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1 Abstract

We combinatorially prove Tetranacci, Tetranacci-Fibonacci, and additional iden-
tities using only squares and dominoes on a hexagonal double-strip. Some of
these are new proofs of old identities, and others we believe have never been
seen before.

2 Introduction

As is well known, the Fibonacci numbers count the number of tilings of a rect-
angular strip of length n with squares and dominoes (or in other words, with
squares and double-squares). There’s a book Proofs That Really Count by Ben-
jamin and Quinn [1], which has numerous combinatorial proofs of Fibonacci
identities.

Similar identities for the Tetranacci numbers can be found by using tilings
of a rectangular strip of length n with tiles of lengths 1, 2, 3, and 4 [4]. In this
paper, we look instead at a hexagonal double-strip with tiles of lengths only 1
(hexagons) and 2 (double-hexagons).

First, some definitions. We define an n-hexagonal double-strip (later simpli-
fied as n-HD-strip) as a strip with two rows of a total of n adjacent hexagons.
Here is an example of an 8-HD-strip:
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In order to simplify the graph, we use points to represent the hexagons and
dotted lines to indicate the adjacency of two hexagons.

In addition, we use squares to represent hexagons and dominoes to represent
double-hexagons to make the illustration similar to that in the combinatorial
proofs of Fibonacci numbers in [1]. Here is a correspondence between the two
graphs.

The hexagon and double-hexagon on an HD-strip, which are pictured above,
can be simplified to squares and dominoes on a dot-line frame, which is pictured
below.
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Now, let us define Tn to be the number of different ways to tile an n-HD-
board with squares and dominoes. Thus, T4 = 8, because there are eight ways
to tile an HD-board of length 4, as shown here:

With a few minutes of effort, we are able to find these values of Tn:

The first few values for Tn

n 0 1 2 3 4 5 6 7 8
Tn 1 1 2 4 8 15 29 56 108

Because there is exactly one way to tile an HD-strip of length 0, we define
that T0 equal 1.

From the table, we can easily find that for 3 < n < 9,

Tn = Tn−1 + Tn−2 + Tn−3 + Tn−4,
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and as we will show in a moment, this formula holds for all n > 3, giving us the
well-known Tetranacci numbers.

In the proof of our first theorem, as with most proofs in this paper, one of
the two answers to the counting question breaks the problem into disjoint cases
depending on a property. We refer to this as conditioning on that property.

Here are some basic definitions that we may refer to later in the proofs of
this paper:

Cells: places that will be covered with tiles. The cells in the graphs are indicated
by dots.

n-HD-strip or n-HD-board: hexagonal double-strip with n cells.

n-Single strip: a rectangular single row of n cells, the visual representation
used to prove combinatorial identities of Fibonacci Sequence in [1].

Cell number for an HD-strip: count cell number from left to right, as
illustrated by the graph. Note that the lower row has all cells with odd cell
numbers, and that the upper row has all cells with even cell numbers.

Location of a square: number of the cell it covers.

Left-domino: left-inclined domino.

Right-domino: right-inclined domino.
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Inclined domino: either left-inclined or right-inclined domino.

Horizontal domino:

Location of a domino: number of the latter cell it covers. Note that the
location of a left-domino is always an odd number bigger than or equal to 3,
the location of a right-domino is always an even number bigger than or equal
to 2, and the location of a horizontal domino is always an integer bigger than
or equal to 3.

Right-stacked dominoes:

Left-stacked dominoes:

Stacked dominoes: either right-stacked or left-stacked dominoes.

Nth Diagonal: the line that separates cells n and n − 1 from cells n + 1 and
n + 2.
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Breakability at a given diagonal: we call a diagonal breakable if no domino
lies across it, and unbreakable if at least one domino lies across it.

Theorem 1. For n > 3,

Tn = Tn−1 + Tn−2 + Tn−3 + Tn−4

Proof. Question: How many tilings of an n-HD-board exist?

Answer 1: By definition, there are Tn such tilings.

Answer 2: Condition on the last tile of the n-HD-strip. If the last tile is:

1. a square, there is an (n-1)-HD-board left, leading to Tn−1 tilings.

2. an inclined domino: there is an (n − 2)-HD-board left, leading to Tn−2

tilings.

3. a horizontal domino, condition on the tile on cell (n− 1). If the tile is:

(a) a square, there is an (n− 3)-HD-board left, leading to Tn−3 tilings.
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(b) a horizontal domino, there is an (n − 4)-HD-hoard left, leading to
Tn−4 tilings.

By proving the theorem above, we verify that the sequence Tn satisfies the
property that the sum of four consecutive terms is equal to the next term. Such
sequence has an official name: the Tetranaccis [5]. Note that our sequence starts
with T0 = 1, T1 = 1, T2 = 2, and T3 = 4. Particularly, we define T−1 to be 0,
because T−1 = T3 − T2 − T1 − T0.

3 New Proofs of Old Theorems

For these next theorems, we use the combinatorial technique of finding a corre-
spondence between two sets of objects. The formula was proved algebraically in
[3] and combinatorially in [4] using tiles of lengths 1, 2, . . . , r on a rectangular
single strip. But here we propose a novel combinatorial approach.

Theorem 2. For n > 5, we have:

2Tn−1 = Tn + Tn−5

Proof. We first create two sets.

Set 1: Tilings of an (n− 1)-HD-strip. This set has size Tn−1.

Set 2: Tilings of an n-HD-strip or an (n − 5)-HD-strip. This set has size
Tn + Tn−5

Correspondence: to prove the theorem, we establish a 1-to-2 correspondence
between Set 1 and Set 2. Specifically, we use each (n− 1)-HD-strip in Set 1 to
create two separate HD-strips in Set 2 that have length n or (n− 5), and we do
so in such a way that every possible n-HD-strip and (n− 5)-HD-strip is created
exactly once.

Given a particular (n− 1)-HD-strip, we first use it to create an n-HD-strip
by appending a square to the (n− 1)-HD-strip.
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Now, given that same (n − 1)-HD-strip, we use it a second time to create
one of the following, depending on the ending of that (n− 1)-HD-strip.

If the (n− 1)-HD-strip ends with:

1. a square, remove that square and append an inclined domino to the resul-
tant (n− 2)-HD-strip.

2. an inclined domino, remove that domino and append a square and a hor-
izontal domino to the end of the resultant (n− 3)-HD-strip, as illustrated
by the graph.
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3. a horizontal domino, if the end:

(a) is two stacked dominoes, remove them both to get an (n − 5)-HD-
strip.

(b) is a horizontal domino and a square, replace the square with a hori-
zontal domino.

To verify that this is a 1-to-2 correspondence, we note that every tiling of
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an n-HD-strip or an (n− 5)-HD-strip is indeed created exactly once by using a
tiling of an (n− 1)-HD-strip exactly twice.

The formulas in Theorem 3 and 4 were proved algebraically by Waddill [2],
but here we give combinatorial proofs.

Theorem 3. For n > 3, we have:

T2n = T 2
n + T 2

n−1 + T 2
n−2 + 2Tn−1(Tn−2 + Tn−3)

Proof. Question: How many tilings of a 2n-HD-board exist?

Answer 1: T2n, by definition.

Answer 2: Condition on the breakability of the nth diagonal of a 2n-HD-
strip. Without loss of generality, we assume that n is odd.

1. If the nth diagonal is breakable, then the 2n-HD-strip can be divided into
two n-HD-strips. Thus, there are (Tn)2 ways of tilings.

2. If it is unbreakable, there are 4 possible situations:

(a) If an inclined domino crosses the nth diagonal, the 2n-HD-strip can
be broken up into two (n − 1)-HD-strips, so there are (Tn−1)2 ways
of tilings.

(b) If two horizontal dominoes cross the nth diagonal, there are two
(n− 2)-HD-strips left, leading to (Tn−2)2 ways of tilings.
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(c) If only a horizontal domino in the upper row crosses the nth diagonal,
further condition on the tile on cell n. If it is:

i. a square, there are Tn−2Tn−1 tilings.

ii. a horizontal domino covering cells n and n−2, there are Tn−3Tn−1

tilings.

so there are Tn−1(Tn−2 + Tn−3) tilings overall.

(d) If only a horizontal domino in the lower row crosses the diagonal,
further condition on the tile on cell n + 1. Similar to part c, we will
get Tn−1(Tn−2 + Tn−3) tilings overall.

Summing the tilings in part (a) to (d) gives us an overall of T 2
n +T 2

n−1 +T 2
n−2 +

2Tn−1(Tn−2 + Tn−3) tilings.

Theorem 4. For n > 4, we have:

Tn − 1 = Tn−2 + 2Tn−3 + 3(Tn−4 + Tn−5 + · · ·+ T1 + T0)

Proof. Question: How many tilings of an n-HD-board have at least one domino?

Answer 1: Tn − 1, subtracting the all-square tiling from the set of all tilings
of an n-HD-strip.

Answer 2: Condition on the location of the first domino. Note that it can
be either a horizontal domino, left-domino, or right-domino. Also note that the
location can be an integer in the set [2,n], and all cells with cell numbers smaller
than the location of the first domino are squares. When the location is:

1. 2, the domino can only be a right-domino. So there are Tn−2 tilings.
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2. k with 2 < k < n, the domino can be either a horizontal domino or an
inclined domino (left-domino when k is odd and right-domino when k is
even). When it is:

(a) an inclined domino, there are Tn−k tilings.

(b) a horizontal domino, further condition on the tile covering cell k− 1.
If it is a square, there are Tn−k tilings. If it is a domino, it can only
be a horizontal domino covering cells k − 1 and k + 1, so there are
Tn−k−1 tilings.

3. n, when the domino is:

(a) a horizontal domino, the tile covering cell n− 1 must be a square, so
there are T0 tilings.

(b) an inclined domino, there are also T0 tilings.

Therefore, overall there are:

Tn−2 + (Tn−3 + Tn−3 + Tn−4) + (Tn−4 + Tn−4 + Tn−5) + · · · + (T1 + T1 +
T0) + T0 + T0 = Tn−2 + 2Tn−3 + 3(Tn−4 + Tn−5 + · · ·+ T1 + T0) tilings.
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4 New Proofs of New Theorems

The following theorems appear to be completely new, as we have not found
anything similar in the mathematical literature.

We begin with a lemma.

Lemma 1. The number of tilings of a 2n-HD-strip that consist of only right-
dominoes and squares equals 2n.

Proof. we first need to draw the 2th, 4th,..., (2n−2)th diagonals, which decom-
pose the 2n-HD-strip into n “double-cells”. Since there are only squares and
right-dominoes, all the diagonals drawn are breakable. There are 2 options to
fill each of the n double-cells: a right-domino or two squares. Therefore, there
are 2n tilings of the 2n-HD-strip made up by only squares and right-dominoes.

Theorem 5. For n > 2, we have

T2n − 2n = 2Tn−3 +

n−1∑
i=1

2iT2n−2i−2 + 5 ∗
n−3∑
i=0

2iT2n−2i−5

Proof. Question: How many 2n-HD-strips have at least one horizontal domino
OR left-domino?

Answer 1: T2n−2n. By the lemma above, we subtract the set of 2n-HD-strips
with only right-dominoes and squares from the set of all 2n-HD-strips.

Answer 2: Condition on the first horizontal domino OR left-domino. Note
that the location can range from 3 to 2n. If the location is:

1. 2k with 1 < k < n, it must be the location of the first horizontal domino.
We find that the tile on cell 2k−3 must be a square, because it cannot be
a right-domino (no space). We further condition on the tile on cell 2k−1.
If it is:
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(a) a square, the 2n-HD-strip is decomposed into a (2k− 4)-HD-strip on
the left and a (2n− 2k)-HD-strip on the right. There are 2k−2 ways
to tile the (2k − 4)-HD-strip by the lemma above and T2n−2k ways
to tile the (2n− 2k)-HD-strip. So there are 2k−2T2n−2k tilings.

(b) a horizontal domino covering cells 2k − 1 and 2k + 1, similarly, the
2n-HD-strip is decomposed into a (2k − 4)-HD-strip on the left and
a (2n − 2k − 1)-HD-strip on the right. There are 2k−2 ways to tile
the (2k− 4)-HD-strip by the lemma above and T2n−2k−1 ways to tile
the (2n− 2k − 1)-HD-strip. So there are 2k−2T2n−2k−1 tilings.

2. 2k − 1 with 1 < k < n + 1, the tile can be either a left-domino or a
horizonal domino. If it is:

(a) a horizontal domino, if the tile covering cell 2k − 2 is:

i. a square, the 2n-HD-strip is decomposed into a (2k−4)-HD-strip
on the left and a (2n− 2k + 1)-HD-strip on the right. By lemma
1, there are 2k−2T2n−2k+1 tilings.

ii. a horizontal domino, similarly, we would have 2k−2T2n−2k tilings.

(b) a left-domino, the tile on cell 2k − 3 must be a square, so we have
a (2k − 4)-HD-strip on the left and a (2n− 2k + 1)-HD-strip on the
right. There are 2n−2T2n−2k+1 tilings.
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3. 2n, the tile here must be a horizontal domino, and the tile on cell 2n− 1
must be a square. Also note that the tile on cell 2n−3 must be a square as
well, since there is no space for a right-domino. Thus, we have a (2n− 4)-
HD-strip on the left. By lemma 1, there are 2n−2 tilings, which can be
written as 2n−2T0 to align its form with other terms.

Adding all the parts together, we have that for each k with 1 < k < n,
there are 2k−1T2n−2k +2k−1T2n−2k+1+2k−2T2n−2k−1 tilings, and that there are
2n−2T0 tilings for location 2n and 2n−1T1 + 2n−2T0 tilings for location 2n− 1.
After uniting like terms, we get 2Tn−3+

∑n−1
i=1 2iT2n−2i−2+5∗

∑n−3
i=0 2iT2n−2i−5

tilings.

Now, we begin to incorporate Fibonacci numbers into the formulas and
show their interactions with Tetranacci numbers. One may wonder how the
Fibonacci sequence is related to the HD-strips. Now we will show that under
certain conditions the tilings of HD-boards are combinatorial representations of
Fibonacci numbers. We begin with two simple identities.

Lemma 2. If we define Hn to be the number of ways to tile an n-HD-board
without horizontal dominoes, we have

Hn = fn

Proof. The proof is quite simple. Without horizontal dominoes, we can “stretch”
the n-HD-board into an n-single strip. Thus, each tiling of an n-single strip
corresponds to a tiling of an n-HD-board without horizontal dominoes. So
Hn=fn.

Lemma 3. If we define Dn to be the number of ways to tile a 2n-HD-board with
n dominoes, we have

Dn = fn

Proof. Taking a closer look, we would discover that the case is in fact similar to
using squares and dominoes to tile an n-single strip. First, there cannot be any
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left-dominoes, otherwise we would have odd number of cells on both sides of the
left-domino, which is impossible for an all-domino tiling. Hence, we are only
using right-dominoes and horizontal dominoes. The problem can be reduced to
only two cases: right-stacked horizontal dominoes and right-dominoes.

On a 2n-HD-board, right-stacked horizontal dominoes as a whole correspon-
des to a domino on a n-single strip, and a right-domino correspond to a square
on a n-single strip. As a result, each of the tiling of a 2n-HD-strip with dominoes
correspond to a square-domino tiling of an n-single strip. So Dn=fn.

Now, we use the two lemmas to prove the next two more complex theorems.

Theorem 6. For n > 2, we have:

T2n − fn = T2n−1f1 + T2n−3f2 + · · ·+ T3fn−1 + T1fn

or in other words,

T2n − fn =

n∑
i=1

T2n+1−2ifi

Proof. Question: How many tilings of an 2n-HD-board have at least one square?

Answer 1: T2n− fn. By definition, there are T2n tilings of an 2n-HD-board,
and by lemma 3, there are fn tilings of an all-domino 2n-HD-board.

Answer 2: Condition on the location of the first square of a 2n-HD-strip. It
can take every integer value from 1 to 2n− 1. When the location is:

• 1, there are T2n−1 tilings, which can also be written as T2n−1f1 tilings in
order to align its form with the remaining terms.
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• k with 1 < k < 2n, further condition on the parity of k. If k equals:

– 2t with 0 < t < n, since k is the location of the first square, with a
couple of trials we can find that there must be a horizontal domino
that lies on cells 2t−1 and 2t+1, as illustrated by the graph. Hence,
there is an all-domino (2t − 2)-HD-strip on the left and a square-
domino (n − 2t − 1)-HD-strip on the right. From lemma 3, we can
figure out that there are ft−1Tn−2t−1 , namely ft−1T2n−2t−1 tilings.

– 2t + 1 with 0 < t < n, there cannot be a horizontal domino that
covers cells 2t and 2t + 2, otherwise there are odd number of cells
on the left, which is impossible for an all-domino tiling. Thus, the
2n-HD-strip can be decomposed into an all-domino 2t-HD-strip and
a square-domino (2n − 2t − 1)-HD-strip. By lemma 3, there are
ftT2n−2t−1 tilings.

Since ft + ft−1 = ft+1, for each t, there are ft+1Tn−2t−1 tilings.
So overall there are f2T2n−3 + f3T2n−5 + · · · + fnT1 tilings when
1 < k < 2n.

Adding the two parts together, we have T2n−1f1+T2n−3f2+ · · ·+T3fn−1+T1fn
tilings.

Theorem 7. For n > 4, we have:

Tn − fn = f1Tn−3 + f2Tn−4 + f3Tn−5 + · · ·+ fn−2T0

or in other words,

Tn − fn =

n−2∑
i=1

fiTn−i−2

Proof. Question: How many tilings of an n-HD-board have at least one hori-
zontal domino?

Answer 1: Tn−fn. By definition, there are Tn tilings of an n-HD-board, and
by lemma 2, there are fn tilings of an n-HD-board without horizontal dominoes.
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Answer 2: Condition on the location of the first horizontal domino. Note
that the location can be any integer value from 3 to n. For the first horizontal
domino with location k, we further condition on the tile on cell k − 1. If it is:

1. a square, the n-HD-strip is decomposed into a (k−3)-HD-strip on the left
and an (n− k)-HD-strip on the right. By lemma 2, there are fk−3 tilings
on the left and Tn−k tilings on the right. Therefore, we have fk−3Tn−k

tilings for each k.

2. a horizontal domino (when k 6= n) covering cells k−1 and k+1 ,the n-HD-
strip is decomposed into a (k− 3)-HD-strip on the left and an (n−k− 1)-
HD-strip on the right. By lemma 2, there are fk−3 tilings on the left and
Tn−k−1 tilings on the right. Thus, we have fk−3Tn−k−1 tilings for each k.

Overall, there are (f0Tn−3 + f1Tn−4 + f2Tn−5 + . . . + fn−3T0) + (f0Tn−4 +
f1Tn−5 + f2Tn−6 + · · ·+ fn−4T0) tilings. Since fn = fn−1 + fn−2 by definition,
we get f1Tn−3 + f2Tn−4 + f3Tn−5 + · · · + fn−2T0 after merging the terms two
by two and rewriting f0Tn−3 as f1Tn−3.

Theorem 8. For n > 2, we have:

T2n − (fn)2 =

n∑
i=1

f2
i−1T2n−2i +

n∑
i=2

fi−2fi−1T2n−2i+1

Proof. Question: How many tilings of a 2n-HD-board with at least one inclined
domino are there?

Answer 1: T2n−(fn)2. Without inclined dominoes, the 2n-HD-board can be
horizontally separated into two n-single strips, which have (fn)2 tilings. Sub-
tract them from the set of all 2n-HD-board tilings will result in T2n − (fn)2

tilings.
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Answer 2: Condition on the location of the first inclined domino. The first
inclined domino can be either a left-domino or a right-domino. If it is a:

1. right-domino with location 2k (0 < k < n + 1), there are (fk−1)2 tilings
on the left of the right-domino and T2n−2k tilings on its right. Thus, there
are (fk−1)2T2n−2k tilings overall for each k.

2. left-domino with location 2k − 1 (1 < k < n + 1), there are fk−2fk−1

tilings on the left of the left-domino and T2n−2k+1 tilings on its right. So
there are (fk−2)(fk−1)T2n−2k+1 tilings overall for each k.

Similarly, we have:

T2n+1 − fnfn+1 =

n∑
i=1

f2
i−1T2n−2i+1 +

n∑
i=1

fi−1fiT2n−2i+2

and the proof deals with an (2n + 1)-HD-strip, using the same approach as the
one above.
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