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Abstract. One can find lists of whole numbers having equal sum and prod-
uct. We call such a creature a bioperational multiset. No one seems to have
seriously studied them in areas outside whole numbers such as the rationals,
Gaussian integers, or semi-rings. We enumerate all possible sum-products for a
bioperational multiset over whole numbers and six additional domains.

1 Introduction

The numbers 1, 2, and 3 have the property that their sum is also their product.
That is, 1 + 2 + 3 = 1 · 2 · 3 = 6. As Matt Parker [1] has pointed out, this gives
us as a strange sort of byproduct:

log(1 + 2 + 3) = log 1 + log 2 + log 3,

due to the identity
log(ab) = log a+ log b.

We coin the term bioperational here to refer to any such multiset {ai}ni=1

having an equal sum and product. That is to say,

n∑

i=1

ai =

n∏

i=1

ai.

A multiset, as can be guessed, is a set in which a number can occur multiple
times (instead of just once or not at all).

There are some open conjectures about the number of bioperational multisets
over N of length n as n gets bigger and bigger [2]. There is also a smattering
of analysis available on math.stackexchange including uniqueness of solutions
and connections with trigonometry [3][4][5][6]. One can also find a surprisingly
complicated solution algorithm [7]. But it seems no one has formally categorized
bioperational multisets over N (unless we count Matt’s “pseudoproof” and the
passing comments of others).

In addition to N, it is interesting to explore bioperational multisets in other
environments. They are well-defined anywhere addition and multiplication are
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well-defined (hence in any semi-ring). We would suspect therefore to find these
creatures lurking in Z,C,Fp,GLn(R), and many other places (even in non-
Abelian rings!). In this paper, we limit ourselves to analyzing bioperational
multisets over

• non-negative integers (N) in Section 3,

• integers (Z) in Section 4,

• general fields (Q,Fp, etc) in Section 5,

• lunar integers (L) in Section 6,

• Gaussian integers (Z[i]) in Section 7,

• Eisenstein integers (Z[ω]) in Section 8,

• and integers with
√
2 appended (Z[

√
2]) in Section 9.

2 Some Definitions

Firstly, we have to blow some dead leaves out of the way to see clearly. To do so
requires the leafblower of vocabulary. Suppose we have a bioperational multiset
S = {ai}ni=1. We say

• S is trivial if it contains only one element,

• S vanishes if the sum-product is zero, and

• S is minimal if no proper subset of its terms forms a bioperational set of
the same sum-product.

Note that we are using ‘trivial’ differently than in [2].
All the examples we are considering are 1) integral domains and 2) Abelian.

That means 1) if any two numbers have a product of zero then one or both of
them must also be zero (ab = 0 implies a = 0 or b = 0) And 2) the order we
multiply stuff doesn’t matter (so ab = ba). This has some consequences on our
analysis.

1) In an integral domain, any vanishing bioperational multisets must contain
zero – which is rather boring. An analysis of vanishing bioperational multisets
over non-integral domains might be interesting. In fact, the first example (1, 2, 3)
vanishes if we place it in Z/6Z. But the adventure of non-integral domains in
general will be neglected here.

2) Since the order of multiplication doesn’t matter in our examples, we call
our subjects bioperational multisets. However, the author greatly hopes that
bioperational multisets will be explored in non-Abelian rings (in which case they
would be bioperational sequences). The author would have loved to explore
these objects in the quaternions (H) themselves but was too ignorant for the
attempt.
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For two multisets A and B we let “A+B” denote their multiset sum which
is best explained with an example:

{2, 7, 2, 2, 3}+ {1, 2, 7, 7} = {1, 2, 2, 2, 2, 3, 7, 7, 7}.

In technical terms, we are summing the multiplicities of all elements involved.
Similarly “A−B” will denote subtracting multiplicites:

{2, 7, 2, 2, 3}− {2, 2, 3} = {2, 7}.

We also use coefficients of multisets to denote scaling multiplicities. Or in other
words

3{2, 5, 5} = {2, 2, 2, 5, 5, 5, 5, 5, 5}.
Lastly, to keep our equations less messy, for a multiset S we will write σ(S)

for the sum of its elements and π(S) for the product. They look nicer than
∑n

i=1 ai and
∏n

i=1 ai.

3 Non-negative integers (N)

We begin with

Theorem 3.1. There is exactly one non-vanishing bioperational multiset over
N of length n for n = 2, 3, 4 with constructions

2 + 2 = 2 · 2 = 4,

1 + 2 + 3 = 1 · 2 · 3 = 6,

and 1 + 1 + 2 + 4 = 1 · 1 · 2 · 4 = 8.

This confirms Matt’s conjecture for n = 2 and is stated without proof in [2].

Proof. We first take n = 2. Suppose we have ab = a+ b. Rearrangement yields
ab − a − b + 1 = (a − 1)(b − 1) = 1. Since the only way to factor 1 as two
positive integers is 1 = 1 · 1 it follows that a − 1 = b − 1 = 1 or equivalently,
that a = b = 2.

A phenomenal proof of n = 3 was given by Mark Bennet in [3]. We repeat
it here. Suppose we have a+ b + c = abc. At least one term must be 1 since if
otherwise a ≥ b ≥ c ≥ 2 and we would have

3a ≥ a+ b+ c = abc ≥ 4a

which is true only if a ≤ 0. But that is a contractiction since we are assuming
a ≥ 2..

Okay, so let c = 1. Then we have a + b + 1 = ab. Rearranging yields
ab − a − b + 1 = (a − 1)(b − 1) = 2. It follows that {a − 1, b − 1} = {1, 2} or
equivalently, that {a, b} = {2, 3}.
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Similarly for n = 4, suppose a+ b+ c+ d = abcd. Similar to the case n = 3,
we know at least one term must be 1 since a ≥ b ≥ c ≥ d ≥ 2 would imply

4a ≥ a+ b + c = abc ≥ 8a.

So let d = 1. But we can play the same trick again. If we have a ≥ b ≥ c ≥ 2
then

3a+ 1 ≥ a+ b+ c+ 1 = abc ≥ 4a

from which it follows that a ≤ 1 which again contradicts our assumption a ≥ 2.
Let c = 1 also.

We have a + b + 2 = ab. Rearranging yields (a − 1)(b − 1) = 3 from which
it follows {a, b} = {4, 2}.

One may be tempted to generalize this proof technique and keep tackling
larger and larger n (In fact, we wrote a program to do exactly this [7]. See [8]
for another such solution algorithm). For example, n = 5 yields

Theorem 3.2. There are 3 non-vanishing bioperational multisets over N of
length n = 5 with constructions

1 + 1 + 2 + 2 + 2 = 1 · 1 · 2 · 2 · 2 = 8,

1 + 1 + 1 + 3 + 3 = 1 · 1 · 1 · 3 · 3 = 9,

and 1 + 1 + 1 + 2 + 5 = 1 · 1 · 1 · 2 · 5 = 10.

Proof. From computation.

But there turns out to be an easier way to catalog all bioperational multisets.
We first need a lower foothold (or “lemma” as they’re called).

Lemma 3.3. The product of one or more real numbers, all greater than or equal
to 2, is greater than or equal to their sum. That is, if ai ≥ 2, i = 1, .., n then

n∏

i=1

ai ≥
n∑

i=1

ai.

Proof. Induction will be used on n. The base case, n = 1, of a single number is
clearly true since every number is equal to itself – and therefore is greater than
or equal to itself (a1 ≥ a1).

Next suppose we have some multiset S = {ai}ni=1 for which the theorem
statement is true. So π(S) ≥ σ(S). We have to show the theorem true for a new
multiset S′ formed by appending a new element an+1 ≥ 2 since any multiset
can be built up one element at a time.

Let k be the largest integer such that an+1 > π(S)k. From this we grab two
crimps,

an+1 − 1 ≥ π(S)k and an+1 < π(S)k+1,
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with which the last bit of the proof can be shown easily.

π(S′) = an+1π(S) = (an+1 − 1)π(S) + π(S) ≥ π(S)kπ(S) + σ(S)

= π(S)k+1 + σ(S) > an+1 + σ(S) = σ(S′)

Technically this is a bit overkill since we’ve shown π(S′) > σ(S′) when all we
needed was π(S′) ≥ σ(S′). Oh well.

With that Lemma we can catalog all bioperational multisets over N by their
sum-product.

Theorem 3.4. For every composite integer m ∈ N there exists a non-trivial
bioperational multiset over N with a sum-product of m.

Proof. Suppose a composite integer m = a1a2...ak with k > 1 and ai ≥ 2 for
i = 1, ..., k. Let S = {ai}ki=1. By Lemma 3.3, we know π(S) ≥ σ(S). So let the
non-negative integer d = π(S)− σ(S) be their difference. The multiset

S′ = {a1, a2, ..., ak,
d times
︷ ︸︸ ︷

1, ..., 1}

is bioperational with sum-product m since

σ(S′) = a1 + ...+ ak +

d times
︷ ︸︸ ︷

1 + ...+ 1 = σ(S) + (π(S)− σ(S)) = π(S) = π(S′) = m.

From the proof of the previous theorem we can also make a statement about
the lengths of bioperational multisets.

Corollary 3.4.1. For every factorization of a composite integer m = a1a2...ak
there exists a non-vanishing bioperational multiset over N of length m+k−∑

ai.

Proof. Let S and S′ denote the same multisets as in the proof of Theorem 3.4.
S′ is bioperational and contains k + d = k + (π(S) − σ(S)) = m + k − ∑

ai
elements.

Starting at n = 2 the number of non-vanishing bioperational multisets over
N of length n is

1, 1, 1, 3, 1, 2, 2, 2, 2, 3, 2, 4, 2, ...

(sequence A033178 in OEIS [8]). The positions of record in this list occur at

n = 2, 5, 13, 25, 37, 41, 61, 85, 113, 181, 361, 421, 433, ...

(sequence A309230 in OEIS). The terms all appear to have fewer prime factors
than their neighbors.
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4 Integers (Z)

An interesting thing happens once negatives are on the playing field. A multiset
can be extended without changing either sum or product. Consider

S = {1, 2, 3,−1,−1, 1, 1}

which is bioperational with sum-product 6. This is the first example of a non-
minimal bioperational multiset. In N every non-vanishing bioperational multiset
is also minimal. Not so in Z!

Accordingly, we now use bioperation as a verb as well. We say a multiset
has been bioperated if it has been made bioperational by means of changing its
sum with appendages. For example, we may bioperate S = {3,−5} which has
a sum σ(S) = −2 and product π(S) = −15. Since appending T = {−1,−1, 1}
decrements σ(S) and fixes π(S), bioperation is accomplished by just repeatedly
appending T . In particular,

S′ = S + 13T

is bioperational. Note however S′ is not minimal. We can trim it down to
minimality by shaving off groups of {−1,−1, 1, 1} which have no effect on the
sum-product obtaining

S′′ = S + 13T − 6{−1,−1, 1, 1, 1}= {3,−5,

14 times
︷ ︸︸ ︷

−1, ...,−1, 1}

which is, in fact, minimal.
There are three important appendages in Z which fix the product.

label appendage ∆σ(S)
T1 {1} +1
T0 {1, 1,−1,−1} 0
T−1 {1,−1,−1} −1

We now give the parallel of Theorem 3.4 for Z.

Theorem 4.1. For every composite integer m ∈ Z there exists a non-trivial
minimal bioperational multiset over Z with a sum-product of m.

Proof. Choose a factorization m = a1...an with n ≥ 2 where each ai may be
positive or negative and |ai| ≥ 2 for i = 1, ..., n. The multiset S = {ai}ni=1 has
the desired product. Bioperate S producing S′ such that σ(S′) = π(S′) = π(S).
This is done by appending T±1 as needed. To be

Finally, if S′ is not minimal we may take a minimal bioperational multiset,
S′′, from it. S′′ must include the non-units a1, ..., an (a “unit” by the way is a
fancy name for a number with an inverse in its same ring; in this case 1 and
−1). Since n ≥ 2 we are assured that S′′ is non-trivial.
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5 Fields

Bioperational multisets turn out disappointingly abundant in fields.

Lemma 5.1. Given any multiset S = {ai}ni=1 whose elements are in a field
F and such that π(S) 6= 1, one can bioperate S into a unique multiset S′ by
appending a single element,

an+1 =
σ(S)

π(S)− 1
.

This was stated for F = Q and n = 4 by Robert Israel in [6].

Proof. Any element an+1 ∈ F which might bioperate S must satisfy σ(S) +

an+1 = π(S)an+1. Rearranging yields an+1 = σ(S)
π(S)−1 which exists if π(S) 6=

1.

The lemma turns out to be an exhaustive description.

Theorem 5.2. In any field, all non-trivial bioperational multisets can be pro-
duced with Lemma 5.1.

Proof. Suppose we have some bioperational multiset S = {ai}ni=1 which cannot
be produced by the lemma. Let S′

i be the multiset formed by removing ai. It

follows from the lemma π(S′
i) =

π(S)
ai

= 1 for all i = 1, ..., n. This in turn implies
π(S) = ai for i = 1, ..., n and we see that all ai are equal. We therefore have a
solution to

an1 = na1.

But dividing out an a1 from both sides gives us n = an−1
1 = π(S′

1) = 1 showing
S is trivial.

Before leaving this territory, we note that there are solutions to an−1 = n
leading to bioperational sets of a single value. Take for instance {2, 2, 2, 2, 2}
which is bioperational in F11.

6 Lunar Integers (L)

The Lunar Integers are the only strictly semi-ring to be considered. Their
arithmetic is well analyzed in [10] (there called “Dismal” Arithmetic) and Neil
Sloane gives a wonderful introduction in a Numberphile interview [11].

We neglect to explain the arithmetic here ourselves. We need only note some
properties of the number of digits. If we let D(a) denote the number of digits
of a lunar integer a ∈ L, then

D(ab) = D(a) +D(b)− 1 and D(a+ b) = max{D(a), D(b)}.

These give us

7



Lemma 6.1. In any Lunar Bioperational Set, there is at most one element with
2 or more digits.

Proof. Suppose S = {ai}ni=1 ⊂ L is bioperational and that D(a1) ≥ D(ai) for
i = 2, ..., n. From the aforementioned identities

D(σ(S)) = max{D(ai)}ni=1 = D(a1)

and

D(π(S)) = 1 +

n∑

i=1

(D(ai)− 1) = D(a1) +

n∑

i=2

(D(ai)− 1).

Since D(π(S)) = D(σ(S)), it follows that
∑n

i=2(D(ai)− 1) = 0 and hence that
D(ai) = 1 for i = 2, ..., n.

Apparently bioperational multisets can’t breathe well on the moon:

Theorem 6.2. Every minimal bioperational multiset of Lunar integers is triv-
ial.

Proof. We prove the contrapositive. Suppose S = {ai}ni=1 ⊂ L bioperational
and non-trivial. From Lemma 6.1 we may assume D(ai) = 1 for i = 2, ..., n.
For a ∈ L, let F (a) ∈ L denote be the last digit of a. From the definitions of
addition and multiplication over L

max{F (a1), a2, ..., an} = F (σ(S)) = F (π(S)) = min{F (ai), a2, ..., an}.

But this implies F (a1) = a2 = ... = an. In which case the multiset S′ = {a1}
is trivially bioperational with the same sum-product as S and hence S is not
minimal.

So there are bioperational multisets in L, like {17, 7} and {2, 2, 2}, but they
aren’t very interesting.

7 Gaussian Integers (Z[i])

Gaussian integers are numbers of the form a+ bi where a and b are integers and
i2 = −1 (so like 2+ 3i or −1− 19i for example). In addition to the appendages
T−1, T0, and T1 given in Section 4, two more appear in Z[i],

T±2i = {±i,±i,−1, 1},

which perturb the sum by ±2i and fix the product. So sometimes bioperate the
imaginary part of a multiset sum.

Take, for instance, S = {1 + 2i, 2 + 3i}. We have

σ(S) = 3 + 5i and π(S) = −4 + 7i.
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The difference is π(S) − σ(S) = −7 + 2i. We bioperate by 1) appending T−1

seven times, 2) appending T2i once, and 3) shaving off T0 until minimality is
reached. The result is

S′ = {1 + 2i, 2 + 3i, i, i,−1,−1,−1,−1,−1,−1,−1}

which is bioperational with π(S′) = σ(S′) = −4 + 7i.
We need a couple lemmas before the result analogous to Theorem 3.4.

Lemma 7.1. A Gaussian integer a + bi is a multiple of 1 + i if and only if a
and b have the same parity (that is, are both odd or both even).

Proof. Firstly, suppose a + bi = (1 + i)(c + di) is a multiple of 1 + i. Then
a = c−d and b = c+d. a and b therefore have the same parity since b = a+2d.

Conversely, suppose a and b have the same parity. If both even, then we
may write

a+ bi = 2
(a

2
+

b

2
i
)

= (1 + i)(1− i)
(a

2
+

b

2
i
)

and are done. If both odd, then we may write

a+ bi = (1 + i)
(a+ b

2
+

b− a

2
i
)

.

Lemma 7.2. For any Gaussian integers α1, ..., αn ∈ Z[i] such that 1 + i does
not divide any αi,

Im
(∏

αi

)

≡ Im
(∑

αi

)

mod 2.

Proof. Let ϕ(a+ bi) = b % 2 ∈ F2. It follows that ϕ(α+β) = ϕ(α)+ϕ(β). But
more interestingly, it turns out that when neither of α nor β are multiples of
1 + i we have also ϕ(αβ) = ϕ(α) + ϕ(β). From lemma 7.1 it follows that the
residues of α and β in Z[i]/(2) ∼= F2[i] are in {1, i}. It is enought to check that
ϕ has the desired property on {1, i} :

0 = ϕ(1) = ϕ(1 · 1) = ϕ(1) + ϕ(1) = 0 + 0 = 0

1 = ϕ(i) = ϕ(1 · i) = ϕ(1) + ϕ(i) = 0 + 1 = 1

0 = ϕ(−1) = ϕ(i · i) = ϕ(i) + ϕ(i) = 1 + 1 = 0

The lemma follows noting

Im
(∏

αi

)

% 2 = ϕ
(∏

αi

)

=
∑

ϕ(αi) = ϕ
(∑

αi

)

= Im
(∑

αi

)

% 2.

The enzymes of Z[i] have been assembled. We are ready to digest the theo-
rem.
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Theorem 7.3. For every µ ∈ Z[i] which factors into non-units (i.e. µ = αβ
with α, β 6∈ {1,−1, i,−i}) there exists a non-trivial minimal bioperationl multiset
over Z[i] with a sum-product of µ.

Proof. Pick some factorization µ = a1...an and let S = {ai}ni=1 with at least
two ai non-units. We break into two cases.

Case 1) if Im(π(S)) and Im(σ(S)) have the same parity, we may bioper-
ate S by appending T±1 and T±2i as needed. The result is S′; bioperational
with sum-product µ. If S′ is not minimal, we may take a minimal subset S′′.
And we are assured S′′ is non-trivial since otherwise S′′ = {µ} which implies
ai = µ for some. And ai = µ implies all other αj for j 6= i are units since
α1...αi−1αi+1...αn = 1 (note we are using in this last step the fact that Z[i] is
an integral domain).

Case 2) if Im(π(S)) and Im(σ(S)) have different parities, we may suppose
from Lemma 7.2 that some αj is divisible by 1 + i. We create a new multiset
by removing αj from S and appending {iαj , i,−1}. In notation,

S′ = {αi}i6=j + {iαj , i,−1}.

The product remains unchanged since

π(S′) =
π(S)

αj

(i2αj)(−1) = π(S).

More importantly, it is claimed that Im(σ(S′)) and Im(σ(S)) have different
parity. Their difference is

Im(σ(S′))− Im(σ(S)) = Im(σ(S′)− σ(S)) = Im(iαj + i− 1− αj).

Let αj = a+ bi for some integers a and b. Substitution gives

Im(σ(S′))− Im(σ(S)) = Im(ai− b+ i− 1− a− bi) = a− b+ 1.

From Lemma 7.1 we may suppose that a and b have the same parity since
1 + i|αj . It follows that a − b + 1 is odd, that Im(σ(S′)) and Im(σ(S)) have
different parity, and therefore that Im(σ(S′)) and Im(π(S)) = Im(π(S′)) have
the same parity. And so we return to the first case to bioperate S′.

8 Eisenstein Integers (Z[ω])

Eisenstein integers are similar to the Gaussians in that they are all of the form
a+ bω where a and b are integers and ω is a strictly complex number such that
ω3 = 1. Right away this gives us our first appendage,

T3ω = {ω, ω, ω}.

One can show further show that ω2 = −1− ω from which we get

T−2ω = {−ω,−1− ω,−1, 1, 1}.

10



Thus we have Tω = T3ω+T−2ω and T−ω = T3ω+2T−2ω at our disposal. Supris-
ingly, we can therefore bioperate any multiset over Z[ω]. Our main theorem in
this section will therefore run almost identically to its analog over Z.

Theorem 8.1. For µ ∈ Z[ω] which factors into non-units there exists a non-
trivial minimal bioperational multiset over Z[ω] with a sum-product of µ.

Proof. Choose a factorization µ = α1...αn with 2 non-units and let S = {αi}ni=1.
Bioperate S with T±1 and T±ω. The resulting bioperational multiset S′ can be
shaved down to minimality without becoming trivial since the non-units cannot
be trimmed off.

9 Integers
√
2 Appended (Z[

√
2])

Lastly, we consider the integer ring of a real quadratic number field. Numbers
in Z[

√
2] are of the form a+ b

√
2 where a and b are integers (again, very similar

to Z[i] and Z[ω]). We use the fact that

(1 +
√
2)(−1 +

√
2) = 1

to create
T±2

√
2 = {±1±

√
2. ∓ 1±

√
2}.

There’s good reason to think that this is the best we can do (I.e. that T±
√
2

doesn’t exist over Z[
√
2]). But the best proof the author could come up with for

such a fact uses difficult results about quadratic number fields and complicated
induction. Instead, we take a route similar to that taken through Z[i].

Lemma 9.1. The number a+ b
√
2 ∈ Z[

√
2] is a multiple of

√
2 if and only if a

is even.

Proof. Note (c+ d
√
2)
√
2 = 2d+ c

√
2.

Lemma 9.2. For numbers α1, ..., αn ∈ Z[
√
2] let

a+ b
√
2 =

∑

αi and c+ d
√
2 =

∏

αi.

If no αi is divisible by
√
2 then b ≡ d mod 2.

Proof. We again create a strange homomorphism. Let ϕ(a+b
√
2) = b % 2 ∈ F2.

It follows that ϕ(α+ β) = ϕ(α) +ϕ(β). We claim if
√
2 divides neither α nor β

then ϕ(αβ) = ϕ(α) + ϕ(β) as well. From the previous lemma, we see that the
residues of such α and β with coefficients in F2 are in {1, 1 +

√
2}. We check ϕ

by hand:
0 = ϕ(1) = ϕ(1 · 1) = ϕ(1) + ϕ(1) = 0 + 0 = 0

1 = ϕ(1 +
√
2) = ϕ(1 · (1 +

√
2)) = ϕ(1) + ϕ(1 +

√
2) = 0 + 1 = 1

0 = ϕ(1) = ϕ((1 +
√
2) · (1 +

√
2)) = ϕ(1 +

√
2) + ϕ(1 +

√
2) = 1 + 1 = 0

11



We end noting

d % 2 = ϕ
(∏

αi

)

=
∑

ϕ(αi) = ϕ
(∑

αi

)

= b % 2.

It’s probable that if the author knew more about ring isomorphisms, the
results of this section and those of Section 7 could have been demonstrated
simultaneously.

Theorem 9.3. For every µ ∈ Z[
√
2] which factors into non-units there exists a

non-trivial minimal bioperationl multiset over Z[
√
2] with a sum-product of µ.

Proof. Pick a factorization µ = α1...αn and let S = {αi}ni=1, a + b
√
2 = σ(S),

and c+ d
√
2 = π(S). If b and d have the same parity, S can be bioperated into

the desired result. If not, we may pick some αj a multiple of
√
2. Letting

S′ = {αi}i6=j + {(1 +
√
2)αj ,−1 +

√
2}

Letting αj = x+ y
√
2, the change σ(S) is

σ(S′)−σ(S) = (x+y
√
2)(1+

√
2)+(−1+

√
2)−(x+y

√
2) = (2y−1)+(x+1)

√
2.

But from Lemma 9.1, we may suppose that x is even and that therefore σ(S′)
and σ(S) have

√
2 coefficients of different parity. It follows that σ(S′) and

π(S′) = π(S) have
√
2 coefficients of the same parity and that S′ can therefore

be bioperated into the desired result.

10 Generalization and Open Problems

Let’s start this section by bundling up our main theorems into a single statement

Theorem 10.1. If R is one of N,Z,Z[i],Z[ω], or Z[
√
2] then for every µ ∈ R

which factors into non-units, there exists a non-trivial minimal bioperational
multiset over R with a sum-product of µ.

Proof. Theorems 3.4, 4.1, 7.3, 8.1, 9.3.

Some open problems of interest:

• Does Theorem 10.1 hold over the quaternions?
Order of multiplication now matters. We at least have T±2i, T±2j, and
T±2k at our disposal since

T±2v = (v, v,−1, 1)

has a product of 1 for v ∈ {i, j, k}.
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• Does Theorem 10.1 hold for all integer rings of real quadratic number
fields?
There are families of such rings that admit easy attack. Take for instance
Z[
√

t2 ± 1]. From

(t+
√

t2 ± 1)(t−
√

t2 ± 1) = ∓1

we can construct appendages T±2
√
t2±1 which gives us pretty good flexi-

bility for bioperation. And in general, for d = t(b2t± 2) we can construct
appendages T±2b

√
d. The first values not covered by these parametriza-

tions are

13, 19, 21, 22, 28, 29, 31, 33, 39, 41, 43, 44, 45, 46, 52, 53, 54, 55, 57, 58, 59, 61, 67, 69, ...

Perhaps Z[
√
13], which has a relatively large fundamental unit, is our

first example for which Theorem 10.1 fails. One would think it easy to
construct a counter-example ring to the theorem. However the handful of
examples the author toyed with proved dead ends.
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