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Abstract

The sequence A268289 from the On-Line Encyclopedia of Integer Se-

quences, namely the cumulated differences between the number of digits 1

and the number of digits 0 in the binary expansion of consecutive in-

tegers, is studied here. This sequence happens to match a sequence of

cardinalities of some specific sets. Furthermore, it can also be expressed

by using the Takagi function. The three different definitions have their

own properties and combining them together lead to some new identities.

1 Main definitions and preliminary identities

The sequence A268289 in the On-Line Encyclopedia of Integer Sequences may
be referred to as the cumulated deficient binary digit sum; each term of index n
is the difference between the total number of digits 1 and the total number of
digits 0 when writing down integers starting from 1 up to n. Thus, A2682895 = 3
because the digit 1 occurs 7 times, while the digit 0 occurs 4 times, in the
following expansions: 12, 102, 112, 1002, 1012.

As stated in the proof of identity 1.1 below, these terms are known to be
related to the Takagi function, leading easily to this first identity.

Furthermore, in a previous paper studying Karatsuba’s algorithm (see for-
mula (5) at the end of the section 3 in [2]) was defined the following sequence
of sets gathering some specific nodes in a recursion tree:

Sn =
{

m
∣

∣

∣
1 6 m 6 n,

(

(n−m) mod 2⌊log2 m⌋+1
)

< 2⌊log2 m⌋
}

(1)

The sequence of cardinalities |Sd| was then empirically found to be the sequence
A268289. It was beyond the purpose of this paper to investigate further such
an identity, which was left there as a mere conjecture. The identity 1.4 below
will prove that both sequences are actually identical.
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1.1. Let n be some positive integer and τ the Takagi function; then

A268289n = (n+ 1) (m− k + 1)− (2 + τ(ξ)) 2m + 2k+1 − 1

with k = ⌊log2(n)⌋, m = ⌊log2(n+ 1)⌋, ξ = (n+ 1)2−m − 1.

Proof. The sequence A268289 is known to be closely related to the Takagi func-
tion. While not currently present in the online description of the sequence
A268289, this formula is easy to build with the help of the theorem 9.1 in [3] as
actually stated in a comment of the sequence.

1.2. Let k and n be some positive integers such than n < 2k; then

A268289n+2k = A268289n + (n+ 1) (⌊log2(n)⌋ − k + 2) + 2k − 2⌊log2(n)⌋+1 .

Proof. This is proved by enumerative means: we find that A2682892k−1 = 2k−1
by studying separately each length of binary expansions; then we add a single
term and find that A2682892k = 2k − k, we then focus on the n following terms
by noticing that the binary expansions of integers 2k + 1, 2k + 2, . . . , 2k + n are
strongly related to those of 1, 2, . . . , n which are involved in A268289n, and we
thus only have to take care of their leading digits 1000 . . .

1.3. Let k and n be some positive integers such than n < 2k; then

|Sn+2k | = |Sn|+ (n+ 1) (⌊log2(n)⌋ − k + 2) + 2k − 2⌊log2(n)⌋+1 .

Proof. According to the definition (1), and by noticing that an integer e such
that e 6 n belongs to Sn+2k if and only if it also belongs to Sn, we find

Sn+2k = Sn ∪
⋃k−1

j=⌊log2(n)⌋+1

{

2j + n+ 1, 2j + n+ 2, . . . , 2j+1 − 1
}

∪
{

2k, 2k + 1, . . . , 2k + n
}

and summing the cardinalities of all these subsets yields the expected result.

1.4. For every nonnegative integer n, A268289n = |Sn|.

Proof. The identities 1.2 and 1.3 both give a rule for building any term of the
corresponding sequences by starting from the three initial terms. The three
initial terms (0, 1, 1) are the same, and the building rule is identical in both
sequences; thus both sequences are identical.

1.5. Let n be a positive integer such that n < 3× 2⌊log2(n)⌋−1, then

A268289n+2⌊log2(n)⌋−1 = A268289n + 2 (n+ 1)− 2⌊log2(n)⌋+1 .

Proof. According to the identity 1.4, A268289n = |Sn|, and thus we refer to
the definition of Sn in (1). Adding the considered power of 2 to n keeps all
congruence relations unchanged except for the largest integers, namely for m >

2⌊log2(n)⌋−1. Thus, only two subsets of Sn have to be studied:
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• integers m such that 2⌊log2(n)⌋−1 6 m < 2⌊log2(n)⌋ belong to Sn+2⌊log2(n)⌋−1

if and only if they do not belong to Sn, thus the new set is built by
removing 3×2⌊log2(n)⌋−1−n−1 elements and by adding −2⌊log2(n)⌋+n+1
new elements;

• integers m such that 2⌊log2(n)⌋ 6 m 6 n belong simultaneously to Sn and
Sn+2⌊log2(n)⌋−1 while 2⌊log2(n)⌋−1 integers greater than n are also added to
the set Sn+2⌊log2(n)⌋−1 .

Thus |Sn+2⌊log2(n)⌋−1 | − |Sn| = 2 (n+ 1)− 2⌊log2(n)⌋+1 as expected.

2 Useful identities involving the Takagi function

2.1. For every real number ξ ∈ [0, 1] and any positive integer m,

τ((ξ + 1)2−m) = 2−m (m (ξ + 1)− 2ξ + τ(ξ)) .

Proof. By combining the identities 1.2 and 1.1, and after some simplification,
we find that for every dyadic rational ξ = k/2m in [0, 1],

τ(ξ) = ξ (m− ⌊log2(k)⌋ − 2) + 2⌊log2(k)⌋−m
(

2 + τ
(

k 2−⌊log2(k)⌋ − 1
))

from which comes that for every dyadic rational number ξ ∈ [1, 2] and any
positive integer m,

τ(2−mξ) = 2−m (mξ − 2ξ + 2 + τ(ξ − 1)) .

The Takagi function being continuous, it is then easy to enclose any real from the
same interval between two dyadic rational numbers at an arbitrary precision.

2.2. For every real number ξ ∈ [0, 1/2],

τ(ξ + 1/2) = 1/2− 2ξ + τ(ξ) .

Proof. By combining the identities 1.1 and 1.5, we find, after some simplifica-
tion, that for n such that n < 3× 2⌊log2(n)⌋−1,

τ

(

n+ 1

2⌊log2(n)⌋
−

1

2

)

=
5

2
−

2(n+ 1)

2⌊log2(n)⌋
+ τ

(

n+ 1

2⌊log2(n)⌋
− 1

)

and since the Takagi function is continuous, we prove the expected identity.

2.3. For every positive integer n,

A268289n = n− 2kτ

(

n+ 1

2k
− 1

)

with k = ⌊log2(n)⌋.
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Proof. We work on two separate cases; let initially n be a positive integer such
that n < 3× 2⌊log2(n)⌋−1, then, by combining the two identities 1.1 and 1.5, we
get after some simplification:

A268289n = −n− 2 + 2k
(

5

2
− τ

(

n+ 1

2k
−

1

2

))

with k = ⌊log2(n)⌋. Then we clean the resulting expression with the help of the
theorem 2.2 and find the expected expression.

Let now n be a positive integer such that n > 3 × 2⌊log2(n)⌋−1, then, by
combining again the two identities 1.1 and 1.5, we get after some simplification:

A268289n = 3n+ 2− 2k
(

7

2
+ τ

(

n+ 1

2k
−

3

2

))

with k = ⌊log2(n)⌋. We clean again the resulting expression with the help of
the theorem 2.2 and find the expected expression.

2.3.1. For every dyadic rational ξ = n/2k in [0, 1],

τ(ξ) = 1 + ξ −
1 + A268289n+2k−1

2k
.

2.4. For every nonnegative integer n,

A268289n+2m+1 = 2n− 2mτ(ξ) + 1

with m = ⌊log2(n+ 1)⌋, ξ = (n+ 1)2−m − 1 and τ being the Takagi function.

Proof. This comes from combining again the two identities 1.2 and 1.1.

2.4.1. For every dyadic rational ξ = n/2k in [0, 1],

τ(ξ) = 2 + 2ξ −
1 + A2682892k+1+2k+n−1

2k
.

3 Main identities related to A268289

3.1. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+2−n−1 = 2k+1 − 4n+ A2682892k+1+2k+n−1 .

Proof. This merely comes from applying the fundamental functional identity
τ(ξ) = τ(1 − ξ) (see theorem 4.1 in [3]) to the identity 2.4.1.

3.2. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+2+2k+1+n−1 = 2k+1 − n+ A2682892k+1+2k+n−1 .

Proof. This merely comes from applying the fundamental functional identity
τ(ξ/2) = ξ/2 + τ(ξ)/2 (see theorem 4.1 in [3]) to the identity 2.4.1.
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3.3. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+1−n−1 = 2k − 2n+ A2682892k+n−1 .

Proof. This merely comes from applying the fundamental functional identity
τ(ξ) = τ(1 − ξ) (see theorem 4.1 in [3]) to the identity 2.3.1.

3.4. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+1+n−1 = 2k − n+ A2682892k+n−1 .

Proof. This merely comes from applying the fundamental functional identity
τ(ξ/2) = ξ/2 + τ(ξ)/2 (see theorem 4.1 in [3]) to the identity 2.3.1.

3.5. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+1+n−1 = n+ A2682892k+1−n−1 .

Proof. This comes from combining theorems 3.3 and 3.4.

3.6. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+1+2k+n−1 = 2n+ A2682892k+1+n−1 .

Proof. This comes from combining theorems 3.1 and 3.3.

3.7. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+1+2k+n−1 = 3n+ A2682892k+1−n−1 .

Proof. This comes from combining theorems 3.5 and 3.6.

3.8. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+2+2k−n−1 = 2k + n+ A2682892k+1+n−1 .

Proof. This comes by choosing some n′ and k′ such that index 2k
′+1−n′− 1 in

identity 3.5 matches index 2k+1 + 2k + n− 1 in identity 3.6.

4 Regular iterations over specific indices

4.1. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+3+2k+n−1 = 2k+2 + A2682892k+1+n−1 .

Proof. This comes by iterating twice with theorem 3.8, using n ← 2k − n and
k ← k + 1 for the second step.

4.2. Let n and k be some nonnegative integers such that n 6 2k,

A2682892k+3−2k−n−1 = 3× 2k + A2682892k+1−n−1 .
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Proof. This comes by iterating twice with theorem 3.7, using n ← 2k − n and
k ← k + 1 for the second step.

4.3. Let n and k and m be some nonnegative integers such that n 6 2k, then

A2682892k+2m+1+2k(4m−1)/3+n−1 = 2k+2(4m − 1)/3 + A2682892k+1+n−1 .

Proof. This comes from iterating m times with the identity 4.1.

4.4. Let n and k and m be some nonnegative integers such that n 6 2k, then

A2682892k+2m+1−2k(4m−1)/3−n−1 = 2k(4m − 1) + A2682892k+1−n−1 .

Proof. This comes from iterating m times with the identity 4.2.

4.5. Let n and k and m be some nonnegative integers such that n 6 2k, then

A2682892k+m+n−1 = 2k(2m − 1)−mn+ A2682892k+n−1 .

Proof. This comes from iterating m times with the identity 3.4.

4.6. Let n and k and m be some nonnegative integers such that n 6 2k, then

A2682892k+m+1+2k+m+n−1 = 2k+1(2m − 1)−mn+ A2682892k+1+2k+n−1 .

Proof. This comes from iterating m times with the identity 3.2.

4.7. For every real number ξ ∈ [0, 1] and any nonnegative integer m,

1− 2 τ

(

1

6
+

3ξ − 1

6× 4m

)

=
1− 2 τ(ξ/2)

4m
=

1− ξ − τ(ξ)

4m
.

Proof. This comes from combining the identity 4.3 with the formula 2.3 after
having defined ξ = n/2k; the formula is then extended to real numbers since
the τ function is continuous.

4.8. For every real number ξ ∈ [0, 1] and any nonnegative integer m,

2

3
− τ

(

2

3
+

1/3− ξ

4m

)

=
2/3− τ(1− ξ)

4m
.

Proof. This comes from combining the identity 4.4 with the formula 2.3 after
having defined ξ = n/2k; the formula is then extended to real numbers since
the τ function is continuous.

4.9. For any nonnegative integer m, A2682895×4m/3−2/3 = 4m. (These indices
are each second term in the sequence A081254; furthermore, discarding the two
trailing decimal digits of these indices also gives the sequence A033114.)

Proof. This is obvious with (n, k) = (1, 2) and m← m− 1 in identity 4.4
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5 Additional properties

5.1. For every nonnegative integer n, n/2 6 A268289n 6 n.

Proof. The right part of the relation is easy to prove: we know from the def-
inition (1) that Sn contains at most n elements, furtermore A268289n = |Sn|
according to the identity 1.4.

The left part is proved by induction: we assume that n/2 6 A268289n is
true for all terms up to some A2682892k+1−1. Then, the relation also stands for
all terms up to A2682892k+1+2k−1 according to the theorem 3.5. From this, we
go further up to A2682892k+2−1 with the help of the theorem 3.3. The relation
being true for the initial terms, it is then true for all terms.

5.2. For every dyadic rational ξ = n/2k in [0, 1],

τ(ξ) 6
ξ + 1

2
−

1

2k+1
.

Proof. This comes from combining identities 2.3.1 and 5.1.

5.3. Let n be a positive integer such that n > 3× 2⌊log2(n)⌋−1, then

A268289n > 1 +
3
(

n− 2⌊log2(n)⌋
)

2
.

Proof. By combining identities 2.4 and 5.2, we find that for every nonnegative
integer n,

A268289n+2⌊log2(n+1)⌋+1 > 1 +
3n

2
.

Since ⌊log2(n)⌋ is a more convenient expression than ⌊log2(n + 1)⌋, we do the
substitution after having checked that the relation above is still true when n is
some 2k − 1: in such cases, we know by enumerative means that A268289n = n
and the relation is then obviously true.

5.4. The identity A268289n = n/2 implies n < 3× 2⌊log2(n)⌋−1 − 1.

Proof. This comes directly from the identity 5.3, but it has to be checked sep-
arately that n = 3× 2⌊log2(n)⌋−1 − 1 is not a counter example (which is obvious
since in that case n is odd).

5.5. There is exactly one value of n between two consecutive powers of 2 such
that A268289n = n/2; this happens with n < 3×2⌊log2(n)⌋−1−1 and the sequence
of such indices is A026644 (except for the initial term of the latter).

Proof. We prove this by induction in a similar way to the proof of the iden-
tity 5.1. We assume that the statement was true for the previous two powers
of 2; then we use the identity 3.5 for finding one new relevant term in the
first half of the following interval; we know from the identity 5.4 that no other
case occurs in the second half of the interval. The initial relevant indices are
2, 4, 10, . . .
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The identity 3.5 also gives the rule for building the whole sequence of indices,
aj = aj−1+2aj−2+2, which is also the building rule for A026644 with the same
initial terms 2, 4, 10, . . .

5.6. The minimum value for A268289 between two consecutive powers of 2 in-
dices is never reached with an index greater than the relevant term of the se-
quence A026644 and this minimum value is at most the corresponding term in
the sequence A000975 — the “Lichtenberg sequence”1.

Proof. According to the identity 5.5, A268289n = n/2 for a given term n
of A026644; furthermore, according to the identity 5.1, A268289m > m/2; thus
greater indices than n will all have greater value han n/2. Though the term n/2
is not proved to be the minimum one, the sequence will never reach such a low
value again. It is known that A000975n = A026644n/2.
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