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Abstract

A barred preferential arrangement is a preferential arrangement onto

which a number of identical bars are inserted in between the blocks

of the preferential arrangement. In this study we examine combinato-

rial properties of barred preferential arrangements whose elements are

colored with a number of available colors.
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Keyword(s): Preferential arrangements, barred preferential arrangements, gener-

ating functions of Nelsen-Schmidt type.

1. Introduction

Barred preferential arrangements.

A preferential arrangement of a set Xn = {1, 2, 3, . . . , n} is an or-

dered partition of the set Xn. Introducing ξ bars (where ξ ∈ N0 =

{0, 1, 2, 3, . . . , }) in between blocks of a preferential arrangement results

in a barred preferential arrangement. The ξ bars induce ξ + 1 sections

in which the elements of Xn are preferentially arranged (see [2, 3]).

The following are some examples of barred preferential arrangements

of the set X6 having two bars and three bars respectively.

a) 35 2| |1 4 6
1
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b) |5 136 4 2| |

The two bars in a) give rise to three sections; namely, the first section

(from left to right) has two blocks, the second section is empty i.e the

section between the two bars, and the third section has three blocks.

Similarly, the barred preferential arrangement in b) has four sections of

which three are empty. Barred preferential arrangements seem to first

appear in [2].

Remark 1. In this study barred preferential arrangements are viewed

as being formed by first placing bars and then preferentially arranging

elements on the sections formed. The authors in [3] have used the same

technique in their arguments.

In [4] Nelsen conjectured that;

(1)
n

∑

k=0

k
∑

s=0

(

k

s

)

(−1)k−s(γ + s)n =
1

2

∞
∑

s=0

(γ + s)n

2s
,

for γ ∈ R (the set of real numbers) and non-negative integer n. In [9]

three alternative proofs of the conjecture were given by Donald Knuth

et al. Here we propose and prove an alternative identity to the ones

given by Donald Knuth et al in [9] in generalising Nelsen’s conjecture

and show how one side our generalised identity can be interpreted com-

binatorially in terms of barred preferential arrangements. From now

on we will refer to (1) as Nelsen’s Theorem.

The authors in [12] proposed the following generating function as

a way of generalising geometric polynomials, (1+αx)γ/α

(1−y((1+αx)β/α−1))λ
. The

authors using a non combinatorial argument recognised that the gen-

erating function offers a form of generalised barred preferential arrange-

ments. In this study we examine combinatorial properties of integer

sequences arising from the generating function when α = 0 and y = 1.



3

2. Nelsen-Schmidt Question

Nelsen and Schmidt in [11] proposed the family of generating func-

tions,

(2)
eγx

2− ex
.

In the manuscript for γ = 2 the authors interpreted the generating func-

tion as being that of the number of chains in the power set of Xn. The

generating function for γ = 0 is known to be that of number of prefer-

ential arrangements/number of outcomes in races with ties (see [7, 8]).

In the manuscript Nelsen and Schmidt then asked, “could there be

combinatorial structures associated with either Xn or the power set of

Xn whose integer sequences are generated by members of the family

in (2) for other values of γ?” We will now refer to this question as

the Nelsen-Schmidt question, and to the generating function in (2) as

the Nelsen-Schmidt generating function. In answering the question of

Nelsen and Schmidt the authors in [3] have proposed that the gener-

ating function eγx

2−ex
is that of number of restricted barred preferential

arrangements for all values of γ in non-negative integers. Furthermore,

the authors in [3] interpreted the following more general generating

function in terms of restricted barred preferential arrangements,

(3)
eγx

(2− ex)λ
,

where γ and λ are non-negative integers not simultaneously equalling

to 0.

In the following we examine combinatorial properties of a further

generalisation of the Nelsen-Schmidt generating function,



4

(4)
eγx

2− eβx
,

where β, γ are non-negative integers not simultaneously equalling to 0.

In the following the numbers S(n, i, α, β, γ) are generalised stirling

numbers. The numbers seem to first appear in [16].

Lemma 1. [6] For α, β, γ ∈ N0, where (α, β, γ) 6= (0, 0, 0),

S(n, i, α, β, γ) = 1

βii!
∆i(βi+ γ|α)n

∣

∣

s=0
= 1

βii!

∑

s

(−1)i−s
(

i

s

)

(βs+ γ|α)n.

Theorem 1. [13] Suppose α, β, γ are non-negative integers such that α

divides both β, and γ. Given i+1 distinct cells such that the first i cells

each contains β labelled compartments, and the (i+ 1)th cell contains

γ labelled compartments. The compartments are given cyclic ordered

numbering. The compartments are limited to one ball. The number

βii!S(n, i, α, β, γ), is the number of ways of distributing n distinct ele-

ments into the i+ 1 cells such that the first i cells are non-empty.

Using Lemma 1 we obtain the following corollary of Theorem 1.

Corollary 1. Given Xn. Partitioning Xn into i+1 distinct blocks, such

that the first i blocks have β labelled compartments, and the (i + 1)th

section has γ labelled compartments. The number i!βiS(n, i, 0, β, γ) is

the number of all possible partitions of Xn into the i + 1 blocks such

that only the (i+ 1)th block may be empty.

The numbers Bn(α, β, γ) are defined in the following ways. We will

refer to these numbers later.

Lemma 2. [10]For α, β, γ ∈ N0, where where (α, β, γ) 6= (0, 0, 0),

Bn(α, β, γ) =
∑

i

i!βiS(n, i, α, β, γ).
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Lemma 3. [10]For real/complex α, β, γ such that (α, β, γ) 6= (0, 0, 0),

(5)

∞
∑

n=0

Bn(α, β, γ)
xn

n!
=

(1 + αt)γ/α

2− (1 + αt)β/γ
.

Property 1. By Lemma 1 we have,

(6) S(n, i, 0, β, 0) =
1

βii!

∑

s

(−1)i−s

(

i

s

)

(βs)n.

Hence, for fixed i, β in non-negative integers, the number βii!S(n, i, 0, β, 0)

is the number of ways of partitioning an n-element set into i blocks

where each of the i blocks has β labelled compartments such that none

of the blocks is empty.

A: Xn set is partitioned into i ordered blocks.

B: Elements on each block are distributed into β labelled

compartments.

The question is; how many partitions of Xn are possible satisfying A

and B.

The above question can be rephrased in the following way.

In how many ways can we distribute n distinct elements into i labelled

cells where each of the cells has β compartments, such that none of the

i cells is empty, where 0 ≤ i ≤ n. By (6) and Lemma 2 the number we

are looking for is Bn(0, β, 0).

Property 2. Xn is distributed into γ labelled compartments.

Denote
[

xn

n!

]

eγx

2−eβx by Hn(β, γ).

Remark 2. Throughout the remainder of this paper in forming barred

preferential arrangements(BPAs) where applicable, the section with prop-

erty 2 will be the first section from the left(sometimes this section will
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be referred to as the special section) the remaining sections will all have

property 1 unless stated otherwise.

In the following theorem we answer the Nelsen-Schmidt question

asked in (2) in a generalised form.

Theorem 2. The generating function eγx

2−eβx for β, γ in non-negative

integers (where (β, γ) 6= (0, 0)), is that of the number of barred prefer-

ential arrangements with one bar, such that one section has property 1

and the other section has property 2.

Proof. By (4) we have,

(7) Hn(β, γ) =
∑

r

(

n

r

)

Br(0, β, 0)γ
n−r.

Hence, Hn(β, γ) is the number of barred preferential arrangements

of an n-element set having one bar such that one fixed section has

property 1 above and the other section has property 2. �

Remark 3. The generating function eγx

2−eβx can be derived from the

generating function in (5).

Theorem 3. β ≥ 0 and n, γ ≥ 1,

Hn(β, γ) = γn +

n−1
∑

i=0

(

n

i

)

Hi(β, γ)β
n−i.

Proof. Let Hn(β, γ) denote the set of barred preferential arrangements

on n elements with one bar (so with two sections), such that the ele-

ments of the left hand side are labelled further with a number between

{1, . . . , γ}, while the elements right to the bar with a number from the

set {1, . . . , β}. Clearly, |Hn(β, γ)| = Hn(β, γ). We obtain an element

of the set h ∈ Hn(β, γ) the following way: if there is no element on the



7

right hand side of the bar, then we need only to assign to each element

of [n] a number from [γ], which gives γn possibilities. If there is at least

one element to the right of the bar, then first let us construct the block

right next to the bar in this section from (n− i) elements in
(

n
n−i

)

βn−i

ways. The remainder i elements form an element hi of Hi(β, γ). Since

n−i 6= 0, we obtain the number of all elements in Hn(β, γ) by summing

up over i, where i runs from 0 to n− 1. �

Theorem 4. For n, β, γ ≥ 0, where (β, γ) 6= (0, 0),

Hn+1(β, γ) = γHn(β, γ) + β
∑

i

(

n

i

)

Hi(β, γ)Hn−i(β, β).

Proof. The recursion is based on the process of the inserting the (n +

1)th element into a barred preferential arrangement on n elements.

First, we can insert the (n + 1)th element into the block of the left

section. Then, we just need to choose a label from [γ] for this new

element. Otherwise, let B∗ denote the block into which we add (n+1).

Cut the barred preferential arrangement before B∗ and let i denote

the number of elements in the part before B∗. The first part is then a

barred preferential arrangement from Hi(β, γ), while the second part

can be seen also as a barred preferential arrangement of the rest of the

elements with B∗ as the special block next to left of the bar, i.e., from

Hn−i(β, β). We choose in
(

n
i

)

ways the elements for the first part, and

choose the label of (n + 1) in β ways. Multiplying these together and

summing up by letting the index i to run, we obtain the theorem. �

Theorem 5. For n, β, γ ≥ 0, (β, γ) 6= (0, 0),

Bn(0, β, 0) =
∑

i

(

n

i

)

Hi(β, γ)(−1)n−iγn−i.
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Proof. Let Bi be the number of barred preferential arrangement of the

set Hn(β, γ) with at least (n − i) elements in the first, special block

with γ compartments. |Bi| =
(

n
n−i

)

Hi(β, γ)γ
n−i. The application of

the inclusion- exclusion principle completes the proof. �

3. generalised barred preferential arrangements.

The generating function for the number of barred preferential ar-

rangements is (see[2]);

(8)
1

(2− ex)λ+1
,

where λ is a non-negative integer. The work in [3] is one generalisation

of these barred preferential arrangements where the authors studied

the generating function

(9)
eγx

(2− ex)λ
,

where λ, γ ∈ N0, where N0 is the set of non-negative integers.

Another generalisation of barred preferential arrangements has been

done in [12].

In this section we propose a further generalisation of barred preferen-

tial arrangements to the generalisation we have in the previous section

by interpreting the following generating function in terms of barred

preferential arrangements,

(10)
eγx

(2− eβx)λ
,

where γ ∈ N0, and λ, β ∈ N (positive integers).
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Lemma 4. [10]For real/complex α, β, γ such that (α, β, γ) 6= (0, 0, 0),

Bn(α, β, γ) =
1

2

∞
∑

k=0

(βk + γ|α)n
2k

.

Denote
[

xn

n!

]

eγx

(2−eβx)λ
by Hn(λ, β, γ).

Theorem 6. Given λ, γ ∈ N0 such that (λ, γ) 6= (0, 0), and β ∈ N,

Hn(λ, β, γ) is the number of barred preferential arrangements of Xn

such that λ of the sections have property 1 and one section has prop-

erty 2.

Proof. 1
2−eβx = 1

2

∞
∑

k=0

e(βk)x

2k
=⇒

[

xn

n!

]

1
2−eβx = 1

2

∞
∑

k=0

(βk)n

2k
.

By Hn(λ, β, γ) =
[

xn

n!

]

eγx

(2−eβx)λ
and Lemma 4 we have,

(11) Hn(λ, β, γ) =
∑

r1+···+rλ+1=n

(

n

r1, r2, . . . , rλ+1

)

γr1

λ+1
∏

i=2

Bri(0, β, 0).

�

Note the generating function eγx

(2−eβx)λ
is a special case of the gener-

ating function (1+αx)γ/α

(1−y((1+αx)β/α−1))λ
studied in [12].

Remark 4. The interpretation of the numbers Hn(λ, β, γ) given in

Theorem 6 does two things;

I). It is a generalisation of the barred preferential arrangements in (8)

and (9).

II). Further, it further generalises the answer to the Nelsen Schmidt

question we have given in Theorem 2 above.

Remark 5. The special case λ = 1, β = 2, and γ = 0 on Theorem 6 is

the sequence A216794 in [14].
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Remark 6. The statement of Theorem 6 for the special case λ = 1

can be derived from that given for the numbers Bn(α, β, γ) in [10].

Theorem 7. For β ∈ N, and λ ≥ 2,

(12) Hn(λ, β, β) =
1

2
Hn(λ − 1, β, β) +

1

2β(λ− 1)

n
∑

i=0

(

n

i

)

Hi+1(λ− 1, β, 0)βn−i.

Proof. First, we write the formula in a combinatorially nicer form.

2β(λ− 1)Hn(λ, β, β) = β(λ − 1)Hn(λ− 1, β, β) +

n
∑

i=0

(

n

i

)

Hi+1(λ− 1, β, 0)βn−i

Consider the set of elements of Hn(λ, β, β) such that one of the β com-

partments is colored red and one of the λ bars, except the first one,

is marked with a 0 or a 1. We let H∗

n(λ, β, β) denote the set of the so

obtained decorated barred preferential arrangements. The left hand

side of the equality enumerates this set. We describe a map, that

associates to each decorated preferential arrangement of H∗

n(λ, β, β) an-

other barred preferential arrangement so that the image of the map

is a set enumerated by the right hand side. Consider the label of the

chosen bar. If the bar has a 0, delete the bar and insert a block with

a single extra (n + 1)th element. If the bar is labelled by 1, consider

what is right next to the left of the bar. If there is a block, insert

(n + 1) into this block, if it is another bar, delete this bar. In each

cases when inserting (n+1), it is also colored red, i.e., receives the same

β-compartment that is chosen. The number of barred preferential ar-

rangements that we obtain by deleting a bar, (and not inserting (n+1))

is β(λ − 1)Hn(λ − 1, β, β), since one β-compartment is still colored red,

and we have only λ − 1 with a 1 marked bar left. In the other cases,

we obtain a barred preferential arrangement on n + 1 elements, i.e.,

elements of the set Hn+1(λ − 1, β, β), such that the first special section
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does not contain the (n + 1)th element. This is, because the first bar

was not marked, hence during the insertion process (n + 1) was never

put into the section left to the first bar. The number of these barred

preferential elements is
∑n

i=0

(

n

i

)

Hi+1(λ− 1, β, 0)βn−i. We obtain this for-

mula according to the enumeration of the following pairs: choose the

n− i elements for the first special block and construct it in βn−i ways.

Combine these blocks with barred preferential arrangements on (i + 1)

elements with λ− 1 sections and empty first, special section, for which

we have Hi+1(λ− 1, β, 0) possibilities. �

Theorem 7 is a generalisation of Theorem 1 of [2].

Theorem 8. For γ, λ ∈ N0, where (λ, γ) 6= (0, 0),

(13) Hn+1(λ, β, γ) = γHn(λ, β, γ) + λβ

n
∑

i=0

(

n

i

)

Hi(1, β, β)Hn−i(λ, β, γ).

Proof. Let Hn(λ, β, γ) denote the set of barred preferential arrange-

ments with λ bars (so λ+1 sections), such that the first section includes

one special block with elements labelled from the set {1, . . . , γ}, and

the elements in the rest of the blocks labelled from the set {1, . . . , β}.

We enumerate the set Hn+1(λ, β, γ) based on the position of the ele-

ment (n+ 1). It can be included in the special first block, which gives

γHn(λ, β, γ) possibilities Otherwise, let B∗ be the block that contains

(n + 1). Consider the portion of the barred preferential arrangement

from B∗ till the next bar to its right (including B∗ itself), and let

i be the number of elements contained in these blocks. This por-

tion can be seen as a barred preferential arrangement from the set

Hi(β, β) = Hi(1, β, β). Ignoring this portion of the barred preferen-

tial arrangements, the remaining elements form a barred preferential

arrangements from Hn−i(λ, β, γ). For this construction we need to
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choose the i elements out of the n elements in
(

n
i

)

ways, the section

in that B∗ is placed in λ ways and finally, the label of (n + 1) in β

ways. Multiplying these together and summing up completes the ar-

gument. �

Theorem 9. For γ, λ ∈ N0, where (λ, γ) 6= (0, 0),

(14) Hn+1(λ, β, γ) = γHn(λ, β, γ) + λβHn(λ+ 1, β, γ + β).

Proof. Again, the left hand side is the size of the set Hn+1(λ, β, γ).

Consider the (n + 1)th element. If it is contained in the first section,

(let’s denote this block by Γ), then there are γHn(λ, β, γ) possibilities

to obtain such a barred preferential arrangement on n + 1 elements

from a one on n elements. Assume now that the (n + 1)th element

is in a block, say B∗, with β compartments. Decompose the section

including B∗ as B1B
∗B2, where B1 and B2 are ordered partitions with

the extra structure of having a label for each element from [β] on each

block. We reorder the parts of this barred preferential arrangement as

follows: Move the block B∗ to the left of the first block, and merge Γ

and B∗ into one block. Insert instead of the block B∗ a bar between the

sequences of blocks B1 and B2, and finally, delete (n + 1). We obtain

this way a barred preferential arrangement on n elements, with (λ+1)

bars and (γ + β) compartments in the first, special block. Hence, the

number of such barred preferential arrangements is Hn(λ+1, β, γ+β).

There are two information that we have to keep in track: which β

compartment was the (n+ 1)th element assigned to, and which bar is

the inserted bar. Hence, we have λβHn(λ+1, β, γ+β) as total number

of barred preferential arrangements on n + 1 elements such that the

(n+ 1)th element is not in the first, special block. �
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Theorem 10. For γ, λ ∈ N,

(15) Hn(λ, β, γ + β) = 2Hn(λ, β, γ)−Hn(λ− 1, β, γ).

Proof. Consider the set Hn(λ, β, γ + β). In these barred preferential

arrangements the elements in the first block are labelled from the set

{1, 2, . . . , γ, γ+1, . . . , γ+β}. The number of such barred preferential ar-

rangements that have only labels from the set {1, . . . , γ} is Hn(λ, β, γ).

If there is at least one element with a label from {γ + 1, . . . , γ + β},

then move these elements to the right of the first bar, to create the

first block in the ordered partition of the second section. We obtain

this way a barred preferential arrangement with γ compartments in

the first, special block and at least one block in the second section

with β compartments. How many such barred preferential are there?

Hn(λ, β, γ)−Hn(λ−1, β, γ), since we need to exclude the barred prefer-

ential arrangements that do not have any block in the second section,

which are clearly in bijection with barred preferential arrangements

with one less, i.e., (λ− 1) bars. �

Theorem 10 is a generalisation of Theorem 9 of [3].

Theorem 11. For β ∈ N,and λ ≥ 2,

(16) Hn(λ, β, 0) =
1

2β(λ− 1)
Hn+1(λ− 1, β, 0) +

1

2
Hn(λ− 1, β, 0).

Proof. This proof is similar to that of Theorem 7. We rewrite the

identity as

2β(λ− 1)Hn(λ, β, 0) = β(λ− 1)Hn(λ− 1, β, 0) +Hn+1(λ− 1, β, 0)

The left hand side is the number of decorated barred preferential ar-

rangements of H∗
n(λ, β, 0), (with empty first section). Inserting n + 1
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according to the above rule, the deletion of the marked bar without

inserting n+1 leads to barred preferential arrangements on n with one

β compartment chosen and one of its λ − 1 bars marked. This gives

β(λ−1)Hn(λ−1, β, 0) possibilities. Deleting the marked bar and insert-

ing (n+1) leads to barred preferential arrangements on n+1 elements,

λ−1 bars, and empty first section, for which we have Hn+1(λ−1, β, 0)

possibilities. �

The following theorem offers a generalisation of Nelsen’s Theorem

discussed in (1).

Theorem 12. For β, γ, λ ∈ R, and n ∈ N0, where (λ, γ) 6= (0, 0),

(17)

n
∑

k=0

k
∑

s=0

(

k

s

)

(−1)k−sHn(λ− 1, β, γ + βs) =

∞
∑

s=0

Hn(λ− 1, β, γ + βs)

2s+1
.

Proof. eγx

(2−eβx)λ
= eγx

(2−eβx)λ−1

∞
∑

k=0

(eβx − 1)k.

=⇒
[

xn

n!

]

eγx

(2−eβx)λ
=

n
∑

k=0

k
∑

s=0

(

k
s

)

(−1)k−sHn(λ− 1, β, γ + βs)

Also, eγx

(2−eβx)λ
= 1

2
eγx

(2−eβx)λ−1

∞
∑

s=0

exsβ

2s
.

=⇒
[

xn

n!

]

eγx

(2−eβx)λ
= 1

2

∞
∑

s=0

Hn(λ−1,β,γ+βs)
2s

. �

The argument used in Theorem 12 is a generalisation of that used

in proving Equations 2 and 4 of [7].

Theorem 13. For γ, n ∈ N0 and β, λ ∈ N, the number of barred pref-

erential arrangements of Xn having λ bars. Where the first section has

γ+kβ compartments (0 ≤ k ≤ n) and the remaining λ−1 sections have

property 1, such that none of the k parts each having β compartments

is empty,
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(18)

n
∑

k=0

k
∑

s=0

(−1)k−s

(

k

s

)

Hn(λ− 1, β, γ + βs).

Proof. Considering a barred preferential arrangement of Xn having γ+

kβ compartments on the first section (where k = 0, 1, 2, . . . , n) and

λ − 1 sections having property 1. The number of those arrangements

in which s of the k parts having β compartments are empty is

Hn(λ− 1, β, γ+ βk− βs). The inclusion-exclusion principle completes

the proof. �

Remark 7. Theorem 13 is a generalised combinatorial interpretation

of one side of Nelsen’s Theorem discussed in (1).

Corollary 2. For γ ∈ N0 and β, λ ∈ N,

(19)
n

∑

k=0

k
∑

s=0

(

k

s

)

(−1)k−sHn(λ− 1, β, γ + βs) = Hn(λ, β, γ).

Proof. In Theorem 13 the k parts with β compartments each on the

first section can collectively can be interpreted as a single section having

property 1. The by the inclusion/exclusion principle we have,
n
∑

k=0

k
∑

s=0

(

k
s

)

(−1)k−sHn(λ− 1, β, γ + βs) = Hn(λ, β, γ).

�

The proof of Corollary 2 is a generalisation of that used in obtaining

Equation 2 of [8].

Corollary 3 (Gould & Mays[5]). The number of chains on the power

set of Xn is,
n
∑

k=0

k
∑

s=0

(

k
s

)

(2 + s)n(−1)k−s,

for all n ∈ N0.
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The generalisation of the Nelsen- Schmidt type generating functions

can be interpreted formally, automatically by the symbolic method[1].

The general generating function,

eγx

(2− eβx)λ
,

is the result of the translation of the following construction according

to the general theory:

[SET(X )]γ × [SEQ([SET(X )]β>0]
λ.

Formally, this is a a triple of the following: a γ-tuple of possible

empty sets, a λ-tuple of non-empty sequences of β-tuples of sets of

elements. This is clearly equivalent to the set Hn(λ, β, γ). Namely,

the first section is the γ-tuple of sets. Further, since the order of the

sections are determined by the λ bars, it an be seen as λ-tuples of

the containments of the sections. Each section contains an ordered

partition with the extra structure of having β compartments. This is

a sequence of β-tuples of sets, and here we do not allow that all entries

of the β-tuples are empty.

Lemma 5. [15] Assume f(z) =
∞
∑

n=0

anz
n is an analytic function in

some region containing the origin, assume that a singularity of f(z) of

smallest modulus be at a point z0 6= 0, and suppose that ǫ > 0 is given.

Then ∃ N such that ∀ n > N we have |an| <
(

1
|z0|

+ ǫ

)n

.

Theorem 14. For every ǫ > 0, and λ, β ∈ N, ∃ N ∈ N such that for

n > N ,

(20) Hn(λ, β, γ) = O
(

n!
(

β
log 2

+ ǫ

)n)

.
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Proof.

(21) f(z) =
eγz

(2− eβz)λ
.

f(z) has the singularities z = log 2+2kπi
β

where k ∈ N0. So f(z) is

analytic on the disk |z| < log 2
β

, the special case β = 1, γ = 0 and λ = 1

is found in page 45-48 of [15]. By lemma 5 we obtain the result.

�
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