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Abstract

The problem of determining DSn, the complex numbers that occur as an eigenvalue of
an n-by-n doubly stochastic matrix, has been a target of study for some time. The Perfect-
Mirsky region, PMn, is contained in DSn, and is known to be exactly DSn for n ≤ 4, but
strictly contained within DSn for n = 5. Here, we present a Boundary Conjecture that
asserts that the boundary of DSn is achieved by eigenvalues of convex combinations of pairs
of (or single) permutation matrices. We present a method to efficiently compute a portion
of DSn, and obtain computational results that support the Boundary Conjecture. We also
give evidence that DSn is equal to PMn for certain n > 5. 1
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1 Introduction

A matrix A ∈ Mn(R) is doubly stochastic if A ≥ 0 (entry-wise) and all row and column
sums of A are 1. Denote the set of doubly stochastic matrices by Ωn. The doubly stochastic
single eigenvalue problem asks for the determination of DSn =

⋃
A∈Ωn

σ(A), i.e. which com-
plex numbers occur as an eigenvalue of an n-by-n doubly stochastic matrix? This problem
is unsettled for n > 4 and is one of the several members of the family associated with the
very difficult non-negative inverse eigenvalue problem (NIEP) [Johnson et al., 2018]. Because
permutation matrices are doubly stochastic, DSn includes all roots of unity of order k ≤ n.
Denote by Πk the convex hull of the k -th roots of unity. In [Perfect and Mirsky, 1965] it was
noted that PMn =

⋃
k≤n Πk ⊆ DSn, and that for n < 4, PMn = DSn. Recently, it was shown

in [Levick et al., 2014] that DS4 = PM4. However, in [Mashreghi and Rivard, 2007], a very
particular matrix in Ω5 was exhibited with a conjugate pair of eigenvalues just outside of PM5.
We comment on this further, later. Of course DS5 ⊆ DS6, and this conjugate pair lies in PM6,
so that there is no implication about the relationship between PMn and DSn for n > 5.

In contrast to DSn, the row stochastic single eigenvalue problem (equivalent to the non-
negative single eigenvalue problem [Johnson et al., 2018]), is understood (see [Karpelevich, 1951],
[Dmitriev and Dynkin, 1946], [Ito, 1997], [Johnson and Paparella, 2017]). We refer to the re-
gion of eigenvalues achievable by row stochastic matrices as the Karpelevich region and denote
it by Kn. Of course, this larger subset of the unit disc also includes the k -th roots of unity,
k ≤ n (which are the only points on the unit circle); between consecutive roots of unity, an
in-bending algebraic curve excludes a portion of the unit disc. Moreover, these curves fol-
low an eigenvalue of a matrix on the line segment joining two simple row stochastic matrices
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[Johnson and Paparella, 2017]. We conjecture that the boundary of DSn (a set star-shaped
from any s ∈ [0, 1]) is determined by the eigenvalue paths resulting from the convex combina-
tions of pairs of permutation matrices. Any doubly stochastic matrix is a convex combination
of permutation matrices [Birkhoff, 1946], and in fact, as is clear by convexity theory, any n-by-n
doubly stochastic matrix is a convex combination of at most (n− 1)2 + 1 permutation matrices
[Marcus and Ree, 1959].

Here, we present the Boundary Conjecture, which states that every complex number on
the boundary of DSn is achieved as an eigenvalue of some doubly stochastic matrix that is
a convex combination of two or fewer permutation matrices. Assuming this conjecture true
significantly reduces the problem size of computing DSn to a given precision, and allows us
to design algorithms much more efficient than naive methods for doing so. There is much
theoretical evidence to support our conjecture; our purpose here is to give further computational
evidence for our conjecture and to show through computation that, if it is correct, then it is
likely that DSn = PMn for n = 6, 7, 8, 9, 10 and 11 . Moreover, we investigate the exceptional
n = 5 case in detail. We find that the known example outside PM5 is an eigenvalue of a matrix
on the line segment joining two permutations and that a conjugate pair of eigenpaths are, up
to uniform permutation similarity of the pair of permutation matrices generating it, the only
paths arising from two permutations that leave PM5.

2 Preliminaries and Notation

We begin by stating Birkhoff’s Theorem—a fundamental theorem underlying much of the
study of doubly stochastic matrices [Birkhoff, 1946]. Denote the convex hull of a set S by Co(S).

Theorem 2.1 (Birkhoff). A ∈Mn is doubly stochastic if and only if it is a convex combination
of n-by-n permutation matrices:

Ωn = Co({P ∈Mn : P a permutation matrix})

Now, we prove some fundamental properties of DSn. Much of this was shown in
[Perfect and Mirsky, 1965], though we shall need the results and for the most part present some
different proofs in hopes of inspiring new perspectives in which to study this difficult problem.
In particular, we use some basic concepts from representation theory and do not use the Perron-
Frobenius theory of nonnegative matrices.

First, observe that DSn is contained in the unit disc, due to the properties that the spectral
radius is bounded by the spectral norm, convexity of the spectral norm and the fact that all
permutation matrices have spectral norm 1 [Horn and Johnson, 2013]. Moreover, observe that
the permutation matrices share a common eigenvalue 1 with eigenvector e, the all-ones vector.
Thus, the technique of deflation can be used to reduce the problem size. We choose a deflating
matrix with inverse of the following form:

S =

[
1 0
e In−1

]
S−1 =

[
1 0
−e In−1

]
(1)

so that multiplication by S and its inverse can be done in linear time. Then we note that for
any permutation matrix P , applying similarity by S gives

S−1PS =

[
1 ∗
0 P ′

]
where P ′ ∈Mn−1 is a (not generally nonnegative) matrix, that has the same multiset of eigen-
values as P , with the eigenvalue 1 having a singly decremented multiplicity.
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Lemma 2.2. For any matrices A1, . . . , Ak ∈Mn and nonsingular S ∈ GLn, the eigenvalues of
any linear combination of the Ai are the same as those of the corresponding linear combination
of the SAiS

−1.

Proof.
∑

i αiAi is similar to S(
∑

i αiAi)S
−1 =

∑
i αiSAiS

−1

For any convex combination of permutations,
∑

i αiPi has the same eigenvalues as∑
i αiS

−1PiS, which has as lower right block the matrix
∑

i αiP
′
i . The set of all P ′ is called the

standard representation of Sn, and is an irreducible representation of dimension n−1. Note that
any eigenvalue λ of a doubly stochastic matrix A that is not equal to 1 is thus an eigenvalue of
the corresponding lower right block matrix of S−1AS. Moreover, the eigenvalue 1 is obviously
achieved in the convex hull of the standard representation as an eigenvalue of say In−1. Thus,
we have the following lemma:

Lemma 2.3. DSn equals the region achieved by eigenvalues of the matrices in the convex hull
of the standard representation of Sn.

A region D ⊆ C of the complex plane is star-shaped from a point s ∈ C if for all points
x ∈ D, the line segment {αx + (1 − α)s : α ∈ [0, 1]} is contained in D. It was shown in
[Perfect and Mirsky, 1965] that DSn is star-shaped from 0—we will prove a slightly stronger
statement.

Lemma 2.4. If the scalar matrix sI is in the convex hull Co(F) of a family of matrices F ⊆Mn,
then the region of eigenvalues {λ : λ ∈ σ(A), A ∈ Co(F)} is star-shaped from s.

Proof. If λ is an eigenvalue of A ∈ Co(F), then since αA+ (1− α)sI is in Co(F) for α ∈ [0, 1],
we have that the eigenvalue αλ+ (1− α)s of this matrix is in the region of eigenvalues.

Corollary 2.5. DSn is star-shaped from any point in [0, 1] for n ≥ 2.

Proof. The standard representation of Sn contains the identity In−1. Moreover, the average
of the elements of the standard representation, 1

n!

∑
i P
′
i is in the convex hull of the standard

representation and is in fact equal to 0, since the sum of all elements of any nontrivial irreducible
representation is equal to 0. Thus, all scalar matrices sI for s ∈ [0, 1] are in the convex hull and
Lemma 2.4 allows us to draw the stated conclusion.

The following lemmas are useful for our computations and provide simple quantitative mea-
sures of how close DSn is to filling the entire unit disc—in the limit DSn fills the interior of the
unit disc and a dense subset (consisting of roots of unity) of the unit circle.

Lemma 2.6. The circle of radius cos(πn), centered at the origin, is contained in DSn for n > 2.

Proof. This is simply the circle inscribed in Πn, which contains the circles inscribed in Πk for
k < n.

Lemma 2.7. PMn = ∪k≤nΠk ⊆ DSn

Proof. A permutation matrix A that is a k-cycle has minimal polynomial xk − 1. Any convex
combination α0I+α1A+ . . .+αk−1A

k−1 is a polynomial in A with eigenvalues α0 +α1λ+ . . .+
αk−1λ

k−1, where λ is an eigenvalue of A. Since ξ, a primitive kth root of unity, is an eigenvalue
of A, Πk = Co(1, ξ, . . . , ξk−1) is contained in DSn.

Now, we formally state the Boundary Conjecture.

Conjecture 2.8 (Boundary Conjecture). Pairs of permutation matrices determine the bound-
ary of DSn. That is, every point of the boundary of DSn is an eigenvalue of some convex
combination of at most two permutation matrices.
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If this conjecture were true, then by Corollary 2.5, the star-shapedness of DSn gives

Conjecture 2.9. Every complex number in DSn is achieved as an eigenvalue of a convex
combination of three or fewer permutations. More specifically, convex combinations of the form

α1P + α2Q+ (1− α1 − α2)I P,Q permutations, α1, α2 ≥ 0, α1 + α2 ≤ 1

achieve every eigenvalue in DSn.

There is much evidence to suggest that the boundary of DSn is determined by pairs of per-
mutations. For any n such that DSn = PMn, this is true. This is due to the fact that, as can be
seen by the reasoning in the proof of Lemma 2.7, any edge of Πk is attained by eigenvalues along
a suitable pair of a k-cycle and one of its powers. Moreover, any doubly stochastic matrix that
has all eigenvalues of magnitude 1 is in fact a permutation matrix [Perfect and Mirsky, 1965],
so in this sense the matrices with the most extremal eigenvalues are the permutation matrices.
Perhaps taking convex combinations of more permutations matrices has an averaging effect on
the eigenvalues. In fact, in the standard representation, taking the average over all group ele-
ments gives the zero matrix (since it is an irreducible representation), which has all 0 eigenvalues
that are as far into the interior of DSn as possible. Further, the Karpelevich region consisting
of all eigenvalues achievable by row stochastic matrices has boundary determined by convex
combinations of pairs of certain row stochastic matrices [Johnson and Paparella, 2017]. Lastly,
our computations have not found any eigenvalue on the boundary of DSn that does not belong
to a convex combination of pairs of permutations.

In language and notation, we use the standard correspondence between permutations σ ∈ Sn
with matrices P ∈Mn, where the matrix associated with σ has entries Pij = 1 if σ(i) = j and 0
otherwise. Moreover, we use standard cycle notation for permutations, and say a permutation
in Sn has cycle type n1, . . . , nk if it has disjoint cycles of length n1, . . . , nk and

∑
i ni = n.

Two sets of matrices F ,F ′ ⊆Mn are uniformly similar if there exists nonsingular S such that
F = {SAS−1 : A ∈ F ′}. If S can be taken to be a permutation matrix we say that the sets are
uniformly permutation similar. We make the analogous definition for sets of permutations in
Sn to be uniformly conjugate.

Even though Perfect and Mirsky did not explicitly make such a statement in their original
paper [Perfect and Mirsky, 1965], we refer to the Perfect-Mirsky conjecture for a given n as the
conjecture that DSn = PMn.

3 The Computational Approach and Inequivalent Pairs

In later sections we discuss some of the computational evidence that supports the Boundary
Conjecture. In this section, we outline the computational approach to obtaining such evidence
as well as information about DSn for n ≥ 5. We search for counterexamples to the Perfect-
Mirsky conjecture by computing the eigenvalues of those doubly stochastic matrices that are
convex combinations of pairs of permutations. If the conjecture is true, then for any n where
PMn 6= DSn, there will exist an eigenvalue in DSn outside of PMn that comes from a pair
of permutations, so that this approach will find a counterexample if the precision is taken
fine enough. This approach dramatically reduces the problem size, and makes tractable the
computation of DSn to reasonable precision for higher n. To control precision, we choose a
mesh size, meaning the number of matrices along a convex combination of two matrices whose
eigenvalues we compute. For instance, for a mesh size of 11, and for a pair of permutations P
and Q, we compute eigenvalues of P, 9

10P + 1
10Q, . . . ,

1
10P + 9

10Q, and Q

There are O(
(
n!
2

)
) = O((n!)2) pairs of permutations to consider. This can be significantly

reduced with the following two lemmas. For each cycle type of Sn, choose a representative
permutation matrix C of that cycle type that is a direct sum of cyclic permutation matrices
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(in descending order of length). We call such a C the canonical cycle form of any permutation
matrix representing a permutation of the same cycle type.

Lemma 3.1. Every pair of permutations P1, P2 is uniformly similar to a pair of permutations
C,R, in which C is the canonical cycle form of P1.

Proof. Since C is of the same cycle type as P1, we can choose a permutation matrix Q that
conjugates P1 to C. Then C = QP1Q

T and R = QP2Q
T gives the desired pair of permutations.

This is useful in view of Lemma 2.2 and the following basic lemma.

Lemma 3.2. Two permutation matrices are similar if and only if they are similar by a permu-
tation similarity.

Proof. All permutation matrices are diagonalizable, being representations of Sn. Thus, two
permutation matrices are similar if and only if they have the same multiset of eigenvalues. The
multiset of eigenvalues is determined by cycle-type, and two permutation matrices are similar
by a permutation similarity if and only if they have the same cycle-type.

Thus, to compute the eigenvalues that are achievable by convex combinations of any pairs
of permutation matrices, we need only consider eigenvalues achievable by convex combinations
of each cycle type’s canonical form with other permutation matrices. There are p(n) · n! such
pairs, in which p(n), the number of partitions of size n, counts the number of cycle types of
permutations of size n. This also provides a simple reduction for convex combinations of more
than two permutation matrices—for three matrices, O(p(n) · (n!)2) triples need to be computed
if we consider triples consisting of each cycle type’s canonical form and two other permutations
in Sn.

In fact, the number of pairs to be considered can be reduced further with more precise
utilization of uniform permutation similarity. For any pairs of permutations that are equal
up to uniform conjugation, we need only consider one representative pair due to Lemma 2.2.
Consider the group Sn × Sn, the direct product of the symmetric group with itself, and the
action of diagonal conjugation on this group by Sn—meaning that the permutation p acts on
(σ, τ) by (σ, τ)p = (pσp−1, pτp−1). Then we need only consider one representative pair from
each orbit of this action on Sn × Sn. Here we introduce some necessary concepts from group
theory that we use to derive a computationally feasible method to obtain such representative
pairs. See [Bouc, 2000] for a reference for definitions and results.

A G-set is a set with a group action by a group G. Two G-sets X and Y are isomorphic,
denoted X ∼= Y , if there is a bijection f : X → Y such that f(g ·x) = g ·f(x). Let

⊔
denote the

disjoint union operation on G-sets, and let X × Y denote the product of two G-sets, meaning
the G-set that is the set given by the regular cartesian product of X and Y along with the
action g · (x, y) = (g · x, g · y). For a subset S ⊆ G, let O(x) denote the orbit of an element x
under the action of conjugation on S by G, CG(x) denote the centralizer in G of an element x,
and C denote a set of representatives of each conjugacy class of G. Then we have the following
isomorphisms of G-sets by basic properties of orbit-stabilizer relationships and distributivity:

G×G ∼=
( ⊔
x∈C
O(x)

)
×
( ⊔
y∈C
O(y)

)
∼=
( ⊔
x∈C

G/CG(x)
)
×
( ⊔
y∈C

G/CG(y)
)

∼=
⊔
x∈C

⊔
y∈C

(
G/CG(x)

)
×
(
G/CG(y)

)
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Now, for subgroups H,K ≤ G, define the double coset HgK = {hgk : h ∈ H, k ∈ K} for
g ∈ G, the double coset space H\G/K =

⋃
g∈GHgK, and for any choice of representatives of

each double coset in H\G/K denote the set of all representatives by [H\G/K]. We will make
use of Mackey’s formula for G-sets, which can be found in [Bouc, 2000]:

(G/H)× (G/K) ∼=
⊔

g∈[H\G/K]

G/(H ∩ gKg−1)

Applying Mackey’s formula with H = CG(x) and K = CG(y) gives us that

G×G ∼=
⊔
x∈C

⊔
y∈C

⊔
g∈[CG(x)\G/CG(y)]

G/(CG(x) ∩ gCG(y)g−1)

∼=
⊔
x∈C

⊔
y∈C

⊔
g∈[CG(x)\G/CG(y)]

G/(CG(x) ∩ CG(gyg−1))

Thus, with G = Sn, the representative pairs from the orbits of the action of diagonal
conjugation on Sn × Sn are in one-to-one correspondence with the tuples (x, y, g), where x and
y are representatives of conjugacy classes of Sn and g is a representative of the double cosets
of CG(x) and CG(y). Since the eigenvalues of convex combinations of (σ, τ) are equal to those
of (τ, σ), we need only consider about half of these representative pairs. We define a relation
on the set of pairs of permutations, where two pairs (σ1, τ1) and (σ2, τ2) are related if they are
uniformly permutation similar to each other, or if they are uniformly permutation similar after
a reversal of one, meaning (σ1, τ1)p = (τ2, σ2) for some p ∈ Sn. It can be seen that this relation
is an equivalence relation—we call the distinct equivalence classes inequivalent pairs.

There exist double-coset representative enumeration algorithms due to the study of compu-
tational group theory which we can take advantage of in our computation of the inequivalent
pairs. We use routines from the GAP computer algebra system for double-coset representa-
tive enumeration and centralizer computations [GAP, 2019]. Algorithm 1 is our algorithm for
determining the inequivalent pairs.

Algorithm 1 Compute Inequivalent Pairs

1: for σ one representative of cycle type i ∈ {1, . . . , p(n)} do
2: for τ one representative of cycle type j ∈ {i, . . . , p(n)} do
3: Compute centralizers CG(σ) and CG(τ)
4: Compute representatives of double cosets [CG(σ)\G/CG(τ)]
5: for g in [CG(σ)\G/CG(τ)] do
6: Add (σ, gτg−1) to pairsList

7: end for
8: end for
9: end for

10: return pairsList

In Table 1 we list the number of inequivalent pairs in comparison to p(n) · n!, the number
of pairs considered under our initial method without this reduction. Let a(n) be the number of
equivalence classes of pairs in Sn × Sn, where uniformly conjugate pairs are equivalent (this is
also the number of orbits in Sn × Sn under the action of uniform conjugation by Sn), and b(n)
the number of such classes where any representative of the class is a pair (σ, τ) where σ and
τ have the same cycle type. Then the number of inequivalent pairs is exactly (a(n) + b(n))/2.
a(n) is known to grow at O(n!) [OEIS, 2019], so the number of inequivalent pairs also grows at
O(n!). Thus the difference is substantial between the number of pairs considered with the naive
method and the number of inequivalent pairs. Since Algorithm 1 computes the inequivalent
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pairs quickly for n ≤ 12, we find it makes a major difference in our computation. Compared
to computing the pairs of canonical cycle types with permutations, computing only eigenvalues
for inequivalent pairs saves time and memory, so this reduction is useful for both searching for
counterexamples and plotting in fine mesh sizes.

n inequivalent pairs p(n) · n!

2 3 4
3 8 18
4 28 120
5 98 840
6 518 7,920
7 3,096 75,600
8 23,415 887,040
9 201,795 10,886,400
10 1,973,189 152,409,600
11 21,347,935 2,235,340,800
12 253,282,652 36,883,123,200
13 3,263,902,430 628,929,100,800

Table 1: Number of inequivalent pairs compared to p(n) · n!, where p is the partition function.

Now, we discuss other details of our computations of DSn. Since doubly stochastic matrices
have real elements, their complex eigenvalues come in conjugate pairs, so we only consider those
in the upper half plane. Moreover, since Π2 = [−1, 1] is always included in DSn for n ≥ 2, we
need not consider any real eigenvalues since all of them are accounted for. Similarly, using the
deflation as in Lemma 2.3, only n − 1 by n − 1 matrices need to be handled to compute DSn
as the shared eigenvalue of 1 can be deflated away by the matrix in (1). To determine whether
an eigenvalue λ is within the region, we first use Lemma 2.6 to see that any eigenvalue λ with
magnitude |λ| ≤ cos(πn) cannot be an exception to Perfect-Mirsky. Otherwise, for each k ≤ n
we check which vertices of Πk are the ones that Re(λ) lies between, by checking which of the

intervals
[

cos(2πj
k ), cos(2π(j+1)

k )
)

is the one that contains Re(λ). Then we check whether Im(λ)
satisfies the linear inequality determined by Re(λ) and j that defines this side of the polygon
Πk.

4 Examination of DS5

In [Mashreghi and Rivard, 2007], the following 5-by-5 doubly stochastic matrix was noted
to have eigenvalues outside of PM5 for t ∈ [.49, .51]:

0 0 0 1 0
0 0 t 0 1− t
0 t 1− t 0 0
0 1− t 0 0 t
1 0 0 0 0


We note that that these matrices are given by convex combinations of pairs of matrices,

corresponding to

t


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

+ (1− t)


0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


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in which the two permutations matrices correspond to (145)(23) and (1425) respectively. Using
high-precision arithmetic, we have computed that the range of convex coefficients t for which the
exceptional eigenpath of this matrix has eigenvalues outside PM5 is about [.4705275, .5490013].
The exceptional curve in the upper half plane connects a third root of unity at e2πi/3 with a
fourth root of unity at i. It leaves PM5 near the intersection of Π3 with Π4 and barely stays
within PM5 near the intersection of Π4 and Π5. See Figures 2 and 4 for images of this curve.
Moreover, we note that only one other eigenpath is close to the boundary of PM5. This path
is given by a pairing between (1425) and (12345).

The pair of cycle types for the two permutations that generate the exceptional curve are of
note. This exception is present in DS5, and does not include a 5-cycle. Instead, the element
of the pair that is present in S5 but not in S4 is of type 2,3. The following is an important
observation that demonstrates why this curve is truly exceptional.

Observation 4.1. There is only one inequivalent pair, up to uniform permutation similarity,
that generates an eigenvalue outside of PM5.

Take the original exceptional pair (145)(23) and (1425). We determine the inequivalent
pair classes of this pairing of cycle types 2,3 with 1,4. Without loss of generality, we can fix
(1425), since if we want to determine the class of a pair with another 4-cycle, we can first take
a uniform conjugacy to shift it to a pair with (1425). Thus, any further conjugation must be by
an elements of CSn((1425)) = 〈(1425)〉, the centralizer of (1425). We can view the inequivalent
pair classes of this pairing of cycle types as the orbits of the action of CSn((1425)) on the set
B of elements of cycle type 2,3 by conjugation. The stabilizer of the action for any τ ∈ B is
trivial due to the cycle structures, so there are precisely |B|/|CSn((1425))| = 20/4 = 5 orbits.
Computing the eigenpaths of pairings (r, (1425)), where r is a representative of each orbit, we
find that only the inequivalent pair class of the original counterexample gives an eigenpath that
leaves PM5; in fact, all of the eigenpaths from other inequivalent pair classes stay well inside
PM5. Lastly, since the exceptional curve goes from a third root of unity to a fourth root of
unity, we check pairings of (1425) with 3-cycles (there are again 5 inequivalent pair classes) and
again find that no path even comes close to leaving PM5.

In Table 2, we list the inequivalent pair classes of pairings of permutations of cycles types
2,3 with 1,4. Understanding the differences between the inequivalent pair classes of pairs of
these cycle types may be essential to understanding why the exceptional pair of permutations
leaves PM5.

Class 2,3 type Permutations of Class

1 (34)(125), (35)(142), (23)(145), (13)(254)

2 (12)(345), (12)(354), (45)(132), (45)(123)

3 (35)(124), (34)(152), (13)(245), (23)(154)

4 (24)(135), (15)(234), (25)(143), (14)(253)

5 (25)(134), (14)(235), (15)(243), (24)(153)

Table 2: Inequivalent pair classes and all representatives of each class with respect to pairing a
2,3 permutation with (1425). To determine which inequivalent pair class a general pair (σ, τ)
corresponds to, where σ has type 2,3 and τ has type 1,4, uniformly conjugate (σ, τ)p by a p ∈ Sn
which conjugates τ to (1425), then check which row of the table pσp−1 is contained in. Note
that the exceptional pair is in class 1.

Furthermore, we have computed convex combinations of triples of permutations in Ω5 to
a mesh size of 200 and for quadruples at a mesh size of 43. For a mesh size of m in the case
of k-tuples, we mean that for every k-tuple of permutations considered, we take m weights of
size 1/m and compute eigenvalues for every possible distribution of these weights among the k
permutations. Thus, per triple of permutations, we compute eigenvalues for O(m2) matrices,
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Figure 1: Inequivalent pairs for DS5. The boundaries of Πk for k ≤ 5 are outlined in black.
Eigenvalues of inequivalent pairs are in red. Only the upper half plane is shown due to the
symmetry of DSn across the real line.

Figure 2: Close-up of exceptional curve in DS5, along with other pair (1234) that comes close
to leaving PM5, both in orange. PM5 is in black as per usual. The exceptional curve leaves
PM5 above the intersection of Π3 and Π5.
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Figure 3: Eigenvalues of triples of permutations for DS5. The inscribed circle is omitted.

Figure 4: Close-up of subset of DS5 generated by triples. Eigenvalues of triples are in purple
while the exceptional curve is in orange. Only those points outside of PM5 are plotted. No
eigenvalues of triples extend beyond the exceptional curve that is generated by pairs.
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Figure 5: Inequivalent pairs for DS6. Πk for k ≤ 6 outlined in black.

as opposed to the O(m) matrices computed along each pair. As shown in Figures 3 and 4,
no eigenvalues of triples leave the region interior to the eigenvalues of pairs. Likewise, no
eigenvalues of quadruples leave this region. This supports the Boundary Conjecture.

5 Computational Results

Our experiments have found no counterexamples to the Perfect-Mirsky conjecture for any
n 6= 5. More specifically, there are no counterexamples along convex combinations of pairs of
permutations for mesh size choices of m = 10000 for n = 6, 7, 8, 9, m = 1000 for n = 10, and
m = 200 for n = 11. Recall that the exceptional curve for n = 5 lies outside of PM5 for convex
coefficients in an interval of length greater than .07, and counterexamples can be found with
coarse mesh sizes—any mesh size larger than 14 suffices to find one but we also note that any
odd mesh size contains 1/2 as a choice of convex coefficient and thus by chance happens to
find a counterexample. Hence, the mesh sizes that we used for these computations for pairs
with higher n seem well-beyond sufficiently fine. However, we also note that it is reasonable to
expect finer mesh sizes to be necessary for finding counterexamples for larger n, as PMn takes
up more space in the unit disc and the absolute distance by which any exceptional curve leaves
the region might be smaller.

In Figures 5 and 6 we plot the (eigenvalues of) inequivalent pairs for DS6 and DS7. Every
curve is quite far from leaving the boundary of PMn, unlike the n = 5 case, in which besides
the exceptional curve, there was another curve quite close to the boundary of PM5. Likewise,
in plotting pairs for DS8 and DS9, there are no curves that are close to leaving PMn. It is
difficult to obtain information from plots of DS10 since the margin between PM10 and the
unit disc is lower and also since the high number of points makes plotting at a high mesh size
difficult. We computed some triples for n ≤ 11 at various mesh sizes, and, as expected, due to
the distance that pairs were from the the boundary of PMn for n ≤ 11, found that there were
no counterexamples to Perfect-Mirsky for these n.
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Figure 6: Inequivalent pairs for DS7. Πk for k ≤ 7 outlined in black.

6 Spectra of Convex Hulls of Matrix Groups

In [Jankowski et al., 2019], the authors consider the so-called hull spectra of matrix groups,
defined for a matrix group G as

HS(G) := {λ : λ ∈ σ(A), A ∈ Co(G)}

Note that DSn = HS(G) when G is the group consisting of the n-by-n permutation matrices.
They determined the hull spectra for abelian matrix groups, all representations of the dihedral
group, and all representations of the quaternion group. In all of the cases in which the groups
under consideration were finite, the boundary of the hull spectrum was achieved by eigenvalues
from convex combinations of pairs of group elements. For infinite abelian groups, there is a
possibility that the hull spectrum contains a set that is the interior of the unit disc together
with a dense subset of the unit circle. In this case, pairs achieve all values of the boundary of
the hull spectrum that are actually part of the hull spectrum i.e. the set ∂HS(G)∩HS(G). In
any other case with infinite abelian groups, pairs determine the boundary.

However, it should be noted that we have found exactly two groups in which pairs do
not determine the boundary of the hull spectrum. These two groups are A4 and A5 in the
standard representation, and An in the standard representation for higher n may also have this
property. The exact forms of A1, A2 and A3 are trivial to determine (they are {1}, {1}, and
Π3 respectively), and obviously have pairs determining the boundary. However, for A4 and
A5, some eigenvalues obtained by convex combinations of triples of even permutations are not
within the region interior to the eigenvalues achieved by convex combinations of pairs. See
Figures 7 and 8 for visualization of these phenomena.

While the fact that the several classes of groups considered in [Jankowski et al., 2019] with
known hull spectra have boundary determined by pairs does support the Boundary Conjecture,
it is somewhat worrying that the standard representations of A4 and A5, which are of course
closely related to the standard representations of S4 and S5, provide exceptions to the analogous
conjecture for general matrix groups. However, we do believe that our arguments in Section 3
are still strong, and that along with the computational evidence that we have produced, suggests
to us that the Boundary Conjecture is likely to be true.
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Figure 7: Eigenvalues of convex combinations of pairs and triples of 4-by-4 even permutation
matrices. Pairs are in purple, and triples are in pink.

Figure 8: Eigenvalues of convex combinations of pairs and triples of 5-by-5 even permutation
matrices. Pairs are in purple, and triples are in pink.
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Figure 9: Zoomed in version of Figure 8.

7 Further Discussion and Conclusion

In [Levick et al., 2014], it was conjectured that DSn is the union PMn ∪Kn−1. While this
does hold for n ≤ 4, since Kn−1 for such n coincides with DSn−1, our computations suggest
that this is false in general. Our computations for triples in DSn for n ≥ 6 show that there
are no eigenvalues that leave PMn, let alone come close to the arcs that form the boundary of
the corresponding Karpelevich regions. For n = 5, the exceptional curve stays well within the
Karpelevich region K4, and we do not find eigenvalues that leave PM5 in other regions where
K4 extends beyond PM5. See Figures 10 and 11 for visualizations of PMn ∪Kn−1 for n = 5, 6.
In fact, we believe in a stronger inclusion for certain n that we have sufficiently computed. Our
computational evidence, as outlined above, is consistent with the Perfect-Mirsky conjecture for
certain n, so we make the following conjecture:

Conjecture 7.1. DSn = PMn for n = 6, 7, 8, 9, 10 and 11.

If the Boundary Conjecture is true, there would be little doubt in our conjecture due to the
fine mesh sizes to which we have computed pairs. If the Boundary Conjecture is not true for
some n, then we still believe that this conjecture is likely to be true for the values of n we have
discussed, since we have also computed triples for these n and found no counterexamples.

We have spent much CPU time (> 2 years) on searching for exceptions to the Perfect-Mirsky
conjecture for larger n, but have not found any. Our other methods for finding counterexamples
did not result in any, but are worth noting. Since the original n = 5 counterexample occurs as
an eigenvalue of the average of two permutations, we checked whether eigenvalues of averages
of pairs of permutations gave exceptions to Perfect-Mirsky. Also, we have tried computing
eigenvalues of convex combinations of some triples of permutations for n ≤ 11 and varying
mesh sizes, but have not found any counterexamples in this way. The size of this problem
of computing DSn to a given mesh size scales dramatically in n, and for higher-order tuples
(beyond pairs) of permutations also scales quickly in the mesh size (recall that for triples,
computing on a mesh size of m means computing O(m2) matrices for each triple as opposed
to O(m) for each pair in the two matrix case). Thus, our computations are by no means
absolutely comprehensive, but the computational results that we have obtained are consistent
with the Perfect-Mirsky conjecture for these n under consideration.
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Figure 10: PM5 in outlined in black and K4 filled in blue. Only the subset of K4 that is outside
of PM5 is displayed. See [Swift, 1972] for equations determining Kn for small n.

Figure 11: PM6 in black and K5 in blue. Again, only the subset of K5 outside of PM6 is
displayed.
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In the future, we hope that researchers with the right tools may find results that determine
DSn for some n > 4. We do believe that Perfect-Mirsky holds for n = 6, 7, 8, 9, 10, 11, and have
presented our computational results that are consistent with this assertion. In both of the works
[Perfect and Mirsky, 1965] and [Levick et al., 2014] which made major advances in the study of
DSn, properties of doubly stochastic matrices were used extensively. For the most part, we
work directly with the permutations that are the extreme points of the set of doubly stochastic
matrices and are still able to deduce properties of DSn. Algebraic properties of permutations
could provide useful information if combined with the properties of doubly stochastic matrices
in future study. In DS5, the differences in behavior of eigenpaths of different inequivalent pairs
are mysterious and likely worth studying.
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A Supplementary Figures

Figure 12: Inequivalent pairs for DS8. Inscribed circle omitted.
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Figure 13: Inequivalent pairs for DS9. Inscribed circle omitted.
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