithm):

p T value size ratio
2 4 log(24/4) log(24) 0.5
3 1 log(3/2) log 3 0.4009. . .
3 3 log(33/12) log(33) 0.246. . .
5 2 log(52/20) log(52) 0.069. . .
7 1 log(7/4) log 7 0.287. . .
7 2 log(72/24) log(72) 0.183. . .

Back in §4 we saw that we wanted N near 306 for k = 10. Using a greedy
algorithm to choose the items to include in our knapsack of size log 306, we
first choose 24 = 16, leaving 306/16 ≈ 20 “room” in our knapsack. We then
choose 3 as the next-best item, leaving about 20/3 ≈ 7 room. The next best
item is 7, filling all remaining room, and giving N = 24 · 3 · 7.

Remarks.

• The general knapsack problem is NP-complete, which means we cur-
rently do not have reasonably fast algorithms for this problem. Our
approach to prime splitting and using a greedy algorithm to choose
prime powers to include is heuristic. For more on the knapsack
problem and the theory of NP-completeness, see [4, 9].
• Our problem of computing N is a bit different from the standard

knapsack problem in that the size of our knapsack, logN , is flexible,
and we have items that are linked – if we choose 33 as an item, then
we cannot choose 31, for example.
• We have a second method for splitting primes, which we call con-

textual optimization that we have not bothered to impement. The
basic idea is to iterate over knapsack solutions, starting with a first
solution based on the optimal splitting method described above.

From that initial solution, we learn the overall quality of the so-
lution, the global value-to-size ratio, and then when we resplit the

THE ERDŐS-SELFRIDGE FUNCTION 13

primes we assume that a scaled version of this “background solu-
tion” will “fill in” for missing primes in our current prime power
under examination. This can result in a different splitting point and
potentially a better overall solution. This process is repeated until
the knapsack solution stops improving.

We may or may not choose to explore this approach as we deal
with larger and larger knapsack problems as k increases.

6. Uniform Distribution Heuristic

Let us recall some definitions and terminology.
We have Mk :=

∏
p≤k p

blogp kc+1. When writing k in base p, for a prime

p ≤ k, we denote aip as the ith digit of k in base p, or aip := bk/pic mod p.
We say r < Mk is an admissible residue if, for every prime p ≤ k, the

digits of r, in base p, all exceed those of k in base p (satisfying the conditions
of Kummer’s lemma) so that p does not divide

(
r
k

)
for every p ≤ k.

Let Rk be the total number of admissible residues < Mk. Then we have

Rk =
∏
p≤k

blogp kc∏
i=0

(p− aip)

by the Chinese remainder theorem. g(k), then, is the smallest r counted by
Rk that is also larger than k + 1.

Our estimate for g(k), ĝ(k), is defined as Mk/Rk.

6.1. The Uniform Distribution Heuristic (UDH). We believe that the
admissible residues behave as if they are chosen at random from a uniform
distribution over the interval [1,Mk − 1]. This is our heuristic. It is not en-
tirely dissimilar to the heuristic that integers ≤ x are prime with probability
1/ log x, and our intention is that these two models be treated similarly, in
that we know they are not, stricty speaking, true, yet seem to have good
predictive behavior under the right circumstances.

6.2. Evidence Supporting the UDH. With the help of Rasitha Jayasekare,
a statistician at Butler University, we ran statistical tests on the residues
for 5 ≤ k ≤ 15. The following table summarizes our findings.

14 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

k Rk Anderson-Darling Kolmogorov-Smirnov
5 80 0.9885 1
6 96 0.9129 0.99
7 1008 1 0.978
8 2304 1 0.901
9 8640 1 0.945

10 17280 0.9989 1
11 285120 – 1
12 518400 – 0.994
13 8087040 – 1
14 9676800 – 1
15 16632000 – 0.998

We mapped the residues into the interval (0, 1) by dividing them by Mk

before running each test.
Here the Anderson-Darling column gives the p-value, a probability value

between 0 and 1, that the given data came from a uniform distribution. The
test fails at k = 11 and higher because the smaller residues were too close
to zero, and the test takes the logarithm of the data items.

The Kolmogorov-Smirnov column reports p-values as well, and seems to
tolerate very small values much better than the Anderson-Darling test.

For an introduction to statistical tests in the context of pseudorandom
number generation, see [10, §3.3], where the Kolmogorov-Smirnov test is
discussed in some detail.

6.3. Estimating g(k) with ĝ(k). Our approach is to first show that g(k)
is, with high probability, close to ĝ(k) = Mk/Rk. In the next section, we
derive an estimate for Mk/Rk.

At this point, we will ignore admissible residues that are ≤ k + 1. Ad-
justing the derivation to include these means using, for example, Mk − k
and Rk−k as appropriate below, but asymptotically this does not affect the
rough estimates we obtain.

Theorem 6.1. The UDH implies that, with probability 1− o(1), we have

ĝ(k)/k ≤ g(k) ≤ kĝ(k).

Proof. We have

Pr(g(k) ≤ x) = 1− Pr(all residues are > x)

= 1−
(
Mk − x
Mk

)Rk

= 1−
(

1− x

Mk

)Rk

THE ERDŐS-SELFRIDGE FUNCTION 15

Figure 3. Comparing g(k) with ĝ(k)

For an upper bound, set x = (kMk)/Rk, to obtain

Pr(g(k) ≤ (kMk)/Rk) = 1−
(

1− k

Rk

)Rk

∼ 1− e−k = 1− o(1)

for large Rk (and Rk does get quite large).
Here we used the well-known fact that

lim
n→∞

(
1 +

x

n

)n
= ex.

For a lower bound, set x = Mk/(kRk) to obtain

Pr(g(k) ≤Mk/(kRk)) = 1−
(

1− 1

kRk

)Rk

∼ 1− e−1/k = o(1).

This completes the proof. �

So we have that, with high probability,

log g(k) = log ĝ(k) +O(log k)

if we assume the uniform distribution heuristic.
In Figure 3, we have empirical data comparing actual values of g(k) (the

black x’s) compared to ĝ(k) plotted as intervals from ĝ(k)/k up to kĝ(k) as
red error bars. The plot uses a logarithmic scale.

Figure 4 zooms in on the range 200 ≤ k < 250 for better visibility.
With the exception of g(99), the data suggest that ĝ(k) is a good estimator

for g(k).

16 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Figure 4. Comparing g(k) with ĝ(k) for 200 ≤ k < 250

Recall that G(x, k) counts the integers n ≤ x such that p(
(
n
k

)
) > k. We

conclude this section with the following.

Theorem 6.2. If x is sufficiently large, then G(x, k) = (x/ĝ(k))(1 + o(1)).

Proof. Write x = q · Mk + r using the division algorithm, with integers
q, r > 0 and r < Mk. A contiguous interval of length Mk will have exactly Rk
admissible residues, so G(qMk, k) = qRk. The remaining interval of length
r has at most Rk residues, so G(x, k) = G(qMk, k) +O(Rk) = qRk +O(Rk)
but q = bx/Mkc, so

G(x, k) = bx/MkcRk +O(Rk) = (x/ĝ(k))(1 + o(1)).

�

7. Analysis

We start with a proof of Conjecture (1) from [1], but applied to ĝ(k)
instead of g(k).

Theorem 7.1. We have

lim sup
k→∞

ĝ(k + 1)

ĝ(k)
=∞.

This proof uses some of the ideas from Section 3 in [12].

Proof. We will prove a lower bound proportional to log k in the case when
k + 1 is an odd prime. Since there are infinitely many primes, this will be
sufficient to prove the theorem.

THE ERDŐS-SELFRIDGE FUNCTION 17

Note that ĝ(k + 1)/ĝ(k) = (Mk+1/Mk)(Rk/Rk+1).
First, we look at Mk+1/Mk. Recall that

Mk =
∏
p≤k

pblogp kc+1 and Mk+1 =
∏

p≤k+1

pblogp(k+1)c+1.

We can write

Mk+1 =
∏

p≤k+1

pblogp(k+1)c+1

= (k + 1)2 ·
∏
p≤k

pblogp(k+1)c+1

= (k + 1)2 ·Mk.

Here we use the fact that for every prime p ≤ k, blogp(k + 1)c = blogp kc
when k + 1 is prime.

Next we look at Rk/Rk+1. Using the same notation for aip as above, and
noting that the prime k + 1 will contribute k(k + 1) residues, by Kummer’s
theorem, we have

Rk
Rk+1

=

∏
p≤k

∏blogp kc
i=0 (p− aip)

k(k + 1) ·
∏
p≤k(p− (a0p + 1))

∏blogp(k+1)c
i=1 (p− aip)

=
1

k(k + 1)

∏
p≤k

p− a0p
p− (a0p + 1)

.

Again we note that blogp(k+ 1)c = blogp kc, and observe that the represen-
tation for k+1 in base p is the same as for k, with the exception of the least
significant digit, a0p, which is one larger, for all primes p ≤ k. This is only
because k + 1 is prime; k + 1 mod p cannot be zero unless p = k + 1.

We then bound
p− a0p

p− (a0p + 1)
≥ p

p− 1

to obtain that
Rk
Rk+1

≥ 1

k(k + 1)
eγ log k(1 + o(1))

using Mertens’s theorem. We deduce that

Mk+1/Rk+1

Mk/Rk
� (k + 1)2

k(k + 1)
log k ≥ log k

to complete the proof. �

To prove Conjectures (3), (4), and (5) from [1] for ĝ(k), we prove the
following.

Theorem 7.2.

0.525821 . . .+ o(1) ≤ ĝ(k)

k/ log k
≤ 1 + o(1).

18 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Applying the definitions for Mk and Rk above, we have

ĝ(k) =
Mk

Rk
=

∏
p≤k p

blogp kc+1∏
p≤k

∏blogp kc
i=0 (p− aip)

=
∏
p≤k

blogp kc∏
i=0

p

p− aip

=
∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
·
∏

√
k<p≤k

blogp kc∏
i=0

p

p− aip

=
∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
·
∏

√
k<p≤k

p

p− a1p
p

p− a0p
.

Here we observed that blogp kc+ 1 = 2 when p >
√
k.

We will show that the product on the factor involving a0p is exponential in
k/ log k, and is therefore significant; and the other two factors, the product

on primes up to
√
k, and the factor with a1p, are both only exponential in√

k.
We bound the first product, on p ≤

√
k, with the following lemma.

Lemma 7.3. ∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
� e3

√
k(1+o(1)).

This bound is not as tight as possible, but more than sufficient for our
purposes.

Proof. We note that aip ≤ p− 1, giving

∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
≤

∏
p≤
√
k

blogp kc∏
i=0

p =
∏
p≤
√
k

pblogp kc+1

≤
∏
p≤
√
k

p3blogp
√
kc.

From [7, Ch. 22] we have the bound

(7.1)
∑
p≤x
blogp xc log p = x(1 + o(1)).

Exponentiating and substituting
√
k for x gives the desired result. �

Next, we show that the product involving a1p is small.

THE ERDŐS-SELFRIDGE FUNCTION 19

Lemma 7.4. ∏
√
k<p≤k

p

p− a1p
� 2

√
k.

This lemma is also not as tight as it might be; in particular, the 2 here
can likely be replaced with

√
2. In any case, though, it seems clear from the

proof that this is exponential in
√
k.

Proof. Observe that for any prime p with
√
k < p ≤ k, if a1p = a, then

k/(a+ 1) < p ≤ k/a. We have

∏
√
k<p≤k

p

p− a1p
=

b
√
kc∏

a=1

∏
k/(a+1)<p≤k/a

p

p− a
=

b
√
kc∏

a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=

b
√
kc∏

a=1

∏
a<p≤k/a

(
1− a

p

)−1
∏
a<p≤k/(a+1)

(
1− a

p

)−1
=

b
√
kc∏

a=1

(c(a) log(k/a))a(1 + o(1))

(c(a) log(k/(a+ 1)))a(1 + o(1))

= (1 + o(1))
log k

log(k/2)
·
(

log(k/2)

log(k/3)

)2

·
(

log(k/3)

log(k/4)

)3

· · ·

 log(k
b
√
kc)

log(k
b
√
kc+1

)

b
√
kc

= (1 + o(1))
log k

log
√
k
· log(k/2)

log
√
k
· log(k/3)

log
√
k
· · · log(k/b

√
kc)

log
√
k

� 2
√
k.

This used the following variant of Mertens’s theorem, which holds for b > 0,
where c(b) is a constant that depends only on b:

(7.2)
∏

b<p≤x

(
1− b

p

)
=

(
c(b)

log x

)b
(1 + o(1)).

This is readily proved following the arguments in Hardy and Wright [7,
§22.7]. �

We now have

log ĝ(k) = log

 ∏
√
k<p<k

p

p− a0p

+O(
√
k).

The following lemma, then, wraps up the proof of our theorem.

20 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Lemma 7.5.

0.525821 . . . · k

log k
(1 + o(1)) ≤ log

 ∏
√
k<p≤k

p

p− a0p

 ≤ k

log k
(1 + o(1)).

Proof. Fix a1p = a. Then k/(a+ 1) < p ≤ k/a, and a0p = k mod p = k− ap
and p− a0p = p− (k − ap) = (a+ 1)p− k. We have∏

k/(a+1)<p≤k/a

p

p− a0p
=

∏
k/(a+1)<p≤k/a

p

(a+ 1)p− k

= exp
∑

k/(a+1)<p≤k/a

log(p)− log((a+ 1)p− k)

The first term, then, is k/(a(a+ 1)) + o(k/ log k), using

(7.3)
∑
p<x

log p = x+ o(x/ log x).

Rewriting the second sum as an integral, using the prime number theorem,
we get

−
∑

k/(a+1)<p≤k/a

log((a+ 1)p− k)

= −
∫ k/a

k/(a+1)

log((a+ 1)t− k)

log t
dt+ o(k/ log k)

= − 1

log(k/(a+ α))

∫ k/a

k/(a+1)
log((a+ 1)t− k)dt+ o(k/ log k)

Here α is between 0 and 1, determined implicitly by the mean value theorem.
The precise value of α may depend on both k and a. We use either α = 0 or
α = 1, depending on whether we want an upper or lower bound, respectively.

Using substitution, we can readily show that∫ k/a

k/(a+1)
log((a+ 1)t− k)dt =

k(log(k/a)− 1)

a(a+ 1)
.

We have, then,

log

 ∏
√
k<p<k

p

p− a0p

 + o(k/ log k)

=

√
k∑

a=1

(
k

a(a+ 1)
− k(log(k/a)− 1)

a(a+ 1) log(k/(a+ α))

)

=
k

log k
·

√
k∑

a=1

1− log
(
1 + α

a

)
a(a+ 1)

·
(

1 +O

(
log a

log k

))
.

THE ERDŐS-SELFRIDGE FUNCTION 21

Figure 5.

The last step requires a bit of algebra, and the observation that 1/(u− v) =
1/u + v/(u(u − v)). Also note that the error term is truly error, as can be
seen by splitting the sum at, say, (log k)2.

To obtain the upper bound, set α = 0, and note that
∑

1/(a(a + 1))
converges to 1. To obtain the lower bound, set α = 1, and note that

∑
(1−

log(1 + 1/a))/(a(a+ 1)) converges to a constant near 0.525821 �

We do not know if the limit

lim
k→∞

log ĝ(k)

k/ log k

exists. See Figure 5, which plots ĝ(k) for k ≤ 2000, and compares it to
graphs of the functions exp[ck/ log k] for c = 0.525 . . . and c = 1, and to

exp[k/ log k+
√
k] to account for the error terms above that are exponential

in
√
k.

Algorithm Running Time. We conclude with a bound on the running
time of our algorithm.

Theorem 7.6. If the UDH is true, then with probability 1− o(1), our algo-
rithm has a running time bounded by

g(k) · exp

[
−ck log log k

(log k)2
(1 + o(1))

]
where c > 0 is constant.

22 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Proof. Without loss of generality, we assume that g(k) ≤ N < k · g(k), as
we can guess a smaller N , run the algorithm, and if it fails to find g(k),
include another prime p with k/2 < p < k in N , and repeat. Since N at
least doubles each time we do this, the cost of running the algorithm on
all N < g(k), and failing, is bounded by a factor of log g(k) times the cost
of the final run with a value of N > g(k) that succeeds. We absorb this
multiplicative factor of log g(k) in the o(1) error term in the exponent of the
running time bound above as log g(k) = Θ(k/ log k) with high probability.
In particular, this gives us logN = (1 + o(1)) log g(k) with high probability.

For the purposes of this proof, we choose N to be a product of some
primes between k/2 and k. This is conservative, as the choice of primes or
prime powers for inclusion in N , using the methods discussed earlier, will
result in a faster algorithm in practice. So we have∏

p|N

p = N ≈ g(k)

and thus ∑
p|N

log p = logN ∼ log g(k)� k/ log k.

Since
∑

k/2<p≤k log p = (k/2)(1 + o(1)), we have more primes in this range

than we need for N by a factor of roughly (1/2) log k. Thus, we can choose
the best k/(log k)2 primes (roughly) below k of the k/ log k that are available.
As a result, we expect to get a filtering factor of 1/ log k for the primes we
choose. Indeed, if we choose all primes p with k/2 < p < k/2 + c1k/ log k,
with c1 > 0 an appropriate constant we fix later, this is the case.

Let’s check that this gives us a good value for N . We have

logN =
∑

k/2<p<k/2+c1k/ log k

log p

=
c1k

(log k)2
log(k/2)(1 + o(1))

=
c1k

log k
(1 + o(1)),

which is larger than log g(k) with high probability if we choose c1 > 2. (See
[14, (2.29)].)

Now we address the filter rate, and hence the running time. For each such
prime p,

k +
2c1k

log k
> 2p > k,

which implies

k − p > p− 2c1k

log k

THE ERDŐS-SELFRIDGE FUNCTION 23

so that

a0p = k mod p = k − p

> p− 2c1k

log k
> p− 4c1p

log k

= p

(
1− 4c1

log k

)
.

Our running time, then, is proportional to the number of acceptible residues
modulo N , which is∏

k/2<p<k/2+c1k/ log k

(p− a0p) =
∏
p

(
p− p

(
1− 4c1

log k

))

=
∏
p

p · 4c1
log k

= N
∏
p

4c1
log k

≤ kg(k)

(
4c1

log k

)c1k/(log k)2(1+o(1))
= g(k) exp

[
−c1

k log log k

(log k)2
(1 + o(1))

]
.

�

The UDH is stronger than what we need to prove a sublinear running
time. The central issue is finding enough primes p with k/2 < p ≤ k/2 + ∆
such that the product of these primes is roughly g(k). If the number of
primes in this interval is ∆/ log k, then we can set ∆ ≈ log g(k). Pushing
this through our argument above, we obtain a running time of the form

g(k) · exp

[
−c∆
log k

log

(
4∆

k

)
(1 + o(1))

]
where c > 0 is constant. Observe that plugging in log g(k) ≈ k/ log k gives
our theorem, but this form is valid so long as we can find enough primes.
In fact, if log g(k) � kθ, with 7/12 < θ ≤ 1, we can use a result due to
Heath-Brown [8] on primes in short intervals to guarantee this is true.

If g(k) is smaller than this, we would choose ∆ = (log g(k)/ log k)E(k),
where E(k) is the error term for the prime number theorem for π(k), to
give us the needed log g(k)/ log k primes above k/2. (If we assumed the
Riemann Hypothesis, this would let us use a smaller E(k) term.) Pushing
this through, we obtain a weaker, but still sublinear, running time.

Acknowledgments. The first author was supported in part by the But-
ler Summer Institute, by the Honors program, and by the Mathematics
Research Camp at Butler University. The second and third authors were

24 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

supported in part by a grant from the Holcomb Awards Committee at Butler
University.

Special thanks to Rasitha Jayasekare, our friendly neighborhood statisti-
cian, for helping us with uniform distribution statistical tests. Also thanks
to Michael Filaseta for his help with references.

Finally, thanks to Frank Levinson, who generously supports Butler Uni-
versity’s computing research infrastructure.

References

[1] E. F. Ecklund, Jr., P. Erdös, and J. L. Selfridge. A new function associated with the
prime factors of (nk). Math. Comp., 28:647–649, 1974.

[2] P. Erdős, C. B. Lacampagne, and J. L. Selfridge. Estimates of the least prime factor
of a binomial coefficient. Math. Comp., 61(203):215–224, 1993.

[3] Paul Erdős. Some problems in number theory. In A.O.L. Atkin and B.J. Birch, editors,
Computers in Number Theory, pages 405–414. Academic Press, 1971.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[5] Andrew Granville and Olivier Ramaré. Explicit bounds on exponential sums and the
scarcity of squarefree binomial coefficients. Mathematika, 43(1):73–107, 1996.

[6] Richard K. Guy. Unsolved problems in number theory. Problem Books in Mathemat-
ics. Springer-Verlag, New York, third edition, 2004.

[7] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 5th edition, 1979.

[8] D.R. Heath-Brown. The number of primes in a short interval. Journal für die reine
und angewandte Mathematik, 389:22–63, 1988.

[9] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin Hei-
delberg, 2013.

[10] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, vol-
ume 2. Addison-Wesley, Reading, Mass., 3rd edition, 1998.

[11] S. V. Konyagin. Estimates of the least prime factor of a binomial coefficient. Mathe-
matika, 46(1):4155, 1999.

[12] Richard F. Lukes, Renate Scheidler, and Hugh C. Williams. Further tabulation of the
Erdős-Selfridge function. Math. Comp., 66(220):1709–1717, 1997.

[13] Kenneth L. Manders and Leonard Adleman. NP-complete decision problems for bi-
nary quadratics. Journal of Computer and System Sciences, 16(2):168 – 184, 1978.

[14] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6:64–94, 1962.

[15] R. Scheidler and H. C. Williams. A public-key cryptosystem utilizing cyclotomic
fields. Technical Report 15/92, University of Manitoba, Department of Computer
Science, November 1992.

[16] Renate Scheidler and Hugh C. Williams. A method of tabulating the number-theoretic
function g(k). Math. Comp., 59(199):251–257, 1992.

[17] Jonathan P. Sorenson. The pseudosquares prime sieve. In Florian Hess, Sebastian
Pauli, and Michael Pohst, editors, Proceedings of the 7th International Symposium
on Algorithmic Number Theory (ANTS-VII), pages 193–207, Berlin, Germany, July
2006. Springer. LNCS 4076, ISBN 3-540-36075-1.

[18] Jonathan P. Sorenson. Sieving for pseudosquares and pseudocubes in parallel using
doubly-focused enumeration and wheel datastructures. In Guillaume Hanrot, Francois
Morain, and Emmanuel Thomé, editors, Proceedings of the 9th International Sym-
posium on Algorithmic Number Theory (ANTS-IX), pages 331–339, Nancy, France,
July 2010. Springer. LNCS 6197, ISBN 978-3-642-14517-9.

THE ERDŐS-SELFRIDGE FUNCTION 25

[19] Jonathan P. Sorenson and Jonathan Webster. Strong pseudoprimes to twelve prime
bases. Math. Comp., 86(304):985–1003, 2017.

[20] Jonathan P. Sorenson and Jonathan Webster. Two algorithms to find primes in pat-
terns. arXiv:1807.08777, 2018.

Butler University, Indianapolis, IN 46208, USA
E-mail address: bsorenso@butler.edu

Butler University, Indianapolis, IN 46208, USA
E-mail address: sorenson@butler.edu

URL: blue.butler.edu/∼jsorenso

Butler University, Indianapolis, IN 46208, USA
E-mail address: jewebste@butler.edu

	1. Introduction
	1.1. Previous Work
	1.2. New Results

	2. New Values of g(k)
	3. Kummer's Theorem
	Example
	Sieving Example

	4. The Algorithm
	Example Continued

	5. Prime Splitting and Knapsack
	5.1. Optimal Splitting
	Example
	Remarks

	6. Uniform Distribution Heuristic
	6.1. The Uniform Distribution Heuristic (UDH)
	6.2. Evidence Supporting the UDH
	6.3. Estimating g(k) with (k)

	7. Analysis
	Algorithm Running Time
	Acknowledgments

	References

