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Composition polynomials of the RNA matrix and

B-composition polynomials of the Riordan

pseudo-involution

E. Burlachenko

Abstract

Let (a (x) , xa (x)) is the Riordan matrix from the Bell subgroup. We denote
(a (x) , xa (x))ϕ =

(

a(ϕ) (x) , xa(ϕ) (x)
)

, where power of the matrix is defined in

the standard way. Polynomials cn (x) such that a(ϕ) (x) =
∑

∞

n=0 cn (ϕ) x
n will

be called composition polynomials. We consider composition polynomials of the
RNA matrix. Construction associated with these polynomials allows the following
generalization. If the matrix (a (x) , xa (x)) is a pseudo-involution, then there ex-
ists numerical sequence (B-sequence) with the generating function B (x) such that
a (x) = 1 + xa (x)B

(

x2a (x)
)

. Matrix, whose B-sequence has the generating func-

tion ϕB (x), will be denoted by
(

a[ϕ] (x) , xa[ϕ] (x)
)

. Polynomials un (x) such that

a[ϕ] (x) =
∑

∞

n=0 un (ϕ) x
n will be called B-composition polynomials. Coefficients

of these polynomials are expressed in terms of the B-sequence. We show that the
matrices whose rows correspond to the B-composition polynomials are connected
with the exponential Riordan matrices in a certain way.

1 Introduction

Matrices that we will consider correspond to operators in the space of formal power
series. We will associate rows and columns of matrices with the generating functions of
their elements, i.e. with the formal power series. Thus, the expression Aa (x) = b (x)
means that the column vector multiplied by the matrix A has the generating function
a (x), resultant column vector has the generating function b (x). nth coefficient of the
series a (x) denote [xn] a (x); (n,m)th element, nth row, nth descending diagonal, nth
ascending diagonal and nth column of the matrix A will be denoted respectively by

(A)n,m, [n,→]A, [n,ց]A, [n,ր]A, Axn.

Infinite lower triangular matrix (f (x) , g (x)), nth column of which has the generating
function f (x) gn (x), g0 = 0, is called Riordan matrix (Riordan array). It is the product
of two matrices that correspond to the operators of multiplication and composition of
series:

(f (x) , g (x)) = (f (x) , x) (1, g (x)) ,

(f (x) , x) a (x) = f (x) a (x) , (1, g (x)) a (x) = a (g (x)) ,

(f (x) , g (x)) (b (x) , a (x)) = (f (x) b (g (x)) , a (g (x))) .

Elements of the matrix (1, g (x)) are expressed through coefficients of the series g (x)
by the formula

((1, g (x)))n,m =
∑

n,m

m!

m1!m2!...mn!
gm1

1 gm2

2 ... gmn

n ,
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where the summation is over all monomials gm1

1 gm2

2 ... gmn

n for which n =
∑n

i=1 imi, m =
∑n

i=1mi.
If f0 6= 0, g1 6= 0, matrix (f (x) , g (x)) is called proper. Proper Riordan matrices form

a group called the Riordan group. Matrices of the form (f (x) , x) form a subgroup called
the Appell subgroup; matrices of the form (f (x) , xf (x)) form a subgroup called the Bell
subgroup.

Matrices
|ex|−1 (f (x) , g (x)) |ex| = (f (x) , g (x))E,

where |ex| is the diagonal matrix, |ex|xn = xn/n! , are called exponential Riordan matri-
ces. Denote [n,→] (f (x) , g (x))E = sn (x). Then

∞
∑

n=0

sn (ϕ)

n!
xn = f (x) exp (ϕg (x)) .

If g (x) = x, then the sequence of polynomials sn (x) is called Appel sequence. Matrix,
power of which is defined by the identity

P ϕ =

(

1

1− ϕx
,

x

1− ϕx

)

= (eϕx, x)E , [n,→]P ϕ = (ϕ+ x)n,

is called Pascal matrix.
Riordan matrix (f (x) , xg (x)), g0 = ±1, having property

(f (x) , xg (x))−1 = (1,−x) (f (x) , xg (x)) (1,−x) = (f (−x) , xg (−x)) ,

is called pseudo-involution in the Riordan group [1] – [8]. Example of pseudo-involution
is the power of the Pascal matrix. For each pseudo-involution (f (x) , xg (x)), g0 = 1,
there exists numerical sequence B = (b0, b1, b2, ...), with the generating function B (x),
such that

g (x) = 1 + xg (x)B
(

x2g (x)
)

.

Sequence B is called B-sequence of the matrix (f (x) , xg (x)) ([4],[5]; in [4] this sequence
is called ∆-sequence). Generating function of this sequence will be called B-function of
the matrix (f (x) , xg (x)).

Consider the following construction for the Bell subgroup matrices (a (x) , xa (x)),
a0 = 1. Denote

(a (x) , xa (x))ϕ =

∞
∑

n=0

(

ϕ
n

)

((a (x) , xa (x))− I)n,

log (a (x) , xa (x)) =

∞
∑

n=1

(−1)n−1

n
((a (x) , xa (x))− I)n.

where I = (1, x). Then

(a (x) , xa (x))ϕ =
∞
∑

n=0

ϕ

n!
(log (a (x) , xa (x)))n.

Build the matrix L (a (x)) by the rule L (a (x))xn = (log (a (x) , xa (x)))nx0. Denote
(a (x) , xa (x))ϕ =

(

a(ϕ) (x) , xa(ϕ) (x)
)

, [n,→]L (a (x)) |ex| = cn (x). Then a(ϕ) (x) =
∑

∞

n=0 cn (ϕ) x
n. Polynomials cn (x) will be called composition polynomials. (If in this

construction we replace the Bell subgroup matrices with the Appell subgroup matrices,
then we get a(ϕ) (x) = aϕ (x), L (a (x)) = (1, log a (x)); in this case, the polynomials cn (x)
are called convolution polynomials [9]).
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Note that if the matrix (a (x) , xa (x)) is pseudo-involution, i.e. a(−1) (x) = a (−x),
then the polynomial c2n (x) is even function, the polynomial c2n+1 (x) is odd function.
Example 1.

a (x) = (1− x)−1, (a (x) , xa (x)) = (ex, x)E ,

log (a (x) , xa (x)) = (x, x)E , L (a (x)) = |ex|−1, cn (x) = xn.

In Section 2, we consider composition polynomials of the RNA matrix. Construction
associated with these polynomials allows a generalization, which we introduce in Section
3. Matrix, whose B-sequence has the generating function ϕB (x), will be denoted by

(a (x) , xa (x))[ϕ] =
(

a[ϕ] (x) , xa[ϕ] (x)
)

, a[1] (x) = a (x). Polynomials un (x) such that

a[ϕ] (x) =
∑

∞

n=0 un (ϕ) x
n will be called B-composition polynomials. Coefficients of these

polynomials are expressed in terms of the B-sequences of the matrix (a (x) , xa (x)) by a
certain formula. Using this formula, we can build the matrix, rows of which correspond to
the B-composition polynomials. We call such matrix B-composition matrix. In Section
4, Section 5, we build B-composition matrices for the cases B = 1+ x, B = C (x), where
C (x) is the Catalan series. In Section 6, we prove a simple but unexpected theorem on
the connection of B-composition matrices with exponential Riordan matrices. Using this
connection, in Section 7 we introduce the B-composition-convolution polynomials such

that
(

a[ϕ] (x)
)β

=
∑

∞

n=0 un (β, ϕ)x
n.

2 Composition polynomials of the RNA matrix

Let (R (x) , xR (x)) is the RNA matrix:

(R (x) , xR (x)) =



























1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
1 2 1 0 0 0 0 · · ·
2 3 3 1 0 0 0 · · ·
4 6 6 4 1 0 0 · · ·
8 13 13 10 5 1 0 · · ·
17 28 30 24 15 6 1 · · ·
...

...
...

...
...

...
...

. . .



























,

(R (x) , xR (x))ϕ =
(

C
(

x2
)

, xC
(

x2
))

−1
P ϕ
(

C
(

x2
)

, xC
(

x2
))

=

=

(

1

1 + x2
,

x

1 + x2

)(

1

1− ϕx
,

x

1− ϕx

)(

1−
√
1− 4x2

2x2
,
1−

√
1− 4x2

2x

)

,

R(ϕ) (x) =
1− ϕx+ x2 −

√

(1− ϕx+ x2)2 − 4x2

2x2
.

Matrix (R (x) , xR (x))ϕ is the pseudo-evolution. In [6] it is shown that if B (x) is the B-
function of the matrix (a (x) , xa (x)), then the coefficients of the series av (x) are expressed
through coefficients of the series B (x) by the formula

[xn] av (x) =
∑

n

v(v + k − 1)q−1

m0!m1!...mp!
bm0

0 bm1

1 ...bmp

p ,

(v + k − 1)q−1 = (v + k − 1) (v + k − 2) ... (v + k − q + 1) ,

p =

⌊

n− 1

2

⌋

, k =

p
∑

i=0

(i+ 1)mi, q =

p
∑

i=0

mi,
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where the summation is over all monomials bm0

0 bm1

1 ...b
mp

p for which n =
∑p

i=0mi (2i+ 1).
This formula is called B-expansion. Series R(ϕ) (x) is solution to the equation

a (x) = 1 + xa (x)

(

ϕ

1− x2a (x)

)

,

so that B-function of the matrix (R (x) , xR (x))ϕ is the series ϕ(1− x)−1. Hence, com-
position polynomials of the RNA matrix (we denote them rn (x)) have the form

r0 (x) = 1, rn (x) =
n
∑

m=0

(

∑

n,m

(

n+m
2

)

m−1

m0!m1!...mp!

)

xm,

where the summation of the coefficient of xm is over all partitions n =
∑p

i=0mi (2i+ 1),
∑p

i=0mi = m. Using this formula, we will begin to build the matrix R = L (R (x)) |ex|,
[n,→]R = rn (x):

R =











































1 0 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·
0 1 0 1 0 0 0 0 0 0 0 · · ·
0 0 3 0 1 0 0 0 0 0 0 · · ·
0 1 0 6 0 1 0 0 0 0 0 · · ·
0 0 6 0 10 0 1 0 0 0 0 · · ·
0 1 0 20 0 15 0 1 0 0 0 · · ·
0 0 10 0 50 0 21 0 1 0 0 · · ·
0 1 0 50 0 105 0 28 0 1 0 · · ·
0 0 15 0 175 0 196 0 36 0 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .











































.

Form of this matrix leads to the assumption that [2n,ր]R = Nn (x), where Nn (x) are
the Narayana polynomials:

N0 (x) = 1, Nn (x) =
1

n

n
∑

m=0

(

n
m− 1

)(

n
m

)

xm.

Let’s turn to the matrix N (A090181), [n,→]N = Nn (x):

N =



























1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 6 6 1 0 0 · · ·
0 1 10 20 10 1 0 · · ·
0 1 15 50 50 15 1 · · ·
...

...
...

...
...

...
...

. . .



























.

Theorem 1.

Nxn+1 =
xnNn (x)

(1− x)2n+1 , n > 0.

Proof. Generating function of the sequence of Narayana polynomials is

N (t, x) =

∞
∑

n=0

Nn (t) x
n =

1 + x (1− t)−
√

1− 2x (1 + t) + x2(1− t)2

2x
.
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Then

N (x, t) =

∞
∑

n=0

Nn (x) t
n =

1 + t (1− x)−
√

1− 2t (1 + x) + t2(1− x)2

2t
,

N
1

1− tx
= 1− t+ t

∞
∑

n=0

Nn (x) x
ntn

(1− x)2n+1 = 1− t +
t

1− x
N

(

x,
xt

(1− x)2

)

=

=
1 + x (1− t)−

√

1− 2x (1 + t) + x2(1− t)2

2x
=

∞
∑

n=0

Nn (t) x
n.

Theorem 2.

[2n,ր]R = Nn (x) .

Proof. Denote Ñ0 (x) = 1, Ñn (x) = (1/x )Nn (x). Then

Ñ (x, t) =
∞
∑

n=0

Ñn (x) t
n =

1− t (1− x)−
√

1− 2t (1 + x) + t2(1− x)2

2xt
.

By Theorem 1, if [2n,ր]R = Nn (x), then

Rxn+1 =
xn+1Ñn (x

2)

(1− x2)2n+1 .

Then

R
1

1− tx
= 1 + xt

∞
∑

n=0

Ñn (x
2) xntn

(1− x2)2n+1 = 1 +
xt

1− x2
Ñ

(

x2,
xt

(1− x2)2

)

=

=
1− tx+ x2 −

√

(1− tx+ x2)2 − 4x2

2x2
= R(t) (x) .

Thus,

r2n (x) =
n
∑

m=0

Nn+m,2mx
2m, r2n+1 (x) =

n
∑

m=0

Nn+m+1,2m+1x
2m+1,

where Nn (x) =
∑n

m=0Nn,mx
m, or

r2n (x) =

n
∑

m=0

1

n +m

(

n +m
2m− 1

)(

n+m
2m

)

x2m,

r2n+1 (x) =

n
∑

m=0

1

n +m+ 1

(

n+m+ 1
2m

)(

n+m+ 1
2m+ 1

)

x2m+1.

Generalization of the RNA matrix is the matrix(R (β, x) , xR (β, x)):

(R (β, x) , xR (β, x))ϕ =
(

C
(

βx2
)

, xC
(

βx2
))

−1
P ϕ
(

C
(

βx2
)

, xC
(

βx2
))

=

=

(

1

1 + βx2
,

x

1 + βx2

)(

1

1− ϕx
,

x

1− ϕx

)

(

1−
√

1− 4βx2

2βx2
,
1−

√

1− 4βx2

2βx

)

,

R(ϕ) (β, x) =
1− ϕx+ βx2 −

√

(1− ϕx+ βx2)2 − 4βx2

2βx2
.
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Series R(ϕ) (β, x) is solution to the equation

a (x) = 1 + xa (x)

(

ϕ

1− βx2a (x)

)

,

so that B-function of the matrix (R (β, x) , xR (β, x))ϕ is the series ϕ(1− βx)−1. Hence,
composition polynomials of the matrix (R (β, x) , xR (β, x)) have the form

n
∑

m=0

(

∑

n,m

(

n+m
2

)

m−1

m0!m1!...mp!

)

β
n−m

2 xm =
(

√

β
)n

rn

(

x/
√

β
)

.

3 B-composition polynomials

Matrix, whose B-sequence has the generating function ϕB (x), will be denoted by

(a (x) , xa (x))[ϕ] =
(

a[ϕ] (x) , xa[ϕ] (x)
)

. Polynomials un (x) such that a[ϕ] (x) =
∑

∞

n=0 un (ϕ)x
n will be called B-composition polynomials.

Theorem 3. Let B = (b0, b1, b2, ...) and un (x) are the B-sequence and B-composition

polynomials of the matrix (a (x) , xa (x)). Then

[xm] un (x) =

(

n+m

2

)

m−1

∑

n,m

bm0

0 bm1

1 ...b
mp

p

m0!m1!...mp!
,

where summation is over all partitions n =
∑p

i=0mi (2i+ 1),
∑p

i=0mi = m.

Proof. This is obvious property of the B-expansion.
Properties of the B-expansion also imply that if the B-function B (x) is associated

with the polynomials un (x), then B-function B (βx) is associated with the polynomials
(√

β
)n
un

(

x/
√
β
)

.
B-expansion when v = 1 we call B1-expansion. Initial terms of the B1-expansion are:

a0 = 1, a1 = b0, a2 = b20, a3 = b30 + b1, a4 = b40 + 3b0b1,

a5 = b50 + 6b20b1 + b2, a6 = b50 + 10b30b1 + 4b0b2 + 2b21,

a7 = b70 + 15b40b1 + 10b20b2 + 10b0b
2
1 + b3,

a8 = b80 + 21b50b1 + 20b30b2 + 30b20b
2
1 + 5b0b3 + 5b1b2,

a9 = b90 + 28b60b1 + 35b40b2 + 70b30b
2
1 + 15b20b3 + 30b0b1b2 + 5b31 + b4,

a10 = b100 + 36b70b1 + 56b50b2 + 140b40b
2
1 + 35b30b3 + 35b0b

3
1 + 105b20b1b2+

+6b0b4 + 6b1b3 + 3b22.

Using Theorem 3, we can build the matrix, rows of which correspond to the B-
compositions polynomials. We call such matrix a B-composition matrix. Note that the
first column of such matrix has the generating function xB (x2).

4 Case B = 1 + x

Series

(1)R
[ϕ] (x) =

1− ϕx−
√

(1− ϕx)2 − 4ϕx3

2ϕx3

6



is solution to the equation a (x) = 1 + xa (x)ϕ (1 + x2a (x)), so that B-function of the

matrix
(

(1)R (x) , x(1)R (x)
)[ϕ]

is the series ϕ (1 + x). B-composition matrix has the form

(1)R =











































1 0 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·
0 1 0 1 0 0 0 0 0 0 0 · · ·
0 0 3 0 1 0 0 0 0 0 0 · · ·
0 0 0 6 0 1 0 0 0 0 0 · · ·
0 0 2 0 10 0 1 0 0 0 0 · · ·
0 0 0 10 0 15 0 1 0 0 0 · · ·
0 0 0 0 30 0 21 0 1 0 0 · · ·
0 0 0 5 0 70 0 28 0 1 0 · · ·
0 0 0 0 35 0 140 0 36 0 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .











































.

Coefficient of monomial bp0b
v
1 in the B1-expansion is equal to

(p+ 2v)p+v−1

p!v!
=

(p+ 2v)!

(1 + v)!p!v!
=

1

1 + v

(

p + 2v
p

)(

2v
v

)

= Cv

(

2v + p
p

)

,

Cv = [xv]C (x). Monomial bp0b
v
1 corresponds to partition of the number n = p + 3v into

m = p+ v parts. Hence,

(

(1)R
)

n,m
= C(n−m)/2

(

(n +m)/2
(3m− n)/2

)

,

where C(n−m)/2 = 0, if n−m is odd,

[2n,ց] (1)R =

∞
∑

m=0

Cn

(

n +m
m− n

)

xm = xnCn

(

1

1− x

)2n+1

,

[2n,ր] (1)R =
n
∑

m=0

Cn−m

(

n
2m− n

)

xm,

(1)Rx2n = x2n
n
∑

m=0

Cm

(

2n+m
2n−m

)

x2m, (1)Rx2n+1 = x2n+1
n
∑

m=0

Cm

(

2n+ 1 +m
2n+ 1−m

)

x2m,

[2n,→] (1)R = (1)r2n (x) =

n
∑

m=0

Cn−m

(

n+m
3m− n

)

x2m,

[2n+ 1,→] (1)R = (1)r2n+1 (x) =

n
∑

m=0

Cn−m

(

n+ 1 +m
3m+ 1− n

)

x2m+1.

Let’s turn to the polynomials Pn (x) ( A033282 ):

Pn (x) =
1

n + 1

n
∑

m=0

(

n+ 1
m+ 1

)(

n+m+ 2
m

)

xm = (1 + x)nÑn+1

(

x

1 + x

)

.

Since

∞
∑

n=0

Ñn+1 (x) t
n =

1− t (1 + x)−
√

1− 2t (1 + x) + t2(1− x)2

2xt2
= N̄ (x, t) ,

7



then

P (x, t) =

∞
∑

n=0

Pn (x) t
n = N̄

(

x

1 + x
, (1 + x) t

)

=
1− t (1 + 2x)−

√

1− 2t (1 + 2x) + t2

2xt2 (1 + x)
.

Theorem 4.

(1)Rxn+1 = xn+1Pn

(

x2
) (

1 + x2
)

.

Proof.

(1)R
1

1− tx
= 1 + tx

(

1 + x2
)

∞
∑

n=0

Pn

(

x2
)

xntn = 1 + tx
(

1 + x2
)

P
(

x2, xt
)

=

=
1− tx−

√

(1− tx)2 − 4tx3

2tx3
= (1)R

[t] (x) .

5 Case B = C (x)

Series

(2)R
[ϕ] (x) =

1 + ((2/ϕ )− ϕ)x−
√

1− 2ϕx+ (ϕ2 − 4)x2

2x (1/ϕ )

is solution to the equation

a (x) = 1 + xa (x)ϕ

(

1−
√

1− 4x2a (x)

2x2a (x)

)

,

so that B-function of the matrix
(

(2)R (x) , x(2)R (x)
)[ϕ]

is the series ϕC (x). B-composition
matrix has the form

(2)R =











































1 0 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·
0 1 0 1 0 0 0 0 0 0 0 · · ·
0 0 3 0 1 0 0 0 0 0 0 · · ·
0 2 0 6 0 1 0 0 0 0 0 · · ·
0 0 10 0 10 0 1 0 0 0 0 · · ·
0 5 0 30 0 15 0 1 0 0 0 · · ·
0 0 35 0 70 0 21 0 1 0 0 · · ·
0 14 0 140 0 140 0 28 0 1 0 · · ·
0 0 126 0 420 0 252 0 36 0 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .











































.

We assume that [2n,ց] (2)R = (1/xn−1 ) [2n,ց] (1)R, n > 0. Let’s turn to the matrix

(1,2)R (А107131), (1,2)Rxn+1 = xn+1Pn (x) (1 + x):

(1,2)R =































1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 0 · · ·
0 0 3 1 0 0 0 0 · · ·
0 0 2 6 1 0 0 0 · · ·
0 0 0 10 10 1 0 0 · · ·
0 0 0 5 30 15 1 0 · · ·
0 0 0 0 35 70 21 1 · · ·
...

...
...

...
...

...
...

...
. . .































.
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Denote [n,→] (1,2)R = Fn (x).
Theorem 5.

[n+ 1,→] (2)R =
1

xn−1
Fn

(

x2
)

.

Proof.

(1,2)R
1

1− tx
= F (t, x) =

∞
∑

n=0

Fn (t) x
n = 1 + xt (1 + x)

∞
∑

n=0

Pn (x) x
ntn =

=
1− xt−

√

1− 2xt (1 + 2x) + x2t2

2x2t
;

(2)R
1

1− tx
= 1 + xt

∞
∑

n=0

Fn

(

t2
) xn

tn
= 1 + xtF

(

t2, x/t
)

=

=
1 + ((2/t )− t)x−

√

1− 2tx+ (t2 − 4)x2

2x (1/t )
= (2)R

[t] (x) .

Thus,
(

(2)R
)

n,m
= C(n−m)/2

(

n− 1
m− 1

)

,

[2n,→] (2)R = (2)r2n (x) =
n
∑

m=0

Cn−m

(

2n− 1
2m− 1

)

x2m,

[2n+ 1,→] (2)R = (2)r2n+1 (x) =

n
∑

m=0

Cn−m

(

2n
2m

)

x2m+1.

Denote (1/x ) (2)rn+1 (x) = (2)r̄n (x). Since

(x, x)T (2)R (x, x) =
(

C̄ (x) , x
)

E
, C̄ (x) =

∞
∑

n=0

Cn
x2n

(2n)!
,

then sequence of polynomials (2)r̄n (x) is Appel sequence:

∞
∑

n=0

(2)r̄n (ϕ)

n!
xn = C̄ (x) eϕx.

Thus,
[xn] (2)R

[ϕ] (x) = ϕ (n− 1)!
[

xn−1
]

C̄ (x) eϕx.

B-composition matrix will be denoted by 〈B (x)〉. If

(x, x)T 〈B (x)〉 (x, x) =
(

B̄ (x) , x
)

E
, B̄ (x) =

∞
∑

n=0

bn
x2n

(2n)!
,

matrix 〈B (x)〉 we call the Appell type matrix.
Theorem 6. If the matrix 〈B (x)〉 is Appell type matrixя, then bn = Cnb

n
1 .

Proof. If the matrix 〈B (x)〉 is Appell type matrixя, then identity takes place

n
∑

m=0

bn−m

(

2n + 1
2m+ 1

)

=
∑

2(n+1)

(k)q−1

m0!m1!...mn!
bm0

0 bm1

1 ...bmn

n ,

k =

n
∑

i=0

(i+ 1)mi, q =

n
∑

i=0

mi,

9



where in the right part the summation is over all monomials bm0

0 bm1

1 ...bmn

n for which
2 (n+ 1) =

∑n
i=0mi (2i+ 1). We will consider this identity as equation with unknowns b1,

b2 . . . bn (it’s obvious that b0 = 1). Since monomial b0bn corresponds to partition of the
number 2 (n+ 1) into two parts, equal to 2n + 1 and 1, the equation can be represented
as

(2n + 1) bn + f (b1, b2, ..., bn−1) = (n+ 2) bn + g (b1, b2, ..., bn−1) ,

where f (b1, b2, ..., bn−1), g (b1, b2, ..., bn−1) are independent of bn. Thus, the nth term of the
B-sequence, starting from the second, is uniquely expressed through the previous terms.
Result is known: bn = Cnb

n
1 .

6 Connection theorem

Generating function of the nth descending diagonal of the exponential Riordan matrix
has the form hn (x)/(1− x)2n+1 , where hn (x) is the polynomial of degree ≤ n ([10] -
[13]). In particular,

[n,ց]

(

1,
x

1− x

)

E

=
(n + 1)!Nn (x)

(1− x)2n+1 ,

[n,ց] (1, x (1 + x))E =
((2n)!/n! )xn

(1− x)2n+1 , [n,ց] (1, xC (x))E =
((2n)!/n! ) x

(1− x)2n+1 ,

(in the latter case n > 0). Thus,

[2n,ց]

〈

1

1− x

〉

=
1

(n+ 1)!
[n,ց]

(

1,
x

1− x

)

E

,

[2n,ց] 〈1 + x〉 = 1

(n + 1)!
[n,ց] (1, x (1 + x))E ,

[2n,ց] 〈C (x)〉 = 1

(n+ 1)!
[n,ց] (1, xC (x))E .

This observation leads to the following theorem.
Theorem 7.

[2n,ց] 〈B (x)〉 = 1

(n+ 1)!
[n,ց] (1, xB (x))E .

Proof.

((1, xB (x))E)n,m = n!
∑

n,m

bm0

0 bm1

1 ...b
mn−1

n−1

m0!m1!...mn−1!
,

where the summation is over all monomials bm0

0 bm1

1 ...b
mn−1

n−1 for which n =
∑n−1

i=0 mi (i+ 1),

m =
∑n−1

i=0 mi;

(〈B (x)〉)n,m =

(

n+m

2

)

m−1

∑

n,m

bm0

0 bm1

1 ...b
mp

p

m0!m1!...mp!
,

where the summation is over all monomials bm0

0 bm1

1 ...b
mp

p for which n =
∑p

i=0mi (2i+ 1),
m =

∑p
i=0mi. We must prove that

(〈B (x)〉)2n−m,m =
1

(n−m+ 1)!
((1, xB (x))E)n,m.

This comes down to the proof that

∑

n,m

bm0

0 bm1

1 ...b
mn−1

n−1

m0!m1!...mn−1!
=

∑

2n−m,m

bm0

0 bm1

1 ...b
mp

p

m0!m1!...mp!
,
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where on the left the summation is carried by the rule n =
∑n−1

i=0 mi (i+ 1), m =
∑n−1

i=0 mi,
on the right – by the rule 2n−m =

∑p
i=0mi (2i+ 1), m =

∑p
i=0mi. Isomorphism between

the set of partitions of the number n into m parts and the set of partitions of the number
2n−m into m odd parts (each partition n =

∑n−m
i=0 mi (i+ 1) corresponds to the partition

2n−m =
∑n−m

i=0 mi (2i+ 1), and vice versa) is proof.

7 B-composition-convolution polynomials

Let sn (x) is the convolution polynomials of the series B (x): Bm (x) =
∑

∞

n=0 sn (m) xn.
Then

((1, xB (x))E)n,m =
n!sn−m (m)

m!
,

[n,→] 〈B (x)〉 = un (x) =

n
∑

m=0

(

n+m
2

)

m−1
sn−m

2

(m)

m!
xm,

u2n (x) =
n
∑

m=0

(

n+m
2m

)

sn−m (2m)

n−m+ 1
x2m,

u2n+1 (x) =
n
∑

m=0

(

n+m+ 1
2m+ 1

)

sn−m (2m+ 1)

n−m+ 1
x2m+1.

Example 2.

B (x) = ex, u2n (x) =

n
∑

m=0

(

n+m
2m

)

(2m)n−m

(n−m+ 1)!
x2m,

u2n+1 (x) =

n
∑

m=0

(

n+m+ 1
2m+ 1

)

(2m+ 1)n−m

(n−m+ 1)!
x2m+1.

We use all possibilities of the B-expansion. Denote

un (x) = u(1)
n (x) =

n
∑

m=0

umx
m, u(v)

n (x) =
n
∑

m=0

v
(

v + n+m
2

− 1
)

v−1
(

v + n−m
2

)

v−1

umx
m,

Then
(

a[ϕ] (x)
)v

=
∞
∑

n=0

u(v)
n (ϕ)xn.

Example 3.
[

x2n
]

Rv (x) =
n
∑

m=0

v(v + n+m− 1)v−1

(v + n−m)v−1

Nn+m,2m,

[

x2n+1
]

Rv (x) =

n
∑

m=0

v(v + n +m)v−1

(v + n−m)v−1

Nn+m+1,2m+1.

Theorem 8. If sn (x) is the convolution polynomials of the B-function of the matrix

(a (x) , xa (x)), gn (x) is the convolution polynomials of the series a (x), then

g0 (x) = 1, g2n (x) =
n
∑

m=0

x(x+ n+m− 1)2m−1

sn−m (2m)

(2m)!
,

g2n+1 (x) =

n
∑

m=0

x(x+ n+m)2m
sn−m (2m+ 1)

(2m+ 1)!
.
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Proof. From the definition of the B-expansion it follows that

g0 (x) = 1, gn (x) =

n
∑

m=0

x

(

x+
n +m

2
− 1

)

m−1

∑

n,m

bm0

0 bm1

1 ...b
mp

p

m0!m1!...mp!
,

where the summation of the coefficient of x
(

x+ n+m
2

− 1
)

m−1
is over all partitions n =

∑p
i=0mi (2i+ 1),

∑p
i=0mi = m. By Theorem 7

∑

n,m

bm0

0 bm1

1 ...b
mp

p

m0!m1!...mp!
=

s(n−m)/2 (m)

m!
.

Example 4.

[

x2n
]

Rβ (x) =
n
∑

m=0

β(β + n +m− 1)2m−1

(2m)!

(

n +m− 1
n−m

)

,

[

x2n+1
]

Rβ (x) =

n
∑

m=0

β(β + n +m)2m
(2m+ 1)!

(

n +m
n−m

)

.

Denote

un (β, x) =

n
∑

m=0

β

(

β +
n+m

2
− 1

)

m−1

s(n−m)/2 (m)

m!
xm.

Then
(

a[ϕ] (x)
)β

=
∞
∑

n=0

un (β, ϕ)x
n.
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