
ar
X

iv
:1

90
8.

08
91

0v
1

 [
m

at
h.

C
O

]
 2

3
A

ug
 2

01
9

Counting pop-stacked permutations in

polynomial time

Anders Claesson
Division of Mathematics

The Science Institute

University of Iceland

akc@hi.is

Bjarki Ágúst Guðmundsson
Department of Computer Science

Reykjavík University

Reykjavík, Iceland

bjarkig@ru.is

Jay Pantone
Department of Mathematical and Statistical Sciences

Marquette University

Milwaukee, WI, USA

jay.pantone@marquette.edu

Abstract

Permutations in the image of the pop-stack operator are said to be

pop-stacked. We give a polynomial-time algorithm to count pop-stacked

permutations up to a fixed length and we use it to compute the first 1000

terms of the corresponding counting sequence. Only the first 16 terms had

previously been computed. With the 1000 terms we prove some negative

results concerning the nature of the generating function for pop-stacked

permutations. We also predict the asymptotic behavior of the counting

sequence using differential approximation.

1 Pop-stacked permutations

The abstract data type known as a stack has two operations: push adds an
element at the top of the stack; pop removes the top element from the stack.
A pop-stack is a variation of this introduced by Avis and Newborn [2] in which
the pop operation empties the entire stack.

Let π = a1a2 . . . an be a permutation of [n] = {1, 2, . . . , n}. An ascending run

of π is a maximal sequence of consecutive ascending letters ai < ai+1 < · · · <
ai+d−1, and a descending run is defined similarly. For instance, the ascending
runs of π = 617849235 are 6, 178, 49 and 235; its descending runs are 61, 7, 84,
92, 3 and 5.

Let P (π) be the result of greedily sorting π using a pop-stack subject to the
constraint that elements on the pop-stack are increasing when read from the

http://arxiv.org/abs/1908.08910v1

top to the bottom of the stack. In other words, if we factor π into its de-
scending runs π = D1D2 . . . Dm, then P (π) is obtained by reversing each of
those runs: P (π) = Dr

1D
r
2 . . . D

r
m. For instance, P (5321764) = 1235467 and

P (617849235) = 167482935. A permutation π is said to be sortable by a pop-
stack if P (π) is the identity permutation. More generally, π is said to be sortable
by k passes through a pop-stack if P k(π) is the identity permutation. Claesson
and Guðmundsson [3] showed that the generating function for the number of
permutations of [n] that are sortable by k passes through a pop-stack is always
rational.

Asinowski et al. [1] defined that σ is pop-stacked if σ = P (π) for some permu-
tation π, and gave the following theorem.

Theorem 1 (Asinowski et al. [1]). A permutation is pop-stacked if and only if

for each pair (Ri, Ri+1) of its adjacent ascending runs minRi < maxRi+1.

They further showed that the generating function for pop-stacked permutations
of [n] with exactly k ascending runs is rational for each k. Enumerating pop-
stacked permutations without this restriction is, however, an open problem.
Asinowski et al. initiated an investigation into this by calculating the number of
pop-stacked permutations of length n = 1, . . . , 16, adding the resulting sequence
to the OEIS [11] as A307030 and noting that “this sequence is hard to compute”.
In the following section, we give an efficient algorithm for counting pop-stacked
permutations, expanding the sequence up to n = 1000. While the algorithm and
the augmented sequence could give additional insight into the structure of pop-
stacked permutations, finding a generating function or a closed form solution to
their enumeration remains an open problem. Section 3 gives experimental data
in this direction.

2 Polynomial-time counting algorithm

A ballot, alternatively known as an ordered set partition, is a collection of pair-
wise disjoint nonempty sets, referred to as blocks, where the blocks are assigned
some total ordering. Any permutation can be seen as a ballot by decompos-
ing it into its ascending runs. The permutation π = 617849235 would then be
viewed as the ballot {6}{1, 7, 8}{4, 9}{2, 3, 5}. Conversely, a ballot B1B2 . . . Bk

represents a permutation in this manner if, and only if, maxBi > minBi+1 for
each i in [k − 1]. Thus, the ballots corresponding to pop-stacked permutations
are precisely those such that

maxBi > minBi+1 and minBi < maxBi+1.

In other words, the intervals between the smallest and largest elements of each
pair of adjacent blocks overlap,

[minBi,maxBi] ∩ [minBi+1,maxBi+1] 6= ∅,

and we call these ballots overlapping; here, [a, b] denotes the interval {a, a +
1, . . . , b}. Let F [U] be the set of overlapping ballots whose underlying set is U .

2

As an example,

F [{1, 2, 3}] =
{

{1, 2, 3}, {2}{1, 3}, {1, 3}{2}
}

.

Let Fc,d[U] denote the subset of F [U] whose last block, B, is such that c = minB
and d = maxB. Clearly, if c > d then Fc,d[U] = ∅. Also,

F [U] =
⋃

c,d∈U

Fc,d[U].

If c = minU and d = maxU , then one possibility is that there is a single block
consisting of all elements of U . Let us now consider the more typical case when
there are two or more blocks, and let us write the ballot as B1B2 . . . Bk. By
definition, its last block, Bk, satisfies c = minBk and d = maxBk, or expressed
differently {c, d} ⊆ Bk ⊆ [c, d]. Let a = minBk−1 and b = maxBk−1. The
blocks Bk−1 and Bk overlap if, and only if, a < d and b > c. Thus

Fc,d[U] = {U : c = minU ∧ d = maxU} ∪
⋃

{c,d}⊆B⊆ [c,d]

a,b∈U\B

a<d∧ b>c

Fa,b[U \B]B,
(1)

where Fa,b[U \B]B is the set
{

wB : w ∈ Fa,b[U \B]
}

, and the somewhat cryptic
looking {U : c = minU ∧ d = maxU} expresses the singleton {U} if c = minU
and d = maxU , and the empty set otherwise.

We now turn to counting. Let f(n) be the number of overlapping ballots of
[n]. That is, f(n) = |F [n]| in which F [n] is short for F [{1, . . . , n}]. Also, let
fc,d(n) = |Fc,d[n]|. If c > d then fc,d(n) = 0. Otherwise we shall use the
recursive decomposition (1) and do case analysis based on whether c and d are
the same or two distinct elements.

If c = d, then the last block consists of a single point. In terms of (1) the ballot
is written w{c}, where w ∈ Fa,b[[n] \ {c}] and a < c < b. After “rescaling” we
can consider w a ballot in F [n− 1]; here we subtract 1 from each element larger
than c. Note that this, however, also lowers the value of b by one. Thus, the
number of such ballots is

c−1
∑

a=1

n−1
∑

b=c

fa,b(n− 1).

If c < d, then write the ballot as wB and let ℓ = |B|−2. There are
(

d−c−1
ℓ

)

ways
to choose B. After rescaling we have w ∈ Fa,b[n − ℓ − 2], where a ≤ d − ℓ − 2
and b ≥ c. Thus, the number of such ballots is

d−c−1
∑

ℓ=0

(

d− c− 1

ℓ

) d−ℓ−2
∑

a=1

n−ℓ−2
∑

b=c

fa,b(n− ℓ− 2).

Finally, if c = 1 and d = n, we also count the case where the ballot consists of

3

a single block. Taking all this together, we have that

fc,d(n) = [c = 1 ∧ d = n]

+ [c = d]
c−1
∑

a=1

n
∑

b=c

fa,b(n− 1)

+ [c < d]

d−c−1
∑

ℓ=0

(

d− c− 1

ℓ

) d−ℓ−2
∑

a=1

n−ℓ−2
∑

b=c

fa,b(n− ℓ− 2).

(2)

Here [p] is the Iverson bracket: it converts the proposition p into 1 if p is satisfied,
and 0 otherwise. Further, f(n) =

∑n

a=1

∑n

b=a fa,b(n).

Recurrence (2) can be augmented to count overlapping ballots with a specific
number of blocks, or, equivalently, pop-stacked permutations with a specific
number of ascending runs. Let fc,d(n, k) denote the number of overlapping bal-
lots of [n] with exactly k blocks. Then we have f(n, k) =

∑n

a=1

∑n

b=a fa,b(n, k)
and

fc,d(n, k) = [c = 1 ∧ d = n ∧ k = 1]

+ [c = d]
c−1
∑

a=1

n
∑

b=c

fa,b(n− 1, k − 1)

+ [c < d]

d−c−1
∑

ℓ=0

(

d− c− 1

ℓ

) d−ℓ−2
∑

a=1

n−ℓ−2
∑

b=c

fa,b(n− ℓ− 2, k − 1).

(3)

Note that there are two locations in the recurrence (2) where we have a plain
two-dimensional sum over f , that is

∑⋆

a=⋆

∑⋆

b=⋆ fa,b(⋆), where ⋆ are fixed and
not dependent on a, b or each other. We simplify these two-dimensional sums
using “prefix sums”. Let

gc,d(n) =

c
∑

a=1

d
∑

b=1

fa,b(n)

In particular, gc,d(n) = 0 if c = 0 or d = 0. Note that

gc,d(n) = fc,d(n) + gc−1,d(n) + gc,d−1(n)− gc−1,d−1(n). (4)

Also noting that

q
∑

a=p

s
∑

b=r

fa,b(n) = gq,s(n)− gp−1,s(n)− gq,r−1(n) + gp−1,r−1(n),

we can now simplify the above equation to

fc,d(n) = [c = 1 ∧ d = n]

+ [c = d] ∆c−1,n,c−1(n− 1)

+ [c < d]
d−c−1
∑

ℓ=0

(

d− c− 1

ℓ

)

∆d−2−ℓ,n−2−ℓ,c−1(n− 2− ℓ)

(5)

4

where ∆u,v,w(n) = gu,v(n) − gu,w(n). We further have f(n) = gn,n(n). The
same simplification can also be applied to the recurrence for counting by blocks.

Say we wanted to compute f(n) for all 1 ≤ n ≤ N . We can precompute binomial
coefficients

(

n
k

)

for all 0 ≤ k ≤ n ≤ N using the recurrence
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

.
Then, using dynamic programming we can compute fc,d(n), gc,d(n) and f(n)
using Recurrences 4 and 5 for all 1 ≤ c, d ≤ n ≤ N in O(N4) time using O(N3)
memory. When counting by blocks this is O(N5) time, but O(N3) memory is
still sufficient.

This assumes that all arithmetic operations are O(1). In reality, some of the
numbers are on the order of N !. This means that multiprecision arithmetic has
to be used, which slows down the computation considerably. One way to speed
this up is to choose a set of relatively small primes whose product is greater
than N !. For each prime p, the above computation is then carried out in the
finite field Fp. This can be done in parallel, as the computation for different
primes is independent. The values of f(n), which are guaranteed to be at most
N ! for all n ≤ N , are then recovered using the Chinese Remainder Theorem.

This was used to calculate the number of pop-stacked permutations of each
length up to N = 1000. With 286 distinct primes just under 109, and one CPU
core per prime, the computation took just under an hour to complete, with
each core using 3.8GiB of RAM. In a similar manner the number of pop-stacked
permutations of each length up to N = 300 grouped by number of ascending
runs were computed. Table 1 gives the number of pop-stacked permutations of
each length up to N = 45, but the complete results, along with the code used
to generate the results, can be found on GitHub [4].

3 Experimental analysis

With the first 1000 terms of the counting sequence of pop-stacked permutations
now calculated, we turn to a pair of experimental techniques for an empirical
analysis: automated fitting and differential approximation. Given initial terms
of a counting sequence, the first of these methods searches for a generating
function whose power series expansion matches the sequence, while the second
predicts the asymptotic growth of the sequence.

For the counting sequence at hand, automated fitting does not conjecture a
generating function, giving instead several (rigorous) negative results, while dif-
ferential approximation gives very precise estimates of the asymptotic behavior.

3.1 Automated fitting for pop-stacked permutations

Let a0, a1, . . . be a counting sequence and F (x) =
∑

n≥0 anx
n its generating

function. If F (x) is a rational function, then we can write F (x) = p(x)/q(x) for
relatively prime polynomials p(x), q(x) ∈ Q[x]; equivalently,

q(x)F (x) − p(x) = 0. (6)

5

n f(n)
1 1
2 1
3 3
4 11
5 49
6 263
7 1653
8 11877
9 95991

10 862047
11 8516221
12 91782159
13 1071601285
14 13473914281
15 181517350571
16 2608383775171
17 39824825088809
18 643813226048935
19 10986188094959045
20 197337931571468445
21 3721889002400665951
22 73539326922210382215
23 1519081379788242418149
24 32743555520207058219615
25 735189675389014372317381
26 17167470189102029106503457
27 416297325393961581614919699
28 10468759109047048511785181499
29 272663345523662949571086535201
30 7346518362495550669587951987399
31 204539324291355079758576427320853
32 5878416448467628215599958670190869
33 174223945386975482728912851110751431
34 5320106374135453888563313157982976111
35 167232974698164950641578719412434688845
36 5407019929661274797886581276653666104943
37 179677314965899717327756420597568210468933
38 6132116544121046402686046213590718114272089
39 214787281796488809444762543177377466419782267
40 7716175695131570964771559074490172330993576115
41 284131588386675257705011846785657928372695002841
42 10717718945463416620327720805595647805635809236711
43 413908527884993695909526722330319436067536797304549
44 16356508568742954048255540186930772843919017766669517
45 661053598808034620660440013405109251647269697650963759

Table 1: The number of pop-stacked permutations of each length up to N = 45.

6

Conversely, suppose we are given only some initial terms a0, a1, . . . , an of a
counting sequence and want to determine whether the generating function
F (x) of the unknown counting sequence is rational. If F (x) is rational with
max(deg(p(x)), deg(q(x))) = d, then we can write Equation (6) as

(q0+ q1x+ · · ·+ qdx
d)(a0+a1x+ · · ·+anx

n)− (p0+p1x+ · · ·+pdx
d) = 0. (7)

Expanding the left-hand side gives a polynomial in x, and the coefficients of
x0, x1, . . . , xn must all equal 0. We thus have a system of n+1 equations in the
2d+2 unknowns p0, . . . , pd, q0, . . . , qd. A generic system of this form is likely to
have non-trivial solutions when n ≤ 2d, and so when initial terms up to an are
known, it is only productive to consider d such that 2d < n.

If this system has no non-trivial solution, then we are guaranteed that F (x) is
not rational with numerator and denominator of degree at most d. If the system
does have a non-trivial solution, then it is possible, though far from guaranteed,
that

F (x) =
p0 + p1x+ · · ·+ pdx

d

q0 + q1x+ · · ·+ qdxd
.

The larger the difference between n and 2d, the more confident that one can be
in such a conjecture. Empirically, this is like using the first 2d known terms to
guess the rational generating function and the remaining n−2d as confirmation.

Automated fitting can be extended beyond the realm of rational generating
functions. A generating function F (x) is called algebraic if there are polynomials
p0(x), . . . , pm(x) ∈ Q[x] such that

pm(x)Fm(x) + · · ·+ p1(x)F (x) + p0(x) = 0,

called differentially finite (or D-finite) if there are polynomials
p0(x), . . . , pk(x), q(x) ∈ Q[x] such that

pk(x)F
(k)(x) + · · ·+ p1(x)F

′(x) + p0(x)F (x) + q(x) = 0,

and called differentially algebraic (or D-algebraic) if there exists a (k+2)-variate
polynomial P with coefficients in Q such that

P (x, F (x), F ′(x), . . . , F (k)(x)) = 0.

To determine whether a generating function F (x) is algebraic given some initial
terms, an equation similar to (7) can be set up assuming each pi(x) has degree
at most d, giving a linear system with n equations and (m+1)(d+1) unknowns.
In the D-finite case, the system has (k + 2)(d+ 1) unknowns. The D-algebraic
case requires further assumptions about form—the ideas are similar, but not
worth elaborating upon here. There are various software packages that perform
fitting of this kind, including Gfun [10] in Maple, Guess [9] in Mathematica, and
Guess [7] in FriCAS. We have used a different package, GuessFunc, written by
the third author.

We applied automated fitting to the counting sequence of pop-stacked permuta-
tions up to length 1000, and found no conjectured rational, algebraic, D-finite,
or D-algebraic form for the unknown generating function F (x). From this we
can conclude rigorously that, for example,

7

⋄ If F (x) is rational, then either the degree of the denominator or the degree
of the numerator is at least 500.

⋄ If F (x) is algebraic, then the degree of algebraicity m and the maximum
degree of polynomial coefficient d = max(p0(x), . . . , pm(x)) must satisfy
(m+ 1)(d+ 1) > 1000.

⋄ If F (x) is D-finite, then the differential order k and the maximum degree
of polynomial coefficient d = max(q(x), p0(x), . . . , pk(x)) must satisfy (k+
2)(d+ 1) > 1000.

A similar negative result could be written for the D-algebraic case, although it
would require further explanation of the structure of the corresponding search
space.

One can also apply various transformations to the generating function before
initiating the automated fitting procedure. In addition to trying to find a fit
for the ordinary generating function F (x) =

∑

n≥0 anx
n, we also attempted to

find a fit for the exponential generating function
∑

n≥0(an/n!)x
n, the reciprocal

1/F (x), the compositional inverse F (x)〈−1〉, and also several combinations of
these transformations. No results were found.

3.2 Automated fitting for pop-stacked permutations with

a fixed number of ascending runs

Let Fk(x) denote the power series for those pop-stacked permutations with
precisely k ascending runs. Asinowski et al. [1] showed that these permutations
are in bijection with words from a regular language that is recognized by a
certain deterministic finite automaton (DFA) Ak, proving that Fk(x) is rational.
Furthermore, a system of linear equations can be derived from this DFA, whose
solution gives Fk(x). Deriving Fk(x) in this way is only practical for small values
of k, however, as the number of states in Ak grows exponentially with k.

As mentioned earlier, Recurrence (3) permits the fast computation of the count-
ing sequence for pop-stacked permutations with a fixed number of ascending
runs. This, along with the techniques of automated fitting gives rise to a differ-
ent approach for finding Fk(x), albeit heuristically1.

Using the counting sequence for pop-stacked permutations of length at most 300
with a fixed number of ascending runs, we were able to find a rational fit for
each Fk(x) for k ≤ 24. We were further able to verify that the rational fits were
exact for k ≤ 6 by using the previously mentioned method based on Asinowski

1Given enough terms of the sequence, automated fitting will find Fk(x). The number of

terms required is the sum of the degrees of the numerator and denominator of Fk(x), which

is not known. An upper bound is twice the number of states in Ak , which is exponential.

8

et al. [1]. The first four generating functions follow.

F1(x) =
x

1− x
,

F2(x) =
2x3

(1− 2x)(1 − x)2
,

F3(x) =
2x4(1 + 3x− 6x2)

(1− 3x)(1 − 2x)2(1− 3x)3
,

F4(x) =
2x6(21− 74x+ 5x2 + 180x3 − 144x4)

(1− 4x)(1 − 3x)2(1 − 2x)3(1− x)4
.

Based on this data, which can be found in full on GitHub [4], we pose the
following conjecture.

Conjecture 2. For all k, the rational generating function Fk(x) can be written

as

Fk(x) = Nk(x)
/

k
∏

i=1

(1 − ix)k−i+1,

where Nk(x) is a polynomial of degree k(k + 1)/2, the same degree as the con-

jectured denominator.

3.3 Differential approximation

Differential approximation empirically estimates the asymptotic growth of a
counting sequence based on its initial terms by using linear differential equations
to model the unknown generating function and studying the complex singulari-
ties of solutions of those linear differential equations. Here we will only present
the results of this analysis—for information about how differential approxima-
tion works we refer the reader to [5, 6].

The cornerstone of analytic combinatorics is the observation that the asymptotic
behavior of a counting sequence is intimately connected to the singularities of
its generating function when treated as a complex function. For example, the
location of the singularities closest to the origin (the dominant singularities)
roughly determine the exponential growth of the counting sequence, and the
nature of those singularities determines the sub-exponential behavior.

The output of differential approximation is an estimate of the location and
nature (specifically, the critical exponent) of all singularities of the unknown
generating function based on the given known initial terms. Typically, although
not always, the dominant singularity is predicted with the highest precision,
with the precision of the estimates of other singularities decreasing as distance
from the origin increases. Obviously such an analysis is only experimental,
but in practice the estimates given by differential approximation are incredibly
accurate. In tests where the true singularity structure of a generating function is
independently known, the estimates from differential approximation are rarely
off by more than the last decimal place.

9

The counting sequence of pop-stacked permutations grows superexponen-
tially [1], implying that its generating function has a singularity at the origin.
Accordingly, we use differential approximation to analyze the exponential gen-
erating function. It predicts a number of singularities on the positive real axis,
located at the values below.

1.113439041736727043761661526918083240141390165833449466152700785053219911270 . . .

2.417184228722564007388473547672885752580057534770845001690528350200102151036 . . .

3.076673197412146436807595671137309181422151285506943038305240180949212077913 . . .

3.527590791728018755531106354662725269743465863978439496914729951030934478987 . . .

3.872438162423457670453537298789680569472671309363632792004917259462379566078 . . .

4.152519207830100565666605055176411745894938982832118599384868016797119166567 . . .

4.388766437824164163366758081274636520883940965171626205159043874261749420137 . . .

4.593300493040369902037314403433340137408669134838327397901215132095535249496 . . .

4.773787732301263733990448984231076188826829730174328444872240429327757789160 . . .

4.93539355029443080528699130532727322201728351298582403913

5.08176797057144544489527338196678922218609719159

5.215588012778242472294262722856995906

5.453200964209036692

5.55979961612

5.659669

Each of these singularities is predicted to have critical exponent −1, making
them simple poles. The topmost 9 estimates have been truncated to fit on the
page. In reality, they are given to many more decimal places—nearly 800 for
the dominant singularity. More precise estimates could be obtained if desired.
These results suggest that the exponential generating function may posses an
infinite number of singularities. If true, this would imply the non-D-finiteness
of both the ordinary and exponential generating functions.

Differential approximation also predicts several complex pairs of singularities,
also simple poles, of which we’ll list just a few.

0.4279380975440727242991591373540946029637854497521857134254777354059489934 . . .

± 3.6012595134274782137294551323567899146878282109407492350988015900552787045 . . . i

1.8079319224525533045652715650438553186508451786578693412247786970810774117 . . .

± 4.0462349876106887702897457441128645763490304850344195743880592871046130995 . . . i

2.5083998717369662727687249193314945476381464747880461769920884622874845896 . . .

± 4.2416800160392329291940969204250545140382149982272394213372595306429864967 . . . i

The dominant pole at µ ≈ 1.11343904 implies that the exponential growth rate
of the counting sequence is

µ−1 ≈ 0.8981183185746869695116759646856448 . . . ,

implying that the asymptotic behavior of the number of pop-stacked permuta-
tions is

an ∼ C · n! · (0.898118 . . .)n.

10

Differential approximation does provide an estimate for the constant C but this
can be obtained numerically given the extremely accurate estimate for µ. We
find that

C ≈ 0.6956885490706357679957031687241101565741983507216179232324 . . .

giving the final asymptotic approximation

an ∼ (0.695688 . . .) · n! · (0.898118 . . .)n.

Full decimal values for the approximated singularities and constants can also be
found on GitHub [4].

Acknowledgements. Computations were performed on the Garpur cluster [8],
a joint project between the University of Iceland and the University of Reykjavik
funded by the Icelandic Centre for Research. We thank them for the use of their
resources.

References

[1] Andrei Asinowski, Cyril Banderier, Sara Billey, Benjamin Hackl, and
Svante Linusson. Pop-stack sorting and its image: Permutations with over-
lapping runs. To appear in Eurocomb 2019.

[2] David Avis and Monroe Newborn. On pop-stacks in series. Utilitas Math,
19(129-140):410, 1981.

[3] Anders Claesson and Bjarki Ágúst Guðmundsson. Enumerating permu-
tations sortable by k passes through a pop-stack. Adv. in Appl. Math.,
108:79–96, 2019.

[4] Anders Claesson, Bjarki Ágúst Guðmundsson, and Jay
Pantone. Enumerating the pop-stacked permutations.
https://github.com/SuprDewd/pop-stacked-perms.

[5] Anthony J Guttmann. Asymptotic analysis of power-series expansions.
Phase transitions and critical phenomena, 13:1–234, 1989.

[6] Anthony J Guttmann and Iwan Jensen. Series analysis. In Polygons,

polyominoes and polycubes, volume 775 of Lecture Notes in Phys., pages
181–202. Springer, Dordrecht, 2009.

[7] Waldemar Hebisch and Martin Rubey. Extended rate, more GFUN. J.

Symbolic Comput., 46(8):889–903, 2011.

[8] Garpur cluster. IHPC - Icelandic High Performance Computer - University
of Iceland and Reykjavik University, 2019.

[9] Manuel Kauers. Guess: A Mathematica package for guessing multivariate
recurrence equations. Research Institute for Symbolic Computation.

[10] Bruno Salvy and Paul Zimmermann. GFUN: A Maple package for the
manipulation of generating and holonomic functions in one variable. ACM

Trans. Math. Softw., 20(2):163–177, June 1994.

11

https://github.com/SuprDewd/pop-stacked-perms

[11] Neil J. A. Sloane. The Online Encyclopedia of Integer Sequences.
https://oeis.org, 2019.

12

	1 Pop-stacked permutations
	2 Polynomial-time counting algorithm
	3 Experimental analysis
	3.1 Automated fitting for pop-stacked permutations
	3.2 Automated fitting for pop-stacked permutations with a fixed number of ascending runs
	3.3 Differential approximation

