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MAXIMALLY ADDITIVELY REDUCIBLE SUBSETS OF
INTEGERS

GAL GROSS

Abstract. Let A,B ⊆ N be two finite sets of natural numbers.
We say that B is an additive divisor for A if there exists some
C ⊆ N with A = B + C. We prove that among those sub-
sets of {0, 1, . . . , k} which have 0 as an element, the full interval
{0, 1, . . . , k} has the most divisors. To generalize to sets which
do not have 0 as an element, we prove a correspondence between
additive divisors and lunar multiplication, introduced by Appel-
gate, LeBrun and Sloane (2011) in their study of a kind of min/max
arithmetic. The number of binary lunar divisors is related to com-
positions of integers which are restricted in that the first part is
greater or equal to all other parts. We establish some bounds on
such compositions to show that {1, . . . , k} has the most divisors
among all subsets of {0, 1, . . . , k}. These results resolve two con-
jectures of LeBrun et al. regarding the maximal number of lunar
binary divisors, a special case of a more general conjecture about
lunar divisors in arbitrary bases. We resolve this third conjecture
by generalizing from sum-sets to sum-multisets.

1. Introduction

Let (G,+) be a commutative group, and A,B ⊆ G subsets. The
sumset A + B (also called Minkowski sum) is the set of pairwise
sums

A+B := {a+ b : a ∈ A, b ∈ B}.
Classical additive number theory studies direct problems: given a cer-
tain set A, what can we say about its sumset A + A, or iterated sum-
sets nA = A + · · ·+ A (with n summands)? (See [12] for an excellent
introduction.) In contrast, inverse problems try to extract informa-
tion about A from information about its sumset. (See [13]; and [17]
for an overview of both direct and inverse problems). One such in-
verse problem is the question, which subsets are sumsets? The as-
ymptotic version of this question was first raised by Ostmann [14]: we
say that a set of positive integers C ⊆ N+ is (additively) reducible
if there are some A,B ⊆ N+ each with more than one element, such
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2 GAL GROSS

that A + B = C; otherwise, C is said to be irreducible. Similarly,
we call C asymptotically reducible if there are some A,B ⊆ N+

each with more than one element, and and integer m ∈ N such that
(A + B) ∩ [m,∞) = C ∩ [m,∞); otherwise, C is said to be asymp-
totically irreducible. It is easy to see that the set P of primes is
irreducible (because of 2, 3 ∈ P ), and Ostmann conjectured that it is
asymptotically irreducible. This cojecture, sometimes referred to as
the inverse Goldbach problem, remains unresolved. It has since been
placed in the wider context of the “sum-product phenomenon” as ex-
emplified by Erdős and Szemerédi’s [4]. (See also [3] for a summary of
recent progress.)

Regardless of multiplicative structure, Wirsing [18] has proved that
almost all subsets of N are asymptotically irreducible, and hence also
irreducible. (To interpret “almost all” one identifies subsets of N with
their binary encoding, and thus with the interval [0, 2] ⊆ R; see §3.)
This paper is concerned with the similar but opposite question: which
subsets C ⊆ [0, N ] ⊆ N are maximally reducible?

Definition 1. Let C ⊆ N be a set of natural numbers. We say that A
is an additive divisor (or sumset divisor or simply divisor) for C,
if there exists some B ⊆ N such that C = A+B.

For any finite set of natural numbers C ⊆ N, we denote d(C) the
number of sumset divisors. That is, d(C) is the number of distinct sets
A ⊆ N such that there exists some B ⊆ N with C = A +B.

The trivial decomposition C = C+{0} shows that every set has at least
two divisors. Additively irreducible sets have exactly two. Fix some k ∈
N and consider all subsets of [0, k]. In §2 we develop a correspondence
(called “k-promotion”) between divisors of subsets which have 0 as an
element. Theorem 8 of §2 shows that among those subsets which have
0 as an element, the full interval {0, 1, . . . , k} has the most divisors.

In §3 we assign each finite subset of N a binary number, and prove that
the sumset operation corresponds to lunar multiplication on binary
numbers; a multiplication operator defined by Applegate, LeBrun, and
Sloane [1] in their study of alternative systems of arithmetic on digits, in
which long addition and long multiplication can be performed without
“carries”. This new correspondence connects the number of sumset
divisors to the number of lunar divisors. In their paper, LeBrun et al.
establish a correspondence between the number of binary lunar divisors
of m and the number of restricted compositions of ℓ, where ℓ is the
number of 1’s in the binary representation of m. The compositions are
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restricted in that the first part is greater or equal to all other parts. In
§4 we prove that the table enumerating such restricted compositions
can be easily constructed using properties of the forward difference from
the finite calculus. We then establish some bounds on such restricted
compositions. We use these bounds to prove Theorem 19 of §5, which
shows that {1, . . . , k} has the most divisors among all subsets of [0, k]
(that is, we remove the restriction that 0 is an element).

Due to the above correspondence between sumsets and lunar numbers,
Theorems 8 and 19 resolve Conjectures 13 and 14 of LeBrun et al. These
conjectures are a binary version of a more general Conjecture 12, since
lunar arithmetic is defined for arbitrary bases. This conjecture is re-
solved in §7 (see Theorem 28), in which we prove a correspondence
between base b lunar numbers and arrays of subsets of N of height
(b− 1). We conclude in §8 with some open questions.

2. Divisors of 0-rooted sets

Throughout the paper we denote by [k] the full interval [k] = [0, k]∩N =
{0, . . . , k}.
Definition 2. We say A ⊆ N is a 0-rooted set if minA = 0. For
k ∈ N, let Zk denote the collection of 0-rooted sets whose maximal
element is k:

Zk = {A ⊆ N : min(A) = 0 , max(A) = k}.

For convenience we also introduce Z≤k =
⋃

ℓ≤k Zℓ, and Z =
⋃

k∈N Zk

the collection of finite 0-rooted sets.

The purpose of this section is to prove that among 0-rooted sets Z≤k,
the full interval {0, . . . , k} has the most number of divisors. Given any
A ∈ Z≤k, we start by describing a procedure for turning factors of A
into factors of [k] in a process we call k-promotion.

Definition 3. Let A ∈ Z≤k and suppose that A = B + C with
max(B) ≤ max(C). We define the set CB as follows:

CB = C ∪ (([k] \ A) ∩ [max(B)− 1]) ∪ ((([k] \ A)− {max(B)}) ∩ N)

That is, for each s ∈ [k] \ A: if s < max(B) we append s to C; while
if s ≥ max(B) we append s−max(B) to C.

Lemma 4. Let A ∈ Z≤k, and suppose that A = B+C. Then B+CB =
[k].
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Proof. Since C ⊆ CB we have A = B + C ⊆ B + CB. Moreover,
by construction, [k] \ A ⊆ B + CB. Thus, [k] = A ∪ ([k] \ A) ⊆
B+CB. On the other hand, max(B+CB) = max(B)+max(CB). Now,
max(CB) ≤ max{k−max(B),max(C)} so that max(B) +max(CB) ≤
max{k,max(B)+max(C)} = max{k,max(A)} ≤ k. Moreover, min(B+
CB) = 0. Thus, B + CB ⊆ [k]. �

{0, 3} + {0, 4} = {0, 3, 4, 7} ; {0, 3} + {0, 1, 2, 3, 4} = [7]
{0, 3} + {0, 4} = {0, 3, 4, 7} ; {0, 3} + {0, 1, 2, 3, 4, 5} = [8]
{0, 3} + {0, 1, 3} = {0, 1, 3, 4, 6} ; {0, 3} + {0, 1, 2, 3} = [6]
{0, 3} + {0, 1, 3} = {0, 1, 3, 4, 6} ; {0, 2, 3} + {0, 1, 3} = [6]

Figure 1. Example of k-promotion

Now, each factor B of A appears in one or more factorizations. We
may apply the procedure above to each such factorization. We let
F (B) denote the resulting set of factors of [k]. That is, for each C ⊆ A
such that B + C = A: if max(B) ≤ max(C) we let B ∈ F (B); if
max(B) ≥ max(C) we let BC ∈ F (B) (where BC is given by the
procedure described above). (Note that this means that if there is
some C with max(C) = max(B), then both B,BC ∈ F (B).)

{0, 2, 3, 4, 5, 6} = {0, 2, 3} + {0, 2, 3} F ({0, 2, 3}) = {{0, 2, 3}; {0, 1, 2, 3}}
= {0, 2} + {0, 3, 4} F ({0, 2}) = {{0, 2}}
= {0, 2} + {0, 2, 3, 4}

Figure 2. Example of F (B) for A = {0, 2, 3, 4, 5, 6}

Theorem 5. If B,D are different divisors of A ∈ Z≤k, then F (B) ∩
F (D) = ∅.

Proof. First note that for A = [k] and any divisor B of A we have
F (B) = {B} so the claim follows trivially. Assume therefore that
A ( [k]. We start by showing that B ∈ F (B) =⇒ B /∈ F (D).

Suppose that B ∈ F (B). Then there exists some C with max(C) ≥
max(B) and B + C = A. We already know that B 6= D, and all other
elements of F (D) are of the form DE . Assume therefore that there
exists some E with max(E) ≤ max(D) and D + E = A. If D 6⊆ B,
then we are done since D ⊆ DE. Suppose therefore that D ⊆ B so in
particular max(D) ≤ max(B). We therefore have the chain

max(E) ≤ max(D) ≤ max(B) ≤ max(C)
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On the other hand, max(A) = max(E)+max(D) = max(B)+max(C).
Therefore, max(B) = max(D) and so max(E) = max(C), and we have
a chain of equalities

max(E) = max(D) = max(B) = max(C).

Let us denote this common element by m, and let s ∈ [k] \ A 6= ∅.
There are two options:

• s < m, in which case s ∈ DE. Since s /∈ A ⊇ B, this shows
that B 6= DE.

• s ≥ m, in which case s − m ∈ DE . Assume for contradiction
that s−m ∈ B. Since m ∈ C we would have s = (s−m)+m ∈
B + C = A, which is a contradiction. Thus, s − m /∈ B and
B 6= DE.

We conclude that B ∈ F (B) =⇒ B /∈ F (D).

All other elements of F (B) are of the form BC . So we will now show
that BC ∈ F (B) =⇒ BC /∈ F (D). First note that by the argument
above, D ∈ F (D) =⇒ D /∈ F (B), so that D ∈ F (D) =⇒ BC 6= D.
All other elements of F (D) are of the form DE .

We are therefore assuming that there exist some C,E such that

A = B + C and max(B) ≥ max(C),

A = D + E and max(D) ≥ max(E).

Assume for contradiction BC = DE .

First suppose that B ⊆ D. Since B 6= D, there must exist some
d ∈ D such that d /∈ B. Since d = d + 0 ∈ D + E = A we have
d /∈ [k] \ A. However, d ∈ D ⊆ DE = BC , so that there must be some
s ∈ [k] \ A with d = s − max(C). Now, s = d + max(C) /∈ A implies
max(C) /∈ E. Thus, max(E) 6= max(C). However, [k] = BC + C =
DE +E implies k = max(BC) +max(C) = max(DE) +max(E). Since
BC = DE we have max(BC) = max(DE) so max(C) = max(E), which
is a contradiction.

On the other hand, B 6⊆ D implies there is some b ∈ B such that b /∈
D. Analogous argument to the one above then shows that max(E) 6=
max(C), which again contradicts the assumption BC = DE .

�

Theorem 5 is enough to establish the maximality of d([k]) among sets
of Z≤k. The following two claims will help to show that it is also the
unique maximum.
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Lemma 6. Let 3 ≤ k ∈ N be odd, and suppose that A ∈ Z≤k with
A ( [k]. Then Fk = {0, (k + 1)/2} is a factor of [k] which does not
arise from k-promotion. That is, Fk /∈ F (B) for any factor B of A.

Proof. It is clear that Fk is a factor of [k], since

[k] = [(k − 1)/2] + {0, (k + 1)/2}.

Assume for contradiction that Fk ∈ F (B) for some factor B of A. Then
either:

• B = Fk and B ∈ F (B). That is, there exists some C for which
C+Fk = A and max(C) ≥ max(Fk). But max(Fk) = (k+1)/2
and (k + 1)/2 + (k + 1)/2 = k + 1 > k = max(A). This is a
contradiction.

• Fk = BC for some C and BC ∈ F (B). That is, there exists some
C with max(B) ≥ max(C) and B+C = A, and BC = Fk. Since
B ⊆ BC = Fk we must have B ⊆ {0, (k + 1)/2}. If B = {0},
the assumption max(B) ≥ max(C) implies C = {0}, in which
case BC = [k] 6= Fk (since k ≥ 3). Thus, B = {0, (k + 1)/2}.

However, from C + BC = [k] we obtain C + Fk = [k]. In
particular, [(k − 1)/2] ⊆ C in which case [k] ⊆ B + C = A,
contradicting the assumption A ( [k].

�

In contrast to the odd case, it is straightforward to verify that all
factors of [4], for example, arise from 4-promotion. We must weaken
the hypothesis in the previous lemma from an absolute statement to a
relative one:

Lemma 7. Let 4 ≤ k ∈ N be even. Then for any A ∈ Z≤k with
A ( [k], there exists some factor Fk of [k], such that Fk /∈ F (B) for
any factor B of A.

Proof. For A = [k] \ {2} we use Fk = {0, 2}. This is indeed a factor of
[k], since [k] = {0, 2}+[k−2] (for example). On the other hand, for any
factor B of A we have 2 /∈ B. Thus, Fk ∈ F (B) if and only if BC = Fk

for some C. That is, there exists some C with max(B) ≥ max(C) and
B +C = A, and BC = Fk. Since B ⊆ BC = Fk = {0, 2} and 2 /∈ B we
must have B = {0}. Then max(B) ≥ max(C) implies C = {0}. Then
A = {0} and BC = [k] 6= {0, 2}. Thus, Fk /∈ F (B) for any factor B of
A.
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If A 6= [k] \ {2} we use Fk = {0, 1, 3, 5, . . . , k − 1}. First,
[k] = {0, 1}+ {0, 1, 3, 5, . . . , k − 1}

shows that Fk is indeed a factor of [k]. Assume for contradiction that
Fk ∈ F (B) for some factor B of A. Then either:

• B = Fk and B ∈ F (B). That is, there exists some C for which
C + Fk = A and max(C) ≥ max(Fk) = k − 1. This is clearly
impossible since k ≥ max(A) = max(B)+max(C) ≥ 2(k−1) =
2k − 2 =⇒ k ≤ 2, contradicting our assumption that k ≥ 4.

• Fk = BC for some C and BC ∈ F (B). That is, there exists some
C with max(B) ≥ max(C) and B + C = A, and BC = Fk. We
have C+BC = [k], that is C+Fk = [k]. Since max(Fk) = (k−1)
this implies max(C) ≤ 1. Thus C = {0, 1}.

Now, B ⊆ BC = Fk. Since A ( [k] = C + Fk we must have
B ( Fk. We will show that the only element of Fk missing from
B is 1. Let 2x+ 1 ∈ BC \B. Then,

A = B + C ⊆ {0, 1, 3, . . . , 2x− 1, 2x+ 3, . . . , k − 1}+ {0, 1}
= [k] \ {2x+ 1, 2x+ 2}.
Thus, {2x + 1, 2x + 2} ⊆ [k] \ A. In particular, 2x = (2x +
1) − max(C) ∈ BC . Since the only even element in BC is 0,
we must have x = 0. Thus, the only element of BC missing
from B is 1. In other words, B = {0, 3, 5, . . . , k − 1}. Then,
A = B + C = [k] \ {2}, contradicting our assumption that
A 6= [k] \ {2}.

�

These two lemmas and Theorem 5 together imply:

Theorem 8. The set [k] is the unique maximum of d(·) in Z≤k.

Proof. Given some 0-rooted set A ( [k] we have a map B 7→ F (B)
taking each factor B of A, to a set of factors of [k]. Theorem 5 implies

d([k]) ≥
∑

B divides A

cardF (B) ≥
∑

B divides A

1 = d(A).

Thus, [k] is a maximum of d(·) in Z≤k. It is easy to see by direct
computation that [k] is the unique maximum for k = 0, 1, 2 (with 1, 2, 3
factors respectively). Lemma 6 and Lemma 7 show that it is also the
unique maximum for k ≥ 3. �
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3. Lunar Arithmetic

Applegate, LeBrun, and Sloane [1] define base-b lunar1 addition ⊕ as
the digitwise max operation. To multiply two digits we take their
min. Long multiplication is similar to regular multiplication, except
that lunar addition implies there are no carries. The figures below
reproduce the examples from their article:

169
⊕ 248

269

(3.1) base 10 lunar addition

169
⊗ 248

168
⊕ 144
⊕ 122

12468

(3.2) base 10 lunar multiplication

Figure 3. Lunar arithmetic

Le Brun et al. then show that ⊕ and ⊗ are commutative and associa-
tive, and ⊗ distributes over ⊕. They proceed to study analogues of
number-theoretic constructions “including primes, number of divisors,
sum of divisors, and the partition function.” [1]

In particular, they define db(n) as the number of lunar divisors of n in
base b. Section 6 of their paper contains a series of conjectures about
the properties of db(n), which we reproduce below for ease of reference.
Note that amam−1 . . . a1|b denotes a base-b representation. Following
are Conjectures 12-14 in [1].

Conjecture 12 (LeBrun et al.). In any base b ≥ 3, among all k-digit
numbers n, db(n) has a unique maximum at n = (bk − 1)/(b − 1) =
111 . . . 1|b.

Conjecture 13 (LeBrun et al.). In base 2, among all k-digit num-
bers n, the maximal value of d2(n) occurs at n = 2k − 2 = 111 . . . 10|2,
and this is the unique maximum for n 6= 2, 4.

Conjecture 14 (Part I; LeBrun et al.). In base 2, among all odd
k-digit numbers n, d2(n) has a unique maximum at n = 2k − 1 =
111 . . . 111|2.

1Originally published under the name ‘dismal arithmetic’, the authors have come
to prefer ‘lunar arithmetic’ instead. See [7] and the relevant OEIS entries [15].
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Conjecture 14 (Part II; LeBrun et al.). In base 2, among all odd
k-digit numbers n, if k ≥ 3 and k 6= 5, the second-largest value of d2(n)
occurs at n = 2k − 3 = 111 . . . 101|2, and possibly other values of n.

The sequence d2(1 . . . 1|2) in particular appears to count many phenom-
ena, which are documented in [15] (see also [5] for explicit bijections
between some of the interpretations). Le Brun et al. count d2(1 . . . 1|2)
by exhibiting a generating function for the sequence; based on an ar-
gument originally due to Richard Schroeppel.

We now prove that the sumset operation corresponds to base 2 lunar
multiplication, facilitating the study of divisibility properties.

Let F denote the collection of finite subsets of N, and let B denote the
set of finite binary sequences. There is a natural bijection β : F → B.
First, β(∅) = 0. Next, for any nonempty A ∈ F we define the binary
number β(A) = cmax(A) . . . c1c0|2 as follows: for 0 ≤ i ≤ max(A):

ci =

{

1 if i ∈ A,

0 if i /∈ A.

The key observation is

(1) β(A+B) = β(A)⊗ β(B).

This is easy to see when viewing A + B as
⋃

b∈B A + {b}. Thus, for
each element b of B, we are shifting every element of A by b.

  {0, 2}+ {1}
  {0, 2}+ {2}

  {0, 2}+ {4}
     {0, 2}+ {1, 2, 4}

(4.1) graphical represen-
tation of {0, 2} + {1, 2, 4}

101
⊗ 10110

000
⊕ 101
⊕ 101
⊕ 000
⊕ 101

1011110

(4.2) binary representa-
tion of {0, 2} + {1, 2, 4}

Figure 4. Two representations of sumsets

Theorem 9. β : F → B is a monoid-homomorphism, where F is
equipped with the sumset operation, and B with the lunar multiplication
operation.
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Proof. The fact that (F ,+) is a commutative monoid follows from the
fact that (N,+) is. The fact that (B,⊗) is a monoid is proved in
Le Brun et al. In fact, they show that for any base m ≥ 2, if A =
{0, 1, 2, . . . , b− 1} the set of polynomials (the standard representation
for a positional counting system) equipped with lunar addition and
lunar multiplication (A[X ],⊕,⊗) is a commutative semiring.

We have β({0}) = 1, so that the neutral elements are mapped to each
other. Let A,B ∈ F . We need to prove formula (1). The result is
clear when one of A,B is ∅. Assume therefore that A,B 6= ∅. Identi-
fying the corresponding binary numbers β(A) = amax(A) . . . a1a0|2 and

β(B) = bmax(B) . . . b1b0|2 with the polynomials P =
∑max(A)

i=0 ai2
i and

Q =
∑max(B)

i=0 bi2
i we have

β(A)⊗ β(B) =

max(A)+max(B)
∑

i=0

ci2
i

where

ci =
⊕

j+k=i

aj ⊗ bk = max{min{aj, bk} : j + k = i}.

Thus, ci = 1 if and only if there exist j, k ∈ N with j + k = i such that
aj = 1 and bk = 1. On the other hand, by the definition of β, the i-th
digit of β(A +B) is 1 if and only if i ∈ A + B. That is, if and only if
there exist j, k ∈ N such that j ∈ A and k ∈ B and j + k = i. Again,
the definition of β implies that these two conditions are the same so
that β(A+B) = β(A)⊗ β(B). �

This homomorphism identifies 0-rooted sets and odd binary numbers
so that Conjecture 14 (Part I) is an immediate corollary of Theorem 8
above:

Corollary 10. In base 2, among all odd k-digit numbers n, d2(n) has
a unique maximum at n = 2k − 1 = 111 . . . 111|2.

4. Counting d([k])

In Section 5 we find the maximum of d(·) among all subsets of [k],
not just the 0-rooted ones. One important part of the proof is the
observation (already made by LeBrun et al. in [1]) that d([k] \ {0}) =
2d([k − 1]). We then show that 2d([k − 1]) > d([k]). The purpose
of this section is to help us establish this inequality by highlighting
the connection between the sequence d([k]) and Fibonacci numbers of
higher-order.
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Recall that a composition of a natural number n ∈ N is an ordered
tuple of positive natural numbers (c1, c2, . . . , ck) such that n =

∑k

i=1 ci.
If the length of the tuple is k, it is called a k-composition. Each of the
ci is called a part of the composition. It is an easy exercise to show
that the total number of compositions of n is 2n−1. Placing different
restrictions on such compositions leads to a rich theory. For example,
one may restrict the length of a composition, the size of the parts, the
type of the parts, the arrangement of the parts, etc. In particular, inte-
ger partitions are integer compositions arranged in a non-decreasing
order. Other types of restriction have to do with so-called “statistics”:
If (c1, c2, . . . , ck) is a composition of n, we say that a rise occurs at
position i if ci+1 > ci, a fall is defined analogously, and a level occurs
when ci+1 = ci. Statistics in the context of composition have to do
with the number of such rises and falls. Another type of restriction de-
mands that certain patterns be avoided. MacMahon [11] was amongst
the firsts to study such questions in detail, and we refer the reader to
the recent book of Heubach and Mansour [8] for an excellent survey of
the field.

LeBrun conjectured that d2(111 . . . 111|2) (with k 1’s) counts the num-
ber of compositions of k with the added restriction that the first part is
greater or equal to all other parts. For example, d([3]) = d2(1111|2) = 5
corresponding to the five restricted compositions (4); (3, 1); (2, 2);
(2, 1, 1); (1, 1, 1, 1). For ease of reference, we shall call such restricted
compositions headstrong compositions.

This conjecture was proved by Richard Schroeppel ([1], Theorem 16)
and again by Frosini and Rinaldi in [5]. For the sake of completion, we
reproduce it below in the language of sumsets.

Theorem 11 (Schroeppel, 2001). For any n ∈ N, the number d2([n])
equals the number of headstrong compositions of n+ 1.

Proof. Suppose n+ 1 = c1 + c2 + · · ·+ ck is a headstrong composition.
Then we let

A := {(n+ 1)− c1, (n+ 1)− (c1 + c2), (n+ 1)− (c1 + c2 + c3), . . . , 0},
B := [c1 − 1]

It is clear that A + B = [n]. Conversely, suppose A + B = [n], then
also A + [max(B)] = [n]. Suppose A = {0 = a0, a1, . . . , ak = max(A)}
with 0 < a1 < · · · < ak. Then,

n+1 = (max(B)+1)+(ak−ak−1)+(ak−1−ak−2)+· · ·+(a2−a1)+(a1−a0)
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is a headstrong composition of n+1, and applying the procedure above
to this composition will give us A. To see this is indeed a headstrong
composition, note that a+ j + 1− 1 ∈ [n] = A+B and let aj+1 − 1 =
a + b for some a ∈ A and b ∈ B. Since aj ≤ aj+1 − 1 we have
b′ = aj+1 − 1 − aj ≥ 0. On the other hand, a < aj+1 implies a ≤ aj
so that b′ ≤ b ≤ max(B). Since aj + b′ + 1 = aj+1 we must have
aj +max(B) + 1 ≥ aj+1, that is max(B) + 1 ≥ aj+1 − aj. �

The bijection in the proof in facts shows that the following corollary
holds. The next section studies this further, as it will play an important
role in the proof of Conjecture 12.

Corollary 12. The number of divisors of [n] whose cardinality is ex-
actly m equals the number of headstrong compositions of n + 1 with
exactly m parts.

Headstrong compositions were first studied by Knopfmacher and Rob-
bins [10] who derived generating functions and asymptotics for them.
The (ordinary) generating function is given by

∞∑

ℓ=1

(1− z)zℓ

1− 2z + zℓ+1
.

The index ℓ corresponds to the leading term of the composition. By
comparing generating functions it is easy to see that the number of
headstrong composition of n starting with k is given by F (k, n), the
n-th element of the generalized Fibonacci sequence F (k, ·) defined
by the recurrence relation

F (n, k) =







0 if 1 ≤ k < n,

1 if k = n,
∑n

j=1 F (n, k − j) if k > n.

It is traditional to start enumerating the Fibonacci sequence at 0 (that
is, F0 = 0, F1 = 1 etc). However, we break from this tradition and
start our count at 1 (that is, F1 = 0, F2 = 1), which gives our formula
in the proposition below a pleasing symmetry. Thus, F (2, ·) are the
usual Fibonacci numbers, F (3, ·) are the so-called Tribonacci numbers,
etc. Note that the sequence F (1, ·) is simply the constant sequence
1, 1, 1 . . .

To get d2(111 . . . 111|2) (with k 1’s) one simply sums the k-th column
in the table above. (For a generating-functions-free proof, observe that
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F (n, k) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n = 1 1 1 1 1 1 1 1 1 1 1
n = 2 0 1 1 2 3 5 8 13 21 34
n = 3 0 0 1 1 2 4 7 13 24 44
n = 4 0 0 0 1 1 2 4 8 15 29
n = 5 0 0 0 0 1 1 2 4 8 16

Table 1. Table of F (n, k)

F (n, ·) enumerates the number of compositions with leading term n by
the following reasoning. Each composition of m with leading term n,
can be obtained by appending 1 to the end of a composition of m− 1
(with leading term n); or by appending 2 to the end of a composition
of m − 2 (with leading term n); and so on until we append n to the
end of a composition of m− n. We are not double-counting since the
compositions differ in their last term; and we can prove inductively
that all compositions of m (with leading term n) are obtained in that
way.) Thus, the number of headstrong compositions of k is given by
∑k

n=1 F (n, k) =
∑

n≥1 F (n, k).

As mentioned at the beginning of this section, this characterisation
simplifies the proof that 2d([k − 1]) > d([k]), as a consequence of the
following lemma.

Lemma 13. For k ≥ n we have 2F (n, k) ≥ F (n, k + 1), and the
inequality is strict for k ≥ 2n.

Proof. Since F (n, n) = F (n, n + 1) = 1, the claim is clearly true for
k = n. Since the claim holds trivially for n = 1, we may assume that
n ≥ 2. For k > n we have from the definition of F (n, k)

F (n, k + 1) =

n∑

j=1

F (n, k + 1− j)

= F (n, k) +

n−1∑

j=1

F (n, k − j)

= 2F (n, k)− F (n, k − n) ≤ 2F (n, k)

with strict inequality for k ≥ 2n. �

Lemma 13 gives a lower bound on F (n, k) in terms of the next element
of the sequence. The next lemma gives an upper bound showing that

1

2
F (n, k + 1) ≤ F (n, k) ≤ 2

3
F (n, k + 1).
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This will be used to show that [k] \ {0} is d(·)-maximal among all
P ([k]) \ Z≤k. These bounds are not asymptotically tight: the reader

may recall that F (2, k)/F (2, k + 1) → 1/φ where φ = (1 +
√
5)/2 ≈

1.618. By considering the characteristic equation of the linear recur-
sion, one finds that F (n, k)/F (n, k + 1) → 1/r, where r is the largest
real root of xn(2−x) = 1 (see [19]), though we shall not use this result.

Lemma 14. For any n > 1 and k > n we have 3F (n, k) ≤ 2F (n, k+1).
Equality holds if and only if n = 2 and k = 4.

Proof. We have F (2, 3) = 1, F (2, 4) = 2, F (2, 5) = 3, which proves the
claim for n = 2 and k ≤ 4.

If n = 2 and k > 4, then k − 1 ≥ 2n so Lemma 13 shows that

2F (n, k + 1) = 2F (n, k) + 2F (n, k − 1) > 3F (n, k).

On the other hand, if n ≥ 3 and k = n+ 1 we have

2F (n, n+ 2) = 4 > 3 = 3F (n, n+ 1)

while if k ≥ n+ 2 we have by Lemma 13

2F (n, k + 1) ≥ 2F (n, k) + 2F (n, k − 1) + 2F (n, k − 2)

≥ 3F (n, k) + 2F (n, n)

> 3F (n, k).

�

5. Divisors of non-0-rooted sets

Most of the groundwork for Theorem 19 is now done. The remaining
key observation is Lemma 15 of [1]. For completeness, Lemma 15 proves
the relevant part2 in the language of sumsets.

For convenience, we introduce the notation [k+] = [k]\{0} = {1, 2, 3, . . . , k}.
For 1 ≤ k ∈ N we also set Z+

k the collection of sets of positive natural
numbers whose maximal element is k:

Z+
k := {A ⊆ N : min(A) > 0, max(A) = k}.

Finally, we have Z+
≤k =

⋃

0<ℓ≤k Z+
ℓ . Note that we have a partition of

subsets of [k]: P ([k]) = {∅} ⊔ Z≤k ⊔ Z+
≤k (disjoint union).

2Lemma 15 applies to arbitrary bases: “If the base b expansion of n ends with
exactly r ≥ 0 zeroes, so that n = mbr with b 6 |m, then db(n) = (r + 1)db(m).”
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Lemma 15 (LeBrun et al.). Let A be a finite subset of N, and let
r := min(A). Then,

d(A) = (r + 1)d(A− {r}).

Proof. Note that A − {r} ∈ Z is a 0-rooted set. Suppose B + C =
A− {r}. Then, for any 0 ≤ k ≤ r

(B + {k}) + (C + {r − k}) = (B + C) + {r} = (A− {r}) + {r} = A

shows that each of B + {k} is a divisor of A. These are clearly all
distinct, so d(A) ≥ (r + 1)d(A− {r}).
Conversely, suppose B + C = A. Denoting b := min(B) and c :=
min(C), we have b+ c = min(A) = r. Thus,

(B − {b}) + (C − {c}) = (B + C)− {r} = A− {r}.
This shows that F 7→ F − min(F ) maps divisors of A to divisors of
A − {r}. Since 0 ≤ min(F ) ≤ r (and F 6= F ′ implies F − {k} 6=
F ′ − {k}), each divisor of A − {r} is the image of at most (r + 1)
divisors of A. That is, d(A) ≤ (r + 1)d(A− {r}). �

As an immediate consequence of Lemma 15 we have d([k+]) = 2d([k−
1]). The following Theorem then implies that [k+] has more divisors
than any element in Z≤k.

Theorem 16. 2d([k − 1]) ≥ d([k]), and the inequality is strict for
k > 1.

Proof. Note that d([0]) = 1 and d([1]) = 2, which verifies the claim for
k = 1. Assume therefore that k ≥ 2. We have seen in Section 4 that

d([k − 1]) =
k∑

n=1

F (n, k).

By Lemma 13 we have 2F (n, k) ≥ F (n, k+1) so that for k > 1 we find

2d([k − 1])− d([k]) =

k∑

n=1

(2F (n, k)− F (n, k + 1))− F (k + 1, k + 1)

Now, F (1, ·) is the constant 1 sequence, so 2F (1, k)− F (1, k + 1) = 1.
Moreover, F (k + 1, k + 1) = 1 by definition. Thus,

2d([k − 1])− d([k]) =

k∑

n=2

(2F (n, k)− F (n, k + 1)).
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Since k ≥ 2 the sum is nonempty, and Lemma 13 shows that each
term in the sum is nonnegative. In fact the sum includes the term
2F (k, k)− F (k, k + 1) = 2− 1 so it is positive. �

To show that [k+] is the maximum of d(·) in Z+
≤k, we use Lemma 14.

Theorem 17. For any 1 ≤ j ≤ k we have (j+1)d([k−j]) ≤ 2d([k−1]).
Equality holds if and only if j = 1, or k = 3 and j = 2.

Proof. Since d([0]), d([1]), d([2]) = 1, 2, 3 respectively, it is easy to verify
that the claim holds for k ≤ 3. In particular, for k = 3 and j = 2 we
have

3d([1]) = 3 · 2 = 2 · 3 = 2d([2]).

Assume therefore that k ≥ 4. The claim trivially holds with equality
for j = 1. We shall prove the strict inequality part of the claim by
induction, with base case j = 2. Recall that F (1, ·) = F (n, n) =
F (n, n+ 1) = 1 (for any positive n). We have by Lemma 14

3d([k − 2]) = 3

k−1∑

n=1

F (n, k − 1)

= 2 · 3 +
k−2∑

n=2

3F (n, k − 1)

< 2(F (1, k) + F (k − 1, k) + F (k, k)) +

k−2∑

n=2

2F (n, k)

= 2
k∑

n=1

F (n, k) = 2d([k − 1]).

(Note that the strict inequality is justified since the sum contains at
least one element different from F (2, 4).)

Suppose that for some j ≥ 2 we know that for all k ≥ min(4, j) we
have (j+1)d([k− j]) < 2d([k−1]). Note that 3d([n−2]) ≤ 2d([n−1])
for any n ≥ 2 (it is only when we require the inequality to be strict
that we need n ≥ 4). Thus, if j + 1 ≤ k we have

(j + 2)d([k − j − 1]) = (j − 1)d([k − j − 1]) + 3d([k − j − 1])

≤ (j − 1)d([k − j]) + 2d([k − j])

= (j + 1)d([k − j])

< 2d([k − 1]).

�
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Theorem 18. For any ∅ 6= A ( [k+] we have d([k+]) ≥ d(A), and the
inequality is strict for k 6= 3.

Proof. Let a := min(A). Note that A ( [k+] implies a ≥ 1. By
Proposition 15 we have d(A) = (a + 1)d(A − {a}). By Corollary 8
we have d(A − {a}) ≤ d([max(A) − a]) and the inequality is strict if
A− {a} 6= [max(A)− a]. Moreover, d([max(A)− a]) ≤ d([k − a]) and
the inequality is strict if max(A) 6= k.

Therefore, by Theorem 17 we have

d(A) ≤ (a+ 1)d([k − a]) ≤ 2d([k − 1]) = d([k+])

and the inequality is strict if k 6= 3 and a > 1.

In summary we have d(A) ≤ d([k+]) and if k 6= 3 equality may only
hold if a = 1 and max(A) = k andA−{1} = (A−{a}) = [max(A)−a] =
[k−1]. This contradicts the assumption that A ( [k+]. Thus, for k 6= 3
the inequality is strict. �

It is also true that for k = 3 the inequality can fail to be strict. For
example, d([3+]) = 6 = d({2, 3}). We now have Conjecture 13.

Theorem 19. For k ≥ 1, the set [k+] is the maximum of d(·) in
P ([k])\{∅}, and this is the unique maximum for k 6= 1, 3. Equivalently,
in base 2, among all k-digit numbers n, the maximal value of d2(n)
occurs at n = 2k − 2 = 111 . . . 10|2, and this is the unique maximum
for n 6= 2, 4.

Proof. By Lemma 15 we have d([k+]) = 2d([k − 1]). By Theorem 16
we have 2d([k − 1]) ≥ d([k]) with strictly inequality for k > 1. By
Theorem 8 we know that [k] is the unique maximum of d(·) in Z≤k.
We conclude that d([k+]) ≥ d(A) for any A ∈ Z≤k, and the inequality
is strict for k > 1.

Next, Theorem 18 then shows that for any A ∈ Z+
≤k we have d([k+]) ≥

d(A), and the inequality is strict if k 6= 3 (and A 6= [k+]).

Since P ([k]) = {∅}⊔Z≤k⊔Z+
≤k we conclude that [k+] is the maximum

of d(·) in P ([k])\{∅}, and this is the unique maximum for k 6= 1, 3. �

6. The triangle of headstrong compositions

In Section 7 we prove Conjecture 12. One important part of the proof
is the observation that db can be given in terms of powers of d2-divisors
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(see Theorem 24). This will require us to compare headstrong com-
positions by the number of parts (rather than simply count the total
number). The purpose of this section is to help us establish a conve-
nient recurrence for these numbers.

Since 0 is not allowed as a part of a composition, a composition of n
may have at most n parts. Letting the rows indicate n, and the columns
the number of parts, we obtain a triangle of compositions. In the case
of unrestricted compositions it is easy to see that this is in fact the
Pascal triangle of binomial coefficients. This signifies the importance of
compositions in probability. Another example, crucial for this section,
is the following Montmort-Moivre3 type problem: consider m urns,
each containing s balls labelled 1, . . . , s. If one ball is drawn uniformly
at random from each of the m urns, what is the probability that the
sum of the labels is n?

This answer leads to a definition of C(n,m, s), the number of m-
compositions of n such that no part exceeds s. This quantity has been
studied by statisticians (see [9], [2]; and [16] for generalizations where
each part is bounded above and below), and we have the generating
function

g(z) = (z + z2 + · · ·+ zs)(z + z2 + · · ·+ zs) · · · (z + z2 + · · ·+ zs)

= zm
(1− zs)m

(1− z)m
.

We are interested in the triangle of headstrong compositions (Table 2),
enumerated in sequence A184957 of the OEIS [15] (by rows). We let
H(n, k) denote the number of a headstrong k-compositions of n. Note
that

∑n

k=1H(n, k) =
∑n

k=1 F (k, n) (though the rows and columns of
the two tables do not agree).

To introduce the recurrence we first recall that given a function f :
N → R, its (first forward) difference ∆f is defined by ∆f(n) =
f(n+ 1)− f(n). One then defines recursively ∆kf = ∆(∆k−1f). (We
refer the interested reader to [6] for an introduction, and [9] for an
extensive treatment of the finite calculus.) Writing the sequence ∆kf
in row k we obtain the difference table for the sequence represented
by f (with the convention that ∆0f = f). It is conventional to align the
table so that the difference of two items appears in between them, and
thereby obtain a difference triangle (of course, it is only by curtailing
the sequence that the shape of a triangle is obtained).

3A similar formulation with a deck of cards is sometimes referred to as Simon
Newcomb type problems, popularized in [11].
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H(n, k) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
n = 1 1
n = 2 1 1
n = 3 1 1 1
n = 4 1 2 1 1
n = 5 1 2 3 1 1
n = 6 1 3 4 4 1 1
n = 7 1 3 6 7 5 1 1
n = 8 1 4 8 11 11 6 1 1
n = 9 1 4 11 17 19 16 7 1 1
n = 10 1 5 13 26 32 31 22 8 1 1

Table 2. Table of H(n, k), headstrong k-compositions of n

f 1 5 14 30 55
∆1f 4 9 16 25
∆2f 5 7 9
∆3f 2 2
∆4f 0

Table 3. Difference table for the sum of squares f(n) =
∑n

k=1 k
2

It can be shown by induction that if f is a polynomial of degree k,
then ∆k+1f = 0. Conversely, if ∆kf = 0, then f is a (k − 1)-degree
polynomial. It is clear that in such cases the entire difference table can
be recovered from the first diagonal. In particular, if the first diagonal is
(d0, d1, . . . , dn−1, 0) the sequence itself is given by f(n) =

∑n−1
k=0 dk

(
n−1
k

)
.

The purpose of the current section is to prove that the triangle of head-
strong compositions is self-generating in the following manner. The
first column and the last element of each row are both 1, trivially. The
(k+1)-th diagonal is H(k+1, 1), H(k+2, 2), H(k+3, 3), . . . If we con-
struct the difference table for this sequence, the first diagonal of the
difference table will be exactly the k-th row of the headstrong triangle.
Thus, starting from the data that the first column and the last element
are each 1 we have the table in Figure 4.1. We know that the second
diagonal is given by the first row according to the formula

∑0
k=0

(
n−1
k

)
,

so it is the constant 1 sequence. This gives us the table in Figure 4.2,
and we continue in this fashion. For example, the fifth diagonal is given
by
(
n− 1

0

)

+ 2

(
n− 1

1

)

+

(
n− 1

2

)

+

(
n− 1

3

)

=
1

6
(n3 − 3n2 + 14n− 6)

and so on. It is clear that the whole triangle can be recovered in this
manner.
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1

1 1
1 H(3, 2) 1
1 H(4, 2) H(4, 3) 1
1 H(5, 2) H(5, 3) H(5, 4) 1
1 H(6, 2) H(6, 3) H(6, 4) H(6, 5) 1

(4.1) initial data

1

1 1
1 1 1
1 H(4, 2) 1 1
1 H(5, 2) H(5, 3) 1 1
1 H(6, 2) H(6, 3) H(6, 4) 1 1

(4.2) filled 2nd diagonal

1

1 1
1 1 1
1 2 1 1
1 H(5, 2) 3 1 1
1 H(6, 2) H(6, 3) 4 1 1
(4.3) filled 3rd diagonal

1

1 1
1 1 1
1 2 1 1
1 2 3 1 1
1 3 4 4 1 1
(4.4) filled table

Table 4. Lunar arithmetic

Entry H(n, k) of the headstrong triangle is the k-th entry of the d :=
n − k + 1 diagonal, which is goverened by the d − 1 row. Thus, the
claim expresses a recurrence relation of the following form:

Theorem 20. Let m,n be positive integers. We have

H(n,m) =







0 if m > n,

1 if m = n,

1 if m = 1.

In all other cases n > m > 1 we have

(⋆) H(n,m) =
n−m∑

j=1

H(n−m, j)

(
m− 1

j − 1

)

Proof. It is easy to see that for m > 1 we have H(n,m) =
∑n−1

s=1 C(n−
s,m − 1, s), which (using the generating function for C(n,m, s) from
the beginning of this section) gives us a generating function

f(z) =
∑

s=1

zszm−1 (1− zs)m−1

(1− z)m−1

=
∑

s=1

zm+s−1

(
1− zs

1− z

)m−1
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and observe that this generating function gives the correct result for
m = 1 as well. Thus, it is indeed the generating function for H(n,m).

On the other hand, the hypothesis for n > m > 1

H(n,m) =
∑

j=1

H(n−m, j)

(
m− 1

j − 1

)

= 1 +
∑

j=2

H(n−m, j)

(
m− 1

j − 1

)

= 1 +
∑

j=2

(
m− 1

j − 1

)
∑

s=1

C(n−m− s, j − 1, s)

gives the generating function

h(z) = zm +
∑

s=1

zm+s +
∑

j=2

(
m− 1

j − 1

)
∑

s=1

zm+szj−1 (1− zs)j−1

(1− z)j−1

(Note that the coefficient of zm accounts for the case n = m; while
∑

s=1 z
m+s accounts for the cases where n > m and m = 1.) However,

this is the same generating function for H(n,m), since

zm +
∑

s=1

zm+s
∑

j=1

(
m− 1

j − 1

)(

z
1 − zs

1− z

)j−1

= zm +
∑

s=1

zm+s

(

1 + z
1− zs

1− z

)m−1

=
∑

s=1

zm+s−1

(
1− zs

1− z

)m−1

�

Using Theorem 20 we may now prove a relation between the rows of
the triangle of headstrong compositions that will play a key role in our
proof of Conjecture 12.

Corollary 21. Let b ≥ 2 ∈ N. Then, for any positive integer n ∈ N,

2

n∑

m=1

H(n,m)bm <

n+1∑

m=1

H(n+ 1, m)bm.

Proof. It is easy to verify the claim for n = 1 and n = 2 directly.
For n = 1 it reduces to 2b < b + b2, and for n = 2 it reduces to
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2b + 2b2 < b + b2 + b3. Assume therefore n > 2. For n > m > 0 we
have by Theorem 20

H(n+ 1, m+ 1) =
∑

j=1

H(n−m, j)

(
m

j − 1

)

=
∑

j=1

H(n−m, j)

(
m− 1

j − 1

)

+
∑

j=2

H(n−m, j)

(
m− 1

j − 2

)

= H(n,m) +
∑

j=2

H(n−m, j)

(
m− 1

j − 2

)

.

(Note that the last summand is 0 unless n−m > 1, reflecting the fact
that H(n + 1, n) = H(n, n − 1).) Denoting h(n,m) =

∑

j=2H(n −
m, j)

(
m−1
j−2

)
, we find

n+1∑

m=1

H(n+ 1, m)bm = b+

n∑

m=1

H(n+ 1, m+ 1)bm+1

= b+

n∑

m=1

(H(n,m) + h(n,m))bm+1

= b+

n∑

m=1

bH(n,m)bm +

n∑

m=1

bh(n,m)bm

However, b ≥ 2 (and all summands are nonnegative) so that

n+1∑

m=1

H(n+ 1, m)bm = b+

n∑

m=1

bH(n,m)bm +

n∑

m=1

bh(n,m)bm

≥ b+

n∑

m=1

bH(n,m)bm

≥ b+

n∑

m=1

2H(n,m)bm

> 2

n∑

m=1

H(n,m)bm.

�
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7. Sumsets arrays

We have seen that sumsets correspond to binary lunar multiplication
and can be used to analyse lunar divisors. Lunar arithmetic is defined
for arbitrary bases b ≥ 2. We now prove that higher bases correspond to
multisets of sumsets. Recall that multisets are “sets with repetitions.”
While {1, 1, 2} and {1, 2} represent the same set, they represent two
different multisets. A set of natural numbers can be identified with a
function f : N → {0, 1} which decides set-memebership; i.e. n belongs
to the set if and only if f(n) = 1. A multiset of natural numbers can
be identified with a function f : N → N, which decides set-membership
and multiplicity. All multisets in this section are finite multisets of
natural numbers.

There is a grading of multisets by multiplicity. For b ∈ N, let Mb

denote the collection of finite multisets (of natural numbers) whose
maximal multiplicity does not exceed b. That is,

Mb := {f : N → N : f(N) ⊆ [b], ∃k ∈ N.(j > k) =⇒ f(j) = 0}.
Note that M1 is simply the collection of finite subsets of natural num-
bers, while M0 is the emptyset. We have M0 ( M1 ( M2 ( · · ·
We make the following definitions analogously §3. For k ∈ N, let Mk

denote the collection of multisets of natural numbers whose maximal
element is k:

Mk = {f : N → N : f(k) 6= 0, and j > k =⇒ f(j) = 0}.
For convenience we also introduceM≤k =

⋃

ℓ≤k Mℓ, andM =
⋃

k∈NMk

the collection of finite multisets of natural numbers. Finally, we may
combine superscripts and subscripts; so that Mb

k is the collection of
multisets of natural numbers whose maximal element is k, and such
that the multiplicity of any element does not exceed b (such a mul-
tiset extends a function f : [k] → [b] to a multiset f : N → N by
j > k =⇒ f(j) = 0). Note that Mb =

⊔

k∈NMb
k (disjoint union).

We have a choice for defining multi-sumsets. The naive definition sim-
ply treats multisets as sets, for example {1, 1, 2} + {2} = {3, 3, 4}.
This does not take advantage of the extra-structure of multisets. The
definition below takes into account multiplicity, and allows different in-
teractions between “multiplicity levels”, so that {1, 1, 2}+{2} = {3, 4}
while {1, 1, 2}+ {2, 2} = {3, 3, 4}.
There is a convenient representation for elements of Mb as an array of
b sets. Let f ∈ Mb. Let Af = (A1, A2, . . . , Ab), where each coordinate
Ai (1 ≤ i ≤ b) is a finite subset of N defined as follows: for a ∈ N
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(5.1) multiset addi-
tion in M9

169
⊗ 248

168
⊕ 144
⊕ 122

12468

(5.2) base 10 lunar
multiplication

Figure 5. Two representations of multiset addition

we have a ∈ Ai ⇐⇒ f(a) ≥ i. The multisumset operation is now
defined coordinatewise. Given two such arrays A = (A1, . . . , Ab) and
B = (B1, . . . , Bb) we define A + B = (A1 + B1, . . . , Ab + Bb), with
the convention that S + ∅ = ∅ for any S ⊆ N. This operation makes
Mb into a commutative monoid. Note that one of the features of
this representation is that the coordinates form a descending chain
A1 ⊇ A2 ⊇ · · · ⊇ Ab.

For b ≥ 1, let B denote the set of base-(b + 1) sequences. There is a
natural bijection β : Mb → B. First, β(∅) = 0|b. Next, let f ∈ Mb

k \ ∅.
Then,

β(f) = f(k)f(k − 1) . . . f(1)f(0)|b+1.

Theorem 22. β : Mb → B is a monoid-homomorphism between Mb

equipped with multisumset addition, and base (b+1) numbers equipped
with lunar multiplication.

Proof. Let 0 denote the multiset {0, 0, . . . , 0} with b repetitions of 0.
Then, β(0) = b|b+1, which is the maximal digit. This shows that the
neutral element is mapped to the neutral element.

Next, let f, g ∈ Mb. We need to prove

β(f + g) = β(f)⊕ β(g).

The claim is clear if one of f, g is the emptyset. Assume therefore that
f, g ∈ Mb\{∅}. Consider the base b+1 lunar product β(f)×β(g) = c:

f(k)f(k − 1) . . . f(1)f(0)|b+1 ⊗ g(m)g(m− 1) . . . g(1)g(0)|b+1

= ck+mck+m−1 . . . c1c0|b+1 .
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Let A = (A1, . . . , Ab) be the set-array representation of β(f), and
B = (B1, . . . , Bb) be the set-array representation of β(g). Let xA+B

be the base-(b + 1) representation of the multisumset A +B = (A1 +
B1, . . . , Ab +Bb). It is a (k+m)-digit number, and for 0 ≤ j ≤ k+m,
the digit dj is the number of sets Ai +Bi (for 1 ≤ i ≤ b) containing j.

Consider all compositions of j as the sum of two numbers:

0 + j, 1 + (j − 1), 2 + (j − 2), . . . , j + 0

The sum k + (j − k) appears in A1 + B1 if and only if ak ≥ 1 and
bj−k ≥ 1. It appears in A2 + B2 if and only if ak ≥ 2 and bj−k ≥ 2;
in general it will appear in exactly min(ak, bj−k) of the Ai + Bi. The
number of sets Ai +Bi (for 1 ≤ i ≤ n) containing j is therefore,

dj = max{min(a0, bj),min(a1, bj−1), . . . ,min(aj , b0)}

(with the convention that ai = 0 for i ≥ k, and similarly bi = 0 for
i ≥ m). However, this is exactly

cj = (a0 ⊗ bj)⊕ (a1 ⊗ bj−1)⊕ · · · ⊕ (aj ⊗ b0).

�

Definition 23. Let f, g ∈ Mb be two multisets with corresponding
set-array representations A = (A1, . . . , Ab), B = (B1, . . . , Bb). We say
that g is a divisor of f (or sometimes, B is a divisor ofA) if there exists
some multiset h ∈ Mb with set array representation C = (C1, . . . , Cb)
such that A = B + C. If f 6= 0 is not the constant 0-function, we
define d(f) (or sometimes, d(A)) to be the number of divisors of f .

Lemma 24. Let b ≥ 1, let f ∈ Mb be a multiset, and let A =
(A1, . . . , Ab) be its set-array representation. Suppose that f 6= 0 is not
the constant 0-function, so that A1 6= ∅.
Let f ∗ ∈ Mb be a multiset given by the set-array representation A∗ =
(A1, ∅, ∅, . . . , ∅). Then d(f ∗) ≥ d(f), and the inequality is strict if
A2 6= ∅.

Proof. Let g ∈ Mb be a divisor of f , with set-array representation
B = (B1, . . . , Bb). That is, there exists some h ∈ Mb with set-
array representation C = (C1, . . . , Cb) such that A = B + C. Let-
ting h∗ ∈ Mb be the multiset given by the set-array representation
C∗ = (C1, ∅, ∅, . . . , ∅) we have B+C∗ = A∗. Thus, every divisor B of
A is also a divisor of A∗. That is, d(f ∗) ≥ d(f).
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If A2 6= ∅ then for any divisor (B1, . . . , Bb) of A we must have B2 6= ∅.
Thus, (A1, ∅, . . . , ∅) is a divisor of A∗ that is not a divisor of A. We
therefore have in this case d(f ∗) > d(f). �

For b ≥ 1, let us denote by [k]b the multiset f ∈ Mb with set-array
representation ([k], ∅, ∅, . . . , ∅). Lemma 24 shows that to prove the
maximality of d([k]b), it suffices to prove its maximality among sets
of the form (A, ∅, ∅, . . . , ∅), rather than arbitrary multisets. The next
Theorem4 shows how to count the number of divisors of such multisets
in terms of the number of divisors of A. The first corollary then implies
that d([k]b) is maximal if A is a 0-rooted set. The second corollary
generalizes Lemma 15 (and is a more explicit version of Lemma 15 in
[1]) and sets the stage for proving maximality when A is not 0-rooted.

Theorem 25. Let b ≥ 1, and let f ∈ Mb be a nonempty set (that
is not a proper multiset). Thus, f has the set-array representation
(A, ∅, ∅, . . . , ∅). Then,

d(f) =
∑

B divisor of A

bcardB.

Proof. Let S be a set of cardinality c ∈ N, and consider the number of
possible chains Sb ⊆ Sb−1 ⊆ · · · ⊆ S2 ⊆ S1 = S. The question of which
sets in the sequence contain s ∈ S is answered by a single number
1 ≤ k ≤ c, which is the largest number such that s ∈ Sk. Thus, each
chain is uniquely identified with a sequence (s1, s2, . . . , sc) where each
1 ≤ si ≤ b, and there are bc such sequences.

Let B be a divisor of A, so that there exists some C with B + C = A.
Each chain Bb ⊆ Bb−1 ⊆ · · · ⊆ B1 = B gives rise to a divisor of f of
the form (B1, B2, . . . , Bb), since

(B,B2, . . . , Bb) + (C, ∅, ∅, . . . , ∅) = (A, ∅, ∅, . . . , ∅).

Conversely, if (B1, B2, . . . , Bb) is a divisor of f , then Bb ⊆ Bb−1 ⊆ · · · ⊆
B1, and B1 is a divisor of A. �

Corollary 26. Let b ≥ 1, and let f ∈ Mb
≤k be a nonempty 0-rooted set,

with set-array representation (A, ∅, ∅, . . . , ∅) (where A ∈ Z≤k). Then,
d(f) ≤ d([k]b), and the inequality is strict for f 6= [k]b.

4Theorem 17 from [1] shows that db(11 . . . 1︸ ︷︷ ︸

k

|b) =
∑

m
H(n,m)(b−1)m. Theorem

25 generalizes this; the formula for db(11 . . . 1︸ ︷︷ ︸

k

|b) then follows from Corollary 12.
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Proof. The promotion-procedure described in Section 2 either adds el-
ements, or leaves the set as is. Thus, to every divisor B of A there
corresponds a divisor B′ ∈ F (B) of [k], with cardB′ ≥ cardB. The
claim now follows by the formula in Theorem 25, and the observa-
tion that there are divisors in [k] that do not arise from promotion
(cf. Lemma 6 and Lemma 7). �

Corollary 27. Let b ≥ 1, and let f ∈ Mb be a nonempty set with
set-array representation (A, ∅, ∅, . . . , ∅). Let r := min(A). Then,

d(f) = (r + 1)
∑

B divisor of A−{r}

bcardB.

Proof. According to the proof of Lemma 15, each divisor B of A−{r}
gives rise to a divisor B + {k} of A, for 0 ≤ k ≤ r. Moreover, all
divisors of A are of that form. Since cardB = card (B + {k}), we are
done by the formula in Theorem 25. �

Theorem 28. Let b ≥ 2, and let f ∈ Mb
≤k be a nonempty set with

set-array representation (A, ∅, ∅, . . . , ∅). Then, d(f) ≤ d([k]b), and the
inequality is strict for f 6= [k]b.

Proof. Let r := min(A). If r = 0, then the claim reduces to Corollary
26. Otherwise, we have by Corollary 27

d(f) = (r + 1)
∑

B divisor of A−{r}

bcardB.

Let n := max(A) − r, so that A − {r} is a 0-rooted set in Zn. By
Corollary 12 we have

d(f) = (r + 1)

n∑

m=1

H(n,m)bm

and on the other hand,

d([k]b) =
k∑

m=1

H(n+ r,m)bm ≥
n+r∑

m=1

H(n+ r,m)bm.

By Corollary 21 we have
n+1∑

m=1

H(n+ 1, m)bm > 2

n∑

m=1

H(n,m)bm

and by induction, for any r ≥ 1
n+r∑

m=1

H(n+ r,m)bm > 2r
n∑

m=1

H(n,m)bm ≥ (r + 1)
n∑

m=1

H(n,m)bm
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so that d([k]b) > d(f). �

We can now prove Conjecture 12.

Theorem 29. Let b ≥ 2, let f ∈ Mb
≤k be a multiset that is not the

constant 0 function. Then d(f) ≤ d([k]b), and the inequality is strict
if f 6= [k]b. Equivalently, in any base b ≥ 3, among all k-digit numbers
n, db(n) has a unique maximum at n = (bk − 1)/(b− 1) = 111 . . . 1|b.

Proof. Let (A1, A2, . . . , Ab) be the set-array representation of f . Let
f ∗ ∈ Mb be a multiset given by the set-array representation A∗ =
(A1, ∅, ∅, . . . , ∅). Lemma 24 gives d(f ∗) ≥ d(f) and the inequality is
strict if A2 6= ∅. Theorem 28 then gives d(f ∗) ≤ d([k]b) and the in-
equality is strict if f ∗ 6= [k]b. Thus, d(f) ≤ d([k]b) and the inequality
is strict if f 6= [k]b. �

8. Further questions

We have seen that sumset divisors of finite subsets of N correspond to
binary lunar divisors. The setting of lunar arithmetic naturally inspires
number-theoretic questions. This paper investigated divisibility ques-
tions for sumsets. In [1] Appelgate, LeBrun, and Sloane investigate
a whole panoply of number-theoretic constructions for lunar numbers.
Do other constructions have natural sumsets-counterparts, and if so
may lunar arithmetic shed new insights on sumsets? We single out two
important examples. One, sumsets of the form A + A correspond to
base-2 lunar squares, discussed briefly in §4 of [1].

Two, irreducible finite subsets correspond to base-2 lunar primes, in-
vestigated in §3 of [1]. We have mentioned in §1 Wirsig’s proof [18] that
almost all subsets of N are asymptotically irreducible. If we restrict our
attention to finite subsets only, Applegate, LeBrun, and Sloane make
a more precise conjecture:

Conjecture 10 (LeBrun et al.). Let πb(k) denote the number of
base b lunar primes with k digits. Then,

πb(k) ∼ (b− 1)2bk−2.

In particular, this predicts that about half of all subsets of [k] are
irreducible.

Theorem 8 undergirds many of the results of this paper; in that the
proofs of Theorem 19 and Theorem 28 proceed via reductions to the
0-rooted case. The load-bearing part of the proof of Theorem 8 is the
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promotion procedure described in Section 2. However, this procedure
is somewhat unique for the interval [k]. For example,

{0, 2}+ {0, 4} = {0, 2, 4, 6}
and the attempt to promote these to factors of {0, 2, 3, 4, 5, 6} is un-
successful

{0, 2}+ {0, 1, 3, 4} = [6]

even though {0, 2, 4, 6} ⊆ {0, 2, 3, 4, 5, 6}. This is the difficulty in prov-
ing Conjecture 14 (Part II) regarding the runner-up to d([k]). Is there
a way to generalize the promotion procedure to other sets?

Another way of attacking 14 (Part II) is via direct counting. Applegate,
LeBrun, and Sloane construct (Theorem 18 in [1]) a generating function
by considering a subtle relation with restricted compositions, it is then
used to show that d2(2

k − 3)/d2(2
k − 1) → 1/5. Section 4 describes a

bijection between divisors of [k] and headstrong compositions, which
is expanded upon in Section 6. Is there a similar bijection between
divisors of arbitrary sets and different kind of compositions?
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