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ABSTRACT

Tensor decomposition methods are one of the primary approaches for model compression and fast
inference of convolutional neural networks (CNNs). However, despite their potential diversity, only a
few typical decompositions such as CP decomposition have been applied in practice; more importantly,
no extensive comparisons have been performed between available methods. This raises the simple
question of how many decompositions are available, and which of these is the best. In this paper, we
first characterize a decomposition class specific to CNNs by adopting graphical notation, which is
considerably flexible. When combining with the nonlinear activations, the class includes renowned
CNN modules such as depthwise separable convolution and bottleneck layer. In the experiments, we
compare the tradeoff between prediction accuracy and time/space complexities by enumerating all
the possible decompositions. Also, we demonstrate, using a neural architecture search, that we can
find nonlinear decompositions that outperform existing decompositions.

1 Introduction

Convolutional neural networks (CNNs) process multiple discrete convolution operations through so-called convolutional
layers, which are typically useful to temporal/spatial data such as images [Goodfellow et al., 2016]. Despite their high
performance, their high usage of memory and CPU/GPU is a bottleneck when deploying them on edge devices such as
mobile phones [Howard et al., 2017].

To reduce costs, one straightforward approaches is to introduce a low-dimensional linear structure into the convolutional
layers [Smith et al., 1997, Rigamonti et al., 2013, Tai et al., 2015, Kim et al., 2015, Denton et al., 2014, Lebedev et al.,
2014, Wang et al., 2018]; this typically takes the form of tensor decomposition. Tensor decomposition represents the
convolution filter using a fewer number of parameters in a sum-product form, which saves both memory space and the
calculation cost for forwarding paths.

The manner in which the cost is reduced depends heavily on the structure of the tensor decomposition. For example, if
a target tensor is of 2 ways, i.e., a matrix, meaningful decomposition is uniquely determined as X “ UV, because
other decompositions such as X “ ABC are reduced to that form with a fewer number of parameters. However, for
higher-order tensors, there are numerous variations for decomposition, of which only a few have been actively studied
in the tensor decomposition research community (e.g., see [Kolda and Bader, 2009]). The existing studies applied such
multi-purpose decompositions to CNNs. However, these decompositions are not necessarily optimal for CNNs owing
to the tradeoff between the prediction accuracy and time/space complexity. Because the best tradeoffs associate with
multiple factors such as application domains, tasks, entire architectures of CNNs, and hardware limitations, new options
are inevitable for optimization.

˚This work was completed during an internship at Preferred Networks.
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Figure 1: Visualizing linear structures in various convolutional layers, where X is input and T is a convolution kernel.
The connected edges only on one side going up, down, and right respectively represent the spatial height, spatial width,
and output channels. We will further explain this in Section 3.

In this paper, we study a hidden realm of tensor decompositions to identify the most resource-efficient convolutional
layers. We first characterize a decomposition class specific to CNNs by adopting a hypergraphical notation based on
tensor networks [Penrose, 1971], which is considerably flexible and, when combined with the nonlinear activations, the
class includes modern light-weight CNN layers such as bottleneck layers used in ResNet [He et al., 2015], depthwise
separable convolution used in Mobilenet V1 [Howard et al., 2017], inverted bottleneck layers used in Mobilenet
V2 [Sandler et al., 2018], and more, as shown in Figure 1. The notation straightforwardly handles 3D or more
higher-order convolutions. In the experiments, we compare the tradeoffs by enumerating all possible decompositions
for 2D and 3D image data sets. Also, we evaluate the nonlinear extension by combining neural architecture search
with the LeNet and ResNet architectures. The code implemented in Chainer [Tokui et al., 2019] is available at
https://github.com/pfnet-research/einconv.

Notation For a positive integer n, we denote rns “ t1, . . . , nu. We denote scalars, vectors, matrices, and tensors
respectively in lower, bold lower, bold upper, and bold script upper case, as a,a,A, and A.

2 Preliminaries

Convolution in Neural Networks Assuming we have a 2D image of height H P N, width W P N, and number
of channels C P N, where the channel is a feature that each image has for each pixel, such as RGB, the image can
be considered a 3-way tensor X P RHˆWˆC . Usually, the convolution operation changes the size and the number
of channels. We assume that the size of the convolution filter is odd, and that I, J P t1, 3, 5, . . . u is its height and
width, P P N is the padding size, and S P N is the stride. Then, the spatial size of the output is determined by height
H 1 “ pH ` 2P ´ Iq{S ` 1 and width W 1 “ pW ` 2P ´ Jq{S ` 1. When we set the number of output channels as
C 1 P N, the convolution layer yields an output Z P RH1

ˆW 1
ˆC1

in which each element is given as

zh1w1c1 “
ÿ

iPrIs

ÿ

jPrJs

ÿ

cPrCs

tijcc1xh1
iw

1
jc
, (1)

where T P RIˆJˆCˆC1

is a weight called an I ˆ J kernel, and h1i “ ph
1 ´ 1qS ` i´ P and w1j “ pw

1 ´ 1qS ` j ´ P

are spatial indices used for convolution. For simplicity, we omit the bias parameter. There are IJCC 1 parameters and
the time complexity of (1) is OpIJCH 1W 1C 1q.

Although (1) is the standard, there are several variations to reduce the computational complexity. When the spatial
dimensions are both 1 (I “ J “ 1), it is called 1ˆ 1 convolution [Lin et al., 2013, Szegedy et al., 2015], which applies
linear transformation to only the channels and does not affect the spatial directions. Depthwise convolution [Chollet,
2016] is possibly the opposite of 1 ˆ 1 convolution, which works as though the input and output channels are one
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dimension, i.e.,

zh1w1c1 “
ÿ

iPrIs

ÿ

jPrJs

tijc1xh1
iw

1
jc

1 . (2)

Tensor Decomposition in Convolution To reduce the computational complexity, Kim et al. [2015] applied Tucker-2
decomposition [Tucker, 1966] to the kernel T , which replaces the original kernel by T T2 where each element is given
as

tT2
ijcc1 “

ÿ

αPrAs

ÿ

βPrBs

gijαβucαvc1β (3)

where G P RIˆJˆAˆB ,U P RCˆA,V P RC1
ˆB are new parameters and A,B P N are rank-like hyperparameters.

Note that the convolution with the Tucker-2 kernel T T2 is equivalent to three consecutive convolutions: 1 ˆ 1
convolution with kernel U, I ˆ J convolution with kernel G, and 1ˆ 1 convolution with kernel V. In this view, A and
B can be seen as intermediate channels during the three convolutions. Hence, when A,B are smaller than C,C 1, a cost
reduction is expected, because the heavy I ˆ J convolution is now taken with the A,B channel pair instead of C,C 1.
When compared with the original convolution, the reduction ratio of the number of parameters and the inference cost
are both at least AB{CC 1.

Similarly, several authors [Denton et al., 2014, Lebedev et al., 2014] have employed CP decomposition [Hitchcock,
1927], which reparameterizes the kernel as

tCP
ijcc1 “

ÿ

γPrΓs

ũiγ ṽjγw̃cγ s̃c1γ , (4)

where Ũ, Ṽ,W̃, S̃ are new parameters and Γ P N is a hyperparameter.

3 The Einconv Layer

We have seen that both the convolution operation (1), (2) and the decompositions of the kernel (3), (4) are given as the
sum-product of multiple tensors with many indices. Although the indices may appear cluttered, they play important
roles. In particular, they can be divided into two classes: ones that are connected to the output shape (h1, w1, c1) and ones
that are used for summation (i, j, c, α, β, γ). Convolution and its decomposition are actually specified by how those
indices interact, and how they are distributed into tensor variables. For example, Tucker-2 decomposition separates
the spatial, input channel, and output channel information as G,U,V through their indices pi, jq, c1, c, respectively.
Moreover, they are joined by two-step connections: the connection between the input channel and spatial information
via α, and the connection between the output channel and spatial information via β. Here, we can consider the indices
used for summation to be paths that deliver input information to the output.

This viewpoint brings us the notion that a hypergraph captures the index interaction in a clearn manner. The basic
idea is that we distinguish tensors only by the indices they own and we consider them as vertices. The vertices are
connected if they share some indices to be summed. For example, consider the decomposition of a kernel T . Let
outer indices O “ ti, j, c, c1u be the indices of the shape of T , inner indices I “ pr1, r2, . . . q be the indices used for
summation, and inner dimensions R “ pR1, R2, . . . q P R|I| be the dimensions of I. Assume that M P N tensors are
involved in the decomposition where each tensor is denoted by a set of indices, and let V “ tv1, . . . , vM | vm P 2OYIu
denote the set of the tensors, where 2A denotes the power set of a set A. Here we identify each tensor by its indices,
i.e., U “ puabcqaPrAs,bPrBs,cPrCs is equivalent to ta, b, cu. Given V , each inner index r P I defines a hyperedge
er “ tv | r P v for v P Vu. Let E “ ten | n P O Y Iu denote the set of hyperedges. For example, suppose
I “ tα, βu and V “ tti, j, α, βu, tc, αu, tc1, βuu; then, the undirected weighted hypergraph pV, E ,Rq is equivalent to
Tucker-2 decomposition (3).

This idea is also applicable to the convolution operation by the introducion of dummy tensors that absorb the index
patterns used in convolution. Recall that in (1) the special index h1i represents which vertical elements of the kernel
and the input image are coupled in the convolution. Let P P t0, 1uHˆH

1
ˆI be a binary tensor where each element is

defined as phh1i “ 1 if h “ h1i and 0 otherwise. Similarly, let Q P t0, 1uWˆW
1
ˆJ be the horizontal counterpart of P .

Also, let us modify the index sets as O “ th1, w1, c1u and I “ ph,w, i, j, cq, and the dimensions R “ pH,W, I, J, Cq.
Then, vertices V “ tth,w, cu, ti, j, c, c1u, th, h1, iu, tw,w1, juu and hyperedges E that are automatically defined by V
exactly represents the convolution operation (1), where we ensure that the tensor of th, h1, iu is fixed by P and the
tensor of tw,w1, ju is fixed by Q.
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The above mathematical explanation may sound too winding, but visualization will help greatly. Let us introduce
several building blocks for the visualization. A circle indicates a tensor and a line connected to a circle indicates an
index associated with the tensor. When an edge is connected on only one side, it appears in the resulting tensor as an
outer index; it is otherwise used for summation as an inner index, namely,

A B
i j k

“ C
i k

ðñ
ÿ

j

aijbjk “ cik. (5)

The summation and the elimination of inner indices is called contraction. A hyperedge that is connected by more than
three vertices is depicted with a black dot:

A B C
i j k

ðñ
ÿ

j

aijbjcjk. (6)

Finally, a node with symbol “˚” indicates the dummy tensors P or Q that implicitly indicate that vertical or horizontal
convolution is involved:

A ˚ B
h i

h1

ðñ
ÿ

h,i

phh1iahbi (7)

Note that the above diagram descriptions are essentially equivalent to what the Einstein notation represents. Analogous
to this and NumPy’s einsum function [Wiebe, 2011], we term a hypergraphically-representable convolution layer an
Einconv layer.

3.1 Examples

In Figure 1, we depict several examples of the hypergraphical notation. When we put aside nonlinear activation, we find
that many existing CNN modules are described as Einconv layers.

Separable and Low-rank Filters Although the size of a kernel is usually square, i.e., I “ J , we often take the
convolution separately along with the vertical and horizontal directions. In this case, the convolution operation is
equivalent to the application of two filters of sizes pI, 1q and p1, Jq. This can be considered as the rank-1 approximation
of the I ˆ J convolution. A separable filter [Smith et al., 1997] is a technique to speed up convolution when the filter is
exactly of rank one. Rigamonti et al. [2013] extended this idea by approximating filters by low-rank matrices for single
input channel and Tai et al. [2015] further extended it for multiple input channels (Figure 1h).

Factored Convolution In case of a large filter size, a common technique called factoring convolution is used to
replace the large filter with multiple small-sized convolutions [Szegedy et al., 2016]. For example, two consecutive
3ˆ 3 convolutions are equivalent to one 5ˆ 5 convolution in which the first 3ˆ 3 filter is enlarged by the second 3ˆ 3
filter. Interestingly, the factorization of convolution is exactly represented as Einconv by adding two additional dummy
tensors.

Bottleneck Layers In ResNet [He et al., 2015], the bottleneck module is used as a building block, where input
channels are reduced before convolution and then expanded after convolution. Finally, the original input is added,
which is reffered to as skip connection. Figure 1c shows the module without skip connection. According to the diagram,
we see that the linear structure of the bottleneck is equivalent to Tucker-2 decomposition.

Depthwise Separable Convolution Mobilenet V1 [Howard et al., 2017] is a seminal light-weight architecture. It
employs depthwise separable convolution [Sifre and Mallat, 2014, Chollet, 2016] as a building block, which is a
combination of depthwise convolution and 1ˆ 1 convolution (Figure 1b) to work with limited computational resources.

Inverted Bottleneck Layers Mobilenet V2 [Sandler et al., 2018], the second generation of Mobilenet, employs a
building block called the inverted bottleneck module (Figure 1d). It is similar to the bottleneck module, but there are two
differences. First, the number of intermediate channels is smaller than both the numbers of input and output channels in
the bottleneck module. In contrast, this relationship is reversed in the inverted bottleneck, as the intermediate channels
are “ballooned”. In addition, there are two intermediate channels in the bottleneck module, whereas the inverted
bottleneck module consists of only one.
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Figure 2: Graphical visualizations of 3D convolutions.

3.2 Higher Order Convolution

We have, thus far, considered 2D convolution, but have yet determined what happens we deal with 3D data. Einconv
can handle 3D or higher-order convolution. For example, consider a 3D convolution and let d, d1 be the input/output
indices for depth and k be the index of filter depth. Then, by adding d1 to O and d, k to I, we can construct a
hypergraph for 3D convolution (Figure 2), from the standard to a light-weight convolution such as depthwise separable
convolution [Köpüklü et al., 2019] and (2+1)D convolution [Tran et al., 2018], which factorizes a full 3D convolution
into 2D and 1D convolutions.

3.3 Reduction and Enumeration

Although the hypergraphical notation is powerful, we need to be careful about its redundancy. For example, consider a
hypergraph pV, Eq where an inner index a P I is only used by the m-th tensor, i.e, a P vm and a R vn for n ‰ m. Then
any tensors represented by pV, Eq with any inner dimensions are also represented by removing a from every element of
V and the a-th hyperedge from E . Similarly, any self loops do not increase the representability [Ye and Lim, 2018].
In terms of representability of the Einconv layer, there is no reason to choose redundant hypergraphs.2 We therefore
consider to remove them efficiently. Note that, although we only consider the 2D convolution case here for simplicity,
the results are straightforwardly extensible to higher-order cases.

Let z denote the set difference operator and n denote the element-wise set difference operator, which is used to remove
an index from all the vertices, e.g., V n a “ tv1za, . . . , vMzau for index a P O Y I. For convenience, we define a
map θ : O Y I Ñ N that returns the dimension of index a P O Y I, e.g. θpiq “ I . To discuss the representability, we
introduce the notation for the space of the Einconv layers.

Definition 1. Given vertices V “ tv1, . . . , vMu and inner dimensions R, let FV : U1, . . . ,UM ÞÑ Z P RIˆJˆCˆC1

be the function that calculates the contraction of M tensors U1, . . . ,UM along with V . In addition, let TVpRq Ď
RIˆJˆCˆC1

be the space that FV covers, i.e., TVpRq “ tFVpU1, . . . ,UM q | Um P R
Ś

aPvm
θpaq for m P rM su.

Next, we show several sufficient conditions of redundant hypergraphs.

Proposition 1 (Ye and Lim 2018, Proposition 3.5). Given inner dimensions R P R|I|, if Ra “ 1, TVpRq is equivalent
to TVnap. . . , Ra´1, Ra`1, . . . q.
Proposition 2. If vm Ď vn for m,n P rM s, TVpRq is equivalent to TVzvmpRq.
Proposition 3. If ea “ eb for a, b P I, TVpRq is equivalent to TVnapR̃q where R̃ “

p. . . , Ra´1, Ra`1, . . . , Rb´1, RaRb, Rb`1, . . . q.
Proposition 4. Assume the convolution is size-invariant, i.e., H “ H 1 and W “ W 1. Then, given filter height
and width I, J P t1, 3, 5, . . . u, the number of possible combinations that eventually achieve I ˆ J convolution is
πp I´1

2 qπpJ´1
2 q, where π : NÑ N is the partition function of integers, see [Sloane, 2019] for examples.

Proposition 1 says that, if the inner dimension of an inner index is one, we can eliminate it from the hypergraph.
Proposition 2 shows that, if the indices of a vertex is the subset of the indices of another vertex (e.g. v1 “ ta, cu and
v2 “ ta, b, cu), we can remove the former vertex. Proposition 3 means that the “double” hyperedge is reduced to a
single hyperedge by increasing its dimension as it meets the product of theirs. Proposition 4 tells us the possible choices
of filter size. We defer the proofs to Supplementary material. By combining the above propositions, we can conclude
the following theorem.

2It might be possible that some redundant Einconv layer outperforms equivalent nonredundant ones, because the parametrization
influences optimization. However, we focus on the representability here.
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Theorem 1. If the number of inner indices and the filter size is finite, the set of nonredundant hypergraphs representing
convolution (1) is finite.

To enumerate the nonredundant hypergraphs, we first use the condition of Proposition 2. Because of the vertex-subset
constraint in Proposition 2, valid vertex sets must be the subset of the power set of all the indices O Y I, and its size is
at most 22|OYI|

. After enumerating the vertex set satisfying the vertex-subset constraint, we eliminate some of them
using the other propositions.3 We used this algorithm in the experiment (Section 6).

4 Nonlinear Extension

Tensor decomposition involves multiple linear operations, and each vertex can be seen as a linear layer. For example,
consider a linear map W : RC Ñ RC1

. If W is written by a product of three matrices as W “ ABC, we can consider
the linear map to be a composition of three linear layers: Wpxq “ pA ˝B ˝Cqpxq for a vector input x P RC . This
leads to the assumption that, in addition to reducing the computational complexity, tensor decomposition with many
vertices also contributes to an increase in representability. However, because the rank of W is determined by the
minimum rank of either A,B,C, and the repesentability of a matrix is solely controlled by the rank, adding linear
layers does not improve the representability as a function. This would be happen in Einconv layers.

To avoid this problem, a simple solution is to add nonlinear functions between linear layers. Although it is easy for
implementation, enumeration is no longer possible, because the equivalence relation becomes non-trivial — with
nonlinearlity, there exists an infinite number of candidates. Of course We cannot enumerate an infinite number of
candidates, and we need an efficient search algorithm. This type of study, which searches the best structure of neural
networks, is called neural architecture search [Zoph and Le, 2016]. Many search algorithms have been proposed based
on genetic algorithms (GAs) [Real et al., 2018], reinforcement learning [Zoph and Le, 2016] and others [Zoph et al.,
2018, Pham et al., 2018]. In this study, we employ GA because hypergraphs are discretely structured and GA is highly
compatibile with them. As we need to solve multiobjective optimization (e.g. number of parameters v.s. prediction
accuracy), we use the nondominated sorting genetic algorithm II (NSGA2) [Deb et al., 2002], which is one of the most
popular multiobjective GAs. In Section 6.2 we will demonstrate that, using GA, we can find better Einconv layers than
enumeration.

5 Related Work

The graphical notation of linear tensor operations, termed tensor networks, has been developed by the quantum
many-body physics community (see tutorial by Bridgeman and Chubb [2017]). Our notation is basically a subset
of the tensor network notation, with the exception that ours allows hyperedges. The hyperedges are convenient
for representing several convolutions, such as depthwise convolution (see Figure 1b; the rightmost vertex indicates
depthwise convolution). The reduction of redundant tensor networks was recently studied by Ye and Lim [2018], and
we extended the idea to adopt convolution (Section 3.3).

There are several studies that combine deep neural networks and tensor networks. Stoudenmire and Schwab [2016]
studied shallow fully-connected neural networks, where the weight is decomposed by the so-called tensor train
decomposition [Oseledets, 2011]. Novikov et al. [2015] used a similar idea for deep feed-forward networks, which
was also extended to recurrent neural networks [He et al., 2017, Yang et al., 2017]. For CNNs, Cohen and Shashua
[2016] addressed a CNN architecture that can be viewed as a huge tensor decomposition. In contrast to our case that
reformulates a single convolutional layer, they interpreted the entire forward process including the pooling operation as
a tensor decomposition. Another difference is that they focused on a specific decomposition called hierarchical Tucker
decomposition [Hackbusch and Kühn, 2009]; we do not impose any restrictions on decomposition forms.

6 Experiments

We examine the performance tradeoffs of Einconv layers in image classification tasks. We measured FLOPs of the
entire forwarding path as time complexity and the total number of parameters as space complexity. All the experiments
were conducted on NVIDIA P100 and V100 GPUs. The details of training recipes are described in Supplementary
material.

3For more details, see the real code: https://github.com/pfnet-research/einconv/blob/master/enumerate_graph.
py
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Figure 3: Enumeration of 2D Einconv for LeNet-5 trained with Fashion-MNIST. Black dots indicate unnamed tensor
decompositions found by the enumeration.
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Figure 4: Enumeration of 3D Einconv for C3D-like networks trained with 3D MNIST, where 2p1, tt, and ht
correspond to (2+1)D convolution [Tran et al., 2018], tensor train decomposition [Oseledets, 2011], and hierarchical
Tucker decomposition [Hackbusch and Kühn, 2009], respectively.

6.1 Enumeration

First, we investigated the basic classes of Einconv for 2D and 3D convolutions. For 2D convolution with a filter size of
3ˆ 3, we enumerated nonredundant hypergraphs having at most two inner indices, which were 901 instances in total,
where the inner dimensions were all fixed to 2. In addition to these, we compared baseline Einconv layers that include
nonlinear activations and/or more inner indices. We used the Fashion-MNIST dataset [Xiao et al., 2017] to train the
LeNet-5 network [LeCun et al., 1998]. The result (Figure 3) shows that, in terms of FLOPs, two baselines (standard and
CP) achieve the Pareto optimality but other nameless Einconv layers fill the gap between those two.

Similarly, for 3ˆ 3ˆ 3 filter, we enumerated 3D Einconv having at most one inner index, which were 492 instances in
total. We used the 3D MNIST dataset [de la Iglesia Castro, 2016] with the architecture inspired from C3D [Tran et al.,
2014]. The results (Figure 4) show that, in contrast to 2D case, the baselines dominated Pareto frontier. This could be
because we did not enumerate the case with two inner indices due to its enormous size.4

6.2 GA Search with Non-linear Activation

Next, we evaluate the full potential of Einconv by combining it with a neural architecture search. In contrast to the
previous experiments, we searched Einconv layers from a larger space, i.e., allowing nonlinear activations (ReLUs),
factoring-like multiple convolutions, and changing the inner dimensions. We employed two architectures: LeNet-5

4For 3D convolution, the number of tensor decompositions having two inner indices is more than ten thousand. Training all of
them requires 0.1 million CPU/GPU days, which was infeasible in our computational resources.
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Figure 5: GA search of 2D Einconv for LeNet-5 trained with Fashion-MNIST. Black dots indicate unnamed tensor
decompositions found by the GA search.
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Figure 6: GA search of 2D Einconv for ResNet-50 trained with CIFAR-10.

and ResNet-50. We trained LeNet-5 with the Fashion-MNIST dataset and trained the ResNet-50 with the CIFAR-10
dataset. Note that, for ResNet-50, we could not train a significant number of Einconv instances because of the out of
GPU memory. For a GA search, we followed the strategy of AmoebaNet [Real et al., 2018]. Namely, we did not use
crossover operations; siblings were produced only by mutation. We prepare five mutation operations for changing the
number of vertices/hyperedges and two mutation operations for changing the order of contraction.5 We set test accuracy
and the number of parameters as multiobjectives to be optimized by NSGA2.

The results of LeNet-5 (Figure 5) show the tradeoff between the multiobjectives, which we see an ideal curve of the
Pareto frontier where nameless Einconv layers outperform the baselines. Also, we observe the best accuracy achieved
by Einconv was „ 0.92, which was better than the standard convolution („ 0.91). Although the results of ResNet-50
(Figure 6) show a relatively rugged Pareto frontier, it achieves better tradeoffs except the standard and CP convlutions.

7 Conclusion and Discussion

In this paper, we studied hypergraphical structures in CNNs. We found that a variety of CNN layers are described
hypergraphically, and there exist enormous number of variants that we have never encountered. In the experiments, we
show that the Einconv layer, the proposed generalized CNN layer, helped to find better solutions.

One of the striking observations from the experiments is that some of the existing decompositions, such as CP
decomposition consistently achieved good tradeoff. This empirical result is somehow unexpected because there is no
theoretical reason that the existing decompositions outperform the unnamed ones. Developing a theory that can explain

5See https://github.com/pfnet-research/einconv/blob/master/mutation.py for implementation details.
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this phenomenon or at least characterizing necessary conditions (e.g. symmetricity of decomposition) to achieve good
tradeoff is a promising future work (it seems hard, though).

A current major limitation is the computational cost for searching. For example, the GA search for ResNet-50 in
Section 6.2 took 829 CPU/GPU days. This is mainly because of the long training periods (approximately 10 CPU/GPU
hours for each training), but it is also because GA may be not leveraging the information on hypergraphs well. Although
we incorporated some prior knowledge for hypergraphs such as the proximity regarding edge removing and vertex
adding through mutation operations, simultaneous optimization of hypergraph structures and neural networks using
sparse methods such as LASSO or Bayesian sparse models may be more promising.
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Appendix

A Proofs in Section 3.3

Proof of Proposition 2. Let d denote the element-wise multiplication with broadcasting6 and m ă n. Then the
contraction of U1, . . . ,UM along with V is written as FVpU1, . . . q “ FVzvmpU1, . . . ,Um´1,Um`1, . . . ,Un´1,Umd
Un, . . . q. Since Um d Un P R

Ś

aPvn
θpaq for any Um and Un, FVp. . . q is reduced to FVzvmp. . . q.

Proof of Proposition 3. Let ColpUm, a, bq denote the collapsing operator that reshapes tensor Um by concatenating
its indices ta, bu if ta, bu Ď vm, and creates a new index b1 where its inner dimension is Rb1 “ RaRb. Since
FVpU1,U2, . . . q “ FVnapColpU1, a, bq,ColpU2, a, bq, . . . q and using the same technique used in the proof of Propo-
sition 2, we can conclude the statement.

Proof of Proposition 4. Suppose we have M size-invariant convolutions of size pI1, J1q, . . . , pIM , JM q. By simple
calculation, we see that the final convolution size pI, Jq is determined by I “ 1 `

ř

mPrMspIm ´ 1q and J “ 1 `
ř

mPrMspJm´1q. Therefore possible choices are to change tIm, Jm | m P rM su with varyingM ą“ minp I´1
2 , J´1

2 q.
This problem is reduced to the partition of integers, which is calculated by π.

Proof of Theorem 1. For simplicity, consider 2D convolution with 3ˆ 3 filter (I “ J “ 3). Suppose we have L P N
inner indices A “ tc, r1, . . . , rL´1u. According to Proposition 4, the vertical index i and the horizontal index j have to
be used only once, and their usage is divided into two patterns: (i) they are used in the same vertex, or (ii) they are
separated in different vertices. First we consider case (i). Assume v1 contains ti, ju and the subset of A, which contains
2L patterns, and let A1 “ v1zti, ju Ď 2A be the selected subset. Similarly, consider v2. To avoid the redundancy
described in Proposition 2, v2 must contains indices that are not contained in v1, which means that the choices for v2

are in 2Az2A1 . As we continue the process for v3, v4, . . . , we see that the number of patterns monotonically decreases.
In addition, the maximum length of the vertices is at most L ` 1, which is achieved when A1 “ tHu and each of
v2, . . . , vL`1 has a single inner index, and the number of nonredundant hypergraphs is finite. Case (ii) is analyzed in
the same way, except the maximum length of the vertices is L` 2. For the case of large filter sizes, we can discuss a
similar method using Proposition 4 that ensures the combination patterns of factoring convolution is also finite.

B Training Recipes

B.1 Enumeration

2D The architecture is Einconv(64)–MaxPooling–Einconv(128)–MaxPooling–FC(10)-Softmax, where Ein-
conv(k) denotes an Einconv layer with k output channels and FC(k) denotes a fully-connected layer with k output
units. Maxpooling is performed by a factor of 2 for each spatial dimension. We trained for 50 epochs using Adam
optimizer of the batch size 16 with learning rate 2E-4 and weight decay of rate 1E-6.

3D The architecture is Einconv(64)-ReLU-Einconv(128)-ReLU-MaxPooling-Einconv(256)-ReLU-
Einconv(256)-ReLU-MaxPooling-Einconv(512)-ReLU-Einconv(512)-ReLU-GAP-FC(512)-FC(512)-
FC(10)-Softmax, where GAP denotes global average pooling. We applied dropout with rate 50% to fully-connected
layers except the last layer. Other settings were the same as the 2D case.

6https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html
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B.2 GA Search

LeNet-5 The architecture is Einconv(32)–MaxPooling–Einconv(32)–MaxPooling–FC(10)-Softmax. We
trained for at most 250 epochs using Adam optimizer of the batch size 128 with learning rate 2E-4 and weight
decay of rate 5E-4.

ResNet-50 The architecture is that we replace all the bottleneck layers in ResNet-50 that do not rescale the spatial
size by Einconv layer. We trained for at most 300 epochs using momentum SGD of the batch size 32 and learning rate
0.05 that was halved for every 25 epochs and weight decay of rate 5E-4. Also, we used standard data augmentation
methods of random rotation, color lightning, color flip, random expansion, and random cropping.
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