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WEIGHTED COUNTING OF BRUHAT PATHS BY SHIFTED

R-POLYNOMIALS

MASATO KOBAYASHI∗

Abstract. We revisit R-polynomials with introducing the new idea “shifted
R-polynomials” (or Bruhat weight) for all Bruhat intervals in finite Coxeter
groups. Then, we apply these polynomials to weighted counting of Bruhat
paths. Further, we prove a new criterion of irregularity of lower intervals as
analogy of Carrell-Peterson’s and Dyer’s results. Also, we present the upper
bound of shifted R-polynomials for Bruhat intervals of fixed length by Jacob-
sthal numbers.
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1. Introduction

1.1. Kazhdan-Lusztig polynomials and R-polynomials. The motivation of
this article is to better understand Kazhdan-Lusztig (KL) polynomials which they
introduced in 1979 [17]. This is a family of polynomials over nonnegative integer
coefficients. Although these polynomials originated from representation theory of
Coxeter groups, Hecke algebras and geometry of Schubert varieties, they have been
an important topic in algebraic combinatorics as well since then. In particular,
Bruhat intervals forms a nice subclass of Eulerian posets so that the framework of
Eulerian posets (f -vector, ab-index, . . . ) works well. Here, let us mention the five
family of polynomials which play some role to investigate KL polynomials:

• R-polynomial

• R̃-polynomial
• ab-, cd-index
• complete ab-, cd-index
• Poincaré polynomial

Among these polynomials, only R-polynomials have negative coefficients. How-
ever, R-polynomials satisfy some relations together with KL polynomials:

∑

v∈[u,w]

Ruv(q)Pvw(q) = qℓ(u,w)Pvw(q
−1).

Thus, it is crucial to better understand coefficients of R-polynomials as well. For
this reason, we decided to revisit classical R-polynomials hoping to find some
interpretation by nonnegative integers. Our idea is simple:we introduce shifted
R-polynomials (or “Bruhat weight”); this is just shifting of its variable q 7→ q+1.

We will then show the connection between this shifted R-polynomials and R̃-
polynomials which have nonnegative coefficients so that we can discuss weighted
counting of Bruhat paths.
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1.2. Main results. Main results of this article are the following:

• Theorem 3.21: property of Bruhat weight for lower intervals
• Theorem 3.30: another criterion of irregularity of lower intervals
• Theorem 3.32: higher Deodhar inequality
• Theorem 4.3: the upper bound of shifted R-polynomials
• Corollary 4.7: the upper bound of Bruhat size of shifted R-polynomials by
Jacobsthal (dihedral) numbers

Theorems 3.21, 4.3, Corollary 4.7 are new while we present Theorems 3.30, 3.32 as
new interpretations of several known results (Carrell-Peterson, Dyer, the author).

1.3. organization of this article. Section 2 begins the topic with irregularity
of Bruhat graph and Poincaré polynomials. Section 3 is all devoted to the main

discussions on R-polynomials, R̃-polynomials, shifted R-polynomials, and Bruhat
weight for edges, Bruhat paths and intervals. Along the way, we provide many
examples. Section 4 proves the upper bound of shifted R-polynomials as an analogy

of the upper bound of R̃-polynomials by Fibonacci polynomials. We end in Section
5 with recording several ideas for further development of our ideas.

2. Irregularity of Bruhat graphs

2.1. preliminaries on Coxeter groups. Throughout this article, we denote by
W = (W,S, T, ℓ,≤) a Coxeter system with W the underlying Coxeter group, S its
Coxeter generators, T the set of its reflections, ℓ the length function, ≤ Bruhat
order. Moreover, assume that W is finite. Unless otherwise noticed, u, v, w, x, y
are elements of W , r, s ∈ S, t ∈ T and e is the unit of W . The symbol ℓ(u, v)
means ℓ(v)− ℓ(u) for u ≤ v. A Bruhat interval is a subposet of W of the form

[u, w] = {v ∈ W | u ≤ v ≤ w}.

By f ≤ g for polynomials f, g ∈ N[q], we mean [qi](f) ≤ [qi](g) for each i where
[qi](P (q)) denotes the coefficient of qi in a polynomial P (q).

2.2. Boolean, dihedral posets and Poincaré polynomial. The set of all
Bruhat intervals forms a subclass of Eulerian posets. In particular, each lower
interval [e, w] is Eulerian graded by the length function v 7→ ℓ(v).

Definition 2.1. The Poincaré polynomial for w is

Pw(q) =
∑

v≤w

qℓ(v).

This is the rank generating function of [e, w]. Observe that

Pw(−1) =
∑

v≤w

(−1)ℓ(v) =

{
1 w = e,

0 w 6= e.
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There are two important classes of Eulerian posets: Boolean and dihedral. Let
Bn and Dn denote the Boolean and dihedral poset of rank n, respectively; we
understand that the Boolean or dihedral poset of rank 0 is the trivial poset. Note
that Bn = Dn for n = 0, 1, 2 while Bn 6= Dn for n ≥ 3. These posets can be
realized as Bruhat intervals (in fact, as lower intervals). Indeed, Boolean and
dihedral intervals are “extremal” lower intervals in the following sense:

Proposition 2.2. For any w such that ℓ(w) = n ≥ 1, we have

1 + 2(q + · · ·+ qn−1) + qn ≤ Pw(q) ≤ (1 + q)n

coefficientwise. In particular, |Dn| = 2n ≤ |[e, w]| ≤ 2n = |Bn|.

Proof. Let v ∈ [e, w] such that 0 < ℓ(v) = k < n. Then there exist some v0, v1 ∈
[e, w] such that v0 < v < v1 and ℓ(v0, v) = ℓ(v, v1) = 1 since [e, w] is graded. Now
[v0, v1] is an interval of length 2 and every such an interval in any Eulerian poset
consists of exactly four elements. So there exists a unique v′ such that v0 < v′ < v1
and v′ 6= v. Thus we have

|{u ∈ [e, w] | ℓ(u) = k}| ≥ 2

which proves the first inequality. To show the second one, choose a reduced word
s1 · · · sn for w. For each v ∈ [e, w] with ℓ(v) = k, there is a reduced subword of
this word for v with n− k simple reflections deleted:

v = s1 · · · ŝi1 · · · ŝin−k
· · · sn (reduced).

The number of such words is at most
(

n
n−k

)
=
(
n
k

)
. �

2.3. Bruhat graphs.

Definition 2.3. The Bruhat graph of W is a directed graph for vertices w ∈ W
and for edges u → v. For each subset V ⊆ W , we can also consider the induced
subgraph with the vertex set V (Bruhat subgraph). An edge u → v is short if
ℓ(u, v) = 1. By a(u, w) we mean the directed-graph-theoretic distance from u to
w.

We can make use of Poincaré polynomials even for edge counting on Bruhat
graphs. Let V (w) = [e, w] and E(w) = {u → v | u, v ∈ [e, w]} be the vertex and
edge set of [e, w], respectively. Observe that |V (w)| = Pw(1). What is more, each
vertex v ∈ [e, w] is incident to exactly ℓ(v) incoming edges so that |E(w)| = P ′

w(1)
(where P ′

w(q) is the (formal) derivative of Pw(q)). It follows from Proposition 2.2
that 2ℓ(w) ≤ |V (w)| ≤ 2ℓ(w) and ℓ(w)2 ≤ |E(w)| ≤ ℓ(w)2ℓ(w)−1. In this way, Pw(q)
contains subtle information on edges of Bruhat graphs on [e, w].

Definition 2.4. The average of Pw(q) is P
′
w(1)/Pw(1).

Often, we write avPw(q) = P ′
w(1)/Pw(1). As seen above,

avPw(q) =
P ′

w(1)

Pw(1)
=

|E(w)|

|V (w)|
.
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Fact 2.5 (Carrell-Peterson [10]). The following are equivalent:

(1) avPw(q) = ℓ(w)/2.
(2) [e, w] is regular.

Remark 2.6. Carrell-Peterson (1994) assumed that the Kazhdan-Lusztig poly-
nomial Puw(q) has nonnegative coefficients for all u ≤ w. This is now (2019 at the
time of writing) true due to Elias-Williamson [15] in 2014.

In fact, Bn and Dn are both regular. Equivalently, they have same average
which is n/2.

2.4. example: 3412.

Example 2.7. Let e = 1234 and w = 3412 in the type A3 Coxeter group. The
lower interval [e, w] consists of 14 vertices and 29 edges (Figure 1):

Pw(q) = 1 + 3q + 5q2 + 4q3 + q4,

|V (w)| = Pw(1) = 14, |E(w)| = P ′
w(1) = 29,

avPw(q) =
29

14
> 2 =

ℓ(w)

2
.

Due to Carrell-Peterson, [e, w] is an irregular graph; Precisely two of 14 vertices,
1234 and 1324, have degree 5 while all others have degree 4 = ℓ(w).

2.5. monomialization technique. If we are interested in only the average of
a Poincaré polynomial (or more generally a polynomial over nonnegative integer
coefficients), there is a useful technique to express it by a monomial as shown below.
Let N denote the set of all nonnegative integers and Q≥0 the set of nonnegative
rational numbers.

Definition 2.8.

W = N[qQ≥0] =

{
d∑

i=0

aiq
αi

∣∣∣∣∣ ai, d ∈ N, αi ∈ Q≥0

}
,

M = {aqα | a ∈ N, α ∈ Q≥0}

We call each element of W (M) a weight (monomial weight).

For example, qℓ(v) is a monomial weight (we call it the Poincaré weight of v for
convenience).

Let f ∈ W with f(1) 6= 0 (i.e. f 6= 0). Define the size, total, average of f by

|f | = f(1), ‖f‖ = f ′(1), av(f) =
‖f‖

|f |
,

respectively. Set |0| = ‖0‖ = 0 and let us not define av(0).

Proposition 2.9. For all f, g ∈ W, we have the following:
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Figure 1. the Bruhat graph on [1234, 3412]

3412
WW

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴66

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥ hh

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PP

3214
OO

3142

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

WW

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴ 2413

66

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥ aa

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

1432
OO

2314

WW✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴

ee

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
3124

aa❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

OO

2143

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎
1342

dd■■■■■■■■■■■■■■■■■■■■■■■■

==③③③③③③③③③③③③③③③③③③③③

OO

1423

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

99

rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr
rr

2134

ZZ✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺

??�������������������
1324

__❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

??�������������������
1243

__❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

1234

__❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

OO ??�������������������

(1) |f + g| = |f |+ |g|.
(2) ‖f + g‖ = ‖f‖+ ‖g‖.
(3) av(fg) = av(f) + av(g) (f, g 6= 0).

Proof. We only confirm (3).

av(fg) =
(fg)′(1)

(fg)(1)
=
f ′(1)g(1) + f(1)g′(1)

f(1)g(1)
=
f ′(1)

f(1)
+
g′(1)

g(1)
= av(f) + av(g).

�

Definition 2.10. Define the monomialization M : W → M as follows: set
M(0) = 0. For f 6= 0, define

M(f) = |f |qav(f).
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Figure 2. [1234, 4231] in the Hasse diagram of A3
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1243

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎

1234

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎
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As we can easily see, the monomialization preserves size, total and average:

|M(f)| = |f |, ‖M(f)‖ = ‖f‖, av(M(f)) = av(f).

Proposition 2.11. For each f, g ∈ W, all of the following are true:

(1) M(f + g) =M(M(f) +M(g)).
(2) M(fg) =M(f)M(g).
(3) If f is a monomial, then M(f) = f . In particular, M(M(f)) =M(f).

Proof.

M(M(f) +M(g)) =M(|f |qav(f) + |g|qav(g))

= (|f |+ |g|)q(f
′+g′)/(f+g)

= (|f + g|)qav(f+g) =M(f + g).

M(fg) = |f ||g|qav(fg) = |f ||g|qav(f)+av(g) = |f |qav(f)|g|qav(g) =M(f)M(g).

(3) is clear. �

Example 2.12. Let w = 4231 in A3. Figure 2 shows that

P4231(q) = 1 + 3q + 5q2 + 6q3 + 4q4 + q5 = (1 + q)2(1 + q + 2q2 + q3).

Then

M(P4231(q)) =M(1 + q)2M(1 + q + 2q2 + q3) = (2q1/2)2(5q8/5) = 20q52/20

so that

avP4231(q) =
52

20
>

50

20
=

5

2
=
ℓ(4231)

2
.

Again, due to Carrell-Peterson, [1234, 4231] is irregular.

Remark 2.13. These examples above come from the characterization of irregular
lower intervals in terms of pattern avoidance. Say a permutation w of {1, 2, . . . , n}
contains 3412 (4231 ) if there exist i, j, k, l such that i < j < k < l and w(k) <
w(l) < w(i) < w(j) (w(l) < w(j) < w(k) < w(i)); say w is singular if it contains
3412 or 4231. Then, the following are equivalent:

(1) w is singular.
(2) [e, w] is irregular.

See Billey-Lakshmibai [3] for more details on this topic.

3. Weighted counting of Bruhat paths

Definition 3.1. A Bruhat path is a directed path Γ such as

Γ : u = v0 → v1 → · · · → vk = w

(Below, a “path” always means a directed path). Say Γ is short (maximal) if all
its edges are short; it is long otherwise. For each Bruhat path Γ as above, we can
consider two kinds of length: k is the absolute length of Γ; ℓ(u, w) is the Coxeter
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length. We write a(Γ) = k and ℓ(Γ) = ℓ(u, w). By x
t
→ y we mean x → y and

y = xt, t ∈ T .

Definition 3.2. By a reflection subgroup of W , we mean an algebraic subgroup
of W generated by a subset of T .

Every reflection subgroup W ′ is itself a Coxeter system with the canonical gen-
erator

χ(W ′) = {t′ ∈ T | TL(t
′) ∩W ′ = {t′}}

where TL(t
′) = {t ∈ T | ℓ(tt′) < ℓ(t′)}. A reflection subgroup W ′ is dihedral if

|χ(W ′)| = 2.

Definition 3.3. Let < be a total order on T . Say < is a reflection order if for all
dihedral reflection subgroup W ′ of W with χ(W ′) = {r, s} (r 6= s), we have

r < rsr < · · · < srs < s or s < srs < · · · < rsr < r.

3.1. ab-, cd-index. Let a, b be noncommutative variables and Γ : u → v1 →
· · · → vk = w a short path. Define

xi =

{
a if ti < ti+1

b if ti > ti+1,
ψ(Γ) = x1 · · ·xk and Ψuw(a, b) =

∑

Γ

ψ(Γ)

where the sum is taken over all short paths Γ from u to w. The ab-polynomial
Ψuw(a, b) is called the ab-index of [u, w].

Fact 3.4. Ψuw(a, b) is a polynomial of a + b and ab + ba. That is, there exists a
unique noncommutative two-variable polynomial Φuw(c, d) such that

Φuw(a+ b, ab + ba) = Ψuw(a, b).

The homogeneous cd-polynomial (deg c = 1, deg d = 2) Φuw(c, d) is called the
cd-index of [u, w].

3.2. complete index. Let Γ : u → v1 → · · · → vk = w be a (not necessarily
short) path. Similarly, define

xi =

{
a if ti < ti+1

b if ti > ti+1,
ψ̃(Γ) = x1 · · ·xk and Ψ̃uw(a, b) =

∑

Γ

ψ̃(Γ)

where the sum is taken over all paths Γ from u to w. Again, there exists a unique

two-variable polynomial Φ̃uw(c, d) such that

Φ̃uw(a+ b, ab + ba) = Ψ̃uw(a, b).

Φ̃uw(c, d) is called the complete cd-index of [u, w].

Remark 3.5. These indices do not depend on the choice of a reflection order.
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Remark 3.6. In 1990’s, the theory on ab-, cd-index for polytopes and Eulerian
posets has been developed by many researchers such as Bayer, Fine, Klapper
and Stanley, for example. Later Reading [20] proved (with Karu’s work) that all
coefficients of cd-index for a lower interval [e, w] is nonnegative: Φew(c, d) ≥ 0. A
complete index for a Bruhat interval is a more recent idea in 2010’s: See Billera
[1], Billera-Brenti [2], Blanco [5] and Karu [16].

Conjecture 3.7.

(1) Reading [20]:Φew(c, d) ≤ ΦBℓ(w)
(c, d).

(2) Billera-Brenti [2] strong conjecture: Φ̃ew(c, d) ≤ ΦBℓ(w)
(c, d).

There is one demerit of such indices: From an ab- or a cd-monomial x = x1 · · ·xk

alone, we cannot recover the Coxeter length of a path. Unlike this, we will later
on introduce a weight (Bruhat weight) which contains some information on both
of absolute and Coxeter length of paths.

3.3. R-polynomials. Following Björner-Brenti [4], we introduce R-polynomials.

Fact 3.8. There exists a unique family of polynomials {Ruw(q) | u, w ∈ W} ⊆ Z[q]
(R-polynomials) such that

(1) Ruw(q) = 0 if u 6≤ w,
(2) Ruw(q) = 1 if u = w,
(3) if s ∈ S and ℓ(ws) < ℓ(w), then

Ruw(q) =

{
Rus,ws(q) if ℓ(us) < ℓ(u),

(q − 1)Ru,ws(q) + qRus,ws(q) if ℓ(u) < ℓ(us).

Example 3.9. R-polynomials involve many negative coefficients. For example,
suppose u ≤ w. We can show that

Ruw(q) =





q − 1 ℓ(u, w) = 1,

q2 − 2q + 1 ℓ(u, w) = 2,

q3 − 2q2 + 2q − 1 ℓ(u, w) = 3, u→ w.

It is tempting to say that coefficients of R-polynomials alternate in sign. However,
Boe [7] found the following counterexample:

R124356,564312(q) = 1− 5q + 11q2 − 13q3 + 8q4− q5− 2q6 − q7 + 8q8 − 13q9 + 11q10 − 5q11 + q12.

We wish to understand R-polynomials as ones over nonnegative integer coef-
ficients with some combinatorial interpretation. For this purpose, we have to
mention Deodhar’s work [12] first: he showed that Ruw(q) (u ≤ w) is the sum of
qm(q − 1)n with m,n nonnegative integers:

Ruw(q) =
∑

σ∈D
π(σ)=u

qm(σ)(q − 1)n(σ)
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where D is the set of distinguished subexpressions σ of some fixed reduced expres-
sion s1 · · · sℓ(w) for w and π is a certain map (which we do not need to discuss
here). Shifting the variable q to q + 1, it is immediate to obtain a polynomial of
nonnegative integer coefficients. On the other hand, there is an interesting prop-
erty of R-polynomials as characteristic functions of a vertex and an edge at q = 1
[4, Chapter 5, Exercise 35]:

|Ruw(q)| = Ruw(1) =

{
1 if (u, w) is a vertex (i.e. u = w),

0 otherwise.

‖Ruw(q)‖ = R′
uw(1) =

{
1 if (u, w) is a directed edge (i.e. u→ w),

0 otherwise.

An easy guess is thatR-polynomials are “counting something” implicitly in Bruhat
graphs since vertices and edges are special cases of Bruhat paths of absolute length
0 and 1. Thus, it is natural to ask if R-polynomials somehow count paths of
absolute length ≥ 2. Further, if this is the case, then its weighting should be
something like qm(q− 1)n. We will see that this guess is right and make this point

more explicit after discussing R̃-polynomials and shifted R-polynomials.

Remark 3.10. Caselli [11] also proved certain nonnegativity of R-polynomials.
We have not found any concrete connection yet, though.

3.4. R̃-polynomials. Next, following [4], we introduce another family of polyno-
mials associated to R-polynomials. They have nonnegative integer coefficients:

Fact 3.11. There exists a unique family of polynomials {R̃uw(q) | u, w ∈ W} ⊆

N[q] (R̃-polynomials) such that

(1) R̃uw(q) = 0 if u 6≤ w,

(2) R̃uw(q) = 1 if u = w,
(3) if s ∈ S and ℓ(ws) < ℓ(w), then

R̃uw(q) =

{
R̃us,ws(q) if ℓ(us) < ℓ(u),

qR̃u,ws(q) + R̃us,ws(q) if ℓ(u) < ℓ(us),

(4) R̃uw(q) (u ≤ w) is a monic polynomial of degree ℓ(u, w),

(5) Ruw(q) = qℓ(u,w)/2R̃uw(q
1/2 − q−1/2).

We remark that although q1/2 and q−1 appear in the definition above, R̃uw(q) is
indeed a polynomial in q. To give a precise description of this family of polynomials,
we need the following idea:

Definition 3.12. Let < be a reflection order and

Γ : u = v0
t1→ v1

t2→ · · ·
tk→ vk = w
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a path. Say Γ is <-increasing if t1 < t2 < · · · < tk. We understand that any
Bruhat path of absolute length 0 or 1 is <-increasing for all <.

Fact 3.13 (Dyer [14]).

R̃uw(q) =
∑

Γ

qa(Γ)

where the sum is taken all over <-increasing paths Γ from u to w. Moreover, this
sum does not depend on the choice of a reflection order.

3.5. Bruhat size and total.

Lemma 3.14. Let u < w, a = a(u, w) and ℓ = ℓ(u, w). Then there exist positive
integers γℓ (= 1), γℓ−2, . . . , γa such that

R̃uw(q) = γℓq
ℓ + γℓ−2q

ℓ−2 + · · ·+ γaq
a.

Consequently, we have

Ruw(q) =

ℓ−a
2∑

i=0

γa+2i q
ℓ−a−2i

2 (q − 1)a+2i.

Proof. The first statement is a well-known property of R̃-polynomials. As a result,

Ruw(q) = q
ℓ
2 R̃uw(q

1
2 − q−

1
2 )

= q
ℓ
2

ℓ−a
2∑

i=0

γa+2i(q
1
2 − q−

1
2 )a+2i

= q
ℓ
2

ℓ−a
2∑

i=0

γa+2i(q
− 1

2 (q − 1))a+2i

=

ℓ−a
2∑

i=0

γa+2i q
ℓ−a−2i

2 (q − 1)a+2i.

�

Hence shifting the variable by one,

Ruw(q + 1) =

ℓ−a
2∑

i=0

γa+2i (q + 1)
ℓ−a−2i

2 qa+2i =
∑

Γ

(q + 1)
ℓ−a−2i

2 qa+2i

is a polynomial of nonnegative integer coefficients. It turns out that

Γ 7→ (q + 1)(ℓ(Γ)−a(Γ))/2qa(Γ)

is an appropriate choice for a weight of Γ.
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Definition 3.15. Let

Γ : u = v0 → v1 → · · · → vk = w, k = a(Γ)

be a Bruhat path. Define the Bruhat weight of Γ:

ρ(Γ) = (q + 1)(ℓ(Γ)−a(Γ))/2qa(Γ).

In particular, ρ(Γ) equals a monomial qk if Γ is a short path of length k.

3.6. Bruhat weight for edges. Let us introduce a weight also for edges. The
height of an edge u→ v is (ℓ(u, v)+1)/2. In particular, u→ v is short if and only

if its height is 1; otherwise it is long. Write h(u→ v) =
ℓ(u, v) + 1

2
.

Definition 3.16. The Bruhat weight of an edge of height h is (q + 1)h−1q. For
convenience, we use this symbol:

→h= (q + 1)h−1q.

This weighting is “multiplicative” in the following sense: If Γ is v0 → v1 → v2 →
· · · → vk−1 → vk, then

ρ(Γ) =→h(v0→v1)→h(v1→v2) · · · →h(vk−1→vk) .

As we see, →h is a polynomial of degree h. For example,

→1= q, →2= (q + 1)q, →3= (q + 1)2q,

| →1 | = 1, | →2 | = 2, | →3 | = 4 and

M(→h) =M(1 + q)h−1M(q) = (2q1/2)h−1(q) = 2h−1q(h+1)/2.

with | →h | = 2h−1, ‖ →h ‖ = 2h−2(h+ 1), av(→h) =
h + 1

2
.

Remark 3.17. Paths with the same absolute and Coxeter length have an identical
weight: For example, →1→3= (q + 1)2q2 =→2→2 .

3.7. shifted R-polynomials.

Definition 3.18. The shifted R-polynomial (
−→
R -polynomial) for (u, w) is

−→
R uw(q) = Ruw(q + 1).

In particular, for u 6≤ w,
−→
R uw(q) = 0 and for u ≤ w, it is monic of degree

ℓ(u, w).

Definition 3.19. The Bruhat size of [u, w] is |
−→
R uw(q)|(= Ruw(2)). The Bruhat

total of [u, w] is ‖
−→
R uw(q)‖(= R′

uw(2)). For convenience, we sometimes write

|[u, w]| = |
−→
R uw(q)|, ‖[u, w]‖ = ‖

−→
R uw(q)‖.
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Example 3.20 (Table 1).

−→
R 1234,3421(q) = q5 + 2(q + 1)q3,

|[1234, 3421]| =
−→
R 1234,3421(1) = 15 + 2 · 2 · 13 = 5,

‖[1234, 3421]‖ =
−→
R ′

1234,3421(1) = 5q4 + 8q3 + 6q2
∣∣
q=1

= 19.

Let us simply say
−→
R ev(q) is the

−→
R -polynomial of v. The Bruhat size of v

is |v| = |
−→
R ev(q)| and the Bruhat total of v is ‖v‖ = ‖

−→
R ′

ev(q)‖. For example,
|1234| = 1, |3412| = 3, |4231| = 9, |4321| = 11 (Table 1).

Theorem 3.21.

(1) u ≤ v =⇒ |u| ≤ |v|.
(2) |v| is odd.

Lemma 3.22. Let f, g, h ∈ N[q].

(1) |u| = 2ℓ(u)/2R̃eu(2
−1/2).

(2) g ≤ h =⇒ fg ≤ fh =⇒ (fg)(2−1/2) ≤ (fh)(2−1/2).

(3) R̃eu(q)q
ℓ(u,v) ≤ R̃ev(q) if u ≤ v. In particular, R̃eu(2

−1/2) ≤ 2ℓ(u,v)/2R̃ev(2
−1/2).

Proof.

(1) Recall that

−→
R eu(q) = Reu(q + 1) = (q + 1)ℓ(u)/2R̃eu((q + 1)1/2 − (q + 1)−1/2).

Now let q = 1.

|u| =
−→
R eu(1) = 2ℓ(u)/2R̃eu(2

−1/2).

(2) Suppose g ≤ h. Then h − g =
∑d

i=0 aiq
i for some nonnegative integers

(ai). Obviously, (fh− fg)(q) = f(q)

(
d∑

i=0

aiq
i

)
and q = 2−1/2 > 0 yields

a nonnegative real number.

(3) Blanco [6, Theorem 4] proved that u ≤ x ≤ v =⇒ R̃ux(q)R̃xv(q) ≤ R̃uv(q).

Let u 7→ e, x 7→ u, v 7→ v so that R̃eu(q)R̃uv(q) ≤ R̃ev(q). Together with

(2) and qℓ(u,v) ≤ R̃uv(q), we have

R̃eu(q)q
ℓ(u,v) ≤ R̃eu(q)R̃uv(q) ≤ R̃ev(q).

Finally, set q = 2−1/2.

�

Proof of Theorem 3.21.
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Table 1. R-polynomials in A3; see Billey-Lakshmibai [3, p.73]

v Rev(q) |v|

1234 1 1

1243, 1324, 2134 q − 1 1

1342, 1423, 2143, 2314, 3124 (q − 1)2 1

1432, 3214 (q − 1)3 + q(q − 1) 3

2341, 2413, 3142, 4123 (q − 1)3 1

2431, 3241, 3412, 4132, 4213 (q − 1)4 + q(q − 1)2 3

4231 (q − 1)5 + 2q(q − 1)3 + q2(q − 1) 9

3421, 4312 (q − 1)5 + 2q(q − 1)3 5

4321 (q − 1)6 + 3q(q − 1)4 + q2(q − 1)2 11

(1) Suppose u ≤ v. With the Lemma above, we have

|u| =
−→
R eu(1) = 2ℓ(u)/2R̃eu(2

−1/2)

≤ 2ℓ(u)/2
(
2ℓ(u,v)/2R̃ev(2

−1/2)
)
= 2ℓ(v)/2R̃ev(2

−1/2) = |v|.

(2) Let a = a(e, v), ℓ = ℓ(v) and γj = [qj](R̃ev(q)). Because γℓ = 1, we see that

|v| =
−→
R ev(1) =

ℓ−a
2∑

i=0

γa+2i 2
ℓ−a−2i

2 1a+2i = 1 +

ℓ−a
2

−1∑

i=0

γa+2i 2
ℓ−a−2i

2

is odd.

�

3.8. sum of R-polynomials.

Fact 3.23. Bruhat order with a reflection order is Edge-Labeling shellable (EL-
shellable) (Dyer [14]): let < be an arbitrary reflection order.

(1) For each [u, w], there is a unique <-increasing short path from u to w, say

Γ : u = v0
t1→ v1

t2→ · · ·
tℓ(u,w)
→ vℓ(u,w) = w.

(2) Moreover, (t1, t2, . . . , tℓ(u,w)) ∈ T ℓ(u,w) is lexicographically first among all
short paths from u to w.

Consequently, for each v, there exists a unique <-increasing short path Γ : e →
· · · → v such that ρ(Γ) = qℓ(v) (corresponding to the Poincaré weight for v).
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Definition 3.24. Define the Bruhat-Poincaré polynomial for w:
−→
Pw(q) =

∑

v≤w

−→
R ev(q).

Thanks to EL-shellability, it splits into two parts:
−→
Pw(q) =

∑

Γ:short

ρ(Γ) +
∑

Γ:long

ρ(Γ) = Pw(q) +
∑

Γ:long

ρ(Γ).

In particular, Pw(q) ≤
−→
Pw(q) and

−→
Pw(−1) = Pw(−1) + 0 = Pw(−1).

3.9. examples.

Example 3.25 (Figure 3).

(1) B3 : Let s1, s2, s3 be distinct simple reflections such that they all commute.
Let w = s1s2s3 so that [e, w] ∼= B3 as Bruhat graphs.

−→
Pw(q) =

∑

v≤w

−→
R ev(q) = 1 + 3q + 3q2 + q3 = (1 + q)3.

(2) D3 = [e, w], w = s1s2s1, (s1s2)
3 = e:

−→
Pw(q) =

∑

v≤w

−→
R ev(q) = 1 + 2q + 2q2 + (q3 + (q + 1)q) = (1 + q)3.

Definition 3.26. Say [u, w] is Bruhat-Boolean if
∑

v∈[u,w]

−→
R uv(q) = (1 + q)ℓ(u,w).

As seen above, B3 and D3 are both Bruhat-Boolean.

Fact 3.27 ([3, p.209]). The following are equivalent:

(1) [u, w] is regular.
(2) Each upper subinterval [v, w] of [u, w] (v ∈ [u, w]) is Bruhat-Boolean.

In particular, if [e, w] is regular, then [e, w] itself must be Bruhat-Boolean:
−→
Pw(q) =

∑

v∈[e,w]

−→
R ev(q) = (1 + q)ℓ(w).

Observation 3.28. The finite Coxeter group W = [e, w0] (w0 longest element) is
Bruhat-Boolean. In particular,

∑
v∈W |v| = 2ℓ(w0). This is because W = [e, w0] is

|ℓ(w0)|-regular and
∑

v∈W

−→
R ev(q) =

∑

v≤w0

−→
R ev(q) = (1 + q)ℓ(w0).

For example,
∑

v∈A4
|v| = 26 = 64.
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Example 3.29. Let us see two intervals [u, w] such that u → w and ℓ(u, w) = 5.
One is regular and the other is irregular.

(1) D5 (Figure 3): Let D5 = [e, w] with w = s1s2s1s2s1, si ∈ S, (s1s2)
5 = e.

Also, let u = e and vi, v
′
i be two elements of level i (1 ≤ i ≤ 4). Thus

−→
R uvi(q) =

−→
R uv′i

(q) for such i because of combinatorial invariance of R-
polynomials for dihedral intervals (if [u, w] ∼= [x, y] as posets and they are
both dihedral, then Ruw(q) = Rxy(q) as a consequence of the combinatorial
invariance of complete cd-index for dihedral intervals by Blanco [5, Lemma
3.2]). We can compute the following by induction (see also Table 2):

−→
R uu(q) = 1,
−→
R uv1(q) = q,
−→
R uv2(q) = q2,
−→
R uv3(q) = q3 + (q + 1)q,
−→
R uv4(q) = q4 + 2(q + 1)q,
−→
R uw(q) = q5 + 3(q + 1)q3 + (q + 1)2q.

Altogether, the Bruhat-Poincaré polynomial of D5 is

∑

v∈[u,w]

−→
R uv(q) = 1 + 2q + 2q2 + 2(q3 + (q + 1)q) + 2(q4 + 2(q + 1)q2)

+ (q5 + 3(q + 1)q3 + (q + 1)2q)

= (1 + q)5.

(2) [1234, 4231] (Figure 2 and Table 1):

P4231(q) = 1 + 3q + 5q2 + 6q3 + 4q4 + q5,
−→
P 4231(q) = 1 + 3q + 5q2 + 6q3 + 4q4 + q5

+
(
2q(q + 1) + 4q(q + 1)q2 + 2(q + 1)q3 + (q + 1)2q

)

= (1 + q)3(1 + 3q + q2).

Although M
(−→
P 4231(q)

)
= (2q1/2)3(5q5/5) = 40q100/40 (the average here is

100/40 = 5/2 = ℓ(w)/2), [1234, 4231] is not Bruhat-Boolean and hence

irregular;
−→
P 4231(q) is “slightly larger” than (1 + q)5.
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Figure 3. Bruhat graph of B3, D3 and D5
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3.10. new criterion of irregularity of lower intervals. Recall that Carrell-

Peterson proved if av(Pw(q)) =
|E(w)|

|V (w)|
6=
ℓ(w)

2
, then [e, w] is irregular. We can

now generalize this result to av(
−→
P w(q)) =

∑
v≤w ‖v‖∑
v≤w |v|

.

Theorem 3.30. If av(
−→
P w(q)) 6=

ℓ(w)

2
, then [e, w] is irregular.

Proof. Suppose [e, w] is regular. Then, all upper subintervals of [e, w] are Bruhat-
Boolean. In particular,

−→
Pw(q) =

∑

v≤w

−→
R ev(q) = (1 + q)ℓ(w).

Therefore, av(
−→
Pw(q)) = av((1 + q)ℓ(w)) =

ℓ(w)

2
. �

Example 3.31.
−→
P 3412(q) = 1 + 3q + 5q2 + 4q3 + q4 + 2(q + 1)q = (1 + q)(1 + 4q + 3q2 + q3)

M(
−→
P 3412(q)) =M(1 + q)M(1 + 4q + 3q2 + q3) = (2q1/2)(9q13/9) = 18q35/18.

Clearly,

av
−→
P 3412(q) =

35

18
6= 2 =

ℓ(w)

2
.

Therefore, apart from the characterization of singular permutations, [1234, 3412]

is irregular (note: av
−→
P 3412(q) < 2 while avP3412(q) > 2).
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3.11. higher Deodhar inequality. For each [u, w], define the following integer

sequence (f̃i): For each i with 0 ≤ i ≤ ℓ(u, w), let

f̃i = f̃i(u, w) = [qi]


 ∑

v∈[u,w]

−→
R uv(q)




where [qi](P (q)) denotes the coefficient of qi in the polynomial P (q). Clearly,

f̃0 = 1 since the only v = u term contributes to the constant term and
−→
R uu(q) = 1.

What about

f̃1 = [q]


 ∑

v∈[u,w]

−→
R uv(q)


?

Recall that the weight of a Bruhat path Γ is (q+1)(ℓ(Γ)−a(Γ))/2qa(Γ); only the weight
of Bruhat paths involving q-term is one for length 1 (i.e. an edge) with

[q]
(
(q + 1)(ℓ(Γ)−1)/2q

)
= 1.

Denoting by outw(u) the out-degree of u in [u, w], that is,

outw(u) = |{v ∈ [u, w] | u→ v}|,

we have

f̃1 = [q]

( ∑

v:u→v≤w

(q + 1)(ℓ(u→v)−1)/2q

)
=

∑

v:u→v≤w

1 = outw(u).

Thanks to Deodhar inequality (Dyer [13]), there is the simple lower bound of f̃1 as

f̃1 = outw(u) ≥ ℓ(u, w).

In fact, this ≥ is strict if and only if [u, w] is irregular. Next, it is natural to ask
about q2-term: Paths Γ whose weight involving q2-term are only ones of absolute
length 1 or 2. Those weights are of the form

(q + 1)(ℓ−1)/2q or (q + 1)(ℓ−2)/2q2

where ℓ = ℓ(Γ). Note that

[q2]
(
(q + 1)(ℓ−1)/2q

)
=
ℓ− 1

2
, [q2]

(
(q + 1)(ℓ−2)/2q2

)
= 1.

This leads us to some weighted counting of edges and paths of length 2. Put

p1 = p1(u, w) =
∑

u→v≤w

ℓ(u, v)− 1

2
=

∑

u→v≤w

(h(u, v)− 1),

p2 = p2(u, w) = |{Γ : u→ v1 → v2 ≤ w,<-increasing}|

so that f̃2 = p1 + p2.
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Theorem 3.32 (higher Deodhar inequality). For all [u, w], we have

f̃2 ≥

(
ℓ(u, w)

2

)
.

Moreover, if f̃2 
(
ℓ(u,w)

2

)
, then [u, w] is irregular.

Proof. This is a consequence of Kobayashi [18, Theorem 6.2] (x = u case). �

Example 3.33. Let u = 1234, w = 3412.

p1 =
∑

u→v≤w

(h(u, v)− 1)

= h(u→ 2134) + h(u → 1324) + h(u→ 1243) + h(u→ 3214) + h(u→ 1432)

= 0 + 0 + 0 + 1 + 1 = 2,

p2 = |{1342, 1423, 2314, 3124, 3412}|= 4 + 1 = 5.

Therefore,

f̃2 = 2 + 5 = 7 > 6 =

(
4

2

)
.

Again, apart from pattern avoidance, we can now say that [1234, 3412] is irregular.

4. Lower and upper bounds of shifted R-polynomials

In this section, we will prove Theorem 4.3 on the sharp lower and upper bounds

of
−→
R -polynomials.

4.1. lower and upper bounds of R̃-polynomials. First, let us review several

results on R̃-polynomials proved by Brenti [8, Theorem 5.4, Corollary 5.5, Theorem
5.6].

Fact 4.1. Let u ≤ v.

(1) u ≤ x ≤ v =⇒ qℓ(x,v)R̃ux(q) ≤ R̃uv(q).

(2) Suppose W is finite. Then u ≤ x ≤ y ≤ v =⇒ qℓ(u,x)+ℓ(y,v)R̃xy(q) ≤ R̃uv(q).

(3) Let x ≤ y in a weak order and y ≤ z. Then, qℓ(x,y)R̃yz(q) ≤ R̃xz(q).

These inequalities all follow from the simple fact that R̃uw(q) = qℓ(u,w) whenever

[u, w] is Boolean; in addition, since each R̃uw(q) is either 0 or monic of degree
ℓ(u, w), qn is the least polynomial among

{R̃uw(q) | u ≤ w, ℓ(u, w) = n}

in coefficientwise order.
On the other hand, Fibonacci polynomials (F0(q) = 1, F1(q) = q, F2(q) =

q2, Fn(q) = qFn−1(q) + Fn−2(q) for n ≥ 3) give an upper bound of such poly-

nomials. In fact, this upper bound is also best possible: Fn(q) is the R̃-polynomial
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for any dihedral interval of rank n (Brenti [9, Proposition 5.3]). Together, there
always holds

qn ≤ R̃uw(q) ≤ Fn(q)

for [u, w] such that ℓ(u, w) = n. Now it is reasonable to ask what corresponds to
these inequalities for shifted R-polynomials.

4.2. lower and upper bounds of shifted R-polynomials. Define a sequence
of polynomials (dn(q))

∞
n=0 by d0(q) = 1, d1(q) = q, d2(q) = q2 and

dn(q) = qdn−1(q) + (q + 1)dn−2(q) for n ≥ 3.

Call (dn(q))
∞
n=0 dihedral polynomials.

It is easy to see that dn(q) is a monic polynomial of degree n and morerover it
is a weight: dn(q) ∈ W. Let dn = |dn(q)|, d

′
n = ‖dn(q)‖ denote its size and total

(Table 2).

Lemma 4.2. If [u, w] is dihedral, then
−→
R uw(q) = dℓ(u,w)(q).

Proof. Induction on n = ℓ(u, w). The cases for n = ℓ(u, w) ≤ 2 coincide with

Boolean ones:
−→
R uw(q) = qℓ(u,w) = dℓ(u,w)(q). Now suppose n = ℓ(u, w) ≥ 3.

Thanks to the combinatorial invariance of R-polynomials for dihedral intervals,
we may assume that [u, w] is dihedral, ℓ(us) > ℓ(u) and ℓ(ws) < ℓ(w) for some
s ∈ S:

Ruw(q) = (q − 1)Ru,ws(q) + qRus,ws(q),

that is,
−→
R uw(q) = q

−→
R u,ws(q) + (q + 1)

−→
R us,ws(q).

The inequality us < ws now holds since

ℓ(us) = ℓ(u) + 1 ≤ (ℓ(w)− 3) + 1 = ℓ(w)− 2 < ℓ(w)− 1 = ℓ(ws).

(in a dihedral interval, x < y ⇐⇒ ℓ(x) < ℓ(y)). It follows from the property of
dihedral intervals that subintervals [us, ws] and [u, ws] are also dihedral posets of
length n− 1, n− 2, respectively. By inductive hypothesis, R-polynomials of those
are dn−1(q) and dn−2(q) so that
−→
R uw(q) = q

−→
R u,ws(q) + (q + 1)

−→
R us,ws(q) = qdn−1(q) + (q + 1)dn−2(q) = dn(q).

�

Theorem 4.3. Let [u, w] be a Bruhat interval such that ℓ(u, w) = n ≥ 1. Then,

qn ≤
−→
R uw(q) ≤ dn(q) and nq

n−1 ≤
−→
R ′

uw(q) ≤ d′n(q).

Moreover,

dn(q) =
q

q + 2
((q + 1)n − (−1)n) ,

d′n(q) =
2

(q + 2)2
((q + 1)n − (−1)n) +

nq

q + 2
(q + 1)n−1.
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We give a proof after three lemmas.

Lemma 4.4. Let x < y. Then, there exist some x′, y′ such that x′ ≤ x, y′ ≤ y,
Rx′y′(q) = Rxy(q) and ℓ(x

′s) > ℓ(x′), ℓ(y′s) < ℓ(y′) for some s ∈ S.

Proof. Suppose x < y. We know that ℓ(y) ≥ 1 implies ℓ(ys) < ℓ(y) for some
s ∈ S. If further ℓ(xs) > ℓ(x), then we are done. Otherwise, ℓ(xs) < ℓ(x). Let
x1 = xs, y1 = ys (Rx1,y1(q) = Rxy(q)). Now ask if there exists s1 ∈ S such
that ℓ(y1s1) < ℓ(y1) and ℓ(x1s1) > ℓ(x1). If this is the case, then we are done.
Otherwise, let x2 = x1s1, y2 = y1s1 . . . . This algorithm will end at most ℓ(x) steps
since ℓ(x) > ℓ(x1) = ℓ(x)− 1 > · · · > ℓ(e) = 0 and ℓ(es) > ℓ(e) for all s. �

Lemma 4.5. If f ≤ g ≤ h in N[q], then f ′ ≤ g′ ≤ h′.

Proof. If f ≤ g, then [qi](f ′) = (i+ 1)[qi+1](f) ≤ (i+ 1)[qi+1](g) = [qi](g) for each
i which means f ′ ≤ g′. The same is true for g and h. �

To find out a closed formula for dn(q), we take the formal power series method.

Lemma 4.6.
∞∑

n=0

dn(q)z
n =

1− (q + 1)z2

(1 + z)(1− (q + 1)z)
.

Proof. We wish to find

Dq(z) :=
∞∑

n=0

dn(q)z
n.

First, let us compute D≥3
q (z) :=

∑

n≥3

dn(q)z
n.

D≥3
q (z) =

∑

n≥3

(qdn−1(q) + (q + 1)dn−2(q))z
n

= qz
∑

n≥3

dn−1(q)z
n−1 + (q + 1)z2

∑

n≥3

dn−2(q)z
n−2

= qz(q2z2 +D≥3
q (z)) + (q + 1)z2(qz + q2z2 +D≥3

q (z))

Thus,

D≥3
q (z) =

q(q(q + 1)z + q2 + q + 1)z3

(1 + z)(1 − (q + 1)z)

and

Dq(z) = d0(q) + d1(q)z + d2(q)z
2 +D≥3

q (z) =
1− (q + 1)z2

(1 + z)(1− (q + 1)z)
.

�
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Proof of Theorem 4.3. It is easy to check for n = 1, 2. Suppose that n = ℓ(u, w) ≥
3. By Lemma 4.4, we may assume that ℓ(us) > ℓ(u), ℓ(ws) < ℓ(w) for some s and

−→
R uw(q) = q

−→
R u,ws(q) + (q + 1)

−→
R us,ws(q).

By inductive hypothesis, the upper bounds for
−→
R -polynomials of length ℓ(u, ws) =

n− 1, ℓ(us, ws) = n− 2 intervals are dn−1(q) and dn−2(q) so that

qn ≤
−→
R uw(q) = q

−→
R u,ws(q) + (q+1)

−→
R us,ws(q) ≤ qdn−1(q) + (q+1)dn−2(q) = dn(q).

For the second inequalities, just differentiate this as in Lemma 4.5. Finally, Lemma
4.6 implies the last part as follows:

Dq(z) =
1− (q + 1)z2

(1 + z)(1 − (q + 1)z)
=

(1− qz − (q + 1)z2) + qz

(1 + z)(1− (q + 1)z)

= 1 +
qz

(1 + z)(1 − (q + 1)z)

= 1−

(
q

q + 2

)
1

1 + z
+

(
q

q + 2

)
1

(1− (q + 1)z)

= 1−
q

q + 2

∞∑

n=0

(−1)nzn +
q

q + 2

∞∑

n=0

(q + 1)nzn

and hence we conclude that

dn(q) =
q

q + 2
((q + 1)n − (−1)n) ,

d′n(q) =
2

(q + 2)2
((q + 1)n − (−1)n) +

nq

q + 2
(q + 1)n−1

for n ≥ 1. �

Corollary 4.7. Let [u, w] be a Bruhat interval such that n = ℓ(u, w) ≥ 1. Then

1 ≤ |[u, w]| ≤ dn and n ≤ ‖[u, w]‖ ≤ d′n.

Moreover,

dn =
1

3
(2n − (−1)n) and d′n =

2

9

(
2n − (−1)n + 3n · 2n−2

)

The sequence (Jn)
∞
n=0 with J0 = 0, J1 = 1 and

Jn = Jn−1 + 2Jn−2 n ≥ 2

is known as Jacobsthal sequence (The On-line Encyropedia of Integer Sequences
A001045 [19]) in combinatorics and number theory. The only difference between
Jn and our dn is the initial value: d0 = 1 6= 0 = J0. For n ≥ 1,

dn = Jn =
1

3
(2n − (−1)n) .
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Table 2. dihedral polynomials and numbers

n dn(q) dn d′n

0 1 1 0

1 q 1 1

2 q2 1 2

3 q3 + q2 + q 3 6

4 q4 + 2q3 + 2q2 5 14

5 q5 + 3q4 + 4q3 + 2q2 + q 11 34

6 q6 + 4q5 + 7q4 + 6q3 + 3q2 21 78

7 q7 + 5q6 + 11q5 + 13q4 + 9q3 + 3q2 + q 43 178

8 q8 + 6q7 + 16q5 + 24q4 + 22q3 + 12q2 + 4q 85 398
...

...
...

...

5. Concluding remarks

We end with recording several ideas for our future research.

5.1. double R-polynomials. Let p, q be commutative variables.

Definition 5.1. Define the double R-polynomial for (u, w) by

Ruw(p, q) =

ℓ−a
2∑

i=0

γa+2ip
(ℓ−a−2i)/2(q − 1)a+2i

where (γj) are positive integers such that

Ruw(q) =

ℓ−a
2∑

i=0

γa+2i q
ℓ−a−2i

2 (q − 1)a+2i.

as in Lemma 3.14.

Many polynomials in this articles are disguises of this double R-polynomials.
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Observation 5.2.

Ruw(q, q) = Ruw(q),

Ruw(q + 1, q + 1) =
−→
R uw(q),

Ruw(1, q + 1) = R̃uw(q),

Ruw(0, q + 1) = qℓ(u,w).

Question 5.3. What is the recurrence of double R-polynomials?

5.2. Bruaht size on Bruhat graph. We proved that u ≤ v =⇒ |u| ≤ |v|. Since
Bruhat order is the transitive closure of edge relations, it is reasonable to ask this:

Question 5.4. Suppose u→ v. When |u| � |v| and when not?

It is probably the easiest to try the type A case first.

5.3. extension of higher Deodhar inequality. We showed that for each inter-
val [u, w], we have

f̃i(u, w) ≥

(
ℓ(u, w)

i

)

for i = 0, 1, 2. We do not know if the similar inequalities hold for all i ≥ 3. If this
is the case, then we always have

∑

v∈[u,w]

−→
R uv(q) ≥ (1 + q)ℓ(u,w)

which looks very nice. Prove or disprove it.
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