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LATTICE PATHS AND PATTERN-AVOIDING UNIQUELY SORTED

PERMUTATIONS

HANNA MULARCZYK

Abstract. We enumerate classes of uniquely sorted permutations that avoid a pattern of
length three and a pattern of length four by establishing bijections between these classes and
various lattice paths. This allows us to prove nine conjectures of Defant.

1. Introduction

This paper is concerned with enumerating special classes of permutations that arise from
West’s stack-sorting map. Stack-sorting was originally a computer algorithm on stacks intro-
duced by Knuth in [18]. Later, in his 1990 Ph.D. thesis [24], West defined the stack-sorting map,
which we call s, as a deterministic variant of Knuth’s algorithm. Since then, the map has been
studied extensively [2–11, 13–15, 24, 26].

The stack-sorting map itself will not be relevant to the methods in this paper, but for sake
of completeness, we include a simple recursive definition of it. The map s sends the empty
permutation to itself. For a permutation π ∈ Sn, we can write π = LnR and define s(π) =
s(L)s(R)n. For example, s(516243) = s(51)s(243)6 = s(1)5s(2)s(3)46 = 152346.

The fertility of a permutation π is the number of preimages of π under s, or |s−1(π)|. Bousquet-
Mélou [7] defined a permutation to be sorted if it has positive fertility, that is, if it has some
preimage under s.

Recently, in [14], Defant, Engen, and Miller defined a permutation to be uniquely sorted
if its fertility is exactly 1, giving rise to a new and fruitful type of permutation that has a
surprising amount of structure. We let Un denote the set of uniquely sorted permutations
in Sn. The work in [14] suggests that the relationship between uniquely sorted permutations
and general permutations is analogous to the relationship between matchings and general set
partitions. Moreover, the authors prove that the sets of uniquely sorted permutations of odd
length (which we soon see are the only nonempty sets) are counted by an interesting new sequence
first introduced by Lassalle in [20] called Lassalle’s sequence (OEIS A180874).

A descent of a permutation π ∈ Sn is an index i ∈ [n− 1] where πi > πi+1, in which case we
call πi a descent top and πi+1 a descent bottom. Similarly, an ascent of π is an index i ∈ [n− 1]
where πi < πi+1, in which case we call πi an ascent bottom and πi+1 an ascent top. It follows
that any permutation has an equal number of descents, descent tops, and descent bottoms as
well as an equal number of ascents, ascent bottoms, and ascent tops. The following theorem
characterizes uniquely sorted permutations and will serve as a basis for much of the work in this
paper.

Theorem 1.1 ([14]). A permutation π ∈ Sn is uniquely sorted if and only if it is sorted and it
has exactly n−1

2 descents.

As an immediate consequence, uniquely sorted permutations must have odd length, so from
now on we will refer to the set U2k+1 instead of Un.

Let U2k+1(τ
(1), . . . , τ (ℓ)) be the set of permutations in U2k+1 that avoid all of the patterns

τ (1), . . . , τ (ℓ) (see Section 2 for a definition of pattern avoidance). In [8], Defant enumerates

combinatorial classes of this form when the length of each τ (i) is 3. This is done primarily
through bijections between these classes and intervals of various posets on the set of Dyck paths
of a fixed length.

In the same paper, Defant enumerates two classes of the form U2k+1(τ
(1), τ (2)), where τ (1)

has length 3 and τ (2) has length 4, before making 18 conjectures concerning further interesting
1
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2 H. MULARCZYK

classes of this form. Each row of Table 1 represents the conjecture that the class of uniquely
sorted permutations of odd length avoiding the given patterns is counted by the corresponding
OEIS sequence.

Patterns OEIS Sequence

∗312, 1432

∗312, 2431

∗312, 3421 A001764

∗132, 3412

∗231, 1423

312, 1243 A122368

Patterns OEIS Sequence

∗132, 3421

∗132, 4312 A001700

231, 1243

132, 2341

132, 4123
A109081

312, 2341 A006605

Patterns OEIS Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

∗231, 1432 A001003

∗231, 4312 A127632

231, 4321 A056010

Table 1. Conjectural OEIS sequences enumerating sets of the form U2k+1(τ
(1), τ (2)).

In this paper, the conjectures concerning the nine notable pairs of patterns marked with an
asterisk (∗) in Table 1 are proven as theorems. The OEIS sequence A001700 consists of the

binomial coefficients
(2k−1

k

)
, and the OEIS sequence A001764 consists of the 3-Catalan numbers

1
2k+1

(3k
k

)
, making these classes easier to enumerate since we have relatively simple closed formulas

counting them. Additionally, the sequence A001003 counts the little Schröder numbers, which
have been well studied. The sequences A001764 and A127632 also count U2k+1(312, 1342) and
U2k+1(231, 4132), respectively, as proven in [8].

Starting in Section 4, these nine classes are enumerated one by one. For each, the general
structure of the permutations in the class is found by decomposition based on pattern avoidance.
Then, using this structure, the class is enumerated, either by direct counting, bijection with a
previously-counted class, or, as the title of this paper suggests, by bijection with certain types
of lattice paths. Lattice paths were studied as early as the late 19th century to solve Bertrand’s
ballot problem [1] via a bijection with Dyck paths [25], a type of path that, as mentioned before,
is central to the methods in [8] and will appear later in this paper. Since then, they have grown
to become a crucial concept in math, computer science, statistics, and physics. See [19] for an
overview of this history. The bijections concerning lattice paths in this paper rely strongly on
a fascinating natural analog between the conditions on uniquely sorted permutations and the
conditions on certain types of lattice paths.

2. Preliminaries

2.1. Pattern Avoidance. In this paper, a permutation of length n is a list containing each
element of the set [n] = {1, . . . , n} exactly once, written out in one-line notation. The symmetric
group on n symbols, denoted Sn, is the set of all permutations of length n. Given a permutation
π = π1 · · · πn, any permutation of the form πi1 · · · πiℓ with πi1 < · · · < πiℓ is a subpermutation
of π. If i1, . . . , iℓ are all consecutive, we call πi1 · · · πiℓ a consecutive subpermutation of π.

The normalization of a string of integers π = π1 · · · πn is the permutation in Sn obtained by
replacing the ith smallest entry of π with i for all i. For example, the normalization of 381 is
231. For two permutations π and σ, we say that π contains σ if there exists a subpermutation
of π that has the same normalization as σ. Otherwise, π avoids σ. We let Av(τ (1), . . . , τ (ℓ)) be
the set of permutations avoiding all of the patterns τ (1), . . . , τ (ℓ).

2.2. The Canonical Hook Configuration. In order to make the sorted condition more work-
able, we introduce the concept of hooks. A permutation π = π1 · · · πn can be visually represented
via its plot, which is the set of all points (i, πi) such that i ∈ [n]. These points can be connected
via hooks of π. A hook H is created by starting at a point (i, πi), which we call the southwest
(SW) endpoint of H, and then moving upward and then to the right to connect it to a second
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point (j, πj), which we call the northeast (NE) endpoint of H. A point (r, πr) lies strictly below
H if i < r < j and πr < πj; it lies weakly below H if i < r ≤ j and πr ≤ πj.

Let π have descents d1 < · · · < dk. The canonical hook configuration (CHC)1 of π is the tuple
H = (H1, ...,Hk) of hooks of π, defined as follows. First, the SW endpoint of the hook Hi is
(di, πdi). Let Ni denote the NE endpoint of Hi. We determine these NE endpoints by starting
with Nk, which is the leftmost point above and to the right of (dk, πdk). Then, decrementing i
by one for each hook, Ni is the leftmost point above and to the right of (di, πdi) that does not
lie weakly below any of the hooks Hi+1, . . . , Hk. If Ni does not exist for some i, then π does
not have a CHC. An example of the CHC of a permutation is shown in Figure 1.

2

7

3

5

9

4

8

1

6

10
11

12

H1

H2

H3

Figure 1. The CHC of 2 7 3 5 9 4 8 1 6 10 11 12.

The following proposition allows us to determine whether a permutation is sorted using its
CHC.

Proposition 2.1 ([13]). A permutation π is sorted if and only if it has a canonical hook con-
figuration.

This proposition, along with Theorem 1.1, gives us that π ∈ Sn is uniquely sorted if and only
if it has a CHC and exactly n−1

2 descents. The permutation in Figure 1 has a CHC, so it is
sorted. But it has length 12 and only 3 descents, so it is not uniquely sorted (in fact, its fertility
is 160). We now introduce one particularly useful lemma.

Lemma 2.2 ([8]). Let π ∈ U2k+1, and let N1, . . . ,Nk be the NE endpoints of the hooks in
π’s CHC. Let DB(π) be the set of descent bottoms of π. The two k-element sets DB(π) and
{N1, . . . ,Nk} form a partition of {(i, πi) : 2 ≤ i ≤ 2k + 1}.

For example, the descent bottoms of the permutation in Figure 1 are the points (3, 3), (6, 4),
and (8, 1), and the NE endpoints of hooks are (5, 9), (10, 10), and (11, 11). Since the point (7, 8)
is neither, the permutation is not uniquely sorted. Note that this lemma tells us that all ascent
tops in a uniquely sorted permutation must be NE endpoints. An immediate consequence of
this lemma is that the plot of any π ∈ U2k+1 must end with the point (2k + 1, 2k + 1).

2.3. Permutation Structure. Since we will be using Proposition 2.1 to determine if a permu-
tation is sorted, we will be dealing heavily with the plot of a permutation and thus will consider
a permutation and its plot synonymously. Consequently, for a permutation π, we will refer to
the entry πi and the point (i, πi) interchangeably. Note, also, that when we look at a plot, it
suffices to consider only the relative order of the points, and not the actual positions of the
points.

For a plot containing two subpermutations µ and λ, we say µ is above λ if every point in µ is
above every point in λ. We define below, to the right of, and to the left of in a similar fashion.

1Defant instead uses the term canonical valid hook configuration; the present author drops the "valid" in contempt
for wordiness.
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Given the permutations µ and λ, their sum, denoted µ ⊕ λ, is the permutation obtained by
placing the plot of λ above and to the right of µ. Their skew sum, µ ⊖ λ, is the permutation
obtained by placing the plot of λ below and to the right of µ. Geometrically, we have

µ⊕ λ = µ

λ
and µ⊖ λ =

µ

λ
.

Let Dec(n) = n(n− 1) · · · 21 and Inc(n) = 12 · · · (n− 1)n denote the decreasing permutation
of length n and the increasing permutation of length n, respectively. We denote a decreasing
and increasing permutation, respectively, with the symbols

and .

The tail length of a permutation π = π1 · · · πn, denoted tl(π), is the smallest nonnegative
integer ℓ such that πn−ℓ 6= n − ℓ. By convention, we let tl(Inc(n)) = n. If tl(π) = ℓ, then the
tail of π is the list of points (n− ℓ+ 1, n − ℓ+ 1), . . . , (n, n).

3. Three Natural Bijections with Dyck Paths

3.1. Dyck Paths. A Dyck path of semilength k is a path starting at (0, 0) and ending at (2k, 0)
that consists of k (1, 1) steps (called up steps) and k (1,−1) steps (called down steps) and at no
point crosses below the horizontal axis. We let Dk denote the set of Dyck paths of semilength k.
It is a classical result that the sets Dk are counted by the Catalan numbers, Ck = 1

k+1

(2k
k

)
. We

can associate an up-down sequence to a Dyck path by reading the path from left to right and
recording the letter U for an up step and D for a down step. Note that the above-the-horizontal
condition in a Dyck path is equivalent to every prefix of an up-down sequence having at least
as many U ’s as D’s. Going forward, we will treat a Dyck path and its up-down sequence as the
same object.

Figure 2. The Dyck path UDUUUDDUDD of semilength 5.

3.2. Three Classes of Permutations. We now highlight the structures of three particular
classes of pattern-avoiding permutations:

• A permutation π avoids 132 and 231 if and only if π = L1R, where L is decreasing
and R is increasing. We call this type of permutation vee after its resemblance to the
letter V. We call the imaginary vertical line at 1, separating L and R, the vertical of the
permutation.

• A permutation π avoids 132 and 312 if and only if the plot of π is the 90 degree clockwise
rotation of the plot of a vee permutation. We call this type of permutation svee, which
is short for sideways-vee. We call the rotation of the vertical the horizontal.

• A permutation π avoids 231 and 312 if and only if π is the sum of decreasing permuta-
tions; such a permutation is called layered. Each decreasing permutation in the sum is
called a layer.

As we will see in later sections, these three types of permutations will be key for decomposing
permutations of the form U2k+1(τ

(1), τ (2)). We will denote a vee, svee, and layered permutation,
respectively, with the symbols

, , and .
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3.3. Rethinking Some Past Results. In [8], Defant proves that

|U2k+1(132, 231)| = |U2k+1(132, 312)| = |U2k+1(231, 312)| = Ck.

His enumeration of the first class derives from the following lemma.

Lemma 3.1 ([8]). There exists a natural bijection U2k+1(132, 231) → Dk.

Proof. Given π ∈ U2k+1(132, 231), we have from above that π can be written as π = L1R, where
L is decreasing and R is increasing. We construct the path Λ = Λ1 · · ·Λ2k as follows: let Λi = U
if 2k + 2 − i is an entry in R and Λi = D if 2k + 2 − i is an entry in L. The permutation π is
uniquely sorted and thus has exactly k descents, causing |L| = |R| = k. This means that Λ has
k ups and k downs. Moreover, since π has a CHC, every prefix of Λ contains at least as many
U ’s as D’s. Thus, Λ ∈ Dk. Since this map is easily reversible, this is indeed a bijection. �

Figure 3. The vee permutation 10 6 5 3 2 1 4 7 8 9 11 and its image under the
bijection in Lemma 3.1, the Dyck path UDUUUDDUDD.

This simple bijection touches upon an intriguing connection between Dyck paths and uniquely
sorted permutations. While Defant uses a different map for proving that

|U2k+1(132, 312)| = |U2k+1(231, 312)| = Ck,

we note here that a method similar to that in the proof of Lemma 3.1 can be used to make
bijections with these sets.

Lemma 3.2. There exists a natural bijection U2k+1(132, 312) → Dk.

Proof. Given π ∈ U2k+1(132, 312), we have from above that π is svee. We construct the path
Λ = Λ1 · · ·Λ2k as follows: for 2 ≤ i ≤ 2k + 1, if πi > πi−1, let Λi = D, and if πi < πi−1, let
Λi = U . Note that we are simply associating ascent tops with D and descent bottoms with U .
The permutation π is uniquely sorted and thus has exactly k descents, causing |L| = |R| = k.
This means that Λ has k ups and k downs. Moreover, since π has a CHC, the NE endpoint of
a hook (which must be an ascent top) comes after the SW endpoint of that same hook (which
must be a descent top), and thus every prefix of Λ contains at least as many U ’s as D’s. Thus,
Λ ∈ Dk. Since this map is reversible, this is indeed a bijection. �

Lemma 3.3. There exists a natural bijection U2k+1(231, 312) → Dk.

Proof. Given π ∈ U2k+1(132, 312), we have from above that π is layered. We construct the path
Λ = Λ1 · · ·Λ2k as follows: for 2 ≤ i ≤ 2k + 1, let Λi = D if πi > πi−1, and let Λi = U if
πi < πi−1. Note that we are then simply associating ascent tops with D and descent bottoms
with U . The rest follows as in the proof of the previous lemma. �

The above lemmas not only help us to rethink some of the results of [8], but demonstrate the
simplest application of a method crucial to enumerating classes in this paper. More specifically,
the condition that a uniquely sorted permutation of length 2k+1 has k descents is akin to Dyck
paths of semilength k having k U ’s, and the existence of a CHC is akin to every prefix of a Dyck
path having at least as many U ’s as D’s. In Sections 5 and 6, we will see how to translate this
idea to more complex permutation classes and paths.
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4. Two Almost-Vee Classes

In this section, we prove that, out of the eighteen conjectured classes, two are counted nicely
by the binomial coefficient

(2k−1
k

)
.

Theorem 4.1. We have |U2k+1(132, 4312)| =
(
2k−1
k

)
.

Proof. Consider the plot of some π ∈ U2k+1(132, 4312), and let ρ be any consecutive subpermu-
tation of π, which, by definition, also avoids 132 and 4312.

Since ρ avoids 132, we can decompose ρ = λρmµ, where ρm is the largest entry in ρ and λ is
above µ. Now we consider two cases.

Case 1: The subpermutation µ contains the pattern 12. Then λ must not contain the pattern
21, since ρ avoids 4312. This implies λ is increasing. Moreover, since ρ avoids 4312, µ must
avoid 312, so µ avoids both 132 and 312 and thus is svee. Thus, we can write ρ = I ⊖ τ where
I is increasing and τ is svee.

Case 2: The subpermutation µ is empty or decreasing. In this case, there are no clear restrictions
on λ.

We first perform the above decomposition on π. In case 1, we are done. In case 2, we can
repeat the same decomposition process on λ instead of π. This can be repeated until we are
in case 1 or until the pieces in the decomposition are empty. Note that case 2 adds a point to
the right and above the unknown portion of π as well as and a decreasing permutation to the
right and below the unknown portion of π, which preserves a svee shape in π. Case 1 adds the
skew sum of an increasing permutation I and a svee τ , which ends the decomposition process.
However, if the size of I is at least 2, I2 is an ascent top but not a NE endpoint (since there are
no descents to the left of it), contradicting Lemma 2.2. Thus I is a single point, so π can be
thought of as a svee permutation σ preceded by a special point that lies above the horizontal
of the svee. Thus π = π1σ, where π1 lies above σ’s horizontal (if π1 lies immediately above the
horizontal, π is simply svee). We call such a permutation a modified svee, or modsvee, for short.
See Figure 4 for an example of a modsvee permutation.

Figure 4. The modsvee permutation 643527819. The dashed boxes illustrate
which pieces of the permutation are decomposed after each step in the decompo-
sition process.

Following Defant in [8], we call a uniquely sorted permutation π nice if the SW endpoint of the
hook in the CHC of π with NE endpoint (2k+1, 2k+1) is (1, π1). For a nice π ∈ U2k+1(132, 4312),
the hook H1 connecting (1, π1) to (2k + 1, 2k + 1) lies above every other hook of π and thus
does not interfere with the rest of the CHC. Thus, π can be decomposed into the hook H1, plus
the svee permutation of size 2k − 1 whose CHC consists of the remaining hooks of π. Recall
from Lemma 3.2 that there are Ck−1 such svee permutations. The NE endpoint of H1 must be
(2k + 1, 2k + 1), whereas the height of the SW endpoint (1, π1) can be immediately below any
of the k ascent tops of the svee. Thus, there are kCk−1 nice permutations in U2k+1(132, 4312).
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Now, given any (not necessarily nice) permutation π ∈ U2k+1(132, 4312), we have that (1, π1)
lies above the descending part of the svee shape following it, so 1 is a descent and thus (1, π1) is
attached via a hook to one of the k points in the ascending part of the svee. Fix some 1 ≤ j ≤ k
and let (1, π1) be attached to the jth point in the ascending part of svee, which we will call
(m,πm). Since any hook with SW endpoint to the left of (m,πm) cannot intersect the hook
with NE endpoint (m,πm), all of the hooks before this point are entirely contained to the left of
it. Thus, the points (1, π1) through (m,πm) form a nice uniquely sorted modsvee permutation
of size 2j + 1, of which there are jCj−1, from above. It follows that (m,πm) = (2j + 1, 2j + 1).
The remaining hooks other than the one with SW endpoint (2j + 1, 2j + 1) lie to the right of
the point (2j + 1, 2j + 1). Thus, the points (2j + 1, 2j + 1) through (2k + 1, 2k + 1) form a
uniquely sorted permutation of size 2(k−j)+1 that is also svee shaped. From Lemma 2.2, there
are Ck−j such permutations. Thus, for a given j, there are jCj−1Ck−j permutations. Summing

over all possible j gives us that |U2k+1(132, 4312)| =
∑k

j=1 jCj−1Ck−j. It is routine to show

that
∑k

j=1 jCj−1Ck−j =
(2k−1

k

)
, giving us the desired result. See Figure 5 for an example of this

decomposition. �

Figure 5. The decomposition of the modsvee permutation 643527819 into a
nice modsvee uniquely sorted permutation (in green) and a svee uniquely sorted
permutation (in purple).

Theorem 4.2. We have |U2k+1(132, 3421)| =
(2k−1

k

)
.

Proof. The permutation obtained by reflecting the plot of π through the line y = x is called the
inverse2 of π, denoted π−1. Note that 132 is its own inverse and that the inverse of 3421 is 4312.
Therefore, a permutation avoids 132 and 3421 if and only if its inverse avoids 132 and 4312.
Also, it is proven in Lemma 4.3 in [8] that a permutation that avoids 132 has the same number of
descents as its inverse. It is natural, then, to conjecture that permutations in U2k+1(132, 3421)
are simply the inverses of those in U2k+1(132, 4312). Note that this does not hold for general
permutations; for example, the permutation 31425 is uniquely sorted, but its inverse is 24135,
which is not uniquely sorted.

Consider some π ∈ U2k+1(132, 3421) and some consecutive subpermutation of π, called ρ.
Again, since ρ avoids 132, we can decompose ρ = λρmµ, where ρm is the largest entry in ρ and
λ is above µ. There are three cases.

Case 1: The subpermutations λ and µ are both nonempty. Then λρm contains the pattern
12, so µ cannot contain the pattern 21, so µ is increasing. Then since nonempty µ lies below
and to the right of λ, we have that λ must avoid 231 in order for ρ to avoid 3421. Thus λ avoids
both 132 and 231 and therefore is vee, giving us the decomposition ρ = τ ⊖ I, where τ is vee
and I is increasing.

2When π is considered as an element of the symmetric group, we have that π−1 is indeed the inverse of π.
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Case 2: The subpermutation λ is empty, and there are no clear restrictions on µ.

Case 3: The subpermutation µ is empty, and there are no clear restrictions on λ.

We first perform the above decomposition on π. If we are in case 1, the structure of π is
determined to a degree to which we are satisfied, and we are done. In the other cases, we can
repeat the same decomposition process on the unknown portion of the permutation until we
end up in case 1 or all of the unknown portions are empty. Note that cases 2 and 3 preserve
a vee shape in π, whereas case 1 adds the skew sum of a vee permutation and an increasing
permutation I, which ends the decomposition process. However, if the size of I is at least 2,
I2 is an ascent top but not a NE endpoint (since there are no descents below it), contradicting
Lemma 2.2. Thus I is a single point, so the result of this process is the decomposition consisting
of a vee permutation, plus one special point below the vee that is to the right of the vertical of
the vee (if the point is immediately to the right the vertical, π is simply vee). We call such a
permutation a modified vee, or modvee for short.

Figure 6. The modvee permutation 853241679, which is the inverse of the per-
mutation in Figure 5.

As hoped for, it follows from the definition of modvee and modsvee that the inverse of a
permutation in one class is in the other class. Moreover, note that when we reflect a modvee
permutation, all of the points to the left of the vertical that were descent tops become descent
bottoms, the points to the right of the vertical that were ascent tops remain ascent tops, and
the special point becomes the special point in the resulting modsvee permutation. Thus, the
relative order of ascent tops and descent bottoms is the same in the modvee permutation, read
bottom to top, as it is in its image modsvee permutation, read left to right. Then, by the
logic in the lemmas in Section 3, a modvee permutation has a CHC if and only if its inverse
does. Thus, inversion does indeed define a bijection between the two classes, giving us that
|U2k+1(132, 3421)| = |U2k+1(132, 4312)| =

(2k−1
k

)
. �

5. Bijections with S-Motzkin Paths

A variant of a Dyck path is a Motzkin path of length k, which is a path from (0, 0) to (k, 0)
that consists of up steps, down steps, and (1,0) steps (called east steps) and at no point crosses
below the horizontal axis. In the up-down sequence of a Motzkin path, we write the letter E for
east steps. In 2018, Prodinger and Selkirk [23] defined a specific subclass of Motzkin paths.

Definition 5.1. An S-Motzkin path is a Motzkin path with k up steps, k down steps, and k
east steps such that:

(1) The first step is east.
(2) Between every two east steps is exactly one up step.
(3) The ith down step must occur after at least i east steps and i up steps. This is equivalent

to the condition that the path does not cross the horizontal axis.

Interestingly, this definition arose from a 2018 International Mathematics Competition ques-
tion proposed by Petrov and Vershik [22] about a frog moving through three-space.



LATTICE PATHS AND PATTERN-AVOIDING UNIQUELY SORTED PERMUTATIONS 9

Figure 7. The S-Motzkin path EUEUDEDUEUDD of length 12.

Let MS

k denote the set of S-Motzkin paths of length 3k.

Theorem 5.2 ([23]). We have |MS

k | =
1

2k+1

(
3k
k

)
.

Prodinger and Selkirk prove this with a bijection between S-Motzkin paths of length 3k and
ternary trees on k nodes, the latter of which is counted by the so-called 3-Catalan numbers

1
2k+1

(3k
k

)
[16]. These paths will be crucial for enumerating five classes of uniquely sorted permu-

tations counted by the same formula.

Theorem 5.3. We have |U2k+1(312, 2431)| =
1

2k+1

(3k
k

)
.

Proof. Consider the plot of some π ∈ U2k+1(312, 2431) and some consecutive subpermutation of
π, called ρ. Since ρ avoids 312, we can write ρ = λρmµ, where ρm is the smallest entry in ρ and
λ is below µ. Since ρ avoids 2431 and ρm lies below and to the right of λ, we have that λ avoids
both 312 and 132 and thus is svee.

We first perform this decomposition on π. Once we find svee λ, we can repeat this same
decomposition process on µ instead of π and continue to repeat until the subpermutations are
empty. The result is the decomposition π = (λ(1) ⊖ 1)⊕ (λ(2) ⊖ 1)⊕ · · · ⊕ (λ(l−1) ⊖ 1) ⊕ (λ(ℓ)),
where each λ(i) is svee. We call a permutation of this form stair-svee, and we call each λ(i) ⊖ 1
(or, for the last i, λ(ℓ)) a block of π. By default, we assume blocks are maximal: that is, starting
at the leftmost block in the permutation, each block is as large as it can be while still the correct
shape.

Figure 8. The structure of a stair-svee permutation.

Now, we define a bijection from U2k+1(312, 2431) to MS

k via the following rule. Let Λ be the
path EUEU . . . EU containing alternating k E’s and k U ’s. Given π ∈ U2k+1(312, 2431), let
a1, . . . , ak be the ascent tops of π, ordered from left to right, and let ni be the number of descent
bottoms to the left of ai. For 1 ≤ i ≤ k, if ai is in the same block as the point immediately to
the left of it, insert a D immediately after the nth

i U in Λ. If ai is not in the same block as the
point immediately to the left of it, insert a D immediately after the ni + 1th E in Λ.

By construction, Λ begins with E and alternates between E and U . Note that by the same
logic as in the proofs of the lemmas in Section 3, the kth U in λ appears after at least k U ’s
and k E’s. The particular placement of D’s allows us to recover the type of ascent that created
it. The only possible issue is that with a path containing UDED it is ambiguous which type
of ascent came first. However, since π is stair-svee, in which each block must end in a descent,
an ascent top that is immediately preceded by a point in the same block cannot be followed by
an ascent top in a new block. Therefore this case is actually unambiguous. Thus, this map is
indeed a bijection and |U2k+1(312, 2431)| = |MS

k | =
1

2k+1

(3k
k

)
. �
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Figure 9. The stair-svee permutation 3 2 4 1 9 8 7 10 11 6 5 12 13 and its image
under the bijection in Theorem 5.3, the S-Motzkin path
EUDEUEDUEUDDEUEUDD.

Theorem 5.4. We have |U2k+1(312, 3421)| =
1

2k+1

(
3k
k

)
.

Proof. Consider the plot of some π ∈ U(312, 3421) and some consecutive subpermutation of π,
called ρ. Since ρ avoids 312, we can write ρ = λρmµ, where ρm is the smallest entry in ρ and λ
is below µ. Since ρ avoids 3421 and ρm lies below and to the right of λ, we have that λ avoids
both 312 and 231 and thus is layered.

We first perform the above decomposition on π. Once we find layered λ, we can repeat this
same decomposition process on µ instead of π and continue to repeat until the subpermutations
are empty. The result is the decomposition π = (λ(1)⊖1)⊕ (λ(2)⊖1)⊕· · ·⊕ (λ(l−1)⊖1)⊕ (λ(ℓ)),
where each λ(i) is layered. We call a permutation of this form stair-layered, and again we call
each λ(i) ⊖ 1 (or, for the last i, λ(ℓ)) a block of π.

Figure 10. The structure of a stair-layered permutation.

We define a map from U2k+1(312, 3421) to MS

k using similar rules as we did for the previous
class. Let Λ be the path EUEU . . . EU containing an alternating k E’s and k U ’s. Consider some
π ∈ U2k+1(312, 2431), with tl(π) = ℓ. Let a1, . . . , am be the ascent tops of π′ = π1 · · · π2k+1−ℓ

(which is the permutation obtained from removing the tail from π), ordered from left to right,
and let ni be the number of descent bottoms to the left of ai. For 1 ≤ i ≤ m, if ai is in the same
block as the point immediately to the left of it, insert a D immediately after the nth

i U in Λ.
If ai is not in the same block as the point immediately to the left of it, insert a D immediately
after the ni+1th E in Λ. Then insert ℓ D’s at the end of Λ to account for the tail. Note that the
tail needs to be dealt with in this way because, in this case, the tail can be its own block (in the
previous proof, the tail cannot be its own block because we assume blocks to be maximal, and
adding a tail to a svee-skew-sum-1 block always creates a svee block). This process is equivalent
to, if the tail is its own block, treating the last two blocks as a single block, and then using the
rules from the previous proof. Thus, by the same logic in the previous proof, only now with
layered permutations instead of svee permutations, this is indeed a bijection between the desired
sets, and |U(312, 3421)| = |MS

k | =
1

2k+1

(3k
k

)
. �



LATTICE PATHS AND PATTERN-AVOIDING UNIQUELY SORTED PERMUTATIONS 11

Figure 11. The stair-layered permutation 3 2 4 1 8 7 6 9 11 10 5 12 13 and its im-
age under the bijection in Theorem 5.4, the S-Motzkin path
EUDEUEDUEUDDEUEUDD. The tail is marked in red.

Theorem 5.5. We have |U2k+1(312, 1432)| =
1

2k+1

(3k
k

)
.

Proof. Consider π ∈ U2k+1(312, 1432) and some consecutive subpermutation of π, called ρ. Since
π avoids 312, we can write ρ = λµρm, where λ is below ρm and µ is above ρm. Now we distin-
guish two cases.

Case 1: The subpermutation λ is nonempty. Then an entry of λ lies below and to the left of µ
while ρm lies above and to the right of λ and below and to the right of µ, so in order for ρ to
avoid 1432, we have that µ must avoid 21 and thus is increasing.

Case 2: The subpermutation λ is empty. Then there are no clear restrictions on µ.

We first perform the above decomposition on π. In case 1, we can repeat this decomposition
process on λ; in case 2, we can repeat it on µ. We repeat until the unknown subpermutations
are empty. The result is the decomposition of π into a permutation that looks like a svee
permutation, except each point above the horizontal can be replaced with a block of the form
Inc(n)⊖ 1 (points that are not replaced with blocks of this form are regarded as blocks of size
one). We call a permutation of this form svee-increasing.

We define a map from U2k+1(312, 1432) to MS

k . Given the plot of some π ∈ U2k+1(312, 1432),
we label each point below the horizontal with the symbols EU . Above the horizontal, we label
each point in its own block D, and we label a block of size n ≥ 2 with EDn−1U , where Dn−1

denotes the concatenation of n− 1 D’s. The first point in π is left unlabeled. Then we read the
labels from left to right to obtain the path Λ.

Note that in this labeling, each ascent top can be associated with a D and each descent
bottom with an EU (we can think of the EU in EDn−1U being associated with the last point
in the block, a descent bottom, and the Dn−1 being associated with the n − 1 ascent tops in
the block). Thus, since π is uinquely sorted, there are k of each type of step. Moreover, by
construction, E and U steps always alternate, starting with E. Since π has a CHC, each prefix
of π contains at least as many descents as ascents, so each prefix of Λ, when read right to left,
contains at least as many U ’s as D’s and thus remains above the horizontal. Therefore, Λ ∈ MS

k .
Since each block of length more than one is labeled with a string that starts with an E and
ends in a U , whereas descent bottoms below the horizontal are labeled with a conjoined EU ,
this process does not lose any information about the permutation. Thus, given some Λ ∈ MS

k ,
we can recover a permutation in U2k+1(312, 1432). Therefore, this is indeed a bijection, so

|U2k+1(312, 1432)| = |MS

k | =
1

2k+1

(3k
k

)
. �
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EU
EU

EU

D

EDDU

D

EDU

Figure 12. The svee-increasing permutation 4 3 2 5 7 6 1 9 10 8 11 and its image
under the bijection in Theorem 5.5, the S-Motzkin path
EUEUDEDUEUEDDUD.

Theorem 5.6. We have |U2k+1(231, 1423)| =
1

2k+1

(
3k
k

)
.

Proof. Consider π ∈ U2k+1(231, 1423) and some consecutive subpermutation of π, called ρ. Since
ρ avoids 231, we can write ρ = ρ1λµ, where λ lies below ρ1 and µ lies above ρ1. Since ρ avoids
1423 and ρ1 is below and to the left of µ, we have that µ must also avoid 312 in addition to 231,
and thus µ is layered.

We first perform the above decomposition on π. Once we find layered µ, we can repeat
this same decomposition process on λ instead of π and continue to repeat until the unknown
subpermutation is empty. Since at each step we add a point to the the left and above the
unknown part of the permutation, as well as a layered permutation to the right of that point
and the unknown part and above the unknown part, the resulting permutation is vee shaped,
except each point to the right of the vertical of the vee can be replaced with a decreasing block.
We call a permutation of this form vee-layered.

We define a map from U2k+1(231, 1423) to MS

k using rules similar to those in the previous
bijection: Given the plot of π ∈ U2k+1(312, 1423), we label each point to the left of the vertical
with D. To the right of the vertical, we label each layer of size n with EDn−1U . The lowest
point in π is left unlabeled. Then we read the labels from top to bottom to obtain the path Λ.
By the same logic as in the previous proof, except where now the separation of E and U with D’s
marks a layer with one ascent top and n− 1 descents bottoms, we have that Λ is an S-Motzkin
path and that this is indeed a bijection, so |U2k+1(231, 1423)| = |MS

k | =
1

2k+1

(3k
k

)
. �

D

D

EU
EU

EU

EDU

EDDU

Figure 13. The vee-layered permutation 9 2 1 5 4 3 6 8 7 10 11 and its image un-
der the bijection in Theorem 5.6, the S-Motzkin path
EUEUDEDUEUEDDUD.

Theorem 5.7. We have |U2k+1(132, 3412)| =
1

2k+1

(3k
k

)
.

Proof. The result follows from Theorem 5.6 and some previous work. Theorem 6.1 in [8] states
that there exists a bijection swu : U2k+1(231) → U2k+1(132). In the proof of Theorem 5.1 in [12],
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Defant shows that swu(Av(231, 1423)) = Av(132, 3412). Consequently, swu yields a bijection
between U2k+1(231, 1423) and U2k+1(132, 3412). Thus |U2k+1(132, 3412)| = |U2k+1(231, 1423)| =

1
2k+1

(3k
k

)
. �

6. A Bijection with a Subclass of Schröder Paths

We now introduce another well-studied type of lattice path. A Schröder path of semilength
k is a path from (0, 0) to (2k, 0) that consists of an equal number of up steps and down steps,
as well as some number of (2,0) steps (called horizontal steps and denoted H in the up-down
sequence) and at no point crosses below the horizontal axis. The kth Schröder number, denoted
Sk, is defined to be the number of Schröder paths of semilength k.

Figure 14. The Schröder path UHUUUDDUHDDD of semilength 7.

It is well-known that the Schröder paths can be divided into two equinumerous subclasses:
paths that have a horizontal step on the horizontal axis and paths that do not have a horizontal
step on the horizontal axis. Let Sk be the set of paths in the latter subclass of length k. It
follows that |Sk| = Sk/2 for k ≥ 1 (and |S1| = S1 = 1); these numbers are (somewhat aptly)
known as the little Schröder numbers3.

Theorem 6.1. We have |U2k+1(231, 1432)| = |Sk|.

Proof. Consider π ∈ U2k+1(231, 1432) and some consecutive subpermutation of π, called ρ. Since
ρ avoids 231, we can write ρ = λρmµ, where ρm is the largest entry in ρ and λ is below µ. We
now consider two cases.

Case 1: The subpermutation λ is nonempty. Then, since a point in λ lies below and to the left
of µ and ρm lies above and horizontally between λ and µ, we have that µ must not contain 21
in order for ρ to avoid 1432. Thus, µ is increasing. If µ has size n ≥ 2, then ρm and µn are
both ascent tops and thus NE endpoints of hooks Hi and Hj, respectively, in π’s CHC. If πi, πj
are the SW endpoints of Hi,Hj , respectively, then i < j in order for the hooks to not intersect.
But then ρm would be the NE endpoint of Hj, and not µn, because ρm is to the left of and im-
mediately above µn. Thus, µ must have size at most 1, giving us that ρ = λ⊕τ , where τ is 1 or 21.

Case 2: The subpermutation λ is empty. Then there are no clear restrictions on µ.

We first perform this decomposition process on π. In case 1, we can repeat this decomposition
process on λ; in case 2, we can repeat it on µ. We repeat until the unknown subpermutations
are empty. The result is the decomposition π = δ1(τ1⊕· · ·⊕τℓ) for some ℓ, where δ is decreasing
and each τi is 1 or 21. Thus π is a permutation that is vee, except points to the right of the
vertical can be replaced with the block 21. We call this type of permutation vee-step. Note that,
by definition, the set of vee-step permutations is the set of vee-layered permutations (described
in the proof of Theorem 5.6) in which each layer is at most size 2.

Now we define a map from U2k+1(231, 1432) to Sk as follows: Given π = δ1(τ1 ⊕ · · · ⊕ τℓ) ∈
U2k+1(231, 1432), we label every point in δ with the symbol U . Treating each τi as a single unit,
if τi = 1 we label it D and if τi = 21 we label it H. Then, starting at the lowest point 1 in π,
we read off the labels from bottom to top to obtain a path Λ. Since π is uniquely sorted, it has
k ascents and k descents. The steps labeled with H contain both an ascent top and a descent

3Sometimes they are called (also somewhat aptly) the small Schröder numbers.
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bottom, so Λ has an equal number of U ’s and D’s. Moreover, π being sorted implies not only that
every prefix of Λ contains as many U ’s as D’s, but also that there are no horizontal steps in Λ
along the horizontal axis. This is because H corresponds to a 21 block, which contains an ascent
top followed by a descent bottom. If this occurred along the horizontal axis, there would be a
subpermutation π = π1 · · · πm with more ascent tops than descent bottoms, meaning that there
must be an ascent top that is not a NE endpoint, which contradicts Lemma 2.2. Thus, Λ ∈ Sk.
The map is easily reversible, making it a bijection. Therefore |U2k+1(231, 1432)| = |Sk|. �

D
D

D

H

U

U
U

Figure 15. The vee-step permutation 732154689 and its image under the bijec-
tion in Theorem 6.1, the Schröder path UUHDUDD.

7. Counting U2k+1(231, 4312) with a Generating Function

In [8], Defant showed how to decompose permutations in U2k+1(231, 4132) to obtain an identity
proving these permutations are in bijection with Pallo comb intervals. In this section, we modify
Defant’s method to instead decompose the permutations in U2k+1(231, 4312), which are counted
by the same sequence.

Theorem 7.1. We have ∑
k≥0 |U2k+1(231, 4312)|x

k = C(xC(x)),

where C(x) = 1−
√
1−4x
2x is the generating function of the sequence of Catalan numbers.

Proof. Recall that a uniquely sorted permutation π = π1 · · · π2k+1 is called nice if the point
(1, π1) is the southwest endpoint of a hook whose northeast endpoint is (2k+1, 2k+1). Consider
π ∈ U2k+1(231, 4312) and, for now, assume that π is nice. Since π avoids 231, we are able to
write π = π1λµ(2k + 1), where λ ∈ Sπ1−1(which is nonempty because, by assumption, 1 is a
descent) and µ is a permutation of π1 + 1, . . . , 2k. Since λ is a subpermutation of π, it avoids
231. Since π avoids 4312, λ must avoid 312, so λ is layered.

Note that the first layer in λ cannot be a single point. If it were, λ2 would be an ascent top
and thus a NE endpoint of a hook. But the only descent top before λ2 is π1, which lies above
λ2, a contradiction.

Let m be the largest integer such that the normalization of λ1 · · ·λ2m+1 is in U2m+1(231, 312)
and such that λ2m+1 is the first entry in a layer of size at least two. We let τ = λ1 · · ·λ2m+1.
Since the first layer of λ has size at least two, and the single entry λ1 is in U2k+1(231, 312), such
a τ always exists. Let σ be the remaining entries of λ, so that τσ = λ.

Now, let π′ = π1σµ, that is, the permutation obtained by removing τ and (2k + 1) from π.
We claim that π′ ∈ U2k−2m−1(231, 4312). Because π′ is a subpermutation of π, it avoids 231 and
4312. Since to obtain π′ we remove one permutation of length 2m+ 1 and one of length 1, we
have that π′ has length 2k − 2m− 1.

Since π ∈ U2k+1 and π′ ∈ U2m+1, the permutations π and π′ have k descents and m descents,
respectively. Thus when we take out τ , π′ loses m descents. Because all of σ lies below π1, we
have that π1 remains a descent top in π′. Since (2k + 1, 2k + 1) has the maximal height in the
plot of π, the point (2k, π2k) was not a descent top of π, so when we remove 2k + 1, π′ does
not lose any descents. Originally λ2m+1 was not the last entry in a decreasing block, so it was
a descent top in π but now is not in τ . Thus π′ has k −m− 1 = 2k−2m−1−1

2 descents.
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All that is left to check is that π′ has a CHC. Note that τ is, when considered its own
permutation, uniquely sorted, and appears all the way on the left of π, save for π1. Thus in π all
hooks with an endpoint in τ have the other endpoint in τ , except for the last point in τ , which
is a descent top in π and thus is the SW endpoint of some hook Hi. Then when we remove
τ and (2k + 1, 2k + 1) to obtain π′, all hooks in π′ are preserved except H1, which is missing
a NE endpoint, and Hi, which is missing a SW endpoint. We create the hook H ′

1 connecting
π′
1 to the NE endpoint of Hi, which resolves the issue and results in a CHC of π′. Thus,

π′ ∈ U2k−2m−1(231, 4312). Now, let π′′ be the normalization of π′ and τ ′ be the normalization
of τ . We have obtained (π′′, τ ′) ∈ U2k−2m−1(231, 4312) × U2m+1(231, 312) from the original π.

We now show that this process is reversible. Given some (π′′, τ ′) ∈ U2k−2m−1(231, 4312) ×
U2m+1(231, 312), we can insert the plot of τ ′ under π′′

1 and merge its last block with the first
block in π′′

2 · · · π
′′
2k−2m−1. Lastly, we append (2k+1) at the end to recover the original π. Thus,

this decomposition is bijective, so nice permutations in U2k+1(231, 4312) correspond to pairs of
permutations in U2k−2m−1(231, 4312) × U2m+1(231, 312).

From Lemma 3.3, we have that |U2m+1(231, 312)| = Cm, and thus
∑

m≥0 |U2m+1(231, 312)|x
m

= C(x). Reindexing gives
∑

n≥1 |Un(231, 312)| = xC(x2). Let B(x) =
∑

k≥0 |U2k+1(231, 4312)|x
k

and B̃(x) =
∑

n≥1 |Un(231, 4312)|x
n . Then nice permutations in U2k+1(231, 4312) are counted

by the generating function [B̃(x)][xC(x2)][x] = x2C(x2)B̃(x). The rest of the proof is identical
to that of Theorem 8.1 in Defant’s article [8]: using the generating function for nice permutations

in U2k+1(231, 4312) to count all such permutations, we can prove that B̃(x) = x+xC(x2)B̃(x)2,
from which it follows that B(x) = C(xC(x)), as desired. Refer to Defant’s proof for details. �

H1

H2

H3

H4

H5

H6

τ

π′

π′

H ′
1

H6

H5

Figure 16. Decomposing the nice permutation π into τ and π′.

8. Conclusion

The theorems in this paper prove nine out of the eighteen conjectures in [8], which enumerate

classes of the form U2k+1(τ
(1), τ (2)), where τ (1) has length 3 and τ (2) has length 4. The nine

remaining conjectures are given again in Table 2.
It should be noted that the remaining conjectures include U2k+1(231, 1243) being counted by(2k−1
k

)
, which is the same sequence counting the two classes in Section 4. Decomposition gives

that for a permutation π in this class, we can write π = DD′τI where D,D′ are decreasing, I is
increasing, and τ is vee and is below D and I but is above D′. However, the author was unable
to find a way to count these permutations and encourages the reader to try.

The other eight remaining classes are more difficult because, while some are counted by special
lattice paths according to the OEIS, these paths seem to either not have the correct length or
not have the correct properties to create bijections like the ones in this paper. For example,
the elements of U2k+1(132, 2341) and U2k+1(132, 4123) are counted by Motzkin paths of length
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Patterns OEIS Sequence

312, 1243 A122368

231, 1243 A001700

132, 2341

132, 4123
A109081

312, 2341 A006605

Patterns OEIS Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

231, 4321 A056010

Table 2. The remaining conjectural OEIS sequences enumerating sets of the
form U2k+1(τ

(1), τ (2)).

2k− 3 with no downsteps in even positions. But general Motzkin paths do not require a specific
number of down and up steps and 2k − 3 is less than 2k + 1, so it would be difficult to find
a bijection that associates descents and ascents in these permutations with certain patterns of
steps. That said, these remaining classes could be enumerated through other methods such as
the direct counting that we do in Theorem 4.1, or, more likely, generating functions. Another
possible route would be defining new types of lattice paths that are in bijection with these classes
and then enumerating the new paths, which should be easier since there is a greater body of
work on the properties of and counting of lattice paths.

Also, according to the data generated by the author of [8], the 24 sequences counting classes
of the form U(τ) where τ has length four appear to be new and thus studying these classes
is likely to be more challenging than the classes studied in this paper. According to the same
author, the sequence counting U(231, 4123) is also not in the OEIS.

Beyond this, the natural next step is to enumerate classes of the form U(τ (1), τ (2)), where

τ (1) and τ (2) both have length 4, for there has been a large deal of work devoted to counting
general permutations avoiding two patterns of length four that could prove to be very useful
[2, 17, 21]. Moreover, some of these classes have nice descriptions, such as the class of skew-
merged permutations (which avoid 3412 and 2143) and the class of separable permutations
(which avoid 2413 and 3142).
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