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Abstract

An augmented generalized happy function S[c,b] maps a positive integer to the sum

of the squares of its base b digits plus c. For b ≥ 2 and k ∈ Z
+, a k-desert base b is a

set of k consecutive non-negative integers c for each of which S[c,b] has no fixed points.

In this paper, we examine a complementary notion, a k-oasis base b, which we define

to be a set of k consecutive non-negative integers c for each of which S[c,b] has a fixed

point. In particular, after proving some basic properties of oases base b, we compute

bounds on the lengths of oases base b and compute the minimal examples of maximal

length oases base b for small values of b.
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1 Introduction

The concepts of happy number A007770 and generalized happy number [3, 4, 5] were gener-
alized further [1] by allowing for augmentation, as follows.

Definition 1. For integers c ≥ 0 and b ≥ 2, the augmented generalized happy function,
S[c,b] : Z

+ → Z
+, is defined for 0 ≤ ai ≤ b− 1 and an 6= 0 by

S[c,b]

(

n
∑

i=0

biai

)

= c+
n
∑

i=0

a2i .

The value c is called the augmenting constant of S[c,b]. A positive integer a is called a fixed

point of S[c,b] if S[c,b](a) = a. A positive integer a is a happy number if, for some k ∈ Z
+,

Sk
[0,10](a) = 1.

The function S[0,10] is easily seen to have exactly one fixed point, while, depending on
the values of c and b, the function S[c,b] may have zero, one, or multiple fixed points [2]. The
case of zero fixed points is studied in Part I of this paper [2], in which Baker Swart et al.
prove that for each b ≥ 2, there exist arbitrarily long finite sequences of consecutive values
of c for which S[c,b] has no fixed point.

In this work, we study the complementary case by considering sets of consecutive aug-
menting constants c for which S[c,b] has at least one fixed point and proving that, for each
fixed b, the size of these sets is bounded. In Section 2, we define the concept of k-oasis
base b, determine some initial properties, and prove a bound, for each b ≥ 2, on the lengths
of oases base b. In Section 3, we define the concept of a k-mirage base b, prove that the
maximal length of mirages base b bounds the maximal length of oases base b, and provide
an algorithm for finding the maximal length of mirages base b. Finally, we use the above to
determine the maximal length of oases (and of mirages) base b, for all b ≤ 20.

For later convenience, we note that if
∑n

i=0 b
iai is a fixed point of S[c,b], then solving for

c yields that

c =
n
∑

i=0

(bi − ai)ai. (1)

Thus, for a given base b and an arbitrary positive integer a, there is at most one augmenting
constant, c, such that a is a fixed point of S[c,b].

2 Fixed point oases

We begin by defining the key concept in this paper, a k-oasis base b, which is analogous to
the concept of a k-desert base b, defined in Part I of this paper [2].

Definition 2. For b ≥ 2 and k ∈ Z
+, a k-oasis base b is a set of k consecutive non-negative

integers c for each of which S[c,b] has at least one fixed point. An oasis base b is a k-oasis
base b, for some k ≥ 1. The length of a k-oasis base b is k.
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Theorem 3 provides some basic facts about the existence and lengths of oases base b for
different values of b ≥ 2.

Theorem 3. Let b ≥ 2.

1. There exists an oasis base b.

2. If b ≥ 2 is odd, then every k-oasis base b has k = 1.

3. If b ≥ 6 is even, then there exists a 5-oasis base b.

Proof. First, for any base b ≥ 2, since S[0,b](1) = 1, {0} is a 1-oasis base b.
Next, let b ≥ 2 be odd. As shown by Baker Swart et al. [2, Lemma 2.3], if S[c,b] has a

fixed point, then c is even. Part 2 of the theorem follows immediately.
Finally, let b ≥ 6 be even and let B = b/2. Set

a1 = (B − 2) b+ 1, c1 = B2 − 4,
a2 = (B − 1) b+ 2, c2 = B2 − 3,
a3 = Bb+ 2, c3 = B2 − 2,
a4 = (B − 1) b+ 1, c4 = B2 − 1,
a5 = Bb+ 1, and c5 = B2.

A direct calculation shows that for each 1 ≤ i ≤ 5, S[ci,b](ai) = ai. Hence {c1, c2, c3, c4, c5} is
a 5-oasis base b.

Given a k-oasis base b, it is easy to produce additional k-oases base b.

Theorem 4. Let b ≥ 2 and k ≥ 1. If there exists a k-oasis base b, there exist infinitely

many k-oases base b.

Proof. Fix b ≥ 2 and let {c + j|1 ≤ j ≤ k} be a k-oasis base b. For each j, 1 ≤ j ≤ k, let
a(j) denote a fixed point of S[c+j,b]. Fix n ∈ Z

+ such that for each j, a(j) < bn. Then for
each positive integer t and for each j, tbn + a(j) is a fixed point of

S[c+j+tbn−S[0,b](t),b].

Hence for each t ∈ Z
+, {c+ j + tbn − S[0,b](t)|1 ≤ j ≤ k} is a k-oasis base b.

The following theorems provide properties of fixed points associated with values of c that
are in the same oasis base b. Theorem 5 provides that unless two such fixed points are quite
small, they must have the same number of digits, and Theorem 6 says that few of the digits
of the fixed points may differ. These theorems are used in proving Theorem 7, which gives
a general upper bound for the length of an oasis base b, and again in Section 3, in proving
the correctness of a method we provide for improving this bound.

Theorem 5. Let c ≥ 0 and b ≥ 2. Let a ∈ Z
+ have n+1 > 3 digits and satisfy S[c,b](a) = a.

Then every fixed point with an augmenting constant in the same oasis base b as c has exactly
n+ 1 digits.
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We note that Theorem 5 is optimal in that fixed points of two and three digits, re-
spectively, can have augmenting constants in the same oasis. For example, in base 16, the
two-digit number a = 85(16) has augmenting constant c = 44 and the three-digit number
â = 10(15)(16) = 1 · 162 + 15 has augmenting constant ĉ = 45. Clearly c and ĉ are in the
same oasis base 16.

Proof of Theorem 5. Consider the collection of all values of c in a fixed oasis base b, and the
set of all fixed points of the happy functions base b with those cs as augmenting constants.
Assume that two of these fixed points have different numbers of digits and at least one of
them has more than 3 digits. Then there must exist augmenting constants c̄ and ĉ in the
oasis with |c̄ − ĉ| ≤ 1, and fixed points ā of S[c̄,b] with n̄ + 1 > 3 digits and â of S[ĉ,b] with
n̂+ 1 6= n̄ + 1 digits. We may assume without loss of generality that n̂ < n̄.

In Part I of this paper [2, Theorem 4.2], Baker Swart et al. showed that for n ≥ 2, if S[c,b]

has a fixed point of n + 1 digits, then mb,n ≤ c ≤ Mb,n, where the bounds, which are given
explicitly in terms of their parameters, are sharp. They also showed [2, Lemma 4.3] that,
for n ≥ 2, Mb,n + 1 < mb,n+1.

In the same work [2, Theorem 4.2], the authors prove that, for n ≥ 2, if S[c,b] has a fixed
point of n + 1 digits, then mb,n ≤ c ≤ Mb,n, where the bounds, which are given explicitly
in terms of their parameters, are sharp. Additionally, they show [2, Lemma 4.3] that, for
n ≥ 2, Mb,n +1 < mb,n+1. It follows (using a simple induction argument) that if n̂ ≥ 2, then
ĉ+ 1 ≤ Mb,n̂ + 1 < mb,n̄ ≤ c̄. But this implies that 1 < c̄− ĉ = |c̄− ĉ|, a contradiction.

Thus, we have that n̂ < 2. Letting â =
∑n̂

i=0 aib
i, Equation (1) yields

ĉ = (b− a1)a1 + (1− a0)a0.

The largest possible value of (b−a1)a1 occurs when a1 = ⌊b/2⌋ and the largest possible value
of (1− a0)a0 is 0. Thus,

ĉ = (b− a1)a1 + (1− a0)a0 ≤ (b− ⌊b/2⌋)⌊b/2⌋ + 0 ≤ b2/4.

Since ā has more than three digits, n̄ ≥ 3, and so [2, Theorem 4.2] implies that

c̄ ≥ mb,n̂ = bn̂ − b2 + 3b− 3 ≥ b3 − b2 + 3b− 3.

Combining these and the fact that b ≥ 2 yields

1 ≥ |c̄− ĉ| ≥ (b3 − b2 + 3b− 3)− b2/4 > 1,

a contradiction, completing the proof.

Theorem 6. Fix b ≥ 2 and let c and ĉ be in the same oasis base b. Let S[c,b](a) = a and

S[ĉ,b](â) = â. Then, letting ai and âi denote the coefficients of bi in the base b expansions of

a and â, respectively, for each i ≥ 3, ai = âi.
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Proof. Suppose for a contradiction that there exists an i ≥ 3 such that ai 6= âi. Then, at
least one of a and â has more than three digits, and so, by Theorem 5, a and â have the same
number of digits, say n+1 > 3. We may assume, without loss of generality, that |ĉ− c| ≤ 1.

Fix j ≥ 3 maximal such that aj 6= âj . Then using Equation (1), we have

|ĉ− c| =

∣

∣

∣

∣

∣

(

n
∑

i=0

(bi − âi)âi

)

−

(

n
∑

i=0

(bi − ai)ai

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j
∑

i=0

(

(bi − âi)âi − (bi − ai)ai
)

∣

∣

∣

∣

∣

≥
∣

∣(bj − âj)âj − (bj − aj)aj
∣

∣−

j−1
∑

i=0

∣

∣(bi − âi)âi − (bi − ai)ai
∣

∣ .

For i ≥ 2 and 0 ≤ x ≤ b − 1, the first derivative of the function f(x) = (bi − x)x
is positive and decreasing. Thus, the function is increasing at a decreasing rate over the
domain. Therefore, the smallest difference between the function values for two integer values
of x occurs when x = b − 1 and x = b − 2. Similarly, the largest difference occurs when
x = b− 1 and x = 0. It follows that

|ĉ− c| ≥
(

(bj − (b− 1))(b− 1)− (bj − (b− 2))(b− 2)
)

−

j−1
∑

i=2

(

(bi − (b− 1))(b− 1)− (bi − 0)(0)
)

−
1
∑

i=0

∣

∣(bi − âi)âi − (bi − ai)ai
∣

∣

≥ bj − (b− 1)2 + (b− 2)2 −

j−1
∑

i=2

bi(b− 1) + (j − 2)(b− 1)2

−

∣

∣

∣

∣

(

b−
b

2

)(

b

2

)

− (b− 0)(0)

∣

∣

∣

∣

− |(1− (b− 1))(b− 1)− (1− 0)(0)|

= b2 + (b− 2)2 + (j − 3)(b− 1)2 −
b2

4
− (b− 1)(b− 2).

Since j ≥ 3 and b ≥ 2, this implies that

1 ≥ |ĉ− c| ≥
3

4
b2 − b+ 2 > 2,

a contradiction. Thus no such i ≥ 3 exists, as desired.

Theorem 7. Let b ≥ 2. If there exists a k-oasis base b, then

k ≤
b3

2
+

b2

2
− b.
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Proof. If b is odd, then, by Theorem 3, every oasis base b has length 1, which is less than
b3/2 + b2/2− b. So we assume that b is even.

Let {c + j|1 ≤ j ≤ k} be a k-oasis base b. For each j, 1 ≤ j ≤ k, let a(j) be a fixed
point of S[c+j,b]. By Theorem 6, the fixed points, a(j), differ in, at most, the rightmost three
digits. Since each fixed point corresponds to exactly one augmenting constant, this implies
an initial bound: k ≤ b3. But we can improve on this.

Baker Swart et al. [2, Theorem 2.1] prove that if a(j) is a multiple of b, then a(j) + 1 is
also a fixed point of S[c+j,b]. Thus, substituting a(j)+1 for a(j), if necessary, we may assume
that none of the a(j) is a multiple of b. This leaves us with b− 1 possible rightmost digits.

Similarly, if a(j) has second rightmost digit equal to d 6= 0, then the number obtained
by replacing that digit with the digit b − d is another fixed point of S[c+j,b] [2, Lemma 2.2].
Thus we may assume that none of the ai have second rightmost digit greater than b/2. This
leaves us with (b+ 2)/2 possible second rightmost digits.

So, the number of possible values of the rightmost three digits of the a(j)s is

(b)

(

b+ 2

2

)

(b− 1).

Since, for each of the k augmenting constants, c+ j, there is a distinct fixed point, a(j), we
conclude that the number of augmenting constants in the oasis is

k ≤ (b)

(

b+ 2

2

)

(b− 1) =
b3

2
+

b2

2
− b,

as desired.

3 Maximal lengths of oases base b

In the previous section, we determined a general formula for an upper bound for the length
of an oasis base b, for b ≥ 2. In this section, we present an algorithm for determining a new
bound on this length, which, in many cases, can be shown to provide the precise maximal
length of oases base b.

From Theorem 3, we know that if b is odd, every oasis base b has length 1. For bounding
the oasis lengths for even bases, we introduce the concept of a mirage base b. For convenience,
we extend the domain of the function S[0,b] for b ≥ 2 to include 0 by defining S[0,b](0) = 0.

Definition 8. For b ≥ 2 and k ∈ Z
+, a k-mirage base b is a set of k consecutive integers

{d1, ..., dk}, such that for each 1 ≤ i ≤ k, di = ri − S[0,b](ri) with ri a non-negative integer of
at most three digits. A mirage base b is a k-mirage base b for some k ≥ 1.

A mirage base b may or may not be an oasis base b. We first provide a large class of
mirages that actually are oases.

Lemma 9. If a k-mirage base b contains only positive integers, then it is a k-oasis base b.
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Proof. Given a k-mirage containing only positive integers, using the notation in the definition
of k-mirage base b, for each 1 ≤ i ≤ k, we have S[di,b](ri) = di + S[0,b](ri) = ri. Thus ri is a
fixed point of S[di,b], and so {d1, ..., dk} is a k-oasis base b.

Of course, not all mirages base b are oases base b. For example, −4 = 16 − S[0,6](16),
−3 = 22 − S[0,6](22), −2 = 2 − S[0,6](2), −1 = 9 − S[0,6](9), and 0 = 1 − S[0,6](1), implying
that {−4,−3,−2,−1, 0} is a 5-mirage base 6, though not an oasis base 6.

We next show that given a k-oasis base b, there must exist a k-mirage base b.

Theorem 10. Given b ≥ 2 and k ∈ Z
+, if there exists a k-oasis base b, then there exists a

k-mirage base b.

Proof. Let O = {c+ j|1 ≤ j ≤ k} be a k-oasis base b, and for each 1 ≤ j ≤ k, let a(j) ∈ Z
+

be a fixed point of S[c+j,b].
First, consider the case in which each a(j) has 3 or fewer digits. Then for 1 ≤ j ≤ k,

a(j) = S[c+j,b](a(j)) = (c + j) + S[0,b](a(j)), and so c + j = a(j) − S[0,b](a(j)). Thus O is a
k-mirage base b, and we are done.

Next, consider the case in which, for at least one value of j, a(j) has more than 3 digits.
Then, by Theorem 5, all of the a(j) have the same number of digits, say n+1 > 3. For each
1 ≤ j ≤ k, let 0 ≤ a(j)i ≤ b− 1, such that

a(j) =
n
∑

i=0

a(j)ib
i,

and define

rj =

2
∑

i=0

a(j)ib
i.

By Theorem 6, for each 1 ≤ j ≤ k and i ≥ 3, a(j)i = a(1)i. Thus, for each 1 ≤ j ≤ k,

a(j) = rj +

n
∑

i=3

a(j)ib
i = rj +

n
∑

j=3

a(1)ib
i = rj + a(1)− r1. (2)

Further, since a(j) is a fixed point of S[c+j,b], we have that

a(j) = S[c+j,b](a(j)) = (c+ j) + S[0,b](rj) +
n
∑

i=3

a(j)2i

= (c+ j) + S[0,b](rj) +
n
∑

i=3

a(1)2i .

(3)

Thus, using equations (2) and (3), for each 1 ≤ j ≤ k,

rj − S[0,b](rj) =

(

r1 − a(1) +

n
∑

i=3

a(1)2i + c

)

+ j. (4)
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Since the only value on the right-hand-side of Equation (4) dependent on j is j itself,

{

rj − S[0,b](rj)|1 ≤ j ≤ k
}

is a set of consecutive integers and thus is a k-mirage base b.

It follows from Theorem 10 that the length of the longest mirage base b bounds the
length of the longest oasis base b. Since each element in a mirage is generated by a fixed
point between 0 and b3 exclusive, the maximum length of a mirage base b can be determined
by a direct computer search. Formalizing this algorithm: in order to determine, for some
fixed b ≥ 2, the maximal length of a mirage base b, and to check whether this is necessarily
equal to the maximal length of an oasis base b, the following steps suffice.

1. For each 0 < r < b3, compute d = r − S[0,b](r) ∈ Z.

2. Sort the values of d.

Base Length Minimal maximal length oasis

Smallest fixed points

2 2 {3, 4}

4, 6

4 6 {28, 29, 30, 31, 32, 33}

32, 38, 42, 36, 40, 51

6 5 {5, 6, 7, 8, 9}

6, 14, 20, 12, 18

8 8 {304, 305, 306, 307, 308, 309, 310, 311}

347, 338, 391, 336, 346, 354, 344, 352

10 8 {487, 488, 489, 490, 491, 492, 493, 494}

544, 554, 522, 533, 520, 609, 543, 532

12 8 {172, 173, 174, 175, 176, 177, 178, 179}

207, 194, 299, 192, 206, 218, 204, 216

14 8 {421, 422, 423, 424, 425, 426, 427, 428}

434, 451, 601, 480, 494, 450, 465, 448

16 8 {559, 560, 561, 562, 563, 564, 565, 566}

628, 644, 594, 611, 592, 799, 627, 610

18 8 {1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670}

1768, 1786, 1730, 1749, 1728, 1960, 1767, 1748

20 9 {5124, 5125, 5126, 5127, 5128, 5129, 5130, 5131, 5132}

5383, 5362, 5699, 5360, 5382, 5402, 5380, 5400, 5617

Table 1: Minimal valued maximal length oases and smallest fixed points for small even bases.
(Results are all given in base 10.)
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3. Determine the length of the longest string of consecutive values of d.

4. Check whether there is a longest string in which all of the values of d are positive.

The result of step 3 is the maximal length of a mirage base b and, therefore, a bound on the
length of the maximal length oasis base b. Each longest string found in step 3 is an example
of a maximal length mirage base b. If step 4 is answered in the affirmative, then this string
of positive values of d is also an example of a maximal length oasis base b.

We carry out this algorithm for all even bases 2 ≤ b ≤ 20, in each case finding a maximal
oasis base b. We summarize the results in the following theorem.

Theorem 11. The maximal lengths of oases base b for bases 2, 4, and 6, are 2, 6, and 5,

respectively; the maximal length of oases base b for bases 8, 10, 12, 14, 16, and 18 is 8; and

the maximal length of oases base 20 is 9.

In Table 1 we provide, for each even base, 2 ≤ b ≤ 20, the minimal example of an oasis
of maximal length, along with the smallest fixed point of the augmented happy function
determined by each augmenting constant in the oasis.
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