
MOMENTS OF THE WEIGHTED CANTOR
MEASURES

STEVEN N. HARDING AND ALEXANDER W. N. RIASANOVSKY

Abstract. Based on the seminal work of Hutchinson, we investi-
gate properties of α-weighted Cantor measures whose support is a
fractal contained in the unit interval. Here, α is a vector of nonneg-
ative weights summing to 1, and the corresponding weighted Can-
tor measure µα is the unique Borel probability measure on [0, 1] sat-

isfying µα(E) =
∑N−1
n=0 αnµ

α(ϕ−1
n (E)) where ϕn : x 7→ (x+ n)/N .

In Sections 1 and 2 we examine several general properties of the
measure µα and the associated Legendre polynomials in L2

µα [0, 1].
In Section 3, we (1) compute the Laplacian and moment generat-
ing function of µα, (2) characterize precisely when the moments
Im =

∫
[0,1]

xm dµα exhibit either polynomial or exponential decay,

and (3) describe an algorithm which estimates the first m moments
within uniform error ε in O((log log(1/ε)) ·m logm). We also state
analogous results in the natural case where α is palindromic for the
measure να attained by shifting µα to [−1/2, 1/2].

1. Introduction

In the seminal paper [1], Hutchinson realized a fractal as the invari-
ant compact set, called the attractor, of an iterated function system
(IFS), i.e. a family of contraction maps on a complete metric space.
Specifically, given an IFS {ϕn}N−1

n=0 on X, the attractor of the IFS is
the unique compact set K ⊂ X satisfying

K =
N−1⋃
n=0

ϕn(K).

Hutchinson showed the existence and uniqueness of a self-similar Borel
probability measure supported on the attractor of an IFS. We denote
by 4N the standard simplex in RN and 4∗N ⊆ 4N consisting of α =
(α0, α1, ..., αN−1) ∈ 4N such that αn < 1 for all n and call elements of
4N weight vectors. We now paraphrase Hutchinson’s result.
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Theorem 1.1 (Hutchinson, [1]). Suppose {ϕn}N−1
n=0 is an IFS on a

complete metric space X with attractor K, and let α ∈ 4N . There
exists a unique Borel regular measure µα on X supported on K such
that

(1) µα(E) =
N−1∑
n=0

αnµ
α
(
ϕ−1
n (E)

)
for all Borel-measurable E ⊆ X.

Using the terminology of [2], we refer to the measure µα as the α-
equilibrium measure when X = Rn or X = C. We will call the measure
µα an α-weighted Cantor measure when the associated IFS {ϕn}N−1

n=0 on
R is given by ϕn : x 7→ (x+n)/N . An equilibrium measure is described
as having maximal entropy if the associated weights are uniform, i.e.
αn is either 0 or 1/k for each n. An equilibrium measure that has
attracted a lot of interest in the non-smooth harmonic analysis com-
munity is the ternary Cantor measure which arises from the weight
vector α = (1/2, 0, 1/2). In [3], Jorgensen and Pedersen addressed the
question of when a maximal entropy equilibrium measure µα is spectral,
that is, if there exists some countable set Λ ⊂ R so that the complex
exponential functions {e2πiλx}λ∈Λ form an orthonormal basis for the
Hilbert space L2

µα [0, 1]. Jorgensen and Pedersen found that, while the
quaternary Cantor measure corresponding to α = (1/2, 0, 1/2, 0) is
spectral, the ternary Cantor measure is not.

Much effort has been made to remedy this artifact of the ternary Cantor
measure. In [4], Dutkay, Picioroaga, and Song constructed an orthonor-
mal basis consisting of piecewise exponentials on the ternary Cantor
set. Strichartz in [5] posed the question of the existence of a frame,
which is a generalization of an orthonormal basis, on the ternary Cantor
set; however, this problem remains open. Polynomial function systems
provide a tempting alternative. To this end, we define the Legendre
polynomials in L2

µα [0, 1] to be the result of applying the Gram-Schmidt
algorithm to any sequence of polynomials of degrees 0, 1, 2, . . . , respec-
tively. At each step, it becomes necessary to compute inner products
of the form

∫
[0,1]

xm dµα(x). These quantities, better known as the mo-

ments of the measure µα, have elicited a lot of attention. Dovgoshey,
Martio, Ryazanov, and Vuorinen provide a fairly comprehensive survey
of the ternary Cantor function, including moments of the measure for
which it is the distribution, in [6]; Jorgensen, Kornelson and Shuman
in [2] study the moments of equilibrium measures through an operator
theory perspective using infinite matrices.
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Our main results are as follows. In Section 2, we make the connec-
tion of these measures to a result by Pei, showing that the weighted
Cantor measures are singular except in the trivial case of αn = 1/N
for all n when the measure is Lebesgue. We then provide more con-
tent in the way of characterizing these measures. In Proposition 2.11,
we prove a generalization of Bonnet’s recursion formula for orthogo-
nal polynomial systems. In Theorem 3.4, we derive an explicit infinite
product formula for the Laplacian (and thus the moment generating
function) of µα and estimate in Theorem 3.6 the rapid convergence of
the coefficients of the partial product. This leads to Remark 3.8 which
outlines a O(log log(1/ε) ·m logm) algorithm for estimating the first m
moments to uniform error at most ε > 0.

2. Properties of the weighted Cantor measure

Our first observation motivates the distinction of 4∗N from the sim-
plex 4N . It is a direct consequence of the uniqueness of a Borel mea-
sure satisfying the invariance relation in Equation (1), and the proof is
omitted.

Proposition 2.1. Suppose α ∈ 4N with αn = 1 for some n. Then µα

is the Dirac measure centered at n/(N − 1), the fixed point of ϕ−1
n .

Given a finite Borel measure µ on R, the cumulative distribution
function (CDF) Fµ(x) := µ(−∞, x] is the increasing, right-continuous
function which uniquely determines the measure. Therefore, to under-
stand the weighted Cantor measure µα, it is useful to note some basic
properties of Fµα .

Proposition 2.2. Fix α ∈ 4∗N , and let k be a positive integer. For
n` ∈ {0, 1, ..., N − 1},

Fµα

(
1

Nk

[
1 +

k−1∑
`=0

n`N
`

])
− Fµα

(
1

Nk

k−1∑
`=0

n`N
`

)
=

k−1∏
`=0

αn` .(2)

Proof. From the invariance relation in Equation (1), we note that the
CDF satisfies

Fµα(x) =
N−1∑
n=0

αnFµα(Nx− n).(3)

Then, since Fµα is the CDF of a measure supported in [0, 1], we have
Fµα(0) = α0Fµα(0) which implies that Fµα(0) = 0. Equation (2) for
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k = 1 immediately follows from this observation and Equation (3). We
proceed by induction on k. Applying Equation (3), we have

Fµα

(
1

Nk+1

[
1 +

k∑
`=0

n`N
`

])
− Fµα

(
1

Nk+1

k∑
`=0

n`N
`

)

=
N−1∑
n=0

αn

{
Fµα

(
1

Nk

[
1 +

k−1∑
`=0

n`N
`

]
+ nk − n

)
− Fµα

(
1

Nk

[
k−1∑
`=0

n`N
`

]
+ nk − n

)}

= αnk

{
Fµα

(
1

Nk

[
1 +

k−1∑
`=0

n`N
`

])
− Fµα

(
1

Nk

k−1∑
`=0

n`N
`

)}

= αnk

k−1∏
`=0

αn`

which concludes the induction.
�

Proposition 2.2 readily implies that the monotone functions con-
structed by Pei in [7] are identical to the CDF’s of the weighted Can-
tor measures. Pei therefore proved results pertaining to differentiability
and Hölder continuity of Fµα . We paraphrase those results.

Theorem 2.3 (Pei, [7]). Let α ∈ 4N . Fµα is strictly increasing
unless αn = 0 for some n and is Hölder continuous with the expo-
nent log(1/r)/ log(N) where r = max{α0, α1, ..., αN−1}. Furthermore,
Fµα is singular continuous except when α is the uniform distribution
(1/N, ..., 1/N) in which case Fµα(x) = x.

Recall that the weighted Cantor measure is determined by weight-
ing, scaling and translating under the IFS according to the invariance
relation in Equation (1). The next proposition illustrates that this in-
variant condition applies as well to the weight vector. Precisely, there
are α ∈ 4M and β ∈ 4N with M 6= N so that µα = µβ.

Proposition 2.4. Fix α ∈ 4N . Let β = α⊗k, the Kronecker product
of α with itself k times. Then µα = µβ.

Proof. It is readily checked that the element of β indexed by n =
n0 + n1N + ...+ nk−1N

k−1 where n` ∈ {0, 1, ..., N − 1} is

βn =
k−1∏
`=0

αn` .
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The associated IFS for µβ is {ψn}N
k−1

n=0 where ψn(x) = (x + n)/Nk.
Then, from the invariance relation in Equation (1), we find

µβ(E) =
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)
µβ(ψ−1

n (E)).

Since the IFS {ϕn}N−1
n=0 for µα is given by ϕn(x) = (x+ n)/N , we have

µα(E) =
N−1∑

nk−1=0

αnk−1
µα(ϕ−1

nk−1
(E))

=
N−1∑

nk−1=0

αnk−1

N−1∑
nk−2=0

αnk−2
µα((ϕ−1

nk−2
◦ ϕ−1

nk−1
)(E))

= ... =
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)
µα((ϕ−1

n0
◦ ... ◦ ϕ−1

nk−2
◦ ϕ−1

nk−1
)(E))

=
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)
µα(ψ−1

n (E)).

By uniqueness of the measure, it follows that µα = µβ, as desired.
�

For each positive integer k, we denote the sample Sk ⊂ [0, 1] as the
set

Sk :=

{
1

Nk

k−1∑
`=0

n`N
`

∣∣∣∣∣n` ∈ {0, 1, ..., N − 1}

}
∪ {1}.

Further, we define Fµα,k : [0, 1]→ [0, 1] to be the linear interpolation of
the Nk + 1 many points {(x, Fµα(x)) |x ∈ Sk}. Note, from Proposition
2.4, that Fµα,k = Fµβ ,1 where β = α⊗k.

Proposition 2.5. Let α ∈ 4∗N . The sequence {Fµα,k} converges uni-
formly to Fµα.

Proof. Let r = max{α0, α1, ..., αN−1} < 1. Let ε > 0, and choose an
integer k such that rk < ε. We show that ‖Fµα,j − Fµα,k‖∞ < ε for
every integer j ≥ k. Since |Fµα,j − Fµα,k|(x) is continuous on [0, 1],
there exists an x ∈ [0, 1] such that

‖Fµα,j − Fµα,k‖∞ = |Fµα,j(x)− Fµα,k(x)| .
There are n` ∈ {0, 1, ..., N − 1} such that

1

Nk

k−1∑
`=0

n`N
` ≤ x ≤ 1

Nk

(
1 +

k−1∑
`=0

n`N
`

)
.
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Since Fµα,k and Fµα,j are linear interpolations of points belonging to
Fµα , we have

|Fµα,j(x)− Fµα,k(x)| ≤ Fµα

(
1

Nk

[
1 +

k−1∑
`=0

n`N
`

])
−Fµα

(
1

Nk

k−1∑
`=0

n`N
`

)
=

k−1∏
`=0

αn` ≤ rk < ε.

Therefore the sequence {Fµα,k} is uniformly Cauchy and, thus, con-
verges uniformly to some continuous function f . Since {Fµα,k} con-
verges pointwise to Fµα on a dense set, we have Fµα = f on a dense
set. Then, because Fµα is right-continuous and f is continuous, we
have f = Fµα .

�

For illustration, we attain the graph of Fµα,k through Fµβ ,1 where
β = α⊗k, as stated above. The benefit of the latter is that it is some-
what simple to take the Kronecker product of vectors up to sufficient
resolution in programs such as Mathematica, which was used to pro-
duce Figure 1.

(i) α = (1/2, 0, 1/2) (ii) α = (1/20, 1/5, 1/2, 1/5, 1/20)

Figure 1. Graph of Fµα for selected α
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The next results show that a small variation in α ∈ 4∗N leads to a
relatively small variation in the corresponding measure. We start with
a lemma which is pertinent to those results.

Lemma 2.6. Fix positive integers N and k. There exists a constant
c(N, k) > 0 such that

‖Fµα,k − Fµβ ,k‖∞ ≤ c(N, k)‖α− β‖∞
for every α, β ∈ 4∗N .

Proof. Let α, β ∈ 4∗N . Because Fµα,k and Fµβ ,k are linear interpolations
of Fµα and Fµβ , respectively, on the set Sk, there exists a positive
number x ∈ Sk such that

‖Fµα,k − Fµβ ,k‖∞ = |Fµα,k(x)− Fµβ ,k(x)|.
Suppose n` ∈ {0, 1, ..., N − 1} such that

x− 1

Nk
=

1

Nk

k−1∑
`=0

n`N
`.

Then, by Proposition 2.2, we have

‖Fµα,k − Fµβ ,k‖∞ = |Fµα,k(x)− Fµβ ,k(x)|

≤
∣∣∣∣Fµα,k (x− 1

Nk

)
− Fµβ ,k

(
x− 1

Nk

)∣∣∣∣
+

∣∣∣∣Fµα,k(x)− Fµα,k
(
x− 1

Nk

)
−
[
Fµβ ,k(x)− Fµβ ,k

(
x− 1

Nk

)]∣∣∣∣
=

∣∣∣∣Fµα,k (x− 1

Nk

)
− Fµβ ,k

(
x− 1

Nk

)∣∣∣∣+

∣∣∣∣∣
k−1∏
`=0

αn` −
k−1∏
`=0

βn`

∣∣∣∣∣
Repeating this argument sufficiently many times, we attain

‖Fµα,k−Fµβ ,k‖∞ ≤
∑
~m

∣∣∣∣∣
k−1∏
`=0

αm` −
k−1∏
`=0

βm`

∣∣∣∣∣ ≤ ∥∥α⊗k − β⊗k∥∥1
≤ Nk

∥∥α⊗k − β⊗k∥∥∞
where the sum ranges over ~m = (m0,m1, ...,mk−1) ∈ {0, 1, ..., N − 1}k
satisfying

1

Nk

k−1∑
`=0

m`N
` ≤ x− 1

Nk
.

We conclude the proof by showing the upper bound∥∥α⊗k − β⊗k∥∥∞ ≤ ‖α− β‖∞ k−1∑
`=0

‖α‖`∞‖β‖k−1−`
∞ .
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The inequality is trivial for k = 1. We proceed by induction on k.
There are m` ∈ {0, 1, ..., N − 1} such that

∥∥α⊗(k+1) − β⊗(k+1)
∥∥
∞ =

∣∣∣∣∣
k∏
`=0

αm` −
k∏
`=0

βm`

∣∣∣∣∣
≤

∣∣∣∣∣
k∏
`=0

αm` − βmk
k−1∏
`=0

αm`

∣∣∣∣∣+

∣∣∣∣∣βmk
k−1∏
`=0

αm` −
k∏
`=0

βm`

∣∣∣∣∣
= |αmk − βmk |

(
k−1∏
`=0

αm`

)
+ βmk

∣∣∣∣∣
k−1∏
`=0

αm` −
k−1∏
`=0

βm`

∣∣∣∣∣
≤ ‖α− β‖∞‖α‖k∞ + ‖β‖∞

∥∥α⊗k − β⊗k∥∥∞
≤ ‖α− β‖∞‖α‖k∞ + ‖β‖∞‖α− β‖∞

k−1∑
`=0

‖α‖`∞‖β‖k−1−`
∞

= ‖α− β‖∞
k∑
`=0

‖α‖`∞‖β‖k−`∞ .

This concludes the induction. Now, since ‖α‖∞ < 1 and ‖β‖∞ < 1, we
may let c(N, k) = kNk.

�

Remark 2.7. Given α, β ∈ 4∗N , we note that |Fµα − Fµβ |(x) need
not attain the value ‖Fµα − Fµβ‖∞ on the set Sk for any k, e.g. α =
(0, 1/2, 1/2) and β = (1/2, 1/2, 0) where µα is supported in [1/2, 1] and
µβ is supported in [0, 1/2].

Proposition 2.8. The transform α 7→ Fµα : 4∗N → C[0, 1] is continu-
ous.

Proof. Suppose α ∈ 4∗N , and let ε > 0. Since Fµα is uniformly contin-
uous, there exists a positive integer k such that

Fµα,k

(
x+

1

Nk

)
− Fµα,k(x) = Fµα

(
x+

1

Nk

)
− Fµα(x) ≤ ε

2

for every x ∈ Sk \ {1}. By Lemma 2.6, there exists a δ > 0 such that
‖Fµα,k−Fµβ ,k‖∞ ≤ ε/2 whenever ‖α−β‖∞ < δ. In particular, we have∣∣Fµα(x)− Fµβ(x)

∣∣ ≤ ε/2 for every x ∈ Sk. Then, for y ∈ [x, x+ 1/Nk]
where x ∈ Sk \ {1}, we find

Fµα(x)−ε
2
≤ Fµβ(x) ≤ Fµβ(y) ≤ Fµβ

(
x+

1

Nk

)
≤ Fµα

(
x+

1

Nk

)
+
ε

2
.
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It immediately follows that |Fµα(y) − Fµβ(y)| ≤ ε and thus ‖Fµα −
Fµβ‖∞ ≤ ε, as desired.

�

We note that the transform in Proposition 2.8 is not continuous on
the entire simplex 4N since the CDF of the measure associated to α ∈
4N \4∗N is discontinuous. Now letM be the space of Borel probability
measures on [0, 1] with the total variation norm, ‖µ‖TV = supE |µ(E)|.
We next show that the transform α 7→ µα : 4∗N →M is continuous.

Theorem 2.9. Let α ∈ 4∗N . Then β → α in 4N if and only if
µβ → µα in the total variation norm.

Proof. Suppose β → α in 4N . The implication of convergence in the
total variation norm follows by proving the result for open intervals and
passing to the regularity of the measure; however, the latter details are
somewhat technical, so we provide a self-contained proof, herein. Let
ε > 0. By Proposition 2.8, there exists a δ > 0 such that ‖Fµβ −
Fµα‖∞ < ε/2 whenever ‖β − α‖∞ < δ. Let O be an open subset of
[0, 1], and suppose {In}∞n=1 is the disjoint collection of open intervals
whose union is O. Regarding µβ and µα as Riemann-Stieltjes measures,
given η > 0, there exists a partition P = {xj} of In such that, by the
triangle inequality,∣∣µβ(In)− µα(In)

∣∣ ≤ ∣∣∣∣∣µβ(In)−
∑
P

(Fµβ(xj+1)− Fµβ(xj))∆xj

∣∣∣∣∣
+

∣∣∣∣∣∑
P

(Fµβ(xj+1)− Fµα(xj+1))∆xj

∣∣∣∣∣
+

∣∣∣∣∣∑
P

(Fµα(xj)− Fµβ(xj))∆xj

∣∣∣∣∣
+

∣∣∣∣∣∑
P

(Fµα(xj+1)− Fµα(xj))∆xj − µα(In)

∣∣∣∣∣
≤ η + ελ(In) + η

where λ is Lebesgue measure. Since η was arbitrary, we have
∣∣µβ(In)− µα(In)

∣∣ ≤
ελ(In) and, thus,∣∣µβ (O)− µα (O)

∣∣ ≤ ∞∑
n=1

∣∣µβ(In)− µα(In)
∣∣ ≤ ελ(O) ≤ ε.

Now let E be a Borel-measurable subset of [0, 1], and let η′ > 0. From
the regularity of the measures, see [8], there exists an open setO ⊂ [0, 1]
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containing E such that∣∣µβ(E)− µα(E)
∣∣ ≤ ∣∣µβ(E)− µβ(O)

∣∣+∣∣µβ(O)− µα(O)
∣∣+|µα(O)− µα(E)| ≤ η′+ε+η′.

Since η′ was arbitrary, we have
∣∣µβ(E)− µα(E)

∣∣ ≤ ε. This concludes

that µβ → µα in the total variation norm.

Conversely, suppose that µβ → µα in the total variation norm. Then,
by Proposition 2.2, we have

βk = µβ
[
k

N
,
k + 1

N

]
→ µα

[
k

N
,
k + 1

N

]
= αk,

from which it immediately follows that β → α in 4N .
�

We conclude this section with a discussion of symmetric weighted
Cantor measures. As motivation, note that both CDF’s in Figure 1
exhibit rotational symmetry about the point (1/2, 1/2). First, we need
a few definitions. A Borel measure µ supported in the unit interval [0, 1]
is said to be symmetric if µ(E) = µ(1−E) for every Borel-measurable
set E. Here, if E is Borel-measurable, then 1−E := {1− x |x ∈ E} is
Borel-measureable since the collection of sets

{E | 1− E is Borel-measurable}

is a σ-algebra containing the open intervals. We say that a weight
vector α ∈ 4N is palindromic if αN−1−n = αn for all n ∈ {0, 1, ..., N −
1}.

Theorem 2.10. Let α ∈ 4N . The measure µα is symmetric if and
only if α is palindromic.

Proof. If αn = 1 for some n, then µα is a Dirac measure centered at
n/(N − 1). As such, the measure is symmetric only when N = 2n+ 1,
when α is palindromic.

So we assume otherwise, that is, αn < 1 for all n. Suppose α is
palindromic. For any positive integer k and ~n = (n0, n1, ..., nk−1) ∈
{0, 1, ..., N − 1}k, let I~n be the open interval

I~n :=

(
1

Nk

k−1∑
`=0

n`N
`,

1

Nk

[
1 +

k−1∑
`=0

n`N
`

])
.
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By Proposition 2.2, we have

µα (1− I~n) = Fµα

(
1− 1

Nk

k−1∑
`=0

n`N
`

)
− Fµα

(
1− 1

Nk

[
1 +

k−1∑
`=0

n`N
`

])

= Fµα

(
1

Nk

[
1 +

k−1∑
`=0

(N − 1− n`)N `

])
− Fµα

(
1

Nk

k−1∑
`=0

(N − 1− n`)N `

)

=
k−1∏
`=0

αN−1−n` =
k−1∏
`=0

αn`

= Fµα

(
1

Nk

[
1 +

k−1∑
`=0

n`N
`

])
− Fµα

(
1

Nk

k−1∑
`=0

n`N
`

)
= µα(I~n).

As a consequence, any open set satisfies this identity by continuity of
the measure. Then, from the regularity of µα, it follows that the mea-
sure is symmetric.

Conversely, suppose µα is symmetric. By Proposition 2.2, we have

αn0 = µα
(
n0

N
,
n0 + 1

N

)
= µα

(
N − 1− n0

N
,
N − 1− n0 + 1

N

)
= αN−1−n0 .

Therefore, α is palindromic, completing the proof.
�

The final observation of this section is a recursive formula for the
monic Legendre polynomials associated to any symmetric, finite Borel
measure µ on [0, 1], e.g. the ternary Cantor measure. To be clear, we
say that a sequence (p0, p1, . . . ) is a sequence of Legendre polynomials
(associated to µ) if each pk is a polynomial of degree k so that for each
k 6= `, pk and p` are orthogonal elements of L2

µ[0, 1]. Note that for
each such measure µ, this definition determines the family of Legendre
polynomials uniquely up to scaling each polynomial.

Out of independent interest, we note the following 2-term recursive
formula for Legendre polynomials.

Proposition 2.11. Let µ be a symmetric, finite Borel measure on [0, 1]
and let (m0,m1,m2, . . . ) be the monic Legendre polynomials associated
to µ. Then m0(x) = 1, m1(x) = x−1/2, and mn alternates parity with
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respect to the line x = 1/2. Moreover, for all nonnegative integers n,

(4) mn+2(x) =

(
x− 1

2

)
mn+1(x)−

‖mn+1‖2
µ

‖mn‖2
µ

mn(x).

Proof. For convenience, we denote q1(x) := x − 1/2. By way of the
Gram Schmidt algorithm, we generate mn+1(x) by subtracting off the
projections of q1(x)mn(x) on each of the monic Legendre polynomials
up to degree n. For conciseness, we proceed by induction on n ≥ 0,
proving that (A) the parities of mn, mn+1, and mn+2 match the pari-
ties of n, n+1, and n+2, respectively, and that (B) Equation (4) holds.

We begin with the base case n = 0. Clearly m0(x) = 1 and addi-
tionally, m0 is even. Since µ is symmetric and q1(x)m0(x) = q1(x)
is odd, 〈q1m0,m0〉 = 0. It follows that m1(x) is a (monic) constant
multiple of q1(x), so m1(x) = x − 1/2 and m1 is odd. Finally, note
that 〈q1m1,m1〉 = 0 since q1(x)m1(x)m1(x) is odd and µ is symmet-
ric. Since m2 is monic, we need only subtract off the projection of
q1(x)m1(x) in the m0 direction to find m2. So

m2(x) = q1(x)m1(x)− 〈q1m1,m0〉
‖m0‖2

µ

m0(x)

=

(
x− 1

2

)
m1(x)−

‖m1‖2
µ

‖m0‖2
µ

m0(x)

and in particular, m2 is even, so the base case of the claim holds.

Now suppose n ≥ 1 and that the inductive hypothesis holds for n− 1.
Since (m0,m1,m2, . . . ) is an orthogonal basis of L2

µ[0, 1] and q1(x)mn+1(x)
is a polynomial of degree n+ 2, it follows that we may write

q1(x)mn+1(x) =
n+2∑
k=0

ckmk(x)

for some constants c0, c1, . . . , cn+2. Note first that if k ≤ n− 1, then

〈q1mn+1,mk〉 = 〈mn+1, q1mk〉 = 0

since mn+1 is orthogonal to any polynomial of degree less than n + 1.
So ck = 0 and we may write

q1(x)mn+1(x) = cn+2mn+2(x) + cn+1mn+1(x) + cnmn(x).

Since q1(x)mn+1(x) and mn+2(x) are monic polynomials of degree n+2
and both mn+1 and mn have lower degree, it follows that cn+2 = 1. Fi-
nally, since q1(x)mn+1(x) andmn+1 have opposite parity, 〈q1mn+1,mn+1〉 =
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0 and cn+1 = 0. So finally(
x− 1

2

)
mn+1(x) = q1(x)mn+1(x) = mn+2(x) + cnmn(x).(5)

By Equation (5) and the inductive hypothesis, it follows that the parity
of mn+2 matches the parity of n+2, so claim (A) holds. For claim (B),
it suffices to show that cn = ‖mn+1‖2

µ/‖mn‖2
µ. By rearranging Equation

(5) and considering the projection onto mn, it follows that

cn =
〈q1mn+1,mn〉
‖mn‖2

µ

=
〈mn+1, q1mn〉
‖mn‖2

µ

.

We conclude the calculation by first expanding q1(x)mn(x), a polyno-
mial of degree n+1, in terms of m0,m1, . . . ,mn+1. Thus q1(x)mn(x) =∑n+1

k=0 dkmk(x) for some constants d0, d1, ..., dn+1. By inspecting the
leading coefficient, it follows that dn+1 = 1 and by projecting onto the
mn+1 direction that 〈q1mn,mn+1〉 = ‖mn+1‖2

µ. So cn = ‖mn+1‖2
µ/‖mn‖2

µ,
completing the induction and the proof.

�

Up to a translation factor, Proposition 2.11 is a reproduction of Bon-
net’s recurrence formula when the measure is Lebesgue. The drawback
of Theorem 2.11 is that the algorithm is dependent on the norm of the
monic polynomials. One method to compute the norm of a polynomial
is through the moments of the measure, which is the focus of Section 3.
In Figure 2, we provide the graph of the first six normalized Legendre
polynomials for the ternary Cantor measure.

3. Moments of the weighted Cantor measure

As previously observed, if α ∈ 4N is a standard basis vector, then µα

is a Dirac measure, and L2
µα [0, 1] is 1-dimensional. Therefore, through-

out this section, we focus mainly on α ∈ 4∗N , but several results remain
most general. In this case, integration with respect to µα presents
a difficult calculation. One method is to interpret the problem as a
Riemann-Stieltjes integral: for f continuous on [0, 1],∫ 1

0

f(x) dµα(x) =

∫ 1

0

f(x) dFµα(x).

Recall the sample set

Sk =

{
1

Nk

k−1∑
`=0

n`N
`

∣∣∣∣∣n` ∈ {0, 1, ..., N − 1}

}
∪ {1}

= {0 = x0 < x1 < ... < xNk−1 < xNk = 1}.
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Figure 2. Selected normalized Legendre polynomials
for the ternary Cantor measure

By considering a uniform mesh size of 1/Nk, we obtain the left-endpoint
approximation of the above Riemann-Stieltjes integral,

Nk−1∑
j=0

[Fµα(xj+1)− Fµα(xj)]f(xj) =
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)
f

(
1

Nk

k−1∑
j=0

njN
j

)
.

(6)

For any α ∈ 4N and any nonnegative integer m, we define the m-th
moment of µα to be

Iαm :=

∫ 1

0

xm dµα(x).

When the weight vector α is understood, we suppress the superscript
on the moment notation.

In the following proposition, we derive an invariance identity analo-
gous to the invariance relation in Equation (1). This identity will be
essential for the remainder of the paper.

Proposition 3.1. Let f : [0, 1] → R be integrable with respect to µα.
Then ∫ 1

0

f(x) dµα(x) =
N−1∑
n=0

αn

∫ 1

0

(f ◦ ϕn)(x) dµα(x)(7)
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where {ϕn}N−1
n=0 is the associated IFS given by ϕn(x) = (x+ n)/N .

Proof. Since {ϕn}N−1
n=0 are affine transformations, we note that the right-

hand side of Equation (7) is well-defined. The proof follows by a stan-
dard bootstrapping argument. First observe, by Equation (1), that (7)
holds for any characteristic function,∫ 1

0

χE(x) dµα(x) = µα(E)

=
N−1∑
n=0

αnµ
α
(
ϕ−1
n (E)

)
=

N−1∑
n=0

αn

∫ 1

0

χϕ−1
n (E)(x) dµα(x)

=
N−1∑
n=0

αn

∫ 1

0

(χE ◦ ϕn)(x) dµα(x).

Then, by linearity of the integral, Equation (7) holds for simple func-
tions. We attain the identity for nonnegative measurable functions by
an application of the Simple Approximation and the Monotone Con-
vergence Theorems; hence, the result follows in general by linearity of
the integral.

�

We now derive a recurrence relation for the moments of the weighted
Cantor measure. We note that the relation exhibits the approximation
in (6). While the relation was shown in [2], the proof of Theorem 3.2
as presented in this paper is original.

Theorem 3.2. Let α ∈ 4N , and let k be a positive integer. Then
I0 = 1 and, for all m ≥ 1,
(8)

Im =
m−1∑
i=0

(
m

i

)
Nk(m−i)

Nkm − 1
Ii

N−1∑
n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m−i

.

In particular,

(9) Im =
1

Nm − 1

N−1∑
n=0

αn

m−1∑
i=0

(
m

i

)
nm−iIi.

Proof. Let β = α⊗k as in Proposition 2.4. Recall that we showed
that µα = µβ where the corresponding IFS for the weighted Cantor

measure with respect to β is {ψn}N
k−1

n=0 given by ψn(x) = (x + n)/Nk
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and βn =
∏k−1

`=0 αn` where n = n0 + n1N + ... + nk−1N
k−1. Then,

applying Equation (7) with respect to µβ, we have∫ 1

0

xm dµα(x) =

∫ 1

0

xm dµβ(x)

=
Nk−1∑
n=0

βn

∫ 1

0

(
x+ n

Nk

)m
dµβ(x)

=
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)∫ 1

0

(
1

Nk

[
x+

k−1∑
j=0

njN
j

])m

dµα(x).

Next, we expand the product in the above integrand and rearrange the
terms and sums.

Im =

∫ 1

0

xm dµα(x)

=
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)∫ 1

0

m∑
i=0

(
m

i

)
xi

Nki

(
1

Nk

k−1∑
j=0

njN
j

)m−i

dµα(x)

=
m∑
i=0

(
m

i

)
1

Nki

∫ 1

0

xi dµα(x)
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m−i

=
m∑
i=0

(
m

i

)
1

Nki
Ii

N−1∑
n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m−i

.

(10)

When i = m in (10) the summand is Im/N
km. We subtract this term

from the left-hand side of the equation and solve for Im to attain the
desired recurrence relation.

�

For a reference to a large number of the moments I0, I1, I2, . . . of
the ternary Cantor measure, see the Online Encyclopedia of Integer
Sequence [9]. Since each Ik is rational, the sequence of numerators and
denominators appear separately under A308612 and A308613, respec-
tively. Additionally, moments of the shifted ternary Cantor measure
appear under A308614 and A308615.

Instead of computing the moments recursively, we can individually ap-
proximate them from (6). The next result estimates the error of this
approximation.
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Corollary 3.3. Let α ∈ 4N and let ε > 0. Fix an integer m ≥ 1. If

k ≥ logN

(
m

log(ε+ 1)

)
, then

0 ≤ Im −
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m

< ε.

Proof. The first inequality follows from the observation that (6) is a
lower approximation of the Riemann-Stieltjes integral Im. For the up-
per bound, we manipulate (10). Specifically, we subtract the term
corresponding to i = 0 to obtain

Im −
N−1∑

n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m

=
m∑
i=1

(
m

i

)
1

Nki
Ii

N−1∑
n0,n1,...,nk−1=0

(
k−1∏
`=0

αn`

)(
1

Nk

k−1∑
j=0

njN
j

)m−i

≤
m∑
i=1

(
m

i

)
1

Nki
IiIm−i.

Using Ii < 1, we have

m∑
i=1

(
m

i

)
1

Nki
IiIm−i <

m∑
i=1

(
m

i

)
1

Nki
=

(
1 +

1

Nk

)m
−1 ≤ exp

( m
Nk

)
−1 ≤ ε,

as desired.
�

We define the Laplace transform of a finite measure µ on [0, 1] as the
function on R given by

Lµ(s) =

∫ 1

0

e−sx dµ(x).

Here, we use the Laplace transform of a weighted Cantor measure to
approach the moment problem.

Theorem 3.4. Let α ∈ 4N . The infinite product

f(z) :=
∞∏
r=1

N−1∑
n=0

αn exp
(
− nz
N r

)
is well-defined for z ∈ C. Furthermore, f is entire and Lµα(s) = f(s)
for s ∈ R.
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Proof. Using the triangle inequality, the power series for exp(·), and
Tonelli’s theorem, we have

∞∑
r=1

∣∣∣∣∣
[
N−1∑
n=0

αn exp
(
− nz
N r

)]
− 1

∣∣∣∣∣ =
∞∑
r=1

∣∣∣∣∣
N−1∑
n=0

αn

[
exp

(
− nz
N r

)
− 1
]∣∣∣∣∣

≤
∞∑
r=1

N−1∑
n=0

αn

∣∣∣exp
(
− nz
N r

)
− 1
∣∣∣

=
∞∑
r=1

N−1∑
n=0

αn

∣∣∣∣∣
∞∑
k=1

(−1)knkzk

N rkk!

∣∣∣∣∣
≤

∞∑
r=1

N−1∑
n=0

αn

∞∑
k=1

nk|z|k

N rkk!

=
N−1∑
n=0

αn

∞∑
k=1

∞∑
r=1

nk|z|k

N rkk!

=
N−1∑
n=0

αn

∞∑
k=1

nk|z|k

(Nk − 1)k!
.

We observe that the last sum converges by the ratio test. From this, it
follows that f is well-defined and entire.

Applying Equation (7) to f(x) = e−sx, we find

Lµα(s) =
N−1∑
n=0

αn

∫ 1

0

exp

(
−s
[
x+ n

N

])
dµα(x) = Lµα

( s
N

)N−1∑
n=0

αn exp
(
−ns
N

)
.

Then, from an argument by induction, we have

Lµα(s) = Lµα
( s

Nk

) k∏
r=1

N−1∑
n=0

αn exp
(
− ns
N r

)
.

From the Bounded Convergence Theorem, we have limk→∞ Lµα
( s

Nk

)
=

1, and the desired identity follows.
�

The moment generating function (MGF) Gα(s) is defined analo-
gously,

Gα(s) := Lµα(−s).(11)
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It can be seen that

Gα(s) =
∞∑
m=0

Im
sm

m!
.

We may derive many interesting identities from Gα(s), such as the
following recurrence relation.

Proposition 3.5. Let α ∈ 4N be palindromic, and let m be an odd
integer. Then

Im =
1

2

m−1∑
k=0

(−1)k
(
m

k

)
Ik.

Proof. From Theorem 3.4 and the assumption that α is palindromic,
we find

Gα(s) =
∞∏
r=1

N−1∑
n=0

αN−1−n exp

(
(N − 1− n)s

N r

)

=
∞∏
r=1

exp

(
(N − 1)s

N r

)N−1∑
n=0

αn exp
(
− ns
N r

)
= esGα(−s).

This identity, in terms of the power series expansion of Gα(s) and of
es, is then
∞∑
m=0

Im
m!
sm =

(
∞∑
m=0

1

m!
sm

)(
∞∑
m=0

(−1)m
Im
m!
sm

)
=

∞∑
m=0

(
m∑
k=0

(−1)kIk
k!(m− k)!

)
sm.

From the uniquess of the coefficients, we have

Im =
m∑
k=0

(−1)k
(
m

k

)
Ik

from which the desired identity follows.
�

Viewing Gα as a function on C, i.e. Gα(z) = f(−z) for f in Theorem
3.4, we note that Gα is entire. A useful consequence of this viewpoint
is in estimating the moments. Specifically, we consider the partial
product approximations defined for all nonnegative integers k,

Gα;k(z) :=
k∏
r=1

N−1∑
n=0

αn exp
( nz
N r

)
=

∞∑
m=0

Im;k
zm

m!
.

For any nonnegative integer m, we note that 0 ≤ Im;k ↗ Im. Indeed,
this follows immmediately from the fact that Gα;0(z) = 1 and, for all
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k ≥ 0, Gα;k+1(z) is the product of Gα;k(z) and a power series centered
at z = 0 with nonnegative coefficients and constant term 1.

Theorem 3.6. Let α ∈ 4N . For any positive integers m, k with m ≥
2,

|Im − Im;k| ≤
em
√
m− 1

Nk
.

Proof. We first verify the following as an identity of formal power series,
for all positive integers k.

(12) Gα(z) = Gα;k(z) ·Gα

( z

Nk

)
Indeed,

Gα;k(z) ·Gα

( z

Nk

)
=

(
k∏
r=1

N−1∑
n=0

αn exp
( nz
N r

))
·

(
∞∏

r=k+1

N−1∑
n=0

αn exp
( nz
N r

))
=
∞∏
r=1

N−1∑
n=0

αn exp
( nz
N r

)

so by definition of Gα(z), Equation (12) holds as formal power series.
To see that Equation (12) holds analytically, it is sufficient to note that
both Gα;k(z) and Gα(z) are entire functions.

Now let m, k be positive integers with m ≥ 2 and let R > 0. By
subtracting Gα;k(z) from both sides of Equation (12), we obtain the
analytic identity

(13) Gα(z)−Gα;k(z) = Gα;k(z)
(
Gα

( z

Nk

)
− 1
)
.

Since the coefficients of zm inGα(z) andGα;k(z) are Im/m! and Im;k/m!,
respectively, it follows from the Cauchy integral formula that

|Im − Im;k| =
m!

2π

∣∣∣∣ ∫
|z|=R

Gα(z)−Gα;k(z)

zm+1
dz

∣∣∣∣ ≤ m!

Rm
max
|z|=R

|Gα;k(z)| ·max
|z|=R

∣∣∣Gα

( z

Nk

)
− 1
∣∣∣ .

Note that Gα;k(z) is a power series with nonnegative coefficients, so it
follows that the first maximum is attained by setting z = R. Likewise
since Gα(z/Nk)(z) − 1 is a power series with nonnegative coefficients,
it follows also that the second maximum is attained by setting z = R.
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Continuing the calculation,

|Im − Im;k| ≤
m!

Rm
·Gα;k(R)

(
Gα

(
R

Nk

)
− 1

)
≤ m!

Rm
· exp

(
R

(
1− 1

Nk

))(
exp

(
R

Nk

)
− 1

)
=

m!

Rm
· eR

(
1− exp

(
− R

Nk

))
≤ m!

Nk
· eR

Rm−1

=
m!

Nk
· f(R)

where f : (0,∞) → R is defined by f(x) := exx1−m and the second
inequality follows by noting that Gα(x) ≤ G(0,0,...,1)(x) = ex for x > 0
and similarly for Gα;k. We minimize this upper bound (for m, k fixed)
using elementary calculus. Note first that f(x) is differentiable on
(0,∞) and f(x)→∞ as x tends to either endpoint. Since

f ′(x) = exx−m ((1−m) + x) ,

it follows that f is minimized at x = m− 1. Evaluating f(m− 1), we
have

|Im − Im;k| ≤
m!

Nk
·
(

e

m− 1

)m−1

.

Applying the Stirling approximation (m−1)! ≤ e
√
m− 1·

(
m− 1

e

)m−1

,

the desired identity holds.
�

Remark 3.7. For any palindromic weight vector α, it is suitable to
alternatively define the moment generating function under να, the mea-
sure defined by shifting µα from [0, 1] to [−1/2, 1/2]. Then the moment
generating function with respect to να satisfies

∞∑
m=0

Jm
sm

m!
= Hα(s) :=

∫ 1/2

−1/2

esx dνα(x) =

∫ 1

0

es(x−1/2) dµα(x) = e−s/2Gα(s).

With some careful manipulation, we may then analogously define Hα;k(s) =∑∞
m=0 Jm;k

sm

m!
as the partial product

∏k
r=1 e

−(N−1)s
2Nr

∑N−1
n=0 αn exp

(
ns
Nr

)
.

Distributing, each product is now a weighted average of hyperbolic cosines
of the form cosh( `s

Nr ), where each ` is a half integer between 0 and N/2.
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Remark 3.8. For any m ≥ 0, we may estimate the coefficients I1, . . . , Im
(or J1, . . . , Jm for a palindromic weight vector) within uniform error at
most ε > 0 in O(log log(1/ε) ·m logm). This is a substantial improve-
ment when compared to the exact computation of each I1, . . . , Im (or
J1, . . . , Jm) from Proposition 3.5, which runs in O(n2).

We describe the details for moments under µα. First, apply Theorem
3.6 to select k = k(ε) = O(log(1/ε)) so that |Im − Im;k| ≤ ε. Writ-

ing f(s) =
∑m

n=0 cns
n for the truncation of

∑N−1
`=0 α` exp

(
`s
N

)
to degree

m, it follows that Gα;k(s) and F (s) := f(s)f(s/N) · · · f(s/Nk−1) have
identical coefficients up to degree m. For algorithmic simplicity, we
may assume that k is a power of two, but this assumption may be cir-
cumvented with some care, or absorbed as a factor in O(log(1/ε)). We
provide the following pseudocode.

(1) F (s)←
∑m

n=0

∑N−1
`=0 α` · (s`/N)n/n!.

(2) j → 0.
(3) If 2j = k, go to step (8).

(4) F (s)→ F (s) · F (s/N2j).
(5) Truncate F (s) to degree m in s.
(6) j → j + 1.
(7) Go to step (3).
(8) Return F (s)

Since a successful termination performs log2(k) products of degree m
polynomials, by using a Fast Fourier Transform, the overall complexity
is reduced to O(log log(1/ε) ·m logm), as desired.

In [10], Grabner and Prodinger investigated measures whose dis-
tributions are given by Cantor sets and are somewhat similar to the
ternary Cantor measure yet in general do not arise from an IFS. The
major result in their paper is the following asymptotic behavior of the
corresponding moments,

Im = F (log1/θm)m− log1/θ(2)

(
1 +O

(
1

m

))
where F (x) is a periodic function of period 1 and known Fourier coef-
ficients. In regards to this paper, the ternary Cantor measure is ascer-
tained by letting θ = 1/3. The final result of this paper is a lower bound
approximation for the rate of decay of the moments for a weighted Can-
tor measure. It is intriguing that the bound that we obtain is precisely
of the same order as the result of Grabner and Prodinger.
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Theorem 3.9. Let α ∈ 4∗N . If αN−1 = 0, then Im ≤
(
N − 1

N

)m
for m ≥ 0. Otherwise, there exists a constant C(α) > 0 such that
Im ≥ C(α)m−γ for all m ≥ 1 where γ = logN(1/αN−1).

Proof. Suppose αN−1 = 0. From the invariance relation in Equation
(1), we observe that the support of µα is contained in [0, 1 − 1/N ].
Then, for any nonnegative integer m,

Im =

∫ 1

0

xm dµα(x) =

∫ 1−1/N

0

xm dµα(x) ≤
(
N − 1

N

)m
.

So the first claim holds. Now suppose αN−1 > 0. We assume without
loss of generality that m > γ(N − 1) to establish C(α) > 0 which may
be adjusted to compensate for the remaining (finitely many) moments.
Now note for all positive integers k, µα[1− 1/Nk, 1] = (αN−1)k, so

Im =

∫ 1

0

xm dµα(x) ≥
∫ 1

1−N−k
xm dµα(x) ≥ (1−N−k)m(αN−1)k = (1−N−k)m·N−kγ = f(k),

where f : (0,∞) → (0,∞) is defined by f(x) := N−γx(1 −N−x)m. In
order to maximize this lower bound on Im, we appeal to elementary
calculus to first optimize the differentiable function f on (0,∞) and
then select the most optimal positive integer k, for a given m. From
logarithmic differentiation, we find

f ′(x)

f(x)
=
(
−γx logN +m log

(
1−N−x

))′
= −γ logN +m

N−x logN

1−N−x

= −γ logN +
m logN

Nx − 1

=

(
−γ +

m

Nx − 1

)
logN,

so f ′ has its unique zero at x0 = logN

(
1 +

m

γ

)
> 0. In fact, by the

assumption on m,

x0 = logN

(
1 +

m

γ

)
> logN

(
1 +

γ(N − 1)

γ

)
= logN(N) = 1.

Note that f ′ > 0 on (0, x0) and f ′ < 0 on (x0,∞), so that f(x) is
maximized over (0,∞) at x0. Moreover, by monotonicity of f on (0, x0)
and (x0,∞) and the fact that x0 > 1, it also follows that the optimal
integer is either dx0e or bx0c. Write k0 = k0(m) for the positive integer
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which maximizes f . We now show that the ratio of f(x0) and f(k0)
is bounded above and below by constants (depending only on α). Let
ε = ε(m) := k0−x0 ∈ (−1, 1). Note that γ(1−N−ε) ∈ (γ(1−N), γ(1−
1/N)) and

f(k0)

f(x0)
= N−γε

(
1−N−k0
1−N−x0

)m
= N−γε

(
1 +

1−N−ε

Nx0 − 1

)m
= N−γε

(
1 +

γ(1−N−ε)
m

)m
≥ N−γεC1e

γ(1−N−ε)

for some C1 > 0 depending only on N and γ, i.e. α. The last inequality
follows from observing that sequence of functions {(1 + x/m)m} are
positive and converge uniformly to ex on (γ(1−N), γ(1−1/N)). Further
note that

f(x0) = N−γx0
(
1−N−x0

)m
=

(
1 +

m

γ

)−γ (
1− γ

γ +m

)m
≥
(
m

γ
+ 1

)−γ
e−γ.

Thus, we find the bound

Im ≥ f(k0)

≥ N−γεC1e
γ(1−N−ε)f(x0)

≥ N−γεC1e
γ(1−N−ε)

(
m

γ
+ 1

)−γ
e−γ

= N−γεC1e
−γN−ε

m−γ
(

1

γ
+

1

m

)−γ
≥ N−γC1e

−γN
(

1

γ
+ 1

)−γ
m−γ.

�

Remark 3.10. Under the shifted measure να defined in Remark 3.7,
the moments decay exponentially regardless of weight vector α. Indeed,

|Jm| =

∣∣∣∣∣
∫ 1/2

−1/2

xm dνα(x)

∣∣∣∣∣ =

∣∣∣∣ ∫ 1

0

(x− 1/2)m dµα(x)

∣∣∣∣ ≤ (1

2

)m
.

4. Acknowledgements

Steven N. Harding was supported in part by the National Science
Foundation and the National Geospatial-Intelligence Agency under the



MOMENTS OF THE WEIGHTED CANTOR MEASURES 25

NSF award #1832054.

Alexander W. N. Riasanovsky was supported in part by the ISU Math-
ematics Department Lambert Research Fellowship.

References

[1] Hutchinson J. E., Fractals and self-similarity, Indian Univ. Math. J., 1981, 30,
713-747

[2] Jorgensen P. E. T., Kornelson K. A., Shuman K. L., Iterated function systems,
moments, and transformations of infinite matrices, Mem. Amer. Math. Soc.,
2011, 213

[3] Jorgensen P. E. T., Pedersen S., Dense analytic subspaces in fractal L2-spaces,
J. Anal. Math., 1998, 75, 185-228

[4] Dutkay D.E., Picioroaga G., Song M.-S., Orthonormal bases generated by
Cuntz algebras, J. Math. Anal. Appl., 2014, 409, 1128-1139

[5] Strichartz R. S., Mock fourier series and transforms associated with certain
cantor measures, Journal d’Analyse Mathématique, 2000, 81, 209-238

[6] Dovgoshey O., Martio O., Ryazanov V., Vuorinen M., The Cantor function,
Expo. Math., 2006, 24, 1-37

[7] Hsu E. P., A class of singular continuous functions, Elem. Math., 1992, 47,
169-172

[8] Bogachev V. I., Measure theory. Vol. II, Springer-Verlag, Berlin, 2007
[9] OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences,

http://oeis.org
[10] Grabner P. J., Prodinger H., Asymptotic analysis of the moments of the Cantor

distribution, Statist. Probab. Lett., 1996, 26, 243-248

Iowa State University, Department of Mathematics, 411 Morrill
Road, Ames, IA 50011, U.S.A.; E-mail: sharding@iastate.edu

Iowa State University, Department of Mathematics, 411 Morrill
Road, Ames, IA 50011, U.S.A.; E-mail: awnr@iastate.edu

http://oeis.org

	1. Introduction
	2. Properties of the weighted Cantor measure
	3. Moments of the weighted Cantor measure
	4. Acknowledgements
	References

