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Abstract. The paper describes a prime factorization of the Catalan numbers. 

Odd prime factors are distributed in layers in accordance with Legendre’s for-

mula. The content of each layer is a network of the intervals, Chebyshev’s Seg-

ments. The primes of Segment are not calculated and are selected on the basis of 

its bounds. Layers contain non-repeated primes. Repeated factors are formed 

when primes are duplicated among different layers. The paper slightly modifies 

Kummer's theorem for the selection of individual prime factors, also starting 

from the boundaries of Segments. In conclusion, the reader is offered a software 

service for factorization of the Catalan number with index up to 10
8
. 
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1 Introduction 

Currently, the decomposition of natural numbers is relevant and in demand to work 

with big numbers, such as in cryptography.  In cryptanalysis,  we factorize keys 

whose length is hundreds of decimal digits.  In this regard,  the decomposition of 

special numbers is interesting, since mathematical formulas (recurrent relations, 

etc) significantly prime factorization of big integers of known numerical sequenc-

es.  To factorize a huge special number, you may not know its natural form. For 

example, the 9,999-th Catalan number has a length of 6,000 decimal digits. Of 

course, such a number is almost impossible to get, but it is easy to factorize. In this 

article, we will factorize the Catalan numbers with large indexes in examples. 

1.1.  The Catalan numbers appear in many combinatorial applications [St15].  Here 

is the known explicit formula for the general term of the Catalan sequence: 

(1.1)            Cat (n)  =  (
  
 

)⧸(n +1)  =  
     

        
 ,   n ≥ 0.        

The first Catalan numbers for n = 0, 1, 2, 3 … are (see [A108]) 

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012… 

In number theory for a prime p, the p-adic valuation (or order) of n  ℕ, vp (n), 

is the highest power of  p that divides n  (or the number of factors of  p in the prime 

factorization of n). For example, v2 (6) = v2 (2) = 1,  v3 (36) = v3 (9) = 2,  v5 (1000) = 

v5 (125) = 3.  Let's write some obvious properties for a prime p and  n, m, k  ℕ: 

mailto:ergenns@gmail.com
http://www.cambridge.org/ro/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/catalan-numbers?format=HB
https://oeis.org/A000108
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vp (nm) = vp (n) + vp (m),  vp (n/m) = vp (n) – vp (m),  vp (p
k
) = k. 

It is easy to convert (1.1) to a more convenient form [We16]  

(1.2)    Cat (n)  =  2
n
 × (2n –1)‼⧸(n +1)!,  

where (2n–1) ‼ = 1 •3 •5 •  •  • (2n–1) is a double odd factorial. From (1.2) we get the 

2-adic valuation of the n-th Catalan number:  v2 (Cat (n)) = n – v2 ((n +1)!).  

The latter equality can be further simplified (see Theorem 2.1 in [DS18]) 

(1.3)          v2 (Cat (n))  =  wt (n+1) –1, 

where wt (n +1) is the sum (weight) of the digits in the base 2 expansion of  n +1, 

i.e., the sum of the units of the binary code of n +1. Obviously, the n-th Catalan 

numbers are odd if  wt (n+1) =1,  or  n = 2k –1, k  ℕ,  i.e.  n = 1, 3, 7, 15, etc. 

Example 1.1. Start factoring the 9,999-th Catalan number, in the decomposition of which 

there are 1,560 primes including powers (trust us, reader).  First, check an even prime 2. 

Let’s calculate the 2-adic valuation of Cat (9,999).  Below we convert the decimal integer 

10,000 to binary word with 5 units. 

v
2
 (Cat (9,999)) = wt (9,999 +1) –1 = wt (10,011,100,010,0002) –1 = 5 –1 = 4. 

It remains to choose odd prime factors in the amount of 1560 – 4 = 1556.       □ 

1.2.  From (1.1) directly follows, first,  prime factors of Cat (n)  are less than 2n.  

Let us say that we are dealing with the finite prime interval p (1; 2n) = {2, 3, 5 …}. 

We call this interval the factor base of the n-th Catalan number.  Any prime inter-

val,  P-interval, contains only primes within the specified boundaries.  One more 

thing,  any  p ∈ p (n+1; 2n) divides Cat (n), but  p
2
∤ Cat (n).  That is, primes from    

p (n+1; 2n)  are non-repeating factors of the n-th Catalan number.  

Note 1.2.  In general, a prime interval can have both open and closed boundaries. 

Boundaries can be arbitrary positive real numbers. For example, p [3; 8] = {3, 5, 7}, 

p (4.99; 11] = {5, 7, 11},  p (√  ; 11.001) = {2, 3, 5, 7, 11},  p [13.01; 17) = .  

Example 1.3.  Continue factoring the 9,999-th Catalan number.  The prime interval   

p (10000; 19998) = {10007, 10009, … , 19997} contents 1,033 non-repeating factors of 

Cat (9,999).  We still have to select 1556 – 1033 = 523 odd prime factors, which are dis-

tributed over other prime intervals.                          □ 

The n-th Catalan number and the binomial coefficient (  
 

) have the same com-

position of prime factors.  In 1850 Pafnuty Chebyshev noted that (  
 

) is divisible 

by the product of the primes in the interval (n, 2n) [Po15]. Therefore, let's call the 

interval p (n+1; 2n) Chebyshev’s Segment. The first results of the work with Cheby-

shev’s Segments are described in [Er16]. 

http://mathworld.wolfram.com/CatalanNumber.html
https://arxiv.org/pdf/math/0407326.pdf
https://math.dartmouth.edu/~carlp/amm2015.pdf
https://studyres.com/doc/13013409
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2 Chebyshev’s Segments and Black Holes 

2.1. The first (main) Chebyshev’s Segment,  S1(n) = p (n+1; 2n),  contains most of 

the prime factors of the n-th Catalan number. The remaining primes are distributed 

to other Segments between which inaccessible gaps, Black Holes, are formed.  

Chebyshev’s Segments do not intersect and have open boundaries similar to S1(n). 

Black Holes also do not intersect, and it is logical to use closed boundaries for 

them. In this case, the value of the boundaries for adjacent Segments and Black 

Holes will be the same.  For example, the first Black Hole H1(n) = p [?; n+1]  is ad-

jacent tightly to S1(n).  Segments and Black Holes are often empty.  For example, 

S1(2) = p (3; 4) = , but  S1(3) = p (4; 6) = {5}. Let’s describe (1.2) in more detail:  

(2.1)  Cat (n) = 2n
 × A / B,  A = 1•3 •5 •  •  •  (2n–1),  B = 1•2 •3 •  •  • (n+1). 

For an odd prime p,  

vp (Cat (n)) = vp (A / B) = vp (A) – vp (B). 

Let A1 denote P-interval in which each prime number p occurs in A only once, i.e. 

vp (A) = 1.  Obviously,  A1 = p (2n/3; 2n).  Accordingly for B,  there is the similar  

P-interval  B1 = p ((n+1)/2; n+1];  for each  p ∈ B1, vp (B) = 1.  The sets A1 and B1 

intersect and we can get the first Chebyshev’s Segment and the first Black Hole: 

S1(n)  =  A1 \ B1 = p (2n/3; 2n)  \  p ((n+1)/2; n+1]  =  p (n+1; 2n),   

H1(n) =  A1 ⋂ B1 = p (2n/3; 2n)  ⋂  p ((n+1)/2; n+1]  =  p [2n/3; n+1]. 

Similarly,  we obtain the second Chebyshev’s Segment and the second Black 

Hole. Denote by A2 the P-interval in which each prime p occurs in A exactly twice, 

i.e. vp (A) = 2. It is easy to see, A2 = p (2n/5; 2n/3). The appropriate P-interval for B 

is B2 = p ((n+1)/3; ((n+1)/2];  for each p ∈ B2,  vp (B) = 2. We calculate the second 

Chebyshev’s Segment a bit differently.  

S2(n)  =  A2 ⋂ B1 = p (2n/5; 2n/3)  ⋂  p ((n+1)/2; n+1]  =  p ((n+1)/2; 2n/3),   

H2(n) =  A2 ⋂ B2 = p (2n/5; 2n/3)  ⋂  p ((n+1)/3; (n+1)/2]  =  p [2n/5; (n+1)/2].  

It is logical to consider B0 = p (n+1; ∞].  On the basis of the last equations we 

give general formulas for Chebyshev’s Segment and Black Hole: 

St 
(n)  =  At ⋂ Bt-1  

  = p (2n/(2t+1));  2n/(2t–1))  ⋂  p (((n+1)/t;  (n+1)/ (t–1)]   

  =  p ((n+1)/t;  2n/(2t–1)),   
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Ht 
(n) =  At ⋂ Bt  

  = p (2n/(2t+1)); 2n/(2t–1))  ⋂  p (((n+1)/(t+1); (n+1)/t]   

  =  p [2n/(2t+1); (n+1)/t] ,  t ≥ 1.  

As a result, we get  

(2.2a)       St 
(n) = p ((n+1)/t; 2n/(2t–1)),   t  ℕ. 

 (2.2b)      Ht 
(n) = p [2n/(2t+1); (n+1)/t] ,  t ≥ 0. 

2.2. From (2.2) follows Ht 
(n) ⋃ St 

(n) = At. This means that Chebyshev’s Segments 

and Black Holes of the form (2.2) cut the range p (2; 2n). Recall that we work with 

odd primes (the multiplicity for 2 we got in the previous section).  The question 

naturally arises, how many Chebyshev’s Segments are there? With the growth of t 

(approaching the origin) Segments are sharply reduced, and in the limit for Seg-

ment boundaries must collapse (and then Segments are inverted). Let's equate the 

boundaries for Chebyshev’s Segment in (2.2a): 

(n +1) /t  = 2n /(2t –1),  then  t = (n +1) / 2. 

In this case for odd n, we get an empty Segment with the same boundaries  p (2; 2). 

And the next Segment is inverted (the lower boundary exceeds the upper one). So 

we can formulate  

Proposition 2.1. For the n-th Catalan number, the number of Segments of type 

(2.2a) is less than  (n +1) / 2. 

We will omit the index n, if we know what the Catalan number we are talking 

about. 

Example 2.2.  Continue Example 1.3.  Let's show the first 15 Segments for the 9,999-th 

Catalan number (the hash sign ‘#’ denotes cardinality). 

S1 = p (10000; 19998) = {10007, 10009, … , 19997},  #S1 = 1033;  

S2 = p (5000; 6666) = {5003, 5009, … , 6661},  #S2 = 190; 

S3 = p (3333.3; 3999.6) = {3343, 3347, … , 3989},  #S3 = 80; 

S4 = p (2500; 2856.8) = {2503, 2521, … , 2851},  #S4 = 47; 

S5 = p (2000; 2222) = {2003, 2011, … ,  2221},  #S5 = 28; 

S6 = p (1666.6; 1818) = {1667, 1669, … ,  1811},  #S6 = 19; 

S7 = p (1428.5; 1538.3) = {1429, 1433, … ,  1531},  #S7 = 17; 

S8 = p (1250; 1333.2) = {1259, 1277, … ,  1327},  #S8 = 13; 

S9 = p (1111.1; 1176.3) = {1117, 1123, … ,  1171},  #S9 = 7; 

S10 = p (1000; 1052.5) = {1009, 1013, … ,  1051},  #S10 = 9; 

S11 = p (909.09; 952.2) = {911, 919, … ,  947},  #S11 = 6; 

S12 = p (833.3; 869.4) = {839, 853, 857, 859, 863},  #S12 = 5; 

S13 = p (769.2; 799.9) = {773, 787, 797},  #S13 = 3; 
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S14 = p (714.2; 740.6) = {719, 727, 733, 739},  #S14 = 4; 

S15 = p (666.6; 689.5) = {673, 677, 683},  #S15 = 3.   

These Segments select a total of 1464 odd primes. We still have to choose 1556 – 1464 = 

92 primes. The reader can view the remaining Segments and get an additional 60 primes. 

But closer to the origin,  empty Segments appear and their number is growing rapidly.  

After the first hundred Segments, more and more time is spent on the analysis of empty 

ones. In this instance, the 345th Segment selects a prime factor 29, and the next prime 23 

(descending) is selected by the 435th Segment. For small prime factors, it is impractical 

to iterate over Segments; it is faster to check directly prime numbers.     □ 

Any prime is easy to check whether it falls into Chebyshev’s Segment or into 

Black Hole. This analysis is useful for small primes as well as single-element 

Segments. Consider the corresponding algorithm. 

Algorithm 2.3. Let p be an odd prime. It is necessary to determine whether p falls 

into any P-interval (2.2a) or not.  If so, then  p | Cat (n). There are three steps in the 

algorithm. 

Step 1. Calculate Chebyshev’s Segment Su 
(n) whose lower boundary  (n+1)/u  is 

as close as possible to p from below. Easy to see, u = (n +1) /p .  

Step 2. If u | n +1 (accordingly  p | n +1 too), then p ∈ Hu 
(n) and the algorithm is 

finished. 

Step 3. It remains to compare p and the upper boundary of the u-th Segment.  If  

p < 2n / (2u –1),  then p ∈ Su 
(n). Otherwise  p ∈ Hu–1 

(n).     □ 

Let's check the Algorithm 2.3 in the following example.  

Example 2.4.  For the 9,999-th Catalan number, let’s check some primes selectively. 

p = 5:  u = (9999+1) /5  = 2000.  Since  5 | 9999 +1,  we get 5 ∈ H2000 
. 

p = 11: u = (9999+1) /11  = 910.  Since 11 > 2×9999 /(2×910 –1) = 10.993,   

   we get  11 ∈ H909 
. 

p = 23: u = (9999+1) /23  = 435.  Since 23 < 2×9999 /(2×435 –1) = 23.012,   

   we get  23 ∈ S435 
.    

p = 29: u = (9999+1) /29  = 345.  Since 29 < 2×9999 /(2×345 –1) = 29.024,   

   we get  23 ∈ S435 
.            □ 

Factoring and … fishing.  Let the reader will forgive us for may be an inappropriate 

analogy. Let’s compare the set of prime factors of the giant Catalan number with the vast 

sea.  The prime factorization of the big Catalan numbers is reminiscent of fishing.  Che-

byshev's Segment like a fisherman's net catches a "flock" of big factors from the deep 

sea.  But in shallow water near the shore small fish swims, the fishing net is useless there, 

and it is better to fish with a normal fishing rod.  This is what the Algorithm 2.3 does; 

small factors are chosen one by one from the factor base of the Catalan number. 
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 3 Legendre’s layers 

Chebyshev's Segments (2.2a) are able to select odd prime factors of Cat (n) over the 

P-interval p (2; 2n). The Segments do not intersect; if you combine all Segments 

then we will not get prime powers.  But it is!  For the prime number  p < √  ,  a 

power of 2 (squares) is possible and often occurs, a power of 3 (cubes) is possible 

and often occurs if p < √  
 

, and so on. Obviously, Segments (2.2a) form a layer of 

the single (non-repeated) factors that are respectively less then 2n; we denote such 

a SINGLE-layer L
(1)

(n) and write  L
(1)

(n) =  ⋃   
   

(n),  t < (n+1) /2. Next, we will 

talk about high layers:  SQUARE-layer L
(2)

(n),  CUBE-layer L
(3)

(n),  and so on. 

The power of  p in  n!  is given by  

(3.1)    vp (n!)  =  ∑ k ≥ 1 n/p
 k ,  n  ℕ,   

where  n/p k  is the number of factors p k in {1, 2, . . . , n}. In number theory, the 

last equality is known as Legendre's formula (some formulas for the p-adic valua-

tion of the factorial see [Er19]). 

Based on (1.1) and (3.1) we obtain  

(3.2)    vp (Cat (n))  = ∑ k ≥ 1  
( 2n/p

 k  –  n/p
 k  –  (n+1)/p

 k ). 

In the canonical decomposition according to k, prime factors are distributed in 

layers, which we call Legendre’s layers.  In the case  k = 1 we get SINGLE-layer 

L
(1)

(n). In each Legendre’s layer, primes are selected by an own network of Cheby-

shev's Segments.  Primes are not repeated in layers; a multiple prime factor of the 

Catalan number is selected from several layers.  

Recall that for the n-th Catalan number, the elements of SINGLE-layer are se-

lected from the P-interval p (2; 2n); and in L
(1)

(n) the first Segment    
   

(n) = p (n+1; 

2n)  is obvious.  Easy to see,  the primes of SQUARE-layer are selected from the 

interval p (2; √  );  and in L
(2)

(n) Segment    
   

(n) = p (√   ; √  )  is also obvi-

ous. Note,  if  p    
   

(n)  then  p | Cat (n),  but not necessarily p
2
 | Cat (n).  The 

first Segment is bordered by Black Hole    
   

(n) = p [√    ; √   ], which is 

preceded by the second Segment    
   

(n) = p (√       ; √    ) and so on.  

The general formula for Segments of the n-th SQUARE-layer is 

  
   

(n) = p (√       ; √          ),  t  ℕ. 

The situation with the n-th CUBE-layer is similar.  The elements in  L
(3)

(n)   

are selected from the P-interval  p (2; √  
 

),  and for example,  Segment    
   

(n) =   

https://en.wikipedia.org/wiki/Legendre's_formula
https://arxiv.org/abs/1907.11902
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p (√   
 

; √  
 

)  is obvious. For the general case, we formulate the following theo-

rem.  

Theorem 3.1.  For the n-th Catalan number and the k-th Legendre’s layer,   

  
   

(n) = p ( √        
 ; √          

 ),  t  ℕ. 

Obviously,  

L
(k)

(n) =  ⋃   
   

(n),  t ≥ 1. 

We use the obtained formulas for the decomposition of the Catalan number. 

Example 3.2.  Continue factoring the 9,999-th Catalan number. Let's select not empty 

Segments of the 9,999-th SQUARE-layer. 

   
   

 = p (100; 141.4) = {101, 103, … , 139},  #  
   

 = 9; 

  
   

 = p (70.71; 81.64) = {71, 73, 79},  #  
   

 = 3; 

  
   

 = p (57.73; 63.24) = {59, 61},  #  
   

 = 2; 

  
   

 = p (50; 53.44) = {51, 53},  #  
   

 = 2; 

  
   

 = p (44.72; 47.13) = {47},  #  
   

 = 1; 

  
   

 = p (40.82; 42.63) = {41},  #  
   

 = 1; 

   
   

 = p (28.86; 29.48) = {29},  #   
   

 = 1; 

   
   

 = p (22.94; 23.24) = {23},  #   
   

 = 1; 

   
   

 = p (18.89; 19.068) = {19},  #   
   

 = 1; 

   
   

 = p (16.903; 17.024) = {17},  #   
   

 = 1; 

   
   

 = p (10.976; 11.009) = {11},  #   
   

 = 1. 

The elements of the 9,999-th SQUARE-layer (23 primes) are divided into 11 Segments. 

We calculated the first six Segments, but then we had to check each prime to accelerate 

(see below generalized Algorithm 3.3). The next CUBE-layer contains only three ele-

ments: 

  
   

 = p (21.544; 27.143) = {23},    
   

 = p (12.599; 13.049) = {13},  and 

  
   

 = p (10.772; 11.006) = {11}. 

Below we present Segments of the remaining six layers. 

  
   

 = p (10; 11.891) = {11};    

  
   

 = p (6.309; 7.247) = {7};    

  
   

 = p (4.641; 5.209) = {5},     
   

 = p (2.9898; 3.0079) = {3},    

  
   

 = p (3.727; 4.115) = ,       
   

 = p (2.9619; 3.0068) = {3};    

  
   

 = p (3.162; 3.448) = ,       
   

 = p (2.8998; 3.0059) = {3};     
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 = p (2.7825; 3.0052) = {3}.    

As you can see, a prime number 3 has been repeated in layers 6, 7, 8, and 9. Therefore 

v
3
(Cat (9999)) = 4. Note that in the 7th and 8th layers the first Segments are empty. □ 

Let's generalize Algorithm 2.3 to the case of any layer. 

Algorithm 3.3. Let p be an odd prime. It is necessary to determine whether p falls 

into the k-th layer or not.  If so, then  p | Cat (n).  

Step 1. Calculate Segment   
   

(n) whose lower boundary √        
  is as close 

as possible to p from below. Easy to see, u = (n +1) /p
k
 .  

Step 2. If p
k
 | n +1 (accordingly u | n +1 too), then p ∈   

   
(n) and the algorithm is 

finished. 

Step 3. It remains to compare p and the upper boundary of the u-th Segment.  If  

p < √          
 ,  then p ∈   

   
(n).  Otherwise  p ∈     

   
(n).   □ 

4 Factorize by Kummer’s theorem 

In the process of factorization of the Catalan number, Chebyshev's Segments allow 

us to select sufficiently large groups of adjacent prime factors in each Legendre’s 

layer. But it works well only at first. As a Segment number increases, the prime in-

terval decreases dramatically. And to select the last 5-10% of prime factors, we 

have to spend almost all the time on the analysis of empty Segments.  

Algorithm 3.3 directly checks a prime for getting into the Legendre’s layer. But 

here, too, it is necessary to find the suitable Chebyshev's Segment and calculate its 

sometimes cumbersome boundaries. Consider an example with a giant number. 

Example 4.1. In natural form, the Catalan number with index 10
8
 has a length of 6×10

7
 

decimal signs. Such a number is impossible to imagine, but it is not difficult to ob-

tain a canonical decomposition. In SINGLE-layer, the smallest odd prime is 13, i.e. 

13    
   

(10
8
), where u =  (10

8
+1) /13  = 7,692,308. Let’s calculate this Cheby-

shev's Segment:  

            
   

 (10
8
)  = p ((10

8
+1) / 7,692,308; 2×10

8
/ (2×7,692,308 – 1)  

         = p (12.9999996; 13.0000003). 

A prime 13 also falls into SQUARE-layer, i.e. 13  L
(2)

(10
8
). The reader can calculate 

the corresponding Segment in the same way  (in addition, it is necessary to work with 

square roots).                  □ 

The general view of Chebyshev's Segment allows us to modify well-known 

Kummer’s theorem to factoring the Catalan numbers. Looking ahead, let’s describe 

another data processing option from Example 4.1.  
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Example 4.1a. We calculate otherwise the divisibility of the 10
8
-th Catalan number by 

the prime 13 using modular arithmetic. Let’s check two Legendre’s layers. 

SINGLE-layer: 13  L
(1)

(10
8
)  as 10

8
 mod 13 = 9  (13/2; 13 – 1) = (6.5; 12).   

SQUARE-layer: 13  L
(2)

(10
8
) as 10

8
 mod 13

2
 = 165  (13

2
/2; 13

2
 – 1) = (64.5; 168). 

Thus,  v2 (Cat (10
8
)) ≥ 2. The logic of calculations is easy to see. In this case, we did not 

count Segments and did not extract square roots.             □ 

4.1. SINGLE-layer. In Chebyshev’s Segment (2.2a), the lower bound may be a 

prime, and then such a divisor doesn’t fall into SINGLE-layer (but may be into an-

other Legendre’s layer). Thus, if an odd prime  p  divides n +1,  then p ∉ L
(1)

(n). 

Accordingly, the following statement is true. 

Proposition 4.2. Let n be a positive integer and let an odd prime number p does 

not divide n+1. Then  

(i) ⌊(n+1)/p⌋ = ⌊n/p⌋; 

(ii) n mod p  <  p – 1; 

(iii) wt p (n+1)  =  wt p (n) + 1. 

Recall wt p (n)  denote the sum (weight) of the digits in the base-p expansion of n.  

Let's return to the sum (3.2), in which we are interested in the first term, i.e., 

the case k = 1. Taking into account Proposition 4.2(i), we obtain for an odd prime p 

2n/p – n/p – (n+1)/p  =  2n/p – 2 n/p ,  p ∤ n+1. 

Let {x} = x – x , the fractional part of a real number x. Then (see [Po15], p. 2)  

(4.1)      2n/p – 2 n/p  =  2{n/p} – {2n/p} =  {             

             
 

Obviously, for an integer n and an odd p, {n/p} ≠ ½. According to (4.1), a prime 

number p falls into SINGLE-layer if we get the carry by doubling {n/p} under the 

condition that  n mod p  <  p – 1 (i.e. p ∤ n+1). In fact, we have echoes of Kummer's 

theorem from 1852 [Po15].  

Let's issue the received result in the form of the theorem.  

Theorem 4.3.  For the n-th Catalan number, an odd prime p falls into SINGLE- 

layer if and only if 

p /2 <  n mod p  <  p –1   or   n mod p   (p /2, p –1). 

As a result, SINGLE-layer is easily filled with prime factors.  For example, a 

prime 5 falls into L
(1)

(n)  if and only if  n mod 5  = 3  (5/2; 5–1) = (2½, 4)  or   

https://math.dartmouth.edu/~carlp/catalan
https://math.dartmouth.edu/~carlp/catalan
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n = 5i + 3, i ≥ 0.  For a prime 7, we get  n = 7i + (4 or 5).  What about a prime 3?  

It's simple, there are no integers in the interval (3/2; 3–1) = (1½ , 2).  Hence 

Corollary 4.4.  For the n-th Catalan number,  

(i) 3 ∉ L
(1)

(n);  

(ii) 5  L
(1)

(n)  if and only if  n = 5i + 3,  i ≥ 0; 

(iii) 7  L
(1)

(n)  if and only if  n = 7i + (4 or 5),  i ≥ 0. 

4.2. The k-th Legendre’s layer. Theorem 3.1 gives a general view of Chebyshev’s 

Segment for the k-th Legendre’s layer. The lower boundary of such Segment can 

be an integer and, accordingly, a prime number. For the n-th Catalan number, let a 

prime  p = √        
 ∉ L

(k)
(n). Then  

p
k
 = (n+1)/t,  t = (n+1)/ p

k
,  and hence  p

k
 | n+1. 

Now, let’s generalize the previous statement. 

Proposition 4.5 (generalization of Proposition 4.2). Let n be a positive integer, let 

p be an odd prime number and let p
k
 ∤ n+1, k ℕ. Then  

(i) ⌊(n+1)/ p
k
⌋ = ⌊n/p

k
⌋; 

(ii) n mod p
k  <  p

k
 – 1; 

(iii) wt p
k
 (n+1)  =  wt p

k
 (n) + 1. 

Next, we will follow Carl Pomerance's analysis [Po15] for binomial coefficients. 

Let's use the Proposition 4.5(i) and simplify the k-th summand in (3.2). 

2n/p 
k – n/p 

k – (n+1)/p 
k =  2n/p 

k – 2 n/p 
k ,  p  Levk (n). 

Based on the equality n/p 
k = n/p 

k  + {n/p 
k}, let's move to the fractional parts  

(4.2)       2{n/p 
k} – {2n/p 

k} = {
               

               
   

Obviously, {n/p 
k} ≠ ½ , since p is odd.  Based on (4.2) and Proposition 4.5 we ob-

tain a generalized theorem. 

Theorem 4.6 (generalization of Theorem 4.3). For the n-th Catalan number, an 

odd prime p falls into the k-th Legendre’s layer if and only if 

½ p 
k <  n mod p 

k  <  p 
k

 –1   or   n mod p 
k   (½ p 

k, p 
k

 –1). 

The resulting Theorem 4.6 can be called a modification of Kummer’s theorem for 

the k-th Legendre’s layer. 

https://math.dartmouth.edu/~carlp/catalan
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Example 4.7. Continue factoring the Catalan number with index n =10
8
. Let's find all the 

prime factors of the 7th Legendre’s layer, whose elements are selected from the follow-

ing P-interval:  

p (2;√  
 

) = p (2; 15.34) = {3, 5, 7, 11, 13}. 

We need to check 5 primes.  

Prime 3:   10
8
 mod 3

7
 = 1,612  (37

/2; 3
7
–1) = (1,093.5; 2,186);  so 3  L(7)

. 

Prime 5:   10
8
 mod 5

7
 = 0 ∉ (57

/2; 5
7
–1) = (39,062.5; 78,124);  so 5 ∉ L(7)

.  

Prime 7:   10
8
 mod 7

7
 = 351,297 ∉ (77

/2; 7
7
–1) = (411,771.5; 823,542);  so 7 ∉ L(7)

.  

Prime 11:  10
8
 mod 11

7
 = 2,564,145 ∉ (9,743,585.5; 19,487,170);  so 11 ∉ L(7)

.  

Prime 13:  10
8
 mod 13

7
 = 37,251,483  (31,374,258.5; 62,748,516);  so 13  L(7)

.  

Thus, there are only two elements in the 7th layer:  L
(7)

(100,000,000) = {3, 13}.        □ 

5 Online software service.  

The reader can independently factorize any Catalan number and check certain results us-

ing this program. Layer-by-layer factorization is performed with segmentation of the 

SINGLE-layer without issuing a naturalized Catalan number. Often control calcu-

lations allow us to conduct independent research. The program code in the form of 

HTML-file is available to everyone. The participation of those wishing to improve 

the software service is welcome. 
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