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FAST MULTI-PRECISION COMPUTATION OF SOME EULER

PRODUCTS

S. ETTAHRI, O. RAMARÉ, AND L. SUREL

Abstract. (File LoeschianConstant-16-Arxiv.tex) For every modulus q ě
3, we define a family of subsets A of the multiplicative group pZ{qZqˆ for which
the Euler product

ś
pmodqPAp1´p´sq can be computed in double exponential

time, where s ą 1 is some given real number. We provide a Sage script to do so,
and extend our result to compute Euler products

ś
pPA F p1{pq{Gp1{pq where

F and G are polynomials with real coefficients, when this product converges
absolutely. This enables us to give precise values of several Euler products
intervening in Number Theory.

1. Introduction

At the beginning of our query lie two constants that appear in the paper [2] by

É. Fouvry, C. Levesque and M. Waldschmidt. On following this paper, they are

(1) α
p3q
0 “ 1

21{231{4

ź

p”2r3s

ˆ
1 ´ 1

p2

˙´1{2

and

(2) β0 “ 31{4
?
π

25{4

logp2 `
?
3q1{4

Γp1{4q
ź

p”5,7,11r12s

ˆ
1 ´ 1

p2

˙´1{2

.

Both occur in number theory as densities. The number of integers n of the shape
n “ x2 ´ xy ` y2, where x and y are integers (these are the so-called Loeschian
numbers, see sequence A003136 of [10]) is given by

(3) Npxq “ α
p3q
0

xp1 ` op1qq?
log x

.

This accounts for our interest in the first constant. The second one occurs because
the number of Loeschian numbers that are also sums of two squares (see sequence
A301430 of [10]) is given by

N 1pxq “ β0
xp1 ` op1qq
plog xq3{4

.

The question we address here is devising a fast manner to compute the inter-

vening Euler products. From sequence A301429 of [10], we know that α
p3q
0 “

0.638909 . . . but we would like (much!) more digits. Similarly it is known that
β0 “ 0.30231614235 . . ..

Theorem 1.1. We have

α
p3q
0 “ 0.63890 94054 45343 88225 49426 74928 24509 37549 75508 02912

33454 21692 36570 80763 10027 64965 82468 97179 11252 86643 ¨ ¨ ¨
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and

β0 “ 0.30231 61423 57065 63794 77699 00480 19971 56024 12795 18936

96454 58867 84128 88654 48752 41051 08994 87467 81397 92727 ¨ ¨ ¨

Our method is more general and allows one to compute Euler products of the
shape ź

pPAmod q

p1 ´ p´sq´1

for any s with ℜs ą 1 and some subsets A of pZ{qZqˆ. We use a set of identities
that lead to fast convergent formulae. The use of a similar formula for scientific
computations can be found in [14, equation (15)] by D. Shanks. This author’s
approach has been put in a general context by P. Moree & D. Osburn in [7, equation

(3.2)]. On looking closely, we see that an accurate value of α
p3q
0 already follows from

this paper. The formulae we prove have a wider reach, though they fail to exhaust
the problem. The reader may want to read subsection 2.2 now to understand the
initial idea. In the simplest form, we produce a formula that links for instance
ζps; 12, 1q “ ś

p”1r12s p1 ´ p´sq´1 to ζp2s; 12, 1q. We then reuse this formula to

change 2s in 4s, and so on, and we finally use ζp2rs; 12, 1q “ 1 ` Op1{2s2rq. This
is analogous to D. Shanks scheme in [14]. In the general case however, we link
values at s with values at ds for some d ą 1, but these values are not the one of the
same function, but of some companion functions. This means that we have to work
simultaneously with several players. Let us first define these companions, which are
all the products we propose to compute.

When K is a cyclic subgroup of pZ{qZqˆ, we denote by ApKq the set of elements
x from pZ{qZqˆ such that the subgroup xxy generated by x is equal to K. We note
that the sets ApKq, when K ranges though the set of cyclic subgroups of pZ{qZqˆ,
determine a partition of pZ{qZqˆ. A subset A of pZ{qZqˆ is said to be a lattice-
invariant class if it is of the form ApKq for some cyclic subgroup K of pZ{qZqˆ,
i.e. if all its elements generate the same subgroup (see Definition 3.1 below). Here
is a consequence of our approach.

Theorem 1.2. Let q be some modulus and A be a lattice-invariant class of pZ{qZqˆ.
For every s ą 1, the product

ζps; q,Aq “
ź

pmod qPA

p1 ´ p´sq´1

can be computed in double-exponential time.

This theorem applies in particular to A “ t1u and to A “ t´1u and this is

enough to compute β0 and α
p3q
0 . The last section contains numerical examples.

The material of this paper has been used to write the script

LatticeInvariantEulerProducts-02.sage

which we shorten below in LIEP.sage and which can be found on the second author
website. We give some details about this script when developing the proof below.

We produce in Proposition 7.3 an explicit expression for the number |G7| “ |G |
of lattice-invariant classes. Though our formula is only a sum of non-negative
summands that are multiplicative expressions, its order of magnitude is not obvious
when q has numerous prime factors. We have for instance not been able to establish
that |G7| !ǫ q

ǫ (for every positive ǫ) though this was our initial guess.

Notation. When A is a subset of pZ{qZqˆ, we define xAy to be the (multiplicative)
subgroup generated by A, and when A “ tau, we may shorten xtauy in xay.
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When additionally P ě 2 is some real parameter, we define

(4) ζps; q,Aq “
ź

pmod qPA,
pěP

p1 ´ p´sq´1.

This is in accordance with the notation of Theorem 1.2. We define further

(5) LP ps, χq “
ź

pěP

p1 ´ χppq{psq´1.

Precise statement of the main result. Let q ą 1 be a modulus. Let G0 be a
subgroup of G “ pZ{qZqˆ and let GK

0 be the subgroup of characters that take the
value 1 on G0. Let s ą 1 be a real number and P ě 2 be a parameter. We shall
compute directly the contribution of the primes ă P . We define, for any positive
integer t:

(6) γspG0, tq “ log
ź

χPGK
0

LP pts, χq.

The parameter P has disappeared from our notation and the reader may stick with
P “ 2. When s is a real number, the number

ś
χPGK

0

LP pts, χq is indeed a positive

real number because, when χ belongs to GK
0 , so does χ.

We denote the set of lattice-invariant classes byG7 and the set of cyclic subgroups
of G by G . Both sets are in an obvious one-to-one correspondence. We consider
the vector

(7) Γsptq “ pγspG0, tqqG0PG .

The rows of Γsptq are indexed by cyclic subgroups of G. It is computed by the
function GetGamma of the script LIEP.sage from the values of the Hurwitz zeta
function. See the implementation notes below. We next define

(8) Vsptq “
`
log ζP ps; q,Aq

˘
APG7 .

The rows of Vsptq are indexed by classes. We control the size of our vectors with
the norm

(9) }W } “ max
i

|Wi|

when W is the vector of coordinates Wi. We define the square matrix M´1
1 by

(10) M´1
1

ˇ̌
i“A,j“K

“
#
µp|xAy{K|q{|G{K| when K Ă xAy,
0 otherwise

where A ranges G7 while K ranges G . It is unusual to define a matrix by its inverse.
In the natural course of the proof, a matrix M1 will occur, whose inverse is the one
above; it is computed in Proposition 4.1. The reader will readily check that there
are no circularity in our definitions. Let us recall that the exponent of G is the
maximal order of an element in G and is denoted by expG. To each divisor d ą 1
of expG, we associate the square matrix Nd whose columns and rows are indexed
by cyclic subgroups of G and whose entries are given by

(11) Nd
ˇ̌
i“B0,j“B1

“
ÿ

KĂB0,
|KB1{K|“d

µp|B0{K|q.

The sum is over subgroups K. The condition |KB1{K| “ d can be replaced by the
condition |B1{K XB1| “ d. Here is our main theorem.
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Theorem 1.3. For any integer r ě 2, we have

(12)

››››Vsp1q ´
ÿ

0ďvďr´1

p´1qv
ÿ

d1¨¨¨dvď2r

Nd1
d1

. . .
Ndv
dv

M´1
1 Γspd1 . . . dvq

››››

ď 1

2

ˆ
1 ` r ´ 1

|G7|

˙ˆ |G7|dpexpGq
2

˙r´1
1 ` P {ps2r ´ 1q

P s2
r

where d1, . . . , dr are all divisors of expG excluding 1.

When v “ 0, we use d1 . . . dv “ 1 and Nd1 ¨ ¨ ¨Ndv “ Id. We provide in Section 5
the numerical datas modulo 7 that will enable the reader to follow the proof step
by step in this case. This example may also be used to check our routines.

Extending the computations. Now that we know how to compute some Euler
products ζP ps; q,Aq in a fast manner, we can extend these computations to more
general Euler products, though still on the same sets of primes. To do so, we add
a definition:

(13) plog ζP ps; q,A|rqqAPG7 “
ÿ

0ďvďr´1

p´1qv
ÿ

d1¨¨¨dvď2r

Nd1
d1

. . .
Ndv
dv

M´1
1 Γspd1 . . . dvq

Theorem 1.4. Let F,G P RrXs be two coprime polynomials satisfying F p0q “
Gp0q “ 1 such that pF pXq ´ GpXqq{X2 P RrXs. Let β ě 2 be an upper bound for
the maximum modulus of the inverses of the roots of F and of G. Let P ě 2β be a
parameter. Then, for any parameters J ě 3 and r ě 2, we have

ź

pěP,
pPA

F p1{pq
Gp1{pq “

ź

2ďjďJ

ζP pj; q,A|rqbGpjq´bF pjq ˆ I,

where the integers bGpjq and bF pjq are defined in Lemma 6.1 and

| log I| ď maxpdegF, degGq
ˆˆ |G7|dpexpGq

2

˙r´1
rβ2

P 2r`1
p1 ` 2´rP q ` 4βJ`1

JP J

˙
.

Remark 1.5. Inequality (39) gives a more precise bound for | log I| which we will
use in the actual script.

Remark 1.6. Lemma 6.3 ensures that we may select

β “ max
´
1,

ÿ

1ďkďdegF

|ak|,
ÿ

1ďkďdegG

|bk|
¯

when F pXq “ 1 ` a1X ` . . .` aδX
δ and G “ 1 ` b1X ` . . .` bδ1Xδ1

.

Remark 1.7. The function GetEulerProds(q, F, G, nbdecimals) gives all these
Euler products. The polynomials F andG are to be given as polynomial expressions
with the variable x.

D. Shanks in [15] (resp. [16], resp. [17]) has already been able to compute an
Euler product over primes congruent to 1 modulo 8 (resp. to 1 modulo 4, resp. 1
modulo 8), by using an identity (Lemma of section 2 for [15], equation (5) in [16]
and the Lemma of section 3 in [17]) that is a precursor of our Lemma 6.1.

In these three examples, the author has only been able to compute the first five
digits, and this is due to three facts: the lack of interval arithmetic package at that
time, the relative weakness of the computers and the absence of a proper study
concerning the error term. We thus complement these results by giving the first
hundred decimals.
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Corollary 1.8 (Shank’s Constant). We have

ź

p”1r8s

ˆ
1 ´ 4

p

˙ˆ
p ` 1

p ´ 1

˙2

“ 0.95694 53478 51601 18343 69670 57273 89182 87531

74977 2913914789 05432 60424 60170 16444 88885

94814 40512 03907 95084 ¨ ¨ ¨

And thus Shank’s constant satisfies

I “ π2

16 logp1 `
?
2q

ź

p”1r8s

ˆ
1 ´ 4

p

˙ˆ
p` 1

p´ 1

˙2

“ 0.66974 09699 37071 22053 89224 31571 76440 66883 70157 43648

24185 73298 52284 52467 99956 45714 72731 50621 02143 59373 ¨ ¨ ¨

As explained in [16], the number of primes ď X of the formm4`1 is conjectured
to be asymptotic to I ¨ X1{4{ logX . The name “Shank’s Constant” comes from
Chapter 2, page 90 of [1]. When using the script that we introduce below, this
value is obtained with the call

GetEulerProds(8, 1 ´ 2 ˚ x´ 7 ˚ x2 ´ 4 ˚ x3, 1 ´ 2 ˚ x` x2, 150, 400).

Corollary 1.9 (Lal’s Constant). We have

ź

p”1r8s

ppp ´ 8q
pp ´ 4q2 “ 0.88307 10047 43946 67141 78342 99003 10853 46768

88834 88097 34707 19295 15939 52119 46990 65659

68857 99383 28603 79164 ¨ ¨ ¨

And thus Lal’s constant satisfies

λ “ π4

27 log2p1 `
?
2q

ź

p”1r8s

ˆ
1 ´ 4

p

˙2ˆ
p` 1

p´ 1

˙4 ź

p”1r8s

ppp´ 8q
pp ´ 4q2

“ 0.79220 82381 67541 66877 54555 66579 02410 11289 32250 98622

11172 27973 45256 95141 54944 12490 66029 53883 98027 52927 ¨ ¨ ¨

As explained in [17], the number of primes ď X of the form pm` 1q2 ` 1 and such

that pm´1q2`1 is also a prime is conjectured to be asymptotic to λ¨X1{2{plogXq2.
The name “Lal’s Constant” comes from the papers [5] and [17]. When using the
script that we introduce below, the first value is obtained with the call

GetEulerProds(8, 1 ´ 8 ˚ x, 1 ´ 8 ˚ x` 16 ˚ x2, 100, 400).

We close this section by mentioning another series of challenging constants. In
[8], P. Moree computes inter alia the series of constants Aχ defined six lines after
Lemma 3, page 452, by

(14) Aχ “
ź

pě2

ˆ
1 ` pχppq ´ 1qp

pp2 ´ χppqqpp ´ 1q

˙

where χ is a Dirichlet character. Our theory applies only when χ is real valued,

Thanks. The authors thank M. Waldschmidt for having drawn their attention of
this question, P. Moree and É. Fouvry for helpful discussions on how to improve this
paper and X. Gourdon for free exchanges concerning some earlier computations.
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2. A general mechanism

We start by presenting the mechanism of Shanks in [13] is a general setting.

Lemma 2.1. Let P be a set of prime numbers and let f be a function from P to
t˘1u. For every s with ℜs ą 1, we have

ź

pPP,
fppq“´1

p1 ´ p´sq2 “
ś
pPPp1 ´ p´sqś

pPP p1 ´ fppqp´sq
ź

pPP,
fppq“´1

p1 ´ p´2sq.

Proof. The proof is straightforward. We simply write

ź

pPP,
fppq“´1

p1 ´ p´sq2
1 ´ p´2s

“
ź

pPP,
fppq“´1

1 ´ p´s

1 ` p´s
“

ź

pPP,
fppq“´1

1 ´ p´s

1 ´ fppqp´s

“
ź

pPP

1 ´ p´s

1 ´ fppqp´s

as required. �

Shanks’s method is efficient to deal with product of primes belonging to a coset
modulo a quadratic character. We generalize it as follows.

Lemma 2.2. Let q ą 1 be a modulus. We set G0 be a subgroup of G “ pZ{qZqˆ

and GK
0 be the subgroup of characters that take the value 1 on G0. For any integer

b, we define xby to the the subgroup generated by b modulo q. We have

ź

χPGK
0

LP ps, χq “
ź

G0ĂKĂG

ź

pěP,
xpyG0“K

´
1 ´ p´|K{G0|s

¯´|G{K|

and, for any element a R G0 of order 2, we have

ź

χPGK
0

LP ps, χqχpaq “
ź

G0ĂKĂG,
aPK

ź

pěP,
xpyG0“K

ˆ p1 ´ p|K{G0|s{2q2
1 ´ p´|K{G0|s

˙´|G{K|

where Ĝ is the set of characters of G.

Case G0 “ t1u of the first identity is classical in Dedekind zeta function theory,
and can be found in [12, Proposition 13] in a rephrased form. Case a ‰ 1 will not be
required for the general theory. It may however lead quickly to efficient formulae.

Proof. We note that
ś
χPGK

0

p1 ´ χppqzqχpaq “
ś
ψPĤp1 ´ ψppqzqfpψq when xpy “ H

and where

(15) fpψq “
ÿ

χPGK
0
,

χ|H“ψ

χpaq.

The condition χ P GK
0 can also be written as χ|G0 “ 1, hence we can assume that

ψ|pH XG0q “ 1. We write
ź

χPGK
0

p1 ´ χppqzqχpaq “
ź

ψ1P{HG0,

ψ1|G0“1

p1 ´ ψppqzqf 1pψ1q

where

(16) f 1pψ1q “
ÿ

χPGK
0
,

χ|HG0“ψ

χpaq.
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When a lies outside HG0, this sum vanishes; otherwise it equals |G{pHG0q|ψ1paq.
The characters of HG0 that are trivial on G0 are canonically identified with the
characters of the cyclic group pHG0q{G0. We thus have

ź

ψ1P{HG0,

ψ1|G0“1

p1 ´ ψppqzq “ 1 ´ z|pHG0q{G0|

and this proves our first formula.
When a2 ” 1rqs and a R G0, and since pHG0q{G0 is cyclic, of (even) order h

say, the characters are given by χppxq “ epcx{hq since p is a generator and where c
ranges t0, ¨ ¨ ¨ , h´ 1u. We thus have, when a P H ,

ź

ψ1PpHG0q{G0

Ź

p1 ´ ψ1ppqzqψ1paq “
ź

cmodh

p1 ´ epc{hqzqepc{2q

“
ź

0ďdď h´2

2

ˆ
1 ´ e

´2d
h
z
¯˙ ź

0ďdď h´2

2

ˆ
1 ´ e

´2d` 1

h
z
¯˙´1

“ 1 ´ zh{2

1 ´ pep1{hqzqh{2
“ 1 ´ zh{2

1 ` zh{2
“ p1 ´ zh{2q2

1 ´ zh
.

The reader will readily complete the proof by setting K “ HG0. �

2.1. A special case. Let us select for G0 the kernel of a given quadratic character
χ1. The subgroup K can take only two values, G0 or G. We thus get

Lps, χ1qLps, χ0q “
ź

χ1ppq“1

p1 ´ p´sq2
ź

χ1ppq“´1

p1 ´ p´2sq

which gets converted into

(17) Lps, χ1qLps, χ0q “ Lps, χ0q2
ź

χ1ppq“´1

p1 ´ p´sq´2
ź

χ1ppq“´1

p1 ´ p´2sq.

Lemma 2.1 can also be used to obtain the same result.

2.2. More details modulo 12. Here is the character table modulo 12:

1 5 7 11
χ0,12 1 1 1 1
χ1,12 1 -1 1 -1
χ2,12 1 1 -1 -1
χ3,12 1 -1 -1 1

First Identity. This table enables us to write:

p mod 12 1 5 7 11
p1 ´ χ0,12ppqzq 1 ´ z 1 ´ z 1 ´ z 1 ´ z

p1 ´ χ1,12ppqzq 1 ´ z 1 ` z 1 ´ z 1 ` z

p1 ´ χ2,12ppqzq 1 ´ z 1 ´ z 1 ` z 1 ` z

p1 ´ χ3,12ppqzq 1 ´ z 1 ` z 1 ` z 1 ´ zś
χ ¨ ¨ ¨ p1 ´ zq4 p1 ´ z2q2 p1 ´ z2q2 p1 ´ z2q2

And thus
ź

χ

Lps, χq “
ź

pě5

1

p1 ´ p´2sq2
ź

pě5,
p”1r12s

p1 ´ p´2sq2
p1 ´ p´sq4 ,
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which gives rise to the formula

ź

pě5,
p”1r12s

1

p1 ´ p´sq4 “
ź

pě5,
p”1r12s

1

p1 ´ p´2sq2

ś
χ Lps, χq

pp1 ´ 2´2sqp1 ´ 3´2sqζp2sqq2 .

This identity reduces the computation of ζps; 12, 1q to the one of ζp2s; 12, 1q and
we can iterate this formula. Note that we can take the required fourth root as only
real numbers are involved, when the terms are properly grouped.

Second Identity. Similarly, we find that

p 1 5 7 11
p1 ´ χ0,12ppqzq 1 ´ z 1 ´ z 1 ´ z 1 ´ z

p1 ´ χ1,12ppqzq´1 p1 ´ zq´1 p1 ` zq´1 p1 ´ zq´1 p1 ` zq´1

p1 ´ χ2,12ppqzq´1 p1 ´ zq´1 p1 ´ zq´1 p1 ` zq´1 p1 ` zq´1

p1 ´ χ3,12ppqzq 1 ´ z 1 ` z 1 ` z 1 ´ z
ś
χ ¨ ¨ ¨ 1 1 1

p1 ´ zq4
p1 ´ z2q2

whence
Lps, χ0,12qLps, χ3,12q
Lps, χ1,12qLps, χ2,12q “

ź

pě5,
p”11r12s

p1 ´ p´sq2
p1 ´ p´2sq ,

which we finally write in the form

ź

pě5,
p”11r12s

1

p1 ´ p´sq2 “ Lps, χ0,12qLps, χ3,12q
Lps, χ1,12qLps, χ2,12q

ź

pě5,
p”11r12s

1

p1 ´ p´2sq2 .

This identity again reduces the computation of ζps; 12, 11q to the one of ζp2s; 12, 11q
and we can iterate this formula. Again, we can take the required fourth rooths as
only real numbers are involved, when the terms are properly grouped.

Third Identity. We also find that

p 1 5 7 11
p1 ´ χ0,12ppqzq 1 ´ z 1 ´ z 1 ´ z 1 ´ z

p1 ´ χ1,12ppqzq´1 p1 ´ zq´1 p1 ` zq´1 p1 ´ zq´1 p1 ` zq´1

p1 ´ χ2,12ppqzq 1 ´ z 1 ´ z 1 ` z 1 ` z

p1 ´ χ3,12ppqzq´1 p1 ´ zq´1 p1 ` zq´1 p1 ` zq´1 p1 ´ zq´1

ś
χ ¨ ¨ ¨ 1

p1 ´ zq4
p1 ´ z2q2 1 1

whence
Lps, χ0,12qLps, χ2,12q
Lps, χ1,12qLps, χ3,12q “

ź

pě5,
p”5r12s

p1 ´ p´sq2
p1 ´ p´2sq ,

We are exactly in the same position as with the second identity. We again finally
write in the form

ź

pě5,
p”5r12s

1

p1 ´ p´sq2 “ Lps, χ0,12qLps, χ2,12q
Lps, χ1,12qLps, χ3,12q

ź

pě5,
p”5r12s

1

p1 ´ p´2sq2 .

This identity again reduces the computation of ζps; 12, 5q to the one of ζp2s; 12, 5q
and we can iterate this formula. Again, we can take the required fourth rooths as
only real numbers are involved, when the terms are properly grouped.
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Fourth Identity. We can easily produce a similar formula linking ζps; 12, 7q to
ζp2s; 12, 7q or use the fact that the product ζps; 12, 1qζps; 12, 5qζps; 12, 7qζps; 12, 11q
equals Lps, χ0,12q, and thus is known, to infer such a formula from the ones above.

3. Products obtained in general

We want to compute Euler products of the shape ζps; q,Aq for s ą 1 and some
subset A of pZ{qZqˆ. Computing Lps, χq is easier as it can be reduced to sums
over integers is some arithmetic progressions. Equation (17) reduces in a special
case the computations of ζps; q,Aq to the one of ζps; q,Aq, and we can continue the

process. We soon reach
ś
pPAmod qp1 ´ 1{p2Nsq with a large enough N which can

be approximated by 1 ` Op2´2Nsq. The object of this section is to devise a setting
to understand which sums we relate together.

Definition 3.1. Two elements g1 and g2 of the abelian group G are said to be
lattice-invariant if and only if they generates the same group.

The map between the set of cyclic subgroups of G and the set of lattice-invariant-
classes which, to a subgroup, associates the subset of its generators, is one-to-one.

The function GetLatticeInvariantClasses of the script LIEP.sage gives the
two lists: the one of the cyclic subgroups and the one of their generators, ordered
similarly and in increasing size of the subgroup.

Any two elements of pZ{qZqˆ equivalent according to it cannot be distinguished
by using the formulae of Lemma 2.2. Conversely, the question is to know whether we
are indeed able to distinguish each class. To each class A, we attach the enumerable
collection of symbols pxr

A
qrě1. We shall replace each of them according to the rule

(18) xrA ÞÑ ´ log
ź

p`qZPA,
pěP

`
1 ´ p´rs

˘
.

We consider the module of finite formal combinations
ÿ

APG7,
rě1

αA,rx
r
A

with coefficients αA,r P Z and indeterminates xr
A
. The superscript r is not a power.

We consider the following special elements. Let G0 Ă K Ă G be two subgroups
such that K{G0 is cyclic. We define

(19) gpG0,K, tq “
ÿ

APG7,AG0“K

x
t|K{G0|
A

.

With that, we find that

(20) γpG0, tq “
ÿ

G0ĂKĂG

|G{K|gpG0,K, tq.

4. Iterating the formula

The first identity of Lemma 2.2 gives us as many identities as there are sub-
groups G0; we know by Definition 3.1 that the number of lattice-invariant -classes
equals the one of cyclic subgroups. It turns out that it is enough to restrict our
attention to cyclic subgroups G0. Let G be the subset of such subgroups, which we
order by inclusion. On recalling definition (7), we may rewrite (20) in the form

(21) Γptq “
ÿ

d||G|

MdVspdtq
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where (this is the case K “ G0)

(22) M1

ˇ̌
i“G0,j“A

“
#

|G{K| if A Ă G0,

0 otherwise,

and, where, when d ą 1 (i.e. G0 Ĺ K), we have

(23) Md

ˇ̌
i“G0,j“A

“
#

|G{AG0| if |AG0|{|G0| “ d,

0 otherwise.

Equation (21) gives us a relation betweenM1Vsptq andMdVspdtq for several d’s that
are strictly larger than 1. Our roadmap is to invert the matrixM1 and to iterate this
formula. We compute explicitly M´1

1 by using some generalised Moebius inversion,
which we first put in place.

The Moebius function associated to G . We follow closely the exposition of Rota
in [11]. On the algebra of functions f on couples pK,Lq of points of G such thatK Ă
L (the so-called incidence algebra, see [11, Section 3]), we define the convolution
product

pf ‹ gqpK,Lq “
ÿ

KĂHĂL

fpK,HqgpH,Lq.

We consider the G -zeta function which is defined by

ζG pK,Lq “
#
1 when K Ă L,

0 otherwise.

This function is shown to be invertible in the above algebra and its inverse is called
the G -Moebius function, denoted by µG . By definition, we have the two Moebius
inversion formulas:

(24)
ÿ

KĂHĂL

fpK,Hq “ gpK,Lq ùñ fpK,Lq “
ÿ

KĂHĂL

gpK,HqµG pH,Lq

and

(25)
ÿ

KĂHĂL

fpH,Lq “ gpK,Lq ùñ fpK,Lq “
ÿ

KĂHĂL

µG pK,HqgpH,Lq.

We end this reminder with a formula giving the value of µG pK,Hq.

Computing µG pK,Hq. Let CppK,Hq be the number of chains of length p going
from K to H , i.e. the number of p` 1-uples K “ A0 Ĺ A1 Ĺ A2 Ĺ . . . Ĺ Ap “ H .
Then (cf [11, Proposition 6])

(26) µG pK,Hq “
ÿ

pě0

p´1qpCppK,Hq.

Since the subgroups of a cyclic group are all cyclic, we only have to consider the
chains in H{K. There is one and only one subgroup for each divisor of |H{K|,
and any two such subgroups L1 and L2 are included according to whether |L1|

ˇ̌
|L2|

or not. This transfers the problem on a problem on integers. Let cℓpnq be the
number of ℓ ` 1-divisibility chains between 1 and n. We have c0pnq “ 11n“1 while
c1pnq “ 11ně2 and cp`1pnq “ pcℓ ‹ c1qpnq. This proves that cℓpnq “ d˚

ℓ pnq, the
number of p-tuples pd1, d2, . . . , dℓq of divisors of n that are such that di ‰ 1 and
d1d2 ¨ ¨ ¨dℓ “ n. We have

ÿ

ně1

d˚
ℓ pnq{ns “ pζpsq ´ 1qℓ
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and thus the generating series of
ř
pě0p´1qpd˚

ℓ pnq is

ÿ

ℓě0

p´1qℓpζpsq ´ 1qℓ “ 1

1 ` ζpsq ´ 1
“ 1{ζpsq.

We have proved that

(27) µG pK,Hq “ µp|H{K|q.

Inverting the matrix M1.

Proposition 4.1. The matrix M1 is invertible and the coefficients of its inverse
are given by

M´1
1

ˇ̌
i“A,j“K

“
#
µp|xAy{K|q{|G{K| when K Ă xAy,
0 otherwise.

Proof. We find that

M1V “ p|G{K|
ÿ

AĂK

vAqK .

We replaceA by the subgroupB “ xAy it generates. Inverting fpKq “ |G{K|
ř
BĂK vB

is done with the Moebius function of G . To do so, simply consider the more general
function

F pH,Kq “ |G{K|
ÿ

HĂBĂK

v˚pH,Bq “ |G{K|pv˚ ‹ ζG qpH,Kq

where v˚pH,Bq “ vB . This gets inverted in

v˚pH,Bq “
ÿ

HĂKĂB

F pH,Kq|G{K|´1µG pK,Bq

which yield, by specializing H “ t1u

vB “
ÿ

KĂB

fpKq|G{K|´1µG pK,Bq.

We could also have applied [11, Proposition 2 (**)]. This gives us

M´1
1

ˇ̌
i“B,j“K

“
#
µG pK,Bq{|G{K| if K Ă B,

0 otherwise.

Our proposition is proved. �

The function GetM1Inverse of the script LIEP.sage computes M´1
1 .

The recursion formula. We start from (21) and deduce that

(28) Vsptq “ ´
ÿ

d||G|,
d‰1

M´1
1 MdVspdtq `M´1

1 Γptq.

We readily find that Nd “ dM´1
1 Md is given by (11).

Proof. Indeed we have

Nd
ˇ̌
i“B0,j“B1

“ d
ÿ

KĂB0,
KĂB1,

|KB1{K|“d

µp|B0{K|q|G{K|´1|G{B1|.

This is exactly what we have written in (11). �
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By considering the exact sequence

(29) 1 ÝÑ K XB1 ÝÝÝÝÝÑ
k ÞÑpk,k´1q

K ˆB1 ÝÝÝÝÝÑ
pk,b1qÞÑkb1

KB1 ÝÑ 1,

one shows that |KB1{K| “ |B1|{|K X B1|. As a consequence, we see that only
the d that divides the exponent of G appear. The function GetNds of the script
LIEP.sage computes pNdqd.

(30) Vsptq “ ´
ÿ

d| expG,
d‰1

Nd

d
Vspdtq `M´1

1 Γptq.

Unfolding the recursion. Let z ě 1 and r ě 1 be two parameters. We have

(31) Vsptq “ p´1qr
ÿ

d1¨¨¨drďz

Nd1
d1

. . .
Ndr
dr

Vspd1 . . . drtq

`
ÿ

1ďvďr

p´1qv
ÿ

d1¨¨¨dv´1ďz,
d1¨¨¨dv´1dvąz

Nd1
d1

. . .
Ndv
dv

Vspd1 . . . dvtq

`
ÿ

1ďvďr´1

p´1qv
ÿ

d1¨¨¨dvďz

Nd1
d1

. . .
Ndv
dv

M´1
1 Γpd1 . . . dvtq `M´1

1 Γptq

where d1, . . . , dr are all divisors of expG excluding 1. We can incorporate the last
summand in the one before by considering as the value for s “ 0.

Proof. Let us prove this formula by recursion. Case r “ 1 is just (30). Let us see
precisely what happens for r “ 2. We start from

Vsptq “ ´
ÿ

d1| expG,
d1‰1

Nd1
d1

Vspd1tq `M´1
1 Γptq

which we rewrite as

Vsptq “ ´
ÿ

d1| expG,
d1‰1,
d1ďz

Nd1
d1

Vspd1tq ´
ÿ

d1| expG,
d1‰1,
d1ąz

Nd1
d1

Vspd1tq `M´1
1 Γptq.

We use again this equation on Vspd1tq when d1 ď z, and z{d1 rather than z, getting

Vsptq “
ÿ

d1| expG,
d1‰1,
d1ďz

ÿ

d2| expG,
d2‰1,
d1d2ďz

Nd1
d1

Nd2
d2

Vspd1d2tq

`
ÿ

d1| expG,
d1‰1,
d1ďz

ÿ

d2| expG,
d2‰1,
d1d2ąz

Nd1
d1

Nd2
d2

Vspd1d2tq ´
ÿ

d1| expG,
d1‰1,
d1ąz

Nd1
d1

Vspd1tq

´
ÿ

d1| expG,
d1‰1,
d1ďz

Nd1
d1

M´1
1 Γptq `M´1

1 Γptq.

To go from r to r ` 1, we select the divisors dr that are such that d1d2 ¨ ¨ ¨dr ď z

and employ (30) on Vspd1 ¨ ¨ ¨drtq. �
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Lemma 4.2. The coefficients of a product Nd1Nd2 ¨ ¨ ¨Ndv are at most (in absolute
value) equal to |G7|v´1, where G7 is the set of lattice-invariant classes (which is
also the number of cyclic subgroups of G).

End of the proof of Theorem 1.3. The formula (33) with t “ 1 contains most of our
proof. We only have to control the error term, which is our next task.

The number of possible d’s is at most the number of divisors of expG minus 1,
so at most dpexpGq. The coefficients of a typical product Nd1 ¨ ¨ ¨Ndv are of size
at most |G7|v´1, we divide each coefficient by d1 ¨ ¨ ¨dv which is at least z, and we
have at most dpexpGqv v-tuples pd1, . . . , dvq. As a consequence, each coordinate,
says y, of the vector

ÿ

1ďvďr´1

p´1qv
ÿ

d1¨¨¨dv´1ďz,
d1¨¨¨dv´1dvąz

Nd1
d1

. . .
Ndv
dv

Vspd1 . . . dvtq

satisfies

|y| ď pr ´ 1q
`
|G7|dpexpGq

˘r´1

z|G7| max
Dě2r

}VspDtq}.

We deal similarly with the coordinates of the vector

p´1qr
ÿ

d1¨¨¨drďz

Nd1
d1

. . .
Ndr
dr

Vspd1 . . . drtq

except that the denominator d1 ¨ ¨ ¨ dr is not especially larger than z; we however
select z “ 2r to ensure this condition. This means that only d1 “ d2 “ . . . “ dr “ 2
is admissible. So, on combining both, we see that

(32)

››››Vsp1q ´
ÿ

0ďvďr´1

p´1qv
ÿ

d1¨¨¨dvď2r

Nd1
d1

. . .
Ndv
dv

M´1
1 Γspd1 . . . dvq

››››

ď 1

2

ˆ
1 ` r ´ 1

|G7|

˙ˆ |G7|dpexpGq
2

˙r´1

max
Dě2r

}VspDq}.

To complete the proof, we simply need a bound for maxDě2r }VspDq} and such a
bound is provided by the next lemma.

Lemma 4.3. Let A be a subset of the G “ pZ{qZqˆ. Let f ą 1 be a real parameter.
We have ˇ̌

log ζP pf ; q,Aq
ˇ̌

ď 1 ` P {pf ´ 1q
P f

.

Proof. We use

log ζP pf ; q,Aq “ ´
ÿ

pPA,
pěP

ÿ

kě1

1

kpkf

hence, by using a comparison to an integral, we find that
ˇ̌
ˇlog ζP pf ; q,Aq

ˇ̌
ˇ ď

ÿ

něP

1

nf
ď 1

P f
`
ż 8

P

dt

tf

�

5. A detailed example modulo 7

Wet set G “ pZ{7Zqˆ. We find that

G “
 

t1u, t1, 6u, t1, 2, 4u, t1, 2, 3, 4, 5, 6u
(

(indexed in this order) and that

G7 “
 

t1u, t6u, t2, 4u, t3, 5u
(
,
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also indexed in that order. There are 6 Dirichlet characters whose values are given
by (with ζ6 “ expp2iπ{6q)

1 2 3 4 5 6
χ0 1 1 1 1 1 1
χ1 1 ζ26 ζ6 ´ζ6 ´ζ26 ´1
χ2 1 ´ζ6 ζ26 ζ26 ´ζ6 1
χ3 1 1 ´1 1 ´1 ´1
χ4 1 ζ26 ´ζ6 ´ζ6 ζ26 1
χ5 1 ´ζ6 ´ζ26 ζ26 ζ6 ´1

We obtain this list with the command

[[e(n) for n in xrange(1,7)] for e in GetStructure(7)[5]]

and the remark ζ6 ´ 1 “ ζ26 . The 8th component of GetStructure(7) gives the
index of the characters that are trivial on the above subgroups, its value is thus

rr0, 1, 2, 3, 4, 5s, r0, 2, 4s, r0, 3s, r0ss.

The vector Γsptq is given by (it is defined by (7))

Γsptq “

ˇ̌
ˇ̌
ˇ̌
ˇ̌

log
ś

0ďiď5 LP pts, χiq
log

ś
iPt0,2,4u LP pts, χiq

logpLP pts, χ0qLP pts, χ3qq
logLP pts, χ0q

while

Vsptq “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

´ log
ś
p”1r7s,
pěP

p1 ´ 1{ptsq

´ log
ś
p”6r7s,
pěP

p1 ´ 1{ptsq

´ log
ś
p”2,4r7s,
pěP

p1 ´ 1{ptsq

´ log
ś
p”3,5r7s,
pěP

p1 ´ 1{ptsq

Now that the players and the surrounding environment has been described, let us
turn towards the main step of our proof: the recursion (21). We first check that

γpt1u, tq “ 6xtt1u ` 3x2tt6u ` 2x3tt2,4u ` x6tt3,5u,

γpt1, 6u, tq “ 3xtt1u ` 3xtt6u ` x3tt2,4u ` x3tt3,5u,

γpt1, 2, 4u, tq “ 2xtt1u ` x2tt6u ` 2xtt2,4u ` x2tt3,5u,

γpt1, 2, 3, 4, 5, 6u, tq “ xtt1u ` xtt6u ` xtt2,4u ` xtt3,5u.

Whence the relation

Γsptq “ M1Vsptq `M2Vsp2tq `M3Vsp3tq `M6Vsp6tq

with

M1 “

¨
˚̊
˝

6 0 0 0
3 3 0 0
2 0 2 0
1 1 1 1

˛
‹‹‚, M2 “

¨
˚̊
˝

0 3 0 0
0 0 0 0
0 1 0 1
0 0 0 0

˛
‹‹‚

M3 “

¨
˚̊
˝

0 0 2 0
0 0 1 1
0 0 0 0
0 0 0 0

˛
‹‹‚, M6 “

¨
˚̊
˝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

˛
‹‹‚.
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The call GetM1Inverse(7,GetStructure(7))^(-1) produces the matrixM1. The
matrices Nd “ dM´1

1 Md are obtained by GetNds(7,GetStructure(7)). They are

N2 “

¨
˚̊
˝

0 1 0 0
0 ´1 0 0
0 ´1 0 1
0 1 0 ´1

˛
‹‹‚, N3 “

¨
˚̊
˝

0 0 1 0
0 0 ´1 1
0 0 ´1 0
0 0 1 ´1

˛
‹‹‚, N6 “

¨
˚̊
˝

0 0 1 ´1
0 0 0 ´1
0 0 0 ´1
0 0 0 1

˛
‹‹‚.

In order to check our script, we mention that the call

GetM1Inverse(7,GetStructure(7))^(-1)*GetNd(2,7,GetStructure(7))/2

gives M2 for instance (and one can replace the parameter 2 that occurs twice with
3 or 6 to get M3 and M6). We have reached

Vsptq “ M´1
1 Γsptq ´ N2

2
Vsp2tq ´ N3

3
Vsp3tq ´ N6

6
Vsp6tq.

Our objective is Vsp1q and we know how to compute Γsptq while, when d is large,
Vspdtq vanishes approximately; it is thus enough to iterate the above formula. We
end the numerical example here.

6. Rational Euler Products

Let us recall the Witt decomposition. The readers will find in [6, Lemma 1] a
result of the same flavour. We have simply modified the proof and setting as to
accomodate polynomials having real numbers for coefficients.

Lemma 6.1. Let F ptq “ 1 ` a1t ` . . . ` aδt
δ P Rrts be a polynomial of degree δ.

Let α1, . . . , αδ be the inverses of its roots. Put sF pkq “ αk1 ` . . . ` αkδ . The sF pkq
are integers and satisfy the Newton-Girard recursion

(33) sF pkq ` a1sF pk ´ 1q ` . . .` ak´1sF p1q ` kak “ 0,

where we have defined aδ`1 “ aδ`2 “ . . . “ 0. Put

(34) bF pkq “ 1

k

ÿ

d|k

µpk{dqsF pdq.

Let β ě 1 be such that β ě maxj |1{|αj|. When t belongs to any segment Ă p´β, βq,
we have

(35) F ptq “
8ź

j“1

p1 ´ tjqbF pjq

where the convergence is uniform in the given segment.

And how does the mathematician E. Witt enter the scene? In the paper [18] on
Lie algebras, Witt produced in equation p11q therein a decomposition that is the
prototype of the above expansion.

Proof. Since we follow the proof of [6, Lemma 1], we shall be rather sketchy. We
write F ptq “ ś

ip1 ´ αitq. We thus have

tF 1ptq
F ptq “

ÿ

i

αit

1 ´ αit
“

ÿ

kě1

sF pkqtk.

This series is absolutely convergent in any disc |t| ď b ă 1{β where β “ maxjp1{|αj |q.
We may also decompose tF 1ptq{F ptq in Lambert series as

tF 1ptq
F ptq “

ÿ

jě1

bF pjq jtj

1 ´ tj

as some series shuffling in any disc of radius b ă minp1, 1{βq shows. The lemma
follows readily by integrating the above relation. �
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Lemma 6.2. We use the hypotheses and notation of Lemma 6.1. Let β ě 2 be
larger than the inverse of the modulus of all the roots of F ptq. We have

|bF pkq| ď 2 degF ¨ βk{k.

Proof. We clearly have |sF pjq| ď degF ¨ βj , so that

|bF pkq| ď degF

k

ÿ

1ďjďk

βj ď degF

k
β
βk ´ 1

β ´ 1

ď degF

k

βk

1 ´ 1{β ď 2 degF ¨ βk{k.

�

There are numerous easy upper estimates for the inverse of the modulus of all
the roots of F ptq in terms of its coefficients. Here is a simplistic one.

Lemma 6.3. Let F pXq “ 1 ` a1X ` . . . ` aδX
δ be a polynomial of degree δ. Let

ρ be one of its roots. Show that, either |ρ| ě 1 or 1{|ρ| ď |a1| ` |a2| ` . . .` |aδ|.

Proof. The readers may first notice that

p1{ρqδ “ ´a1p1{ρqδ´1 ´ a2p1{ρqδ´2 ´ . . .´ aδ.

The conclusion is easy. �

Proof of Theorem 1.4. The proof requires several steps. The very first one is a
direct consequence of (35), which leads to the identity

(36)
F ptq
Gptq “

8ź

j“2

p1 ´ tjqbF pjq´bGpjq.

The absence of the j “ 1 term is due to our assumption that pF pXq ´GpXqq{X2 P
ZrXs. Up to this point (36) is only established as a formal identity. Our second step
is to establish (36) for all t P C with |t| ă 1{β and to control the rate of convergence.
By Lemma 6.2, we know that |bF pjq´bGpjq| ď 2maxpdegF, degGqβj{j. Therefore,
for any bound J , we have

(37)
ÿ

jěJ`1

|tj ||bF pjq ´ bGpjq| ď 2maxpdegF, degGq |tβ|J`1

p1 ´ |tβ|qpJ ` 1q ,

as soon as |t| ă 1{β. We thus have

(38)
F ptq
Gptq “

ź

2ďjďJ

p1 ´ tjqbF pjq´bGpjq ˆ I1,

where | log I1| ď 2maxpdegF, degGq|tβ|J`1{rp1 ´ |tβ|qpJ ` 1qs.
Now that we have the expansion (38) for each prime p, we may combine them.

We readily get

ź

pěP,
pPA

F p1{pq
Gp1{pq “

ź

pěP,
pPA

ź

2ďjďJ

p1 ´ p´jqbGpjq´bF pjq ˆ I2,
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where I2 satisfies

| log I2| ď 2maxpdegF, degGq
ÿ

pěP

βJ`1

1 ´ β{P
1

pJ ` 1qpJ`1

ď 2maxpdegF, degGqβJ`1

p1 ´ β{P qpJ ` 1q

ˆ
1

P J`1
`
ż 8

P

dt

tJ`1

˙

ď 2maxpdegF, degGqpβ{P qJβ
p1 ´ β{P qpJ ` 1q

ˆ
1

P
` 1

J

˙
,

since P ě 2 and J ě 3. As announced earlier, we may rearrange the product over
the primes p and get

ź

pěP,
pPA

F p1{pq
Gp1{pq “

ź

2ďjďJ

ζP pj; q,AqbGpjq´bF pjq ˆ I2.

The last step is to replace ζP pj; q,Aq by the approximation, say ζP pj; q,A|rq given
by (13). We find that

ź

pěP,
pPA

F p1{pq
Gp1{pq “

ź

2ďjďJ

ζP pj; q,A|rqbF pjq´bGpjq ˆ I3,

where I3 satisfies

| log I3| ď C
ÿ

2ďjďJ

|bF pjq ´ bGpjq|1 ` P {p2rj ´ 1q
P j2

r ` | log I2|

ď C
ÿ

2ďjďJ

2maxpdegF, degGqβ
j

j

1 ` 2´rP

P j2
r ` | log I2|.

with

C “ 1

2

ˆ
1 ` r ´ 1

|G7|

˙ˆ |G7|dpexpGq
2

˙r´1

.

Therefore (and since r ě 2)

(39)
| log I3|

2maxpdegF, degGq ď 1

4

ˆ
1 ` r ´ 1

|G7|

˙ˆ |G7|dpexpGq
2

˙r´1
β2

P 2r`1

1 ` 2´rP

1 ´ β{P 4

` pβ{P qJβ
p1 ´ β{P qpJ ` 1q

ˆ
1

P
` 1

J

˙

and this ends the proof. �

7. Counting the number of Lattice-Invariant Classes

It is of interest to count how many lattice-invariant classes there are, i.e. to
determine the cardinality of G7 which is equally the number of cyclic subgroups,
i.e. the cardinality of G . We proceed in several steps.

Lemma 7.1. Let d ě 1 and q ě 1 be two integers. The number ρpq; dq of solutions
to the equation xd ” 1rqs is a multiplicative function of the variable q. When p is
a prime, we find that

ρppα; dq “

$
’’’&
’’’%

pd, pα´1pp ´ 1qq if p ‰ 2,

1 if p “ 2 and α “ 1,

1 if p “ 2, α ě 2 and d odd,

2pd, 2α´2q if p “ 2, α ě 2 and d even.

The function d ÞÑ ρpq; dq is also multiplicative.
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Proof. The multiplicative character of ρpq; dq stems from the Chinese Remainder
Theorem. In Z{pαZ and p ‰ 2, the equation xd ” 1rpαs has pd, pα´1pp ´ 1qq as
stated in [9, Corollary 2.42]; it is an easy consequence of the fact that pZ{pαZqˆ is
cyclic in this case.

When p “ 2, the equation xd ” 1r2s has exactly one solution, namely x “
1. When p “ 2 and α ě 2, the multiplicative group pZ{pαZqˆ is isomorphic to
the direct product pZ{2Z,`q ˆ pZ{2α´2Z,`q. We find as a consequence of [4,
Proposition 4.2.2] that ρp2α, dq “ 2pd, 2α´2q.

The multiplicativity of the function d ÞÑ ρpq; dq folows from the explicit expres-
sion of ρpq; dq: it is a product (over prime factors of q) of multiplicative functions
of the variable d. �

Lemma 7.2. The number ρ˚pq; dq of elements of order d in pZ{qZqˆ is given by
ÿ

ℓ|d

µpd{ℓqρpq; ℓq

where ρpq; dq is defined and determined in Lemma 7.1.

Proof. This is a consequence of the Moebius inversion formula as, by classifying the
solution of xd ” 1rqs by their order, we find that ρpq; dq “

ř
ℓ|d ρ

˚pq; ℓq. �

Proposition 7.3. When q ě 3, the number |G | of cyclic subgroups of pZ{qZqˆ is
given by

|G | “
ź

p|ϕpqq,
p‰2

p ´ 2

p ´ 1

ÿ

d|ϕpqq,
2|d

ρpq; dq
ϕpdq

ź

p|d,
p|ϕpqq{d,
p‰2

pp ´ 1q2
ppp´ 2q

ź

p|d,
p∤ϕpqq{d,
p‰2

p´ 1

p´ 2

ź

2|d,
2|ϕpqq{d

1

2

where ρpq; dq is defined and determined in Lemma 7.1.

We have checked this expression with Sage via the function CardClassList of
our script. The values have been checked against a direct count: we have the list
of lattice-invariant classes, hence their number.

Proof. Each cyclic subgroup of order d has ϕpdq generators. Hence the number of
cyclic subgroups of order d is equal to ρ˚pq; dq{ϕpdq, whence, by Lemma 7.2,

|G | “
ÿ

d|ϕpqq

1

ϕpdq
ÿ

ℓ|d

µpd{ℓqρpq; ℓq

“
ÿ

ℓ|ϕpqq

ρpq; ℓq
ÿ

ℓ|d|ϕpqq

µpd{ℓq
ϕpdq .

To evaluate the inner sum, write ϕpqq “ h1h2h3, where h1 is the product of the
pvppϕpqqq with p|ℓ and p|ϕpqq{ℓ, then h2 is the product of the pvppϕpqqq with p|ℓ but
p ∤ ϕpqq{ℓ and ph3, ℓq “ 1 is what remains after division by h1h2. We readily find
that ÿ

ℓ|d|ϕpqq

µpd{ℓq
ϕpdq “ 1

ϕpℓq
ź

p|h1

´
1 ´ 1

p

¯ ź

p|h2

1
ź

p|h3

´
1 ´ 1

p´ 1

¯
.

This vanishes when 2|h3, so we can restrict our attention to even ℓ’s. In which case
we get

ÿ

ℓ|d|ϕpqq

µpd{ℓq
ϕpdq “ 1

ϕpℓq
ź

p|ϕpqq,
p‰2

p´ 2

p´ 1

ź

p|h1,
p‰2

pp ´ 1q2
ppp´ 2q

ź

p|h2,
p‰2

p´ 1

p´ 2
ˆ
ˆ
1

2
when 2v2pϕpqqq ∤ ℓ

˙
.

We reverse to the variable d rather than ℓ to write our lemma. We have also used
the condition q ě 3 to ensure that 2|ϕpqq. �
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8. Notes on the implementation

The parameter r is not very large, typically between 2 and 8. Since in (12),
several products d “ d1 ¨ ¨ ¨ dv are equal, we store the computed values of Γspdtq
in the dictionary ComputedGammas in the function GetVs of the script LIEP.sage.
We proceed similarly with the dictionary ComputedProductNdsM1Inverse for the
products Nd1 ¨ ¨ ¨NdvM´1

1 in . Since the list rd1, ¨ ¨ ¨ , dvs cannot be a key for such
a dictionary, we simply replace it by the tuple pd1, ¨ ¨ ¨ , dvq.

Concerning the general structure, the function GetStructure computes all the
algebraical quantities that we need: the list of cyclic subgroups, the one of lattice-
invariant classes, the exponent of our group, its character group, the set of invertible
classes and, for each cyclic subgroup, the set of characters that are trivial on it.

Once the script is loaded via load(’LIEP.sage’), a typical call will be

GetVs(12, 2, 100, 300)

to compute modulo 12 the possible constants with s “ 2, asking for 100 decimal
digits and using P “ 300. The output is self explanatory. The number of decimal
digits asked for is roughly handled and one may lose precision in between, but this
is indicated at the end (we observed no such phenomenon, but it may still happen!).
A more precise treatment would first check the output and if the precision attained
would not be enough, increase automatically this parameter. We prefer to let the
users do that by themselves. The digits presented when WithLaTeX “ 1 are always
accurate. Note that we expect the final result to be of size roughly unity, so we
ask for is not the relative precision but the number of decimals. Hence, in the
function GetGamma, we replace by an approximation of 0 the values that we know
are insignificantly small. This is a true time-saver.

There are two subsequent optional parameters Verbose and WithLaTeX. The
first one may take the values 0, 1 and 2; when equal to 0, the function will simply
do its job and return the list of the invariant classes and the one of the computed
lower and upper values. When equal to 1, its default value, some information on the
computation is given. At level 2, more informations is given, but that should not
concern the casual user. When the parameter Verbose is at least 1 and WithLaTeX

is 1, the values of the constants will be further presented in a format suitable for
inclusion in a LATEX-file. For instance, the call

GetVs(12, 2, 100, 100, 1, 1)

is the one used to prepare this document.
To compute the Euler products as explained in Theorem 1.4, we have the function

GetEulerProds(q, F, G, nbdecimals, bigP = 100, Verbose = 1, WithLaTeX

= 0). Note that the parameter bigP may be increased during the run of the pro-
gram to ensure that P ě 2β (a condition that is most of the time satisfied). We
reused the same structure as the function GetVs, without calling it: this is to also
keep all the precomputed datas. Since the coefficients |bF pjq ´ bGpjq| may increase
like βj , we increase the working precision by J log β{ log 2.
Checking. The values given here have been checked in several manners. The
co-authors of this paper have computed several of the next values via independent
scripts. We also provide the function GetVsChecker(q, s, borne = 10000)which
computes approximate values of the same Euler products by simply truncating the
Euler product representation. We checked with positive result the stability of our
results with respect of the variation of the parameter P . This proved to be a very
discriminating test.

Furthermore, approximate values for Shank’s and Lal’s constants are known
(Finch in [1] gives 10 digits) and we agree on those. Finally, the web site [3] by X.
Gourdon and P. Sebah is nowadays difficult to decypher but a postscript version
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is available on the same page. They give in section 4.4 the first fifty digits of the
constant they call A and which is

π2

2

ź

p”1r4s

ˆ
1 ´ 4

p

˙ˆ
p` 1

p´ 1

˙2

“ 1.95049 11124 46287 07444 65855 65809 55369

25267 08497 71894 30550 80726 33188 94627

61381 60369 39924 26646 98594 38665 ¨ ¨ ¨

Our result match the one of [3].

9. Some results

In this part, we exhibit some results for s “ 2 and small q’s. We decided to
produce 100 decimal digits each time. Each computation took at most five seconds
and we selected uniformly P “ 100.

Modulo 3.

ź

p”1r3s

p1 ´ p´2q´1 “ 1.03401 48754 14341 88053 90306 44413 04762 85789 65428 48909

98864 16825 03842 12222 45871 09635 80496 21707 98262 05962 ¨ ¨ ¨
ź

p”2r3s

p1 ´ p´2q´1 “ 1.41406 43908 92147 63756 55018 19079 82937 99076 95069 39316

21750 39924 96242 39281 06992 08849 94537 54858 50247 51141 ¨ ¨ ¨

Modulo 4.

ź

p”1r4s

p1 ´ p´2q´1 “ 1.05618 21217 26816 14173 79307 65316 21989 05875 80425 46070

80120 04306 19830 27928 16062 22693 04895 12958 37291 59718 ¨ ¨ ¨
ź

p”3r4s

p1 ´ p´2q´1 “ 1.16807 55854 10514 28866 96967 37064 04040 13646 79021 45554

79928 40563 68111 38106 59377 71094 66904 07472 79588 48702 ¨ ¨ ¨

Modulo 5.

ź

p”1r5s

p1 ´ p´2q´1 “ 1.01091 51606 01019 52260 49565 84289 51492 09845 38627 58173

85237 32024 20089 25161 37424 56726 37093 96197 69455 89218 ¨ ¨ ¨
ź

p”2,3r5s

p1 ´ p´2q´1 “ 1.55437 60727 20889 22081 75902 82565 55177 56056 30147 34257

40072 50077 94457 39239 00871 38641 44091 80733 87878 70683 ¨ ¨ ¨
ź

p”4r5s

p1 ´ p´2q´1 “ 1.00496 03239 22297 55899 37496 24810 25218 47955 10294 18802

28801 99528 37852 15071 27700 70076 98854 32491 36118 00619 ¨ ¨ ¨

Modulo 7.

ź

p”1r7s

p1 ´ p´2q´1 “ 1.00222 95338 19740 42627 18641 59138 22019 24486 37565 40128

87922 82973 79678 21741 90308 08041 42707 36575 28295 76151 ¨ ¨ ¨
ź

p”2,4r7s

p1 ´ p´2q´1 “ 1.34984 62543 65273 20787 74772 44978 62277 76508 69021 24860

12031 69999 35719 21654 93824 75777 02051 36300 53459 76601 ¨ ¨ ¨
ź

p”3,5r7s

p1 ´ p´2q´1 “ 1.18274 26007 67364 09208 00286 83933 15918 51718 05360 46335

82633 06344 66854 90324 90537 21799 81486 90001 86365 91391 ¨ ¨ ¨
ź

p”6r7s

p1 ´ p´2q´1 “ 1.00705 20326 03074 04805 67193 52428 88870 69289 36714 73687

58335 65893 11634 74829 60947 12069 41243 26265 99553 53536 ¨ ¨ ¨
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Modulo 8.

ź

p”1r8s

p1 ´ p´2q´1 “ 1.00483 50650 34191 18711 83598 31169 10411 95979 07317 54340

88789 55156 06711 74639 62051 31056 35207 32105 88068 58783 ¨ ¨ ¨

ź

p”3r8s

p1 ´ p´2q´1 “ 1.13941 87771 08211 51502 70589 30773 34020 88725 59961 09629

48302 25821 27411 02101 65577 60742 91446 59374 91512 33349 ¨ ¨ ¨

ź

p”5r8s

p1 ´ p´2q´1 “ 1.05109 99849 42183 30793 68775 56006 33505 68012 01018 45817

85080 59912 94207 39729 30485 58783 38889 50479 59255 34495 ¨ ¨ ¨

ź

p”7r8s

p1 ´ p´2q´1 “ 1.02515 03739 25759 17991 61954 35560 94158 79433 11002 76024

41530 69566 94982 17644 97960 41007 90076 26943 14236 43529 ¨ ¨ ¨

Modulo 9.

ź

p”1r9s

p1 ´ p´2q´1 “ 1.00403 38350 51288 79798 24781 19924 74748 94825 22895 79877

28822 86701 42359 63409 37977 93839 33608 94316 94860 37141 ¨ ¨ ¨

ź

p”2,5r9s

p1 ´ p´2q´1 “ 1.40783 70719 96538 05093 52684 03433 79823 18382 56159 80878

18858 21039 93308 74959 08486 21687 68292 75777 90984 34896 ¨ ¨ ¨

ź

p”4,7r9s

p1 ´ p´2q´1 “ 1.02986 05876 77826 18491 88642 35135 21663 16312 01666 87293

15881 63094 56123 55333 65628 89969 28513 96515 60005 36245 ¨ ¨ ¨

ź

p”8r9s

p1 ´ p´2q´1 “ 1.00442 33235 64550 15978 66082 58390 58205 39661 19672 30788

17744 79626 23017 18753 96410 76663 34579 95134 16501 66760 ¨ ¨ ¨

Modulo 11.

ź

p”1r11s

p1 ´ p´2q´1 “ 1.00232 82408 97736 52733 78057 92469 42582 04345 78064 14879

23124 99895 44150 38255 72926 07516 98484 87460 03110 08712 ¨ ¨ ¨

ź

p”2,6,7,8r11s

p1 ´ p´2q´1 “ 1.38240 11448 05788 71773 39824 35954 70441 91351 16435 84157

13863 06101 70250 01900 59181 34321 25138 72741 06748 64687 ¨ ¨ ¨

ź

p”3,4,5,9r11s

p1 ´ p´2q´1 “ 1.17640 19224 41514 71776 56838 81699 54785 03151 42210 45715

72819 38133 44304 81040 93008 74341 67383 61950 21979 26318 ¨ ¨ ¨

ź

p”10r11s

p1 ´ p´2q´1 “ 1.00079 37707 14740 00680 22327 79981 38075 30993 79972 81556

86828 01966 59824 89326 65924 56171 20791 11742 28212 98769 ¨ ¨ ¨

Modulo 12.

ź

p”1r12s

p1 ´ p´2q´1 “ 1.00761 32452 14144 96616 93493 12247 73229 37895 47142 90433

17666 43368 44819 49208 97861 01855 78530 60579 11129 80649 ¨ ¨ ¨

ź

p”5r12s

p1 ´ p´2q´1 “ 1.04820 19036 00769 93683 49374 34895 79267 34804 13674 49481

52581 07376 14495 24161 71571 43788 23594 04990 88566 94968 ¨ ¨ ¨

ź

p”7r12s

p1 ´ p´2q´1 “ 1.02620 21468 31233 70070 72018 66966 36157 23611 09321 31334

95148 10400 66496 54603 29393 86454 19299 91782 63867 91609 ¨ ¨ ¨

ź

p”11r12s

p1 ´ p´2q´1 “ 1.01177 86368 50332 58370 51194 10267 33127 80584 01230 89520

87028 35959 40756 15016 41704 56300 54442 19591 32980 62727 ¨ ¨ ¨
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Modulo 13.

ź

p”1r13s

p1 ´ p´2q´1 “ 1.00065 68661 98289 66605 74722 84730 77197 91777 00717 07399

33554 44837 12988 36602 52536 84343 79642 73590 88077 31673 ¨ ¨ ¨

ź

p”2,6,7,11r5s

p1 ´ p´2q´1 “ 1.38005 21671 19142 93623 73358 95833 59312 88490 63922 76216

00813 27801 96170 83570 07037 00666 02382 19997 07055 85939 ¨ ¨ ¨
ź

p”3,9r13s

p1 ´ p´2q´1 “ 1.12706 12738 77030 37596 05291 90459 70008 03562 53668 12081

48604 51380 13290 89754 69987 12664 24897 64722 52303 29593 ¨ ¨ ¨

ź

p”4,10r13s

p1 ´ p´2q´1 “ 1.00628 51383 85264 35654 79220 78630 88874 03212 24553 50607

59162 40959 77321 01204 89381 53735 74182 12805 59112 51752 ¨ ¨ ¨

ź

p”5,8r13s

p1 ´ p´2q´1 “ 1.04384 79529 58163 48325 64453 12135 62867 13038 05109 49630

56435 71738 46465 77456 29690 71263 29350 03766 17988 29979 ¨ ¨ ¨
ź

p”12r13s

p1 ´ p´2q´1 “ 1.00019 47228 43353 09720 12251 29852 70839 19867 65951 93000

49665 62593 02690 92410 34974 82067 06364 88262 34074 53639 ¨ ¨ ¨

Modulo 15.

ź

p”1r15s

p1 ´ p´2q´1 “ 1.00148 97422 73492 93695 62022 82152 29804 06202 71822 24183

85046 92061 06460 33370 47461 16170 34094 66709 13158 03303 ¨ ¨ ¨
ź

p”2,8r15s

p1 ´ p´2q´1 “ 1.34246 04551 54995 30799 30100 63345 72665 24298 78723 72380

96524 03928 73058 62457 83670 07480 09151 10334 06933 31380 ¨ ¨ ¨
ź

p”4r15s

p1 ´ p´2q´1 “ 1.00317 84700 07976 58539 76886 54009 35749 55893 69169 67588

37351 26980 45622 46578 84368 96080 28447 94669 19055 69351 ¨ ¨ ¨
ź

p”7,13r15s

p1 ´ p´2q´1 “ 1.02920 54524 88970 30487 46169 68199 34620 53972 85734 20801

87576 81344 73863 39397 51683 30560 76995 20714 09590 99521 ¨ ¨ ¨
ź

p”11r15s

p1 ´ p´2q´1 “ 1.00941 13977 70415 34074 11140 07967 71715 31828 38502 83487

41065 68439 10926 98429 51008 47969 06005 15885 02338 55701 ¨ ¨ ¨
ź

p”14r15s

p1 ´ p´2q´1 “ 1.00177 62082 89544 73626 10915 43079 96283 15610 57061 98467

19519 14691 39870 02036 75682 26376 90944 75824 69831 96091 ¨ ¨ ¨

Modulo 16.

ź

p”1r16s

p1 ´ p´2q´1 “ 1.00378 12963 11174 37714 94711 72280 61816 45658 26785 28441

57268 63521 48911 54134 99502 87194 19254 71100 10645 46873 ¨ ¨ ¨
ź

p”3,11r16s

p1 ´ p´2q´1 “ 1.13941 87771 08211 51502 70589 30773 34020 88725 59961 09629

48302 25821 27411 02101 65577 60742 91446 59374 91512 33349 ¨ ¨ ¨
ź

p”5,13r16s

p1 ´ p´2q´1 “ 1.05109 99849 42183 30793 68775 56006 33505 68012 01018 45817

85080 59912 94207 39729 30485 58783 38889 50479 59255 34495 ¨ ¨ ¨
ź

p”7r16s

p1 ´ p´2q´1 “ 1.02325 48781 97407 08067 95776 68614 06977 00372 89157 54600

19844 97929 83355 91253 99909 55714 70317 40567 85934 05044 ¨ ¨ ¨
ź

p”9r16s

p1 ´ p´2q´1 “ 1.00104 97991 21471 31637 83963 95210 10070 68052 00181 57035

98663 81304 47589 89310 55217 86340 51978 44383 63621 58656 ¨ ¨ ¨
ź

p”15r16s

p1 ´ p´2q´1 “ 1.00185 24179 73996 13159 93578 02219 51678 26622 68517 41444

99996 30754 09303 19958 16127 21985 97936 04820 77136 34947 ¨ ¨ ¨
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Some notes on timing. We tried several large computations to get an idea of
the limitations of our script, with the uniform choice P “ 300 and asking for
100 decimal digits. Since we did not run each computations hundred times to get
an average timing, this table has to be taken with a pinch of salt. We present
relative timing, knowing that the computation with q “ 3, q “ 4 or q “ 4 took
about a tenth of a second.

q ϕpqq #d1
is |G7| r

relative
time(ms)

3 2 5 2 5 1
4 2 5 2 5 1
5 4 19 3 5 1
7 6 28 4 5 3.2
8 4 5 4 5 2.2
9 6 28 4 5 3.2

11 10 15 4 5 30
12 4 5 4 5 2.5
13 12 55 6 5 4.4
15 8 19 6 5 2
16 8 19 6 5 1.6
17 16 30 5 5 42
19 18 34 6 5 93
20 8 19 6 5 2
21 12 28 8 5 7
23 22 9 4 5 100
24 8 5 8 5 5
25 20 32 6 5 98
27 18 34 6 5 92
28 12 28 8 5 6.5
29 28 31 6 5 175
31 30 54 8 5 343
32 16 27 8 5 25
33 20 15 8 5 65
35 24 55 12 5 96
36 12 28 8 5 6.5
37 36 61 9 5 350
39 24 55 12 5 99
40 16 19 12 5 4.6
41 40 40 8 5 424
43 42 40 8 5 654
44 20 15 8 5 652
45 24 55 12 5 95
47 46 6 4 5 394
48 16 19 12 5 4.8
49 42 40 8 5 665
51 32 30 10 5 101

q ϕpqq #d1
is |G7| r

relative
time(ms)

52 24 55 12 5 102
53 52 23 6 5 675
55 40 32 12 5 250
56 24 28 16 5 15
57 36 34 12 5 222
59 58 6 4 5 675
60 16 19 12 5 5
61 60 84 12 5 1468
63 36 28 20 5 23
64 32 30 10 5 96
65 48 55 20 5 260
67 66 32 8 5 155
68 32 30 10 5 97
69 44 9 8 5 240
71 70 24 8 5 1850
72 24 28 16 5 15
73 72 72 12 5 1643
75 40 32 12 5 237
76 36 34 12 5 219
77 60 54 16 5 855
79 78 32 8 5 2312
80 32 19 20 5 12
81 54 35 8 5 871
83 82 5 4 5 1527
84 24 28 16 5 15
85 64 30 18 5 257
87 56 31 12 5 441
88 40 15 16 5 157
89 88 31 8 5 2058
91 72 55 30 5 464
92 44 9 8 5 241
93 60 54 16 5 866
95 72 61 18 5 915
96 32 27 16 5 61
97 96 70 12 5 3371
99 60 54 16 5 855

100 40 32 12 5 236

This table shows that the value of ϕpqq is the main determinant of the time needed.
The column with the tag “#d1

is” contains the number of tuples pd1, ¨ ¨ ¨ , dvq in the
main formula.
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Here is now a shorter table when
asking 1000 decimal digits still
with P “ 300. The time needed
is still very decent.

q ϕpqq #d1
i
s |G7| r time(ms)

3 2 8 2 8 3708
4 2 8 2 8 3226
5 4 87 3 8 7067
7 6 249 4 8 29421
8 4 8 4 8 6423
9 6 249 4 8 29267

11 10 96 4 8 56001
12 4 8 4 8 7264
13 12 716 6 8 87480
15 8 87 6 8 14021

When asking for 5000 decimal digits and only q “ 3, it took about 16 minutes
(with P “ 500) to get an answer, which essentially sets the horizon of the present
method.
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