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Abstract

A partition α is said to contain another partition (or pattern) µ if the Ferrers board for µ is attainable
from α under removal of rows and columns. We say α avoids µ if it does not contain µ. In this paper
we count the number of partitions of n avoiding a fixed pattern µ, in terms of generating functions and
their asymptotic growth rates.

We find that the generating function for this count is rational whenever µ is (rook equivalent to) a
partition in which any two part sizes differ by at least two. In doing so, we find a surprising connection to
metacyclic p-groups. We further obtain asymptotics for the number of partitions of n avoiding a pattern
µ. Using these asymptotics we conclude that the generating function for µ is not algebraic whenever µ

is rook equivalent to a partition with distinct parts whose first two parts are positive and differ by 1.

1 Introduction

In [2] the first author and Saracino introduced the following notion of pattern-avoiding integer partitions.
Viewing two integer partitions α and µ as Ferrers boards, we say that α contains µ if there exist some set
of rows and columns that can be deleted from α so that, after top/left justifying the remaining boxes, we
obtain µ. If this is not possible we say that α avoids µ. We denote by Avn(µ) the set of all µ-avoiding
partitions of n ≥ 0 and set Av(µ) = ∪n≥0Avn(µ).

For example, α = (6, 5, 5, 5, 4, 4, 2, 2) contains µ = (4, 3, 3, 2, 2) since we can delete the rows and columns
indicated in red below and then justify the remaining boxes to obtain µ.

α = µ = .

Additionally, when µ = (2, 1) then Av(µ) consists of all partitions whose Ferrers board is a rectangle.
The purpose of this paper is to study the sequence

|Av1(µ)|, |Av2(µ)|, |Av3(µ)|, . . . (1)

of the counts of partitions avoiding a fixed partition µ. To do so, we investigate the generating function

∑

n≥0

|Avn(µ)|x
n, (2)

which we casually refer to as the generating function for µ, as well as the asymptotic growth rate of (1).
Throughout the paper we regard a partition µ of n ≥ 1 as an infinite weakly decreasing sequence of

nonnegative integers µ1 ≥ µ2 ≥ · · · , called parts, whose nonzero terms sum to n. We call n the weight of µ
and write |µ| = n. The set of all partitions is denoted by P . We call a partition strict provided that all its
positive parts are distinct and super-strict if all its positive parts differ by at least 2.
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While far from obvious, previous work shows we can restrict our attention to avoiding strict partitions µ
without any loss of generality. In particular the first author and Saracino show [2, 3] the following.

Theorem 1.1. For any partition τ there exists a unique strict partition µ such that |Avn(τ)| = |Avn(µ)| for
all n ≥ 0.

We say two partitions µ and τ are Wilf equivalent if |Avn(µ)| = |Avn(τ)| for all n ≥ 1. (Our choice of
the term “Wilf equivalence” is in reference to a similar definition found in the theory on pattern-avoiding
permutations.) More background on this is described in Section 2.

In light of Theorem 1.1, we consider only the problem of avoiding strict partitions µ for the remainder
of the paper. We start, in Section 3, by considering the generating function (2) when µ is strict. We show,
in Theorem 3.18 that this generating function is rational whenever µ is super-strict.

As a corollary (Corollary 3.19) we conclude that for any fixed K ≥ 1 the generating function counting all
partitions α with the property that any two (positive) parts of α differ by at most K is rational. We record
this in Corollary 3.19. The proof of Theorem 3.18 is constructive in that it gives a method to compute the
rational function associated to the generating function, which we describe further at the end of the section.

Implementing this method we find the generating functions for various small partitions µ, the results
of which (as well as those related to the next section) are tabulated in Table 1. In creating this table, we
discovered, by way of the OEIS database, that the generating function for µ = (5, 2) is identical to the
generating function for the number of so-called metacyclic p-groups for prime p. We record this curious
coincidence and give more details in Remark 3.20.

In Section 4 we find the asymptotic growth rate of the sequence (1) for every strict partition µ. We
find that this growth rate has a different form for staircase partitions of the form µ = (k + 1, k, . . . , 1) than
it does for other sorts of strict partitions. Using results of Ingham [12] and Estermann [4, 5] we prove in
Theorem 4.8 that

|Avn(k + 1, k, . . . , 1)| =





σ0(n) k = 1
1

2ζ(2)σ1(n) log
2 n
(
1 +O

(
log log n
logn

))
k = 2

1
k!(k−1)!ζ(k)σk−1(n) log

k n
(
1 +O

(
1

logn

))
k ≥ 3,

where σi(n) =
∑

d|n d
i. If µ is not a staircase, then we can write

µ = (k + 1, k, k − 1, . . . , k − ℓ+ 1, a0, a1, . . .).

where k − ℓ > a0, so that k − ℓ is the first size omitted from µ. In Theorem 4.16 we show that for such a
partition µ we have

|Avn(µ)| =
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=0 ((k − ℓ)− (aj + j))

(
1 +O

(
1

logn

))
. (3)

To facilitate our study of partitions that are not staircases we consider first, in Section 4.2.1, the special
case of partitions whose first two parts differ by at least 2. In this case we show in Theorem 4.14 that (3)
holds with a much stronger error term.

From Theorems 4.8 and 4.16 we see that the leading term of our asymptotic expression contains a log
factor whenever the largest two parts of µ are positive and differ by 1. This suggests that such generating
functions cannot be rational. In fact, we prove in Corollary 4.17 the stronger result that such generating
functions cannot be algebraic. Based on this, as well as computations of the lower order terms in the
asymptotics for various small strict partitions we conjecture that in fact more is true.

Conjecture 1.2. If µ is any strict partition that is not super-strict, i.e., µ contains two nonzero parts which
differ by 1, then the generating function for µ is not algebraic.
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2 Background

It is worth recalling several results from the literature which put our results in context. We begin with one
from the theory of rooks.

The theory of rooks began in the late 1940’s with the paper [14] by Kaplansky and Riordon. In this
paper the authors introduced the idea of a rook polynomial as a tool for understanding permutations which
avoid certain positions, e.g., derangements. Simply, a rook polynomial for a partition µ is the polynomial
whose coefficient on xk is the number of ways to place k ≥ 0 “rooks” on the Ferrers board for µ so that no
two rooks are in the same row and column. Some twenty years later Foata and Schützenberger [7] made
the following definition. Two partitions are said to be rook equivalent provided that their rook polynomials
are equal. In this same paper Foata and Schützenberger proved that each rook-equivalence class contains a
unique strict partition.

At this point the theory of rooks merges with our study of pattern-avoiding integer partitions. The first
author and Saracino in [2] prove that if two partitions are rook equivalent then they are also Wilf equivalent.
The same two authors, shortly thereafter, prove [3] the reverse implication thereby establishing that rook
equivalence coincides with Wilf equivalence. Combining this with the result of Foata and Schuützenberger
mentioned above implies that each Wilf-equivalence class contains a unique strict partition.

Another connection of our work to the theory of rooks can be found lurking in the constant for the leading
term when µ is not a staircase. In particular, the factors in the product

k−ℓ−1∏

j=0

((k − ℓ)− (aj + j))

from (3) are reminiscent of another theorem due to Foata and Schützenberger. In [7] these authors provide
a beautiful characterization of rook equivalence by proving that partitions µ and ν are rook equivalent if
and only if we have the following equality of multisets

{1 + µ1, 2 + µ2, . . .} = {1 + ν1, 2 + ν2, . . .}.

Rewriting the above product as

k−ℓ−1∏

j=0

(k − ℓ+ 1− (aj + j + 1)) =

k−ℓ∏

i=1

(k − ℓ+ 1− (νi + i)) ,

where ν = (a0, a1, . . .), we see that our product involves numbers of the form used by Foata and Schützenberger
in their classification theorem. At this time we are unaware of the precise significance of this observation.
That said, it comes as little surprise that these numbers appear in our results since they appear in much of
the rook theory literature. For example, these numbers are heavily used in the papers [2] and [3] to prove
that rook equivalence is the same as Wilf equivalence. Such numbers also appear in the beautiful result from
[8] of Goldman, Joichi, and White where they show that rook polynomials (in the falling factorial basis)
factor entirely with roots that are (essentially) these numbers.

Partitions avoiding certain specific patterns have been previously studied. MacMahon [16] considered
partitions with k distinct magnitudes, which are exactly the set Av

(
(k+1, k, k−1, . . . , 1)

)
\Av

(
(k, k−1, . . . , 1)

)

of partitions avoiding a staircase of size k + 1 but containing a staircase of size k. In particular, he found
generating functions for the number of partitions in this set.

These partitions were further considered by Andrews [1] who shows that the number of such partitions
with weight n is asymptotic to ( 1

k! times) the k-fold convolution sum of divisor functions. This convolution
sum also has a rich history. The convolution

∑n
i=1 σ0(i)σ0(n− i) was considered by Ingham, who found an

asymptotic expression for this sum by elementary means. Subsequently, Estermann, in a series of papers,
found lower order terms for both this and the k-fold convolution of divisor functions using the circle method.

Finally, the set of partitions into at most k parts, which is (up to conjugation) the set of (k+1)-avoiding
partitions has been extremely well studied in the literature going back to at least Euler. We make no attempt
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to recount that history here. Instead we point out that in terms of our definition of pattern avoidance the
previous literature involves only the two extreme cases, i.e., partitions avoiding the largest and smallest
partitions with largest part k + 1. The results in this paper can therefore be viewed as an interpolation
between these two extremes.

3 Generating functions of super-strict partitions

We start with a few straightforward definitions.

Definition 3.1. For partitions τ and µ, we define Qn(τ, µ) to be the set of all partitions with weight n that
contain τ and avoid µ. We set Q(τ, µ) =

⋃
n≥1 Qn(µ, τ).

Definition 3.2. For a partition α let m(α) to be the multiplicity of α1 in α, i.e., the length of the rightmost
column of α when viewed as a Ferrers board. For any nonempty set S of partitions define

FS(z, t) =
∑

α∈S

x|α|tm(α).

If S = ∅ set FS = 0. In the case when S = Av(µ) or S = Q(τ, µ) we abuse notation and instead write
Fµ(z, t) or Fτ,µ(z, t), respectively.

We shall also need the following familiar notion. The southeast border of a partition µ is the lattice path
consisting of “north” and “east” steps which traces along the bottom/right of the columns/rows in µ. For
example, the southeast border for

µ =

is (e, e, e, n, e, n, e, e, e, n) where e and n represent east and north steps, respectively. Certainly every south-
east border starts with an east step and ends with a north step. We call a north step followed immediately
by an east step a north-east step. Strict partitions are precisely those whose southeast border does not
contain consecutive north steps. Consequently, the southeast border of a strict partition can be written as
a sequence of east and north-east steps with a final north step. Doing this for the above example we get the
sequence (e, e, e, n′, n′, e, e, n) where n′ denotes a north-east step.

Armed with these basic definitions the goal of this section is to show that Fµ(z, 1) is rational when µ is
super-strict and establish an algorithm for computing Fµ(z, 1) in this case. To this end we first define two
operators E and N which shall correspond to the east and north-east steps, respectively, in the southeast
border of µ. We then show that by mapping the southeast border of µ to a composition of such operators,
we obtain a function Θµ with the property that

Fµ(z, 1) = Θµ

(
zt

1− zt

)∣∣∣∣
t=1

.

With this in mind let us start by defining the operators E and N . We hold off on the motivation for these
definitions as it is not required at the moment. Instead the value of these definitions shall become apparent
below with the statement and proof of Lemma 3.13.

Definition 3.3. Let G(z, t) =
∑

n≥1

∑

m≥0

an,mzntm. Then define

EG(z, t) =
G(z, 1)− ztG(z, zt)

1− zt

and

NG(z, t) = G(z, 0) +
∑

n≥1

∑

m≥1

an,m

(
1

1− zm

)(
1− (tz)m

1− tz

)
zn.
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Note that if G(z) is a formal power series not dependent on t, then EG(z) = G(z) and NG(z) = G(z).

Definition 3.4. For partitions α and β we set

α+ β := (α1 + β1, α2 + β2, . . .).

In terms of Ferrers boards, this sum is the partition whose columns are those of α together with those of β.

Definitions 3.5. Take µ = τ + (1) where τ is strict. Define the sequence Θµ in the symbols E and N as
follows. Reading the southeast border of τ from bottom/left to top/right and ignoring the initial east step
and the final north step, record each east step by an E and each north-east step by an N .

Additionally, for any nonempty sequence Θ = (Θ1,Θ2, . . .) in the symbols E and N we define

ΘG(z, t) := · · ·Θ2 ◦Θ1G(z, t).

If Θ = ∅ is the empty sequence, then we define ΘG(z, t) = G(z, t).

Example 3.6. Taking µ = (7, 4, 3) as above we have Θµ = (E , E ,N ,N , E).

We are now able to write the statement of the first theorem in this section.

Theorem 3.7. Let µ be a super-strict partition with weight at least 2. Let τ be such that µ = τ +(1). Then,

Θµ

(
zt

1− zt

)
= Fτ (z, 1) + Fτ,µ(z, t).

In particular Fµ(z, 1) = Θµ

(
zt

1−zt

)∣∣∣
t=1

.

Let us pause to illustrate this theorem. In the case that µ = (2) we have Θ(2) = ∅ so that

(
zt

1− zt

)∣∣∣∣
t=1

=
z

1− z

which agrees with F(2)(z, 1) in this case since Av
(
(2)
)
consists of only single columns. Next consider the

case when µ = (3). Here Θ(3) = (E) and after some simplification we have

E

(
zt

1− zt

)∣∣∣∣
t=1

=
z + z2 − z3

(1− z)(1− z2)
=

1

(1 − z2)(1 − z)
− 1.

On the other hand, Av
(
(3)
)
consists of all partitions with at most two columns which is easily seen to be

counted by the expression on the right side.
Returning to our main argument we aim to prove this theorem by induction on |µ|. As such we shall

require an understanding of how E and N each affect certain generating functions. To this end we make the
following definitions.

Definitions 3.8. For any partition α we define

E(α) = {α+ (1c) | 0 < c ≤ m(α)},

M(α) = {α+ (wm(α)) | 0 ≤ w},

N(α) = {α+ (wm(α)) + (1c) | 0 ≤ w and 0 < c < m(α)}.

The reader should take note that in the definition of E the upper bound on c is ≤ while the upper bound
on c in the definition of N is <. Therefore the action of N must create a nonempty rightmost column that
is strictly shorter than the rightmost column in α. To illustrate consider the following examples.

5



Example 3.9. Let α = (3, 3, 3, 2). Then E(α) consists of the partitions:

,

M(α) is the set consisting of all partitions form:

...

...

...

w

and N(α) consists of all partitions of the form:

...

...

...

w

...

...

...

w

The relevance of these three functions is established by the following two lemmas. For readability, we
relegate their proofs to Subsection 3.1.

Lemma 3.10. Let µ be a partition, then

EQ(µ, µ+ (1)) = Q(µ+ (1), µ+ (2)). (4)

Further, for any β in Q(µ+ (1), µ+ (2)), there exists a unique α ∈ Q(µ, µ+ (1)) such that β ∈ E(α).

The following definition will be useful in stating the next lemma as well as throughout the remainder of
this section.

Definition 3.11. For any partition µ we define µ = (µ1 + 1, µ1, µ2, . . .).

Lemma 3.12. Let µ be a strict partition. Then

MQ(µ, µ+ (1)) = Q(µ, µ) (5)

and
NQ(µ, µ+ (1)) = Q(µ, µ+ (1)). (6)

Further, for any β ∈ Q(µ, µ), respectively β ∈ Q(µ, µ + (1)), there exists a unique α ∈ Q(µ, µ + (1)) such
that β ∈ M(α), respectively β ∈ N(α).

Our next lemma gives the promised explanation as to how E and N affect our generating functions.

Lemma 3.13. Let µ be strict and set S = Q(µ, µ+ (1)). Then

EFS(z, t) = FS(z, 1) + FES(z, t) (7)

and
NFS(z, t) = FMS(z, 1) + FNS(z, t). (8)

6



Proof. We first establish (7). By the uniqueness clause in Lemma 3.10 we have

ES =
⊔

α∈S

E(α),

where ⊔ denotes disjoint union. Consequently (7) is equivalent to

EFS(z, t) = FS(z, 1) +
∑

α∈S

FE(α)(z, t).

As such it suffices to consider the contribution of a single α ∈ S to both sides of this equation. Fix some
α ∈ S with weight n and let m = m(α). On the left side of (7) this α contributes

E(zntm) = zn(1 + zt+ · · ·+ (zt)m).

Now consider α’s contribution on the right. As E(α) = {α + (1c) | 0 < c ≤ m} we see that α contributes
the term zn and the terms zn(zt+ (zt)2 + · · ·+ (zt)m), respectively. This proves our first claim.

Next we prove (6). By the uniqueness clauses in Lemma 3.12, it follows that (6) is equivalent to

NFS(z, t) =
∑

α∈S

FM(α)(z, 1) +
∑

α∈S

FN(α)(z, t).

Again consider the contribution of a single partition α ∈ S, with weight n and m = m(α) > 0 to both sides
of this equation. On the left, α contributes

N (zntm) =

(
1

1− zm

)(
1− (tz)m

1− tz

)
zn = (1 + zm + z2m + · · · )(1 + tz + · · ·+ (tx)m−1)zn.

On the right side, we see that α contributes, via FM(α)(z, 1), the terms

(1 + zm + z2m + · · · )zn

since M(α) = {α+ (wm) | w ≥ 0}. Additionally, α contributes, via FN(α)(z, t), the terms

(1 + zm + z2m + · · · )(tz + · · ·+ (tz)m−1)zn

as N(α) = {α+ (wm) + (1c) | w ≥ 0 and 0 < c < m}. This proves (8).

We now turn to the proof of our first theorem.

Proof of Theorem 3.7. We proceed by induction on |µ| so that our base case is µ = (2) with τ = (1). In this
case Θµ = ∅, Av(τ) = ∅, and Q(τ, µ) = {(1c) | c > 0}. So Fτ = 0 and

Θµ

(
zt

1− zt

)
=

(
zt

1− zt

)
= Fτ,µ(z, t).

Now consider some super-strict partition µ with |µ| > 2. We entertain two cases depending on the
difference between the first two parts of µ = τ + (1).

Case: µ1 ≥ µ2 + 3

In this case we can write µ = ρ+(2) and τ = ρ+(1) for some super-strict partition ρ. So Θµ = Θρ+(1) ·(E)
where · is concatenation. Computing we now have

Θµ

(
zt

1− zt

)
= E

(
Fρ(z, 1) + Fρ,ρ+(1)(z, t)

)
(induction)

= Fρ(z, 1) + EFρ,ρ+(1)(z, t),

= Fρ(z, 1) + Fρ,ρ+(1)(z, 1) + Fρ+(1),ρ+(2)(z, t) (Lemmas 3.10 and 3.13)

= Fτ (z, 1) + Fτ,µ(z, t),
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where the last equality follows since Av(ρ) ⊔ Q(ρ, ρ+ (1)) = Av(ρ+ (1)).

Case: µ1 = µ2 + 2

As |µ| > 2 we have µ2 > 0. Set ρ = (µ2, µ3, . . .) so that ρ+ (1) has weight at least 2. Hence ρ+ (1) is a
super-strict partition. In terms of ρ we have

µ = ρ+ (1) and τ = ρ.

Now Θµ = Θρ+(1) · (N ). Computing we now have

Θµ

(
zt

1− zt

)
= N

(
Fρ(z, 1) + Fρ,ρ+(1)(z, t)

)
(induction)

= Fρ(z, 1) +NFρ,ρ+(1)(z, t),

= Fρ(z, 1) + Fρ,ρ(z, 1) + Fρ,ρ+(1)(z, t) (by Lemmas 3.12 and 3.13)

= Fτ (z, 1) + Fτ,µ(z, t).

We now turn our attention to showing that Fµ(z, 1) is rational when µ is super-strict. We begin with a
few definitions.

Definition 3.14. We say a bivariate generating function F (z, t) is nice provided that F (z, zk) is rational
for all k ≥ 0. Further, we say F (z, t) is very nice provided that F (z, t) is nice and F (z, 0) is also rational.

Lemma 3.15. If F (z, t) is nice, then EF (z, t) is very nice.

Proof. Assume F (z, t) is nice. By definition of E we have

EF (z, t) =
F (z, 1)− ztF (z, zt)

1− zt
.

From this and our assumption about F it follows that EF (z, zk), for k ≥ 0, and EF (z, 0) = F (z, 1) is rational.
Hence EF (z, t) is very nice.

Lemma 3.16. If F (z, t) is very nice, then NF (z, t) is nice.

Proof. Let

F (z, t) =
∑

n≥1

∑

m≥0

an,mzntm.

By definition of N we have, for m ≥ 0, that

NF (z, zk) =
∑

n≥1

∑

m≥1

an,m

(
1

1− zm

)(
1− zm(k+1)

1− zk+1

)
zn + F (z, 0)

=
1

1− zk+1

∑

n≥1

∑

m≥1

an,m(1 + zm + z2m + · · ·+ zkm)zn + F (z, 0)

=
1

1− zk+1

(
H(z, 1) +H(z, z) + · · ·+H(z, zk)

)
+ F (z, 0),

where H(z, t) := F (z, t)− F (z, 0). As F (z, t) is very nice, our claim immediately follows.

The proof of the next lemma follows immediately from the previous two lemmas. As such we omit a
formal proof.

Lemma 3.17. Consider an arbitrary F (z, t) that is very nice. Let Θ be a sequence of the operators E and
N so that Θ contains no consecutive N ’s. Then ΘF (z, 1) is rational.

8



Theorem 3.18. If µ is super-strict, then Fµ(z, 1) is rational.

Proof. If µ = (1) then Fµ(z, 1) = 0 which is rational. Now assume µ has weight at least 2. As µ is super-strict
then Θµ does not contain consecutive N ’s. As µ has weight at least 2, our claim follows by Theorem 3.7,
the fact that zt

1−zt is very nice, and Lemma 3.17.

Corollary 3.19. Fix some K ≥ 1 and define S to be the set of partitions α such that |αi − αj | ≤ K for all
i, j ≥ 0. Then FS(z, 1) is rational.

Proof. Consider the partition µ = (K + 2, 1). As K ≥ 1 we see that µ is super-strict. A simple check shows
that S = Av(µ). It now follows immediately by Theorem 3.18 that FS(z, 1) is rational.

We end this section with an explanation of how one can explicitly determine the rational function Fµ(z, 1)
for a specific super-strict partitions µ. To illustrate, consider the example when µ = (5, 1). Here Θ =
(N , E , E) and define

F0(z, t) =
zt

1− zt
, F1 = NF0(z, t), F2 = EF1(z, t), F3 = EF2(z, t),

By Theorem 3.7 we have Fµ(z, 1) = F3(z, 1) and by definition of E we see that

F3(z, 1) = EF2(z, t)|t=1 =
F2(z, 1)− zF2(z, z)

1− z
.

So to compute F3(z, 1) we must compute F2(z, 1) and F2(z, z). Continuing in this manner, we obtain
the following dependencies illustrated in the tree below. Note that the proof of Lemma 3.17, yields the
dependencies corresponding to N . We omit references to F0(z, 0) as this is 0.

F3(z, 1)

F2(z, 1)

F1(z, 1)

F0(z, 1)

F1(z, z)

F0(z, 1) F0(z, z)

F2(z, z)

F1(z, 1)

F0(z, 1)

F1(z, z
2)

F0(z, 1) F0(z, z) F0(z, z
2)

E :

E :

N :

In this fashion we see that Fµ(z, 1) may be computed for any super-strict partition µ.

Remark 3.20. The pattern µ = (5, 2) has a surprising connection to group theory. We recall that a group
G is said to be a metacyclic if there exists a cyclic normal subgroup N such that G/N is cyclic. In [15],
Liedahl enumerates metacyclic p-groups and proves that for any odd prime p the number of such groups of
order pn is given by the generating function

G(z) =
−z(z7 − 2z5 + z3 + z2 − z − 1)

(z − 1)4(z + 1)2(z2 + z + 1)
.

Coincidentally, the generating function F(5,2)(z, 1), which was computed using the recursive algorithm de-
scribed above, is equal to G(z). We do not know of a bijective proof of this fact.

9



3.1 Proofs of Lemmas 3.10 and 3.12

To prove Lemmas 3.10 and 3.12 we first consolidate some basic facts about partition containment.

Lemma 3.21. Let α, µ be partitions with µ strict. Let α− be any partition that can be obtained by deleting
the top k < m(α) rows from α. Also for some a > α1 and m > 0 set

α+ = (am, α1, α2, . . .).

We have the following:

i) α contains µ if and only if α− contains µ.

ii) α contains µ if and only if α+ contains µ.

iii) α contains µ if and only if α+ (1c) contains µ+ (1) where 0 < c ≤ m(α).

Proof. The reverse direction of i) and the forward direction of ii) are immediate. The remaining directions
follow from the following fact. If α contains a strict partition µ then the rows not deleted from α to obtain
µ must be of distinct length.

For the proof of iv) the reverse direction is immediate. For the forward direction assume the set of
rows and columns deleted to obtain µ are R and C, respectively. First note that we may assume 1 /∈ R as
otherwise set

R′ = (R \ {1}) ∪ {i} and C′ = C ∪ {αi + 1, αi + 2, . . . , α1}

where i was the least index not already included in R. Observe that deleting the rows in R′ and columns in
C′ will also yield µ. This, combined with the fact mentioned in the previous paragraph, implies that α+(1c)
contains µ+ (1).

In what follows we make frequent use of this lemma. To facilitate readability we only reference a given
statement within this lemma by its number with no explicit reference to the lemma.

Proof of Lemma 3.10. For any 0 < c ≤ m(α) it follows from iii) that

α ∈ Q(µ, µ+ (1)) ⇐⇒ α+ (1c) ∈ Q(µ+ (1), µ+ (2)).

In particular this implies that EQ(µ, µ+(1)) ⊆ Q(µ+(1), µ+(2)). As every partition in Q(µ+(1), µ+(2))
has at least two columns (as such partitions contain µ+(1)) we can write any element in Q(µ+(1), µ+(2))
as α + (1c) for some partition α with 0 < c ≤ m(α). This together with our first observation yields the
reverse inclusion.

For the uniqueness claim, fix β ∈ EQ(µ, µ+ (1)) and assume α, η ∈ Q(µ, µ+ (1)) such that

α+ (1c) = β = η + (1d)

where c ≤ m(α) and d ≤ m(η). As c, d > 0 it follows that the rightmost column in β has length c = d. So,
α = β. This completes our proof.

Lemma 3.22. Let µ be strict and fix α ∈ Q(µ, µ). Then α decomposes uniquely as

α = (bm1 , b2, b3, . . .) + (wm)

where w ≥ 0, b1 > b2, and (bm1 , b2, b3, . . .) ∈ Q(µ, µ+ (1)).

Proof. Set α = (am1 , a2, . . .) ∈ Q(µ, µ) so that a1 > a2 and m > 0. Starting with the fact that α contains µ
define i to be the smallest column index so that if β is the partition obtained by deleting columns i+1, i+2, . . .
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then β contains µ. It is immediate from our choice of i that β avoids µ + (1). For the existence claim, it
now suffices to prove that i > a2 as then we have

α = (im, a2, a3 . . .)︸ ︷︷ ︸
α

+(a1 − i)m.

For a contradiction, assume i ≤ a2. So
α′ = (am+1

2 , a3, . . .),

the partition obtained by deleting all columns of length m from α, contains µ. By i) it follows that (a2, a3, . . .)
contains µ. As a1 > a2, it follows from ii) that α = (am1 , a2, a3, . . .) contains µ. This contradicts our choice
of α.

To prove uniqueness assume for a contradiction that we can write

(cm1 , c2, c3 . . .)︸ ︷︷ ︸
η

+(wm) = α = (dm1 , c2, c3, . . .)︸ ︷︷ ︸
δ

+(um),

where d1 > c1 > c2 and η, δ ∈ Q(µ, µ+ (1)). As η contains µ we see by iii) that η + (1m) contains µ+ (1).
As d1 > c1, it now follows that δ contains µ+ (1), which it does not. This establishes our uniqueness clause
and completes our proof.

Equipped with the above lemmas we now prove Lemma 3.12.

Proof of Lemma 3.12. Throughout fix a partition α = (am1 , a2, a3, . . .) with a1 > a2 so that m(α) = m. We
first prove that

MQ(µ, µ+ (1)) = Q(µ, µ).

To this end take some α ∈ Q(µ, µ+(1)) and w ≥ 0 so that α+(wm) ∈ MQ(µ, µ+(1)). First, as α contains
µ then α + (wm) also contains µ. Next, as α avoids µ + (1) then α also avoids µ. By ii) it follows that
(a2, a3, . . .) avoids µ. Another application of ii) implies that α + (wm) = ((a1 + w)m, a2, a3, . . .) avoids µ.
We conclude that EQ(µ, µ+ (1)) ⊆ Q(µ, µ).

The reverse inclusion, as well as our uniqueness claim in this case, follows directly from Lemma 3.22.

Next we turn our attention to the proof that

NQ(µ, µ+ (1)) = Q(µ, µ+ (1)).

By the first part of this proof we see that

NQ(µ, µ+ (1)) = {α+ (1c) | α ∈ MQ(µ, µ+ (1)), 0 < c < m(α)}

= {α+ (1c) | α ∈ Q(µ, µ), 0 < c < m(α)}.

By iii) observe that if α avoids µ then α+ (1c) avoids µ+ (1).
Now assume α contains µ. By i) and the fact that c < m we see that (am−c

1 , a2, a3, . . .) contains µ. As
c > 0 it follows from ii) that

α+ (1c) = ((a1 + 1)c, am−c
1 , a2, . . .)

contains µ. It now follows that NQ(µ, µ+ (1)) ⊆ Q(µ, µ+ (1)).
To establish the reverse inclusion consider some β ∈ Q(µ, µ + (1)) and set c = m(β). Let α be the

partition such that
β = α+ (1c).

As β avoids µ+ (1) it follows by iii) that α avoids µ. Additionally, as β contains µ it follows by ii) that the
result of deleting the top c rows from β contain µ. Hence α contains µ and so α ∈ Q(µ, µ). It remains to
show c < m(α). Clearly c ≤ m(α) so for a contradiction assume we have equality. This means we can write

β = (bc1, b2, . . .)

11



where b1 > 1 + b2. As β contains µ it follows by i) and then ii) that ((b2 + 1)c, b2, . . .) contains µ. As
b1 > b2 + 1 it follows by iii) that β contains µ + (1), our desired contradiction. The reverse inclusion now
follows.

To establish uniqueness in this case, fix β ∈ NQ(µ, µ + (1)) and let α, η ∈ Q(µ, µ + (1)) such that
β ∈ N(α) ∩ N(η). If β′ is the partition obtained by deleting the leftmost column of β, then we see that
β′ ∈ M(α) ∩M(η). By the uniqueness of the previous case, we conclude that α = η.

4 Asymptotics of Avn(µ)

In this section we obtain asymptotics for the growth of the sequence |Av1(µ)|, |Av2(µ)|, |Av3(µ)|, . . . for
any strict partition µ. Recalling Theorem 1.1 we remind the reader that no loss in generality results by
considering only strict partitions.

Throughout we use Vinogradov’s notation f ≪a g to mean f = Oa(g), with variables in the subscript
indicating possible dependence of the implied constant on those variables. We need the following facts about
the function σk(n) =

∑
d|n d

k (see [10]):

n∑

m=1

σ0(n) = n logn+ (2γ − 1)n+O(nθ), (9)

n∑

m=1

σ1(n) =
ζ(2)n2

2
+O(n logn), (10)

n∑

m=1

σk(n) =
ζ(k + 1)nk+1

k + 1
+O(nk) (k > 1). (11)

In (9) γ is the Euler–Mascheroni constant and the value of θ is the subject of the Dirichlet divisor problem.
At present it is known, due to Huxley [11] that we can take θ = 131/416. We also recall that

n∑

m=1

ma logb m =
ma+1 logb m

a+ 1
+O

(
b

m+ 1
ma+1 logb−1 m

)
. (12)

for any a, b > 0. One can similarly derive that

n∑

m=1

σa(m) logb m =
ζ(a+ 1)ma+1 logb m

a+ 1
+O

(
b

m+ 1
ma+1 logb−1 m

)
. (13)

We first consider a few sporadic cases when µ has small weight which are also listed in Table 1 at the
end of the paper.

Theorem 4.1. We have

|Avn
(
(1)
)
| = 0, |Avn

(
(2)
)
| = 1,

|Avn
(
(2, 1)

)
| = σ0(n), |Avn

(
(3)
)
| =

⌊n
2

⌋
=

n

2
+O(1),

|Avn
(
(3, 1)

)
| = n, |Avn

(
(3, 2)

)
| = n logn+ (2γ − 2)n+O

(
n131/416

)
.

Proof. Clearly every partition contains (1). When µ = (2) we find that Avn(µ) = {(1n) | n ≥ 1} and so
|Avn(µ)| = 1. The Ferrers board of a partition avoiding (2, 1) must be a rectangle, and so we obtain one
partition for each divisor of n, thus |Avn

(
(2, 1)

)
| = σ0(n).

The partitions avoiding (3) are precisely those with at most two columns and hence

|Avn
(
(3)
)
| =

⌊n
2

⌋
=

n

2
+O(1).
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The partitions in Avn((3, 1)) are precisely those whose Ferrers board consisting of x columns of height y, for
some x, y > 0 together a single column of height 0 ≤ r < y. So n = xy + r. By the division algorithm we
get one such decomposition of n for each 0 < y ≤ n. Hence

|Avn
(
(3, 1)

)
| = n.

Lastly the partitions avoiding (3, 2) of weight n are those of the form {(ab, 1c) | a · b + c = n}. In other
words, these are partitions obtained by taking a rectangle of weight m := a · b and then extending the first
column by c = n−m. Counting these we have

|Avn
(
(3, 2)

)
| = 1 +

n∑

m=1

(σ0(m)− 1) = n logn+ (2γ − 2)n+O(n131/416),

where we subtract 1 in the second step to avoid over counting the partition (1n) and the second equality is
obtained by (9).

We now introduce a definition that will be used extensively throughout the remainder of this section.

Definition 4.2. Let α be a partition. Then its Ferrers board is obtained by horizontally concatenating
k > 0 rectangles of widths x1, . . . , xk > 0 and strictly decreasing heights y1 > y2 > · · · > yk > 0 so that

|α| = x1y1 + · · ·+ xkyk.

We call k the number of distinct magnitudes of α and the pair of height and width sequences the rectangular
decomposition of α.

Example 4.3. The partition

has the unique rectangular decomposition of 2× 7 + 3× 5 + 1× 3.

A few notes about this definition before continuing. As we insist that the sequence of heights is strictly
decreasing it follows that a rectangular decomposition is unique. If we write a partition as α = (ae11 , . . . , aekk )
where a1 > a2 > · · · > ak > 0 and ei > 0 then traditionally a1, a2, . . . , ak are referred to as the k-distinct
magnitudes of α. An easy check confirms that the number of distinct magnitudes in our definition above
is the same as the number of distinct magnitudes in this traditional sense. Lastly, although a rectangular
decomposition is defined to be a pair of sequences we abuse notation and refer to a sum of the form displayed
above as a rectangular decomposition. In this case the xi’s and yi’s shall always denote widths and heights,
respectively.

Next observe that if µ is strict then no partition in Av(µ) may have more than µ1−1 distinct magnitudes.
This follows for if some α ∈ Av(µ) had at least µ1 distinct magnitudes, then α would contain the staircase
(µ1, µ1 − 1, . . . , 1). As µ has distinct parts, it follows that α would contain µ. This motivates the next
definition.

Definition 4.4. For a strict partition µ and n > 0 we denote by Dn(µ) the set of partitions in Avn(µ)
having exactly µ1−1 distinct parts. For completeness we set D0(µ) = ∅. We also define D(µ) = ∪∞

n=0Dn(µ).

One of the key ideas going forward is to partition the set Av(µ) into those partitions with exactly µ1 − 1
distinct magnitudes and those with fewer distinct magnitudes. We will see that the contribution from
partitions in Avn(µ) \Dn(µ) is asymptotically negligible.

The next lemma shows that the rectangular decomposition of partitions of D(µ) has a nice characteriza-
tion. As our proof uses Lemma 3.21 the reader is encouraged to review its statement. Further as this lemma
contains several parts we shall, for example, simply write “by ii)” instead of the more verbose “by part ii)
of Lemma 3.21” each time.
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Lemma 4.5. Let µ be a strict partition with µ1 ≥ 2. Then the set D(µ) consists precisely of those partitions
α whose rectangular decomposition

x1y1 + · · ·+ xµ1−1yµ1−1

satisfies the restriction xi = 1 whenever µ does not have a part of size i.

Proof. We prove this by induction on |µ|. As µ1 ≥ 2 our base case is when µ = (2). The set Av
(
(2)
)
consists

of all partitions of the form (1e) for e > 0 which are precisely the partitions whose rectangular decomposition
is 1 · y1 for some y1 > 0 as claimed.

Now consider a strict µ with |µ| > 2. Denote by R(µ) the collection of all partitions whose rectangular
decomposition is as in the statement of the lemma. We consider two cases depending on the size of µ1 − µ2.

Case 1: µ1 − µ2 > 1

Set τ = (µ1 − 1, µ2, µ3, . . .) so that µ = τ + (1). By induction R(τ) = D(τ). Consider some β ∈ R(µ)
with the aim of showing that β ∈ D(µ). By definition β’s rectangular decomposition is

|β| = x1y1 + · · ·+ xµ1−2yµ1−2 + 1 · yµ1−1,

where y1 > y2 > · · · > yµ1−1 and xi = 1 whenever µ does not have the part of size i. Let α be the partition
whose rectangular decomposition is

|α| = x1y1 + · · ·+ xµ1−2yµ1−2.

Clearly α ∈ R(τ) = D(τ). So α avoids τ and has µ1 − 2 distinct magnitudes. As β = α+ (1c) for c = yµ1−1

we know by iii) that β avoids µ = τ + (1). As β has µ1 − 1 distinct magnitudes then β ∈ D(µ) and we
conclude that R(µ) ⊆ D(µ).

For the reverse inclusion consider β ∈ D(µ) and write it as β = α + (1c) where c ≤ the length of the
rightmost column in α. As β avoids µ, iii) implies that α avoids τ . As β has µ1 − 1 distinct magnitudes it
follows that α must have either µ1 − 1 or µ1 − 2 distinct magnitudes. If α had µ1 − 1 distinct magnitudes,
then it would contain the staircase (µ1 − 1, µ1 − 2, . . . , 1) in which case it would contain the strict partition
τ . So α has µ1 − 2 = τ1 − 1 distinct magnitudes and hence α ∈ D(τ) = R(τ). So α has the rectangular
decomposition

|α| = x1y1 + · · ·+ xµ1−2yµ1−2,

where xi = 1 whenever τ does not have a part of size i. Consequently the rectangular decomposition for β is

|β| = x1y1 + · · ·+ xµ1−2yµ1−2 + 1 · c,

with c < yµ1−2 as β has exactly one more distinct magnitude than α. Hence β ∈ R(µ) proving that
D(µ) ⊆ R(µ).

Case 2: µ1 − µ2 = 1

Let τ = (µ1, µ3, µ4, . . .), i.e., the partition obtained be removing µ2 from µ. As µ1 − µ2 = 1 and µ1 ≥ 2
then µ2 > 0. So |τ | < |µ|, and hence by induction, R(τ) = D(τ). Now consider some β ∈ R(µ) with the aim
of showing that β ∈ D(µ). By definition β’s rectangular decomposition is

|β| = x1y1 + · · ·+ xµ1−2yµ1−2 + xµ1−1yµ1−1

where y1 > y2 > · · · > yµ1−1 and xi = 1 whenever µ does not have the part of size i. As β has µ1−1 distinct
parts it suffices to show that β avoids µ.

For a contradiction assume β contains µ. Define η to be the partition obtained by deleting the top yµ1−1

rows from β. Now if β contains µ then it follows by ii) and the fact that µ1 = µ2 + 1 that η contains
(µ2, µ3, . . .). Next define α to be the partition whose rectangular decomposition is

|α| = x1y1 + · · ·+ xµ1−2yµ1−2 + 1 · yµ1−1.
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It follows that α ∈ R(τ) = D(τ). Observe that α is obtained by adding yµ1−1 rows of length η1 +1 to η. As
η contains (µ2, µ3, . . .) it follows by ii) that α contains µ = (µ2 + 1, µ2, µ3, . . .) which, in turn, implies that
α contains τ , a contradiction. We conclude that R(µ) ⊆ D(µ).

To obtain the reverse inclusion take some α ∈ D(µ). Setting k = µ1 − 1 = µ2 write

α = (ae11 , ae22 , ae33 , . . . , aekk )

for some a1 > a2 > · · · and ei > 0. Now define

η = (ae1+e2
2 , ae33 , . . . , aekk ) and β = η + (1e1).

As α avoids µ it follows from ii) and then i) that η avoids (µ2, µ3, . . .). By iii) we further see that β avoids
τ = (µ2 + 1, µ3, . . .). We conclude that β ∈ D(τ) = R(τ). A straightforward check now shows that as
β ∈ R(τ) then α ∈ R(µ). This proves the reverse inclusion.

In light of this lemma we make the following definition.

Definition 4.6. Take µ as in the statement of the previous lemma and fix α ∈ D(µ). Consider the
rectangular decomposition of α. If µ has no part of size i then we say the ith rectangle in this decomposition
is thin. If µ has a part of size i then we say the ith rectangle is wide. Thus thin rectangles are precisely
those rectangles whose width is forced to be 1.

We conclude this section with an example illustrating these ideas.

Example 4.7. A simple check shows that the partitions in D((4, 3, 1)) look like

and hence their rectangular decomposition is of the form x1y1 +1y2 + x3y3 with y1 > y2 > y3 > 0. Here the
first and third rectangles are wide while the second rectangle is thin.

4.1 Avoiding staircase partitions

The goal of this subsection is to give an asymptotic formula for the count |Avn(µ)| in the special case where
µ = (k+1, k, k− 1, . . . , 2, 1). This special case is is closely related to work that has already been considered
in the literature. Notice that if α ∈ Avn(µ) but not in Dn(µ), i.e., it has fewer than k distinct magnitudes,
then it avoids (k, k − 1, . . . , 1) thus we have

Avn(µ) = Dn(µ) ∪ Avn
(
(k, k − 1, . . . 1)

)
. (14)

By Lemma 4.5 partitions in Dn(µ) correspond to representations of n =
∑k

i=1 xiyi with xi > 0 for all
i and y1 > y2 > · · · > yk > 0. Partitions of this sort are then the partitions of n into parts of k distinct
magnitudes. Such partitions have been studied by many authors going back to MacMahon [16]. The count
of such representations was considered by Andrews [1] who uses results of Ingham [12], Estermann [4,5] and
Johnson [13] on counting the representations of n as a sum of k products of pairs of positive integers. Their

results give estimates for the number νk(n) of representations of n =
∑k

i=1 xiyi where xi, yi > 0 but without
any restrictions on the values yi. In particular they show the following
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νk(n) =





σ0(n) k = 1 (15)

1

ζ(2)
σ1(n) log

2 n−
4

ζ(2)
n lognσ′

91(n) +O (σ1(n) log n) (16)

=
1

ζ(2)
σ1(n) log

2 n

(
1 +O

(
log logn

logn

))
k = 2 (17)

1

(k − 1)!ζ(k)
σk−1(n) log

k n

(
1 +O

(
1

logn

))
k ≥ 3 . (18)

Observe that when k = 2 the relative error term O
(

1
log n

)
in the k ≥ 3 case must be replaced by

O
(

log logn
logn

)
if only the main term is used. In the second term the function σ′

91(n) =
∑

d|n
log d
d = d

dsσs(n)
∣∣∣
s=−1

.

We caution the reader that this result for k = 2 was stated incorrectly without this error term in the intro-
duction of [13]. However, it is derived with this term by Ingham [12] and a more precise result, including
further lower order terms is obtained in [4].

Going forward, it will be useful to recall bounds for the size of the function σj(n). For j > 1 we have

nj ≤ σj(n) = nj
∑

d|n

1

dj
≤ njζ(j).

In particular, σj(n) is bounded above and below by a constant times nj . When j = 1, the function is not
quite so well behaved, however we have the bounds n ≤ σ1(n) ≪ n log logn. Finally, when j = 0 we have
the divisor function, which is much less well behaved, however we can still bound it as 2 ≤ σ0(n) = o(nǫ) for
every ǫ > 0. While σ0(n) is poorly behaved, it behaves well on average, as seen in (9).

We now count partitions avoiding a staircase partition µ = (k + 1, k, k − 1, . . . , 2, 1) for any k ≥ 1.

Theorem 4.8. Fix k ≥ 1 and let µ = (k + 1, k, k − 1, . . . , 2, 1). Then |Avn(µ)| =
νk(n)
k!

(
1 +O

(
1

logn

))
and

|Avn(µ)| =





σ0(n) k = 1
1

2ζ(2)σ1(n) log
2 n
(
1 +O

(
log logn
logn

))
k = 2

1
k!(k−1)!ζ(k)σk−1(n) log

k n
(
1 +O

(
1

logn

))
k ≥ 3 .

(19)

Note that the only difference between the k = 2 and k ≥ 3 case in the statement of the theorem is the
log logn term in the numerator of the error term.

Proof. When k = 1, µ = (2, 1) and, as observed in Theorem 4.1, the set Avn(µ) consists of partitions with
one distinct part or, equivalently, partitions whose Ferrers board is a rectangle so |Avn(µ)| = ν1(n) = σ0(n),
the number of divisors of n.

For k ≥ 2 we prove this by induction on k. Let k = 2 and µ = (3, 2, 1). As in (14) we have
Avn(µ) = Dn(µ) ∪Avn

(
(2, 1)

)
. Since |Avn((2, 1))| = σ0(n) = o(n) it suffices to count elements of Dn(µ).

By Lemma 4.5 every partition in Dn(µ) can be described as a representation of n = x1y1 + x2y2 with
xi > 0 and y1 > y2. Equation (17) gives an expression for ν2(n), the number of such representations of n
without the restriction y1 > y2.

To count elements ofDn(µ) however we must exclude from this count those representations where y1 = y2,
which would mean that n = y1(x1 + x2). Note that each such representation of n is obtained uniquely from
a factorization of n as n = de by taking y1 = d and x1+x2 = e. For a fixed value of e there are e− 1 choices

for x1 and x2, so the total number of such representations of n is
∑

e|n

(e− 1) = σ1(n)− σ0(n). Finally, each
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representation with y1 6= y2, occurs twice, since heights yi can occur permuted in either order, thus using
(17) and the fact that σ1(n)− σ0(n) = O(n log logn) we have

∣∣Dn

(
(3, 2, 1)

)∣∣ = 1
2

(
ν2(n)− σ1(n) + σ0(n)

)

=
1

2ζ(2)
σ1(n) log

2 n+O (σ1(n) log n log logn)

=
1

2ζ(2)
σ1(n) log

2 n

(
1 +O

(
log logn

log n

))
.

Now suppose k > 2 and that the result holds for all smaller values of k. Again we write

Avn(µ) = Dn(µ) ∪ Avn
(
(k, k − 1, . . . 1)

)
.

By our induction hypothesis, the size of Avn
(
(k, k − 1, . . . , 1)

)
is smaller than the error term in our desired

result. Therefore need only count the partitions in Dn(µ). By Lemma 4.5 the partitions in this set are
precisely the set of partitions that admit the rectangular representations n = x1y1 + · · · + xkyk where
y1 > · · · > yk > 0. Using (18) to count the total number of such representations without restrictions on the
order or inequality of the yi.

We must exclude from this count any representations having two (or more) equal yi values. We obtain an
upper bound for the total number of such representations in a manner similar to the observation used in the
base case. We can produce a representation of n = x1y1 + · · ·+ xkyk which has at least two equal yi values
using the following construction. Fix 2 ≤ m < n, and take a representation of n−m = x1y1+ · · ·+xk−2yk−2

as a sum of k − 2 products. This can be done in νk−2(n−m) ways.
Now, add to this representation two additional terms xk−1yk−1 and xkyk where yk−1 = yk, of total size

m = yk(xk−1 + xk). As in the base case there are σ1(m) − σ0(m) ways to choose the values of yk, xk and
xk−1. This produces a representation of n as a sum of k products in which the heights in the last two terms
are equal.

Finally, we note that every representation of n having at least two equal yi values can be constructed
in this manner by varying m and then permuting the positions of the two equal yi terms produced by
this method among the k indices. There are

(
k
2

)
choices for where these terms could be inserted into the

representation of n.
This method overcounts those representations with more than two equal terms. As we seek only an upper

bound, the following estimates bounded the total number of such representations having at least two equal
yi terms are sufficient for our purposes:

(
k

2

) n∑

m=1

νk−2(n−m)(σ1(m)− σ0(m)) ≪k

n∑

m=1

νk−2(n−m)σ1(m)

≪k





n∑
m=1

σ0(n−m)σ1(m) k = 3

n∑
m=1

σk−3(n−m) logk−2(n−m)σ1(m) k ≥ 4.
(20)

If k = 3 the sum in (20) is at most n2 logn log logn, obtained using the bound σ1(m) ≪ m log logm
along with the fact that

∑n
j=1 σ0(n) ≪ n logn. If k ≥ 4, the resulting sum above is bounded above by

logk−2 n

n∑

m=1

σk−3(n−m)σ1(m) ≪k nk−1 logk−2 n.

The final bound above is obtained using [9] where it is shown that for any a, b > 0

n∑

m=1

σa(n−m)σb(m) ≪a,b σa+b+1(n) ≪a,b n
a+b+1.

17



In either case the number of representations having at least two equal yi terms is at most nk−1 logk−1.
Thus the number of representations of n as a sum of k distinct products of terms with distinct heights yi is

νk(n)
(
1 +O

(
1

logn

))
.

Finally, each representation in which the yi are strictly decreasing occurs exactly k! different times in
this count, once for each potential permutation of the indices, so we can conclude that

|Dn(µ)| =
1

k!
νk(n)

(
1 +O

(
1

logn

))
=

1

k!(k − 1)!ζ(k)
σk−1(n) log

k n

(
1 +O

(
1

logn

))

for k ≥ 3, and the result follows.

Before closing this section we state and prove a useful corollary for the sequel.

Corollary 4.9. Suppose that µ is strict with µ1 > 1. Set k = µ1 − 1. Then

|Avn(µ) \Dn(µ)| ≪

{
σ0(n) k = 2

σk−2(n) log
k−1 n k ≥ 3

.

Proof. This follows immediately from Theorem 4.8 since any partition having fewer than k distinct magni-
tudes avoids the pattern (k, k − 1, . . . , 1).

4.2 Avoiding strict partitions µ that are not staircases

We now consider avoiding strict partitions that are not staircases. To do so, we introduce a method of
constructing partitions avoiding a pattern µ from those avoiding a smaller pattern µ̂.

Definition 4.10. Let µ = (µ1, µ2, . . .) be a strict partition, and let i > 1 be the least index such that µ
does not have a part of size µi + 1. If such an index exists, we define

µ̂ = (µ1 − 1, µ2 − 1, . . . µi−1 − 1, µi+1, µi+2, . . .),

i.e., the result of deleting the i-th part of µ, as well as decreasing each part above by one. If no such index
exists then µ̂ is not defined.

Graphically, µ̂ is obtained from µ by removing an “L” shaped region from the Ferrers board for µ. For
example, if µ = (7, 6, 4, 2), then µ̂ = (6, 5, 2) is obtained by removing the boxes in red below:

.

Note that the only situation in which µ̂ is not defined is when µ is a staircase partition, which was treated
in the previous section. In the case when µ = (k + 1, k, k− 1, . . . , ℓ) contains a part of every size from ℓ > 1
to k + 1, but no smaller parts, then µ̂ is obtained by removing the first column from µ.

The remainder of this section is divided into two subsections. The first subsection deals with the special
case when µ1−µ2 ≥ 2 and the next subsection deals with the general case. The advantage of first considering
this special case is that the constructions involved are simpler and motivate the constructions involved in the
general argument. Furthermore, the error term we obtain in the special case is stronger than its counterpart
in the general case.
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4.2.1 Avoiding partitions µ where µ1 − µ2 ≥ 2

We begin with a motivating example. Take µ = (6, 3, 2, 1). By Lemma 4.5 the elements of D(µ) have the
rectangular decomposition

x1y1 + x2y2 + x3y3 + y4 + y5. (21)

Likewise, the partitions in D(µ̂) = D((5, 2, 1)) have the rectangular decomposition

x1y1 + x2y2 + y3 + y4. (22)

We now give a construction to create partitions in D(µ) from those in D(µ̂). To this end take the rectangular
decomposition for partitions in D(µ̂) and consider the height of the rectangle corresponding to the part
deleted from µ in the construction of µ̂. In this example we deleted 3 from µ and so we consider y3 in (22).

Now for any m > 0 we have, by the division algorithm,

m = y3d+ r

for some d ≥ 0 and y3 > r ≥ 0. Taking a partition in D(µ̂) with rectangular decomposition (22) we can now
add to it d columns of height y3 and 1 column of height r. Doing this transforms the third rectangle into
a wide rectangle and creates a new thin rectangle either before or after the final rectangle with height y4
depending on whether r > y4 (before) or r ≤ y4 (after). Of course, in the case when r = 0 no new column
is added. We thus obtain a partition of weight n +m whose Ferrers board looks like one of the following,
where the m additional boxes are shaded gray:

or

or, in the “degenerate” case when either r = 0 or r = y4 we can also have:

or

.

Note that the first two diagrams depict rectangular decompositions of the form in (21), while the degener-
ate cases result in partitions with only 4 distinct magnitudes. We show that the contribution from these
degenerate cases are asymptotically negligible.

In light of this construction we make the following definition. Recall that P is the set of all partitions.

Definition 4.11. Fix a strict partition µ for which µ̂ is defined. So there exists a least index i greater than
1 such that µ does not have a part of size µi + 1 and µi is the part removed from µ to obtain µ̂. Now for
each m > 0 we define a function Ψm : D(µ̂) → P as follows.

Fix α ∈ D(µ̂). If µi > 0 then let q be the height of the µi-th rectangle in the rectangular decomposition
for α ∈ D(µ̂). (By Lemma 4.5 we know that q > 0 and the corresponding rectangle is thin.) By the division
algorithm write

m = qd+ r

for some d ≥ 0 and q > r ≥ 0. If µi = 0 then we take r = m and d = 0. Finally define Ψm(α) to be the
partition obtained by adding d columns of height q along with a single column of height r to α.

Note that the location of the inserted column of height r depends on the heights of the existing rectangles
in α and may have the same height as one of these existing rectangles.
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Remark 4.12. We caution the reader that the function Ψm depends on µ. As a result proper notation
should reflect this fact, e.g., one could instead denote this function as Ψm,µ. To streamline notation though,
we have chosen to denote this function as above since the µ in question will always be clear from context.

Lemma 4.13. Take k ≥ 3 and suppose µ = (k + 1, a0, a1, . . .) is a strict partition where k > a0 > 0. Then

n∑

m=1

|Dm(µ̂)| = (k − a0)|Dn(µ)|+O
(
σk−2(n) log

k−1 n
)
.

Proof. In this case µ̂ = (k, a1, . . .). For 1 ≤ m < n we know, by Lemma 4.5, that any α ∈ Dn−m(µ̂) has the
rectangular decomposition

n−m = · · ·+ xa1ya1 + ya1+1 + · · ·+ ya0 + · · ·+ yk−1,

with k > a0 > 0 and so ya0 > 0. We now show that for each such α we have Ψm(α) ∈ Dn(µ) ∪ Avn
(
(k, k −

1, . . . , 1)
)
. To this end write m = ya0d + r where d ≥ 0 and ya0 > r ≥ 0. We consider two cases depending

on the value of r.

Case 1: r ∈ {ya0+1, . . . , yk−1} ∪ {0}

In this case Ψm(α) has exactly k − 1 distinct magnitudes and hence Ψm(α) ∈ Avn(k, k − 1, . . . , 1).
Moreover, for each β ∈ Avn(k, k − 1, . . . , 1) there can be at most k partitions α ∈

⋃n
m=1 Dn−m(µ) with

Ψn−|α|(α) = β.

Case 2: r /∈ {ya0+1, . . . , yk−1} ∪ {0}

Let i ≥ a0 be such that yi > r > yi+1 where we set yk := 0. In this case Ψm(α) has the rectangular
decomposition

n = · · ·+ (d+ 1)ya0 + ya0+1 + · · ·+ yi + r + yi+1 + · · ·+ yk−1,

where we have only displayed the pertinent terms. By Lemma 4.5 we see that Ψm(α) ∈ D(µ).
We also show that for each β ∈ Dn(µ), there are (k−a0) partitions α ∈

⋃n
m=1 Dn−m(µ̂) with Ψn−|α|(α) =

β. In particular such a β has the rectangular decomposition

n = · · ·+ xa0ya0 + ya0+1 + · · ·+ yk.

Set m = (xa0 − 1)ya0 + r where r ∈ {ya0+1, . . . , yk} and define α to be the partition obtained by deleting
xa0 − 1 columns of height ya0 and the column of height r from β. It now follows from our definitions that
Ψm(α) = β and thus there exists exactly (k − a0) partitions α ∈ D(µ̂) with Ψn−|α|(α) = β, one for each
choice of r.

Now, applying the map Ψm to the partitions in Dn−m(µ̂) and counting the partitions so created we have

n∑

m=1

|Dm(µ̂)| = (k − a0)|Dn(µ)|+O
(
k ·
∣∣Avn

(
(k, k − 1, . . . , 1)

)∣∣) .

As k ≥ 3, we see by Theorem 4.8 that k ·
∣∣Avn

(
(k, k − 1, . . . , 1)

)∣∣ ≪ σk−2(n) log
k−1 n which completes our

proof.

We are now able to count partitions avoiding a strict partition µ whose first two parts differ by at least 2.

Theorem 4.14. Consider a strict partition µ = (k + 1, a0, a1, . . .) with k > a0. Then

|Avn(µ)| =
nk−1

(k − 1)!
∏k−1

j=0 (k − (aj + j))
+ E(n). (23)
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where the error term, E(n) satisfies

E(n) =





0 k = 1

O(1) k = 2

O(σk−2(n) log
k−1 n) k ≥ 3.

(24)

Proof. First note that when k = 1 or 2, the only possibilities are µ = (2), (3) and (3, 1). These cases were
all treated in Theorem 4.1, and a quick check shows that they agree with the formula above with the error
terms as in (24). For the remainder of the proof we can assume k ≥ 3.

We now prove this by induction on the number of nonzero parts in µ. The base case, when µ has one
part (meaning a0 = 0 and µ = (k + 1)) occurs when the set Avn(µ) is precisely the set of partitions of n
into parts of size at most k. It is well known since at least Sylvester that the count of such partitions is

asymptotic to nk−1

k!(k−1)! (see for example [18]). Nathanson [17] reproves this result with a power saving error

term, which implies that

|Avn
(
(k + 1)

)
| =

nk−1

k!(k − 1)!
+O

(
nk−2

)
,

which is equation (23) in the case when ai = 0 for all i (with an even stronger error term).
Now suppose µ = (k + 1, a0, . . .) satisfies the hypotheses of the theorem, that k > a0 > 0 and assume

the result holds when avoiding any such partition with fewer parts than µ. By Corollary 4.9 the number of
partitions having fewer than k distinct magnitudes is O

(
σk−2(n) log

k−1 n
)
, the size of our error term. Thus

we can restrict ourselves to counting Dn(µ).
Note that µ̂ satisfies the hypotheses of the theorem, and has one fewer part than µ, so by induction

|Avm(µ̂)| =
mk−2

(k − 2)!
∏k−1

j=1 (k − aj − j)
+

{
O(1) k = 3

O
(
σk−3(m) logk−2 m

)
k ≥ 4

where we start our indexing at j = 1 in the product to account for the deletion of the part a0 from µ.
Further we know that |Dm(µ̂)| = |Avm(µ̂)|+ O (Dm(µ̂) \Avm(µ̂)) where by Corollary 4.9 the error term is
O(σ0(m)) when k = 3 and O(σk−3(m) logk−2 m) when k ≥ 4. Putting this together we have

|Dm(µ̂)| =
mk−2

(k − 2)!
∏k−1

j=1 (k − aj − j)
+

{
O (σ0(m)) k = 3

O
(
σk−3(m) logk−2 m

)
k ≥ 4.

(25)

As k ≥ 3 and a0 > 0 we also know from Lemma 4.13 that
n∑

m=1

|Dm(µ̂)| = (k − a0)|Dn(µ)| +O
(
σk−2(n) log

k−1 n
)
. (26)

Inserting (25) into (26) and solving for |Dn(µ)| we have

|Dn(µ)| =
1

k−a0

n∑

m=1

|Dm(µ̂)|+O(σk−2(n) log
k−1 n)

=
1

k−a0

n∑

m=1

mk−2

(k−2)!
∏k−1

j=1 (k−aj−j)
+





O

(
n∑

m=1
σ0(m)

)
+O(σ1(n) log

2 n) k = 3

O

(
n∑

m=1
σk−3(m) logk−2 m

)
+O(σk−2(n) log

k−1 n) k ≥ 4

=
1

k−a0

(
nk−1

(k−1)!
∏k−1

j=1 (k − aj − j)
+O(nk−2)

)
+

{
O(σ1(n) log

2 n) k = 3

O
(
nk−2 logk−1 n

)
k ≥ 4

=
nk−1

(k − 1)!
∏k−1

j=0 (k − aj − j)
+ E(n).

The error terms above were obtained using the facts in (9), (10), and (11).
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4.2.2 The general case

Here we adapt the ideas of the previous section to handle the case when µ is any strict partition that is not
the staircase. As discussed at the start of Subsection 4.2 the results obtained in the previous subsection are
a special case of the result in this subsection; however, the error term obtained here is weaker than what was
obtained in the previous section. We follow a similar strategy to that of the previous subsection. Starting
with the same function Ψm(µ) : D(µ̂) → P we prove a more general form of Lemma 4.13.

Lemma 4.15. Take k ≥ 3 and suppose µ is strict but not the staircase so that we can write

µ = (k + 1, k, . . . , k − ℓ+ 1, a0, a1, . . .),

where k − ℓ > a0 ≥ 0, so k− ℓ is the largest part size less than µ1 = k+ 1 omitted from µ, and a0, a1 . . . are
the parts of µ of size less than k − ℓ. For each i with k − ℓ < i ≤ k denote by

µ(i) = (k + 1, . . . , î, . . . , k − ℓ, a0, a1, . . .),

the partition obtained from µ by removing the part of size i and adding a part of size k + ℓ, and let
En(µ) =

⋃k
i=k−ℓ+1 Dn(µ

(i)). Then

n∑

m=1

|Dm(µ̂)| = (k − ℓ− a0)|Dn(µ)|+O
(
σk−2(n) log

k−1 n+ |En(µ)|
)
.

Proof. In this case µ̂ = (k, k − 1, . . . , k − ℓ, a1, . . .). For any 1 ≤ m ≤ n we know, by Lemma 4.5, that any
α ∈ Dn−m(µ̂) as the rectangular decomposition

n−m = · · ·+ xa1ya1 + ya1+1 + · · ·+ ya0 + · · ·+ yk−ℓ−1 + xk−ℓyk−ℓ + · · ·+ xk−1yk−1.

We now show that for each such α we have Ψm(α) ∈ Dn(µ) ∪ En(µ) ∪ Avn(k, k − 1, . . . , 1).
To this end recall the definition of Ψm and set

m = dya0 + r

where 0 ≤ r < ya0 . (Recall, if a0 = 0 then we take d = 0 and r = m.) So Ψm(α) is obtained by adding
d columns of height ya0 and a single column of height r. We now consider several cases depending on the
value of r. For completeness in Cases 2 and 3 we set yk := 0 and y0 := ∞.

Case 1: r ∈ {y1, . . . , yk−1} ∪ {0}

In this case Ψm(α) has exactly k − 1 distinct magnitudes and hence Ψm(α) ∈ Avn(k, k − 1, . . . 1).
Furthermore, for any β ∈ Avn(k, k−1, . . . 1) there can be at most k partitions α ∈ D(µ) with Ψn−|α|(α) = β.
(At most one per distinct height present in β, though this bound isn’t in general tight.)

Case 2: yi > r > yi+1 with k − ℓ ≤ i

In this case Ψm(α) has rectangular decomposition

· · ·+ (d+ 1)ya0 + · · ·+ xk−ℓyk−ℓ + · · ·+ xiyi + r + xi+1yi+1 + · · ·+ xk−1yk−1

where we have only displayed the pertinent changes to the rectangular decomposition for α. (Note that the
decomposition has k rectangles, since the thin rectangle of height r is a new height not present before in the
(i + 1)-st position.) It then follows by Lemma 4.5 that Ψm(α) ∈ D(µ(i+1)) ⊂ E(µ). Furthermore we see, in
this case, that for any β ∈ D(µ(i+1)) with rectangular decomposition

· · ·+ xa0ya0 + · · ·+ xk−ℓyk−ℓ + · · ·+ xiyi + yi+1 + xi+2yi+2 + · · ·+ xkyk

there is a unique choice of m = (xa0 − 1)ya0 + yi+1 and partition α ∈ D(µ) (obtained by removing (xa0 − 1)
columns of height ya0 and the single column of height yi+1) such that Ψm(α) = β.
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Case 3: yi > r > yi+1 with i < k − ℓ

In this case Ψm(α) has the rectangular decomposition

· · ·+ (d+ 1)ya0 + · · ·+ yi + r + yi+1 + · · ·+ yk−ℓ−1 + xk−ℓyk−ℓ + · · ·+ xk−1yk−1

where again we only display the pertinent terms (and the term for ya0 is to be ommited when a0 = 0). By
Lemma 4.5 we see that Ψm(α) ∈ D(µ).

Lastly, for each β ∈ D(µ), there are (k − ℓ − a0) partitions α ∈ D(µ̂) with Ψ|β|−|α|(α) = β. To see this
observe that such a β has the rectangular decomposition

· · ·+ xa0ya0 + ya0+1 + · · ·+ yk−ℓ−1 + xk−ℓ+1yk−ℓ+1 + · · ·+ xk−1yk−1

and we can choose α to be the partition obtained by deleting xa0 − 1 columns of height ya0 and a single
column of height r ∈ {ya0+1, . . . , yk−ℓ}.

Now, applying the map Ψn−m to the partitions in Dm(µ̂) and counting the partitions so created we have

n∑

m=1

|Dm(µ̂)| = (k − ℓ− a0)|Dn(µ)|+ |En(µ)|+O
(
k ·
∣∣Avn

(
(k, k − 1, . . . 1)

)∣∣) .

By Theorem 4.8 we know that k ·
∣∣Avn

(
(k, k − 1, . . . 1)

)∣∣≪ σk−2(n) log
k−1 n which completes our proof.

Theorem 4.16. Suppose µ is a strict partition that is not a staircase so that

µ = (k + 1, k, k − 1, . . . , k − ℓ+ 1, a0, a1, . . .)

where k − ℓ > a0 ≥ 0. Then

|Avn(µ)| =
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=0 (k − ℓ− aj − j)

(
1 +O

(
1

logn

))
.

Proof. When k = 1 the only possibility for µ is (2). As in Theorem 4.1 we find that
∣∣Av

(
(2)
)∣∣ = 1, which

trivially matches the expression above. When k = 2, the possibilities for µ are (3), (3,1) and (3,2). Again,
these were counted in Theorem 4.1, and the results again fit the statement of the theorem. Thus for the
remainder of the proof we assume k ≥ 3.

We now proceed by induction on |µ|. From above we know the result holds for all partitions with k < 3.
Now take µ as in the statement of the theorem and assume the result holds for all partitions with weight
< |µ|. We may further assume that k ≥ 3. We know that

µ̂ = (k, k − 1, k − 2, . . . , k − ℓ, a1, a2, . . .).

As |Dm(µ̂)| = |Avm(µ̂)|+O (|Avm(µ̂) \Dm(µ̂)|) it follows by Corollary 4.9 that

|Dm(µ̂)| = |Avm(µ̂)|+

{
O(σ0(m)) if k = 3

O(σk−3(m) logk−2 m) if k ≥ 4.
(27)

We now wish to find the size of
∑n

m=1 |Dm(µ̂)|, but to do so we must consider three cases.

Case 1: k − l ≥ 2

In this case we know that µ̂ is not a staircase since k− ℓ ≥ 2 and a1 ≤ a0 < k− ℓ− 1 and so µ̂ is missing
a part of size k − ℓ − 1 > 0. Furthermore the weight of µ̂ is clearly smaller than µ so we may apply our
induction hypothesis, along with (27) to obtain

|Dm(µ̂)| =
mk−2 logℓ m

ℓ!(k − 2)!
∏k−1−ℓ−1

j=0 ((k − 1)− ℓ− aj+1 − j)
+O

(
mk−2 logℓ−1 m

)

=
mk−2 logℓ m

ℓ!(k − 2)!
∏k−ℓ−1

j=1 (k − ℓ− aj − j)
+O

(
mk−2 logℓ−1 m

)
. (28)
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Summing this expression over all m from 1 to n and making use of (12) we find

n∑

m=1

|Dm(µ̂)| =
n∑

m=1

(
mk−2 logℓm

ℓ!(k − 2)!
∏k−ℓ−1

j=1 (k − ℓ− aj − j)

)
+O

(
n∑

m=1

mk−2 logℓ−1m

)

=
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=1 (k − ℓ− aj − j)
+O

(
nk−1 logℓ−1 n

)
. (29)

Case 2: k − ℓ = 1, k ≥ 4

Here µ = (k + 1, . . . , 2) and so µ̂ = (k, k − 1, . . . , 1) is a staircase. This case proceeds similarly to the
former case, but instead of induction we must use Theorem 4.8 to find the size of Dm(µ̂). For k ≥ 4 we have

|Dm(µ̂)| =
σk−2(m) logk−1 m

(k − 1)!(k − 2)!ζ(k − 1)

(
1 +O

(
1

logm

))
.

Summing now this expression using (13) we have

n∑

m=1

|Dm(µ̂)| =
n∑

m=1

σk−2(m) logk−1 m

(k − 1)!(k − 2)!ζ(k − 1)

(
1 +O

(
1

logm

))

=
nk−1 logk−1 n

(k − 1)!(k − 1)!
+O

(
nk−1 logk−2 n

)

=
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=1 (k − ℓ− aj − j)
+O

(
nk−1 logℓ−1 n

)
(30)

where the product written in the denominator of the final term above is empty, but included so as to be
written in the same form as (29).

Case 3: k − ℓ = 1, k = 3

As in the previous case, µ̂ is a staircase, however since µ̂ = (3, 2, 1), we need to work a little harder to
get the same error term. In particular we use the more precise expression given in (16)

∣∣Dm

(
(3, 2, 1)

)∣∣ = 1

2ζ(2)
σ1(m) log2 m−

2

ζ(2)
m logmσ′

91(m) + O (σ1(m) logm) . (31)

Summing the main and error terms of (31) over m from 1 to n−1 gives the same result as in (30), by the
same argument, so we treat only the sum of the second term, 2

ζ(2)m logmσ′
91(m) = 2

ζ(2)m logm
∑
d|m

log d
d .

n∑

m=1


 2

ζ(2)
m logm

∑

d|m

log d

d


 =

2

ζ(2)

∑

d<n



log d

d

⌊n

d ⌋∑

c=1

cd log(cd)




≪
∑

d<n

(
log d ·

(n
d

)2
· log

(n
d
· d
))

≪ n2 log n

∫ n

1

log t

t2
dt

≪ n2 log n.

Thus we find that the contribution from this term can be absorbed into the error term in (30), and we obtain
the same result for k = 3 as well.
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Since we obtained the same result (29) and (30) in all three cases, we now proceed using that expression
for the sum of |Dm(µ̂)|. Note that any partition of the form

µ(i) = (k + 1, . . . , î, . . . , k − ℓ, a0, a1, . . .),

where k − ℓ < i ≤ k and ̂ denotes deletion, has weight smaller than µ. By induction we have
∣∣∣Avn

(
µ(i)
)∣∣∣≪ nk−1 logk−i n.

Therefore we may apply Lemma 4.15 to obtain

n∑

m=1

|Dm(µ̂)| = (k − ℓ− a0)|Dn(µ)|+
k∑

i=k−ℓ+1

|Dn(µ
(i))|+O

(
σk−2(n) log

k−1 n
)

= (k − ℓ− a0)|Dn(µ)|+O
(
nk−1 logℓ−1 n

)
.

Solving for |Dn(µ)| above and combining that with the sum obtained in either (29) or (30) we obtain

|Dn(µ)| =
1

k − ℓ− a0

n∑

m=1

|Dm(µ̂)|+O
(
nk−1 logℓ−1 n

)

=
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=0 (k − ℓ− aj − j)
+O

(
nk−1 logℓ−1 n

)

=
nk−1 logℓ n

ℓ!(k − 1)!
∏k−ℓ−1

j=0 (k − ℓ− aj − j)

(
1 +O

(
1

logn

))
.

This completes the proof.

Corollary 4.17. If µ is a strict partition with µ1 − µ2 = 1 and µ2 > 0 then the generating function for µ
is not algebraic.

Proof. When µ is either not a staircase (with µ1 − µ2 = 1) or is a staircase µ = (k + 1, k, . . . , 1) with k ≥ 3
we know from Theorems 4.16 and 4.8 respectively that

|Avn(µ)| ≍ nk−1 logℓ n (32)

for some ℓ > 0. The essence of the proof is that it is not possible for the coefficients of rational generating
functions to have such logarithmic factors combined with

Theorem 4.18 (Fatou’s Theorem [6]). If G(z) =
∑∞

i=1 anz
n ∈ Z[[z]] converges inside the unit

disk, then either G(z) ∈ Q(z) or G(z) is transcendental over Q(z). Moreover, if G(z) is rational,
then each pole is located at a root of unity.

Suppose that the generating function Fµ(x) of such a sequence were rational, Fµ(x) =
p(x)
q(x) . By Theorem

4.1.1 of [19] we have

|Avn(µ)| =
∑

i

Pi(n)λ
n
i (33)

where
(

1
λi

)
are the roots of q(x), and the Pi(n) are polynomials. Since lim

n→∞
|Avn(µ)|1/n = 1, we have that

the largest value of |λi| (respectively the norm of the smallest root of q(x)) is 1 and Fµ(x) has radius of
convergence 1, so Fatou’s theorem applies.

If there were a unique such root of norm 1, we would be done, as the dominant terms of (32) and (33)
do not agree. Otherwise, if q(x) has multiple distinct roots, λ1, λ2, . . . , λj of norm 1, Fatou’s theorem tells
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us these roots must all be roots of unity. Let m be such that λm
i = 1 for all 1 ≤ i ≤ j. Then for multiples of

m we have that the dominant term of (33) is
∑j

i=1 Pi(nm) ≍m na for some integer a, whereas the dominant

term of (32) is (nm)k−1 logℓ(nm) ≍m nk−1 logn. Thus the generating function cannot be rational, and hence
by Fatou’s theorem not algebraic.

When µ = (3, 2, 1) Theorem 4.8 implies that n log2 n ≪ |Avn(µ)| ≪ n log2 n log logn, and this also
cannot be rational (or algebraic) by the same argument. Finally when µ = (2, 1) and |Avn(µ)| = σ0(n),
whose generating function is well known to have a natural boundary on the unit circle, and thus is not
algebraic.

Table of small partitions

k µ Fµ(z) |Avn(µ)| OEIS
0 (1) 0 0 -
1 (2) 1

1−z 1 A000012

(2,1) - - σ0(n) A000005
2 (3) 1

(1−z)(1−z2)

⌊
n
2

⌋
+ 1 A004526

(3,1) 1
(1−z)2 n A000027

(3,2) - - n logn+ (2γ−2)n+O
(
n

131
416

)
A320226

(3,2,1) - - σ1(n) log
2 n

2ζ(2) +
2nσ′

91(n) logn
ζ(2) +O(σ1(n) log n) A265250

3 (4) 1
(1−z)(1−z2)(1−z3)

[
n2+6n+9

12

]
A001399

(4,1) z(z2−z−1)
(z−1)3(z+1)2

2n2+10n+3+(−1)n(2n−3)
16 A117142

(4,2) 1−z+z3

(1−z)2(1−z2)

⌈
n2+3

4

⌉
= n2

4 + 7+(−1)n

8 A033638

(4,2,1) - - n2

2 −n logn+
(
3
2−2γ

)
n+O

(
n

131
416

)
A309097

(4,3) - - n2

4 logn−
(
9
8 − γ

2

)
n2 +O

(
n

3
2

)
A309098

(4,3,1) - - n3 logn
2 +O(n3) A309099

(4,3,2) - - n3 log2 n
4 +O(n3 logn) A309194

(4,3,2,1) - - σ2(n) log
3 n

6ζ(3) +O
(
n2 log2 n

)
A309058

4 (5) 1
(1−z)(1−z2)(1−z3)(1−z4)

[
n3+15n2+

(

135+9(−1)n

2

)

n+94+18(−1)n

144

]
A001400

(5,1) z(z5−z4−z3+z+1)
(z−1)4(z+1)(z2+z+1)2

(

2n2−(10n+21)⌊n+2
3 ⌋+14⌊n+2

3 ⌋2
+10n+14

)

8

⌊
n+2
3

⌋
+O(1) A117143

(5,2) −z(z7−2z5+z3+z2−z−1)
(z−1)4(z+1)2(z2+z+1)

n3+12n2+
(

15+9(−1)n

2

)

n

72 +O(1) A136185

Table 1: Table of avoidance statitistics for small, strict, partitions µ.
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