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Groups, graphs, and hypergraphs: average
sizes of kernels of generic matrices with
support constraints

Tobias Rossmann and Christopher Voll

We develop a theory of average sizes of kernels of generic matrices with support
constraints defined in terms of graphs and hypergraphs. We apply this theory to
study unipotent groups associated with graphs. In particular, we establish strong
uniformity results pertaining to zeta functions enumerating conjugacy classes of these
groups. We deduce that the numbers of conjugacy classes of F-points of the groups
under consideration depend polynomially on ¢g. Our approach combines group theory,
graph theory, toric geometry, and p-adic integration.

Our uniformity results are in line with a conjecture of Higman on the numbers
of conjugacy classes of unitriangular matrix groups. Our findings are, however, in
stark contrast to related results by Belkale and Brosnan on the numbers of generic
symmetric matrices of given rank associated with graphs.
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1 Introduction

1 Introduction

In this article, we study enumerative questions related to spaces of matrices defined via
support constraints. Our work is motivated by and has immediate applications to the
study of (conjugacy) class numbers of finite p-groups. We will naturally touch three
subjects: rank distributions in spaces of matrices, class numbers of unipotent groups, and
zeta functions of groups. We begin by summarising key facts from each of these fields.

1.1 Counting matrices of given rank

Polynomiality. The study of rank distributions in combinatorially defined spaces of
matrices has a long history and draws on contributions from several fields of mathematical
research. The numbers of arbitrary [42] nxm matrices or of antisymmetric [16, Theorem 3],
symmetric |49, Theorem 2], or traceless [7,|15] n x n matrices of a given rank over a
finite field F; are each given by an explicitly known polynomial in ¢; we assume that
¢ odd in the (anti-)symmetric cases. Lewis et al. [44] and Klein et al. [39] obtained
further polynomiality results for rank distributions in spaces of general, symmetric, and
antisymmetric matrices obtained by insisting that entries in suitable positions be zero.

Wilderness. The study of rank distributions naturally involves algebro-geometric meth-
ods. Thanks to these, much is known about ideals of minors associated with generic,
symmetric, and antisymmetric matrices [141|71].

In drastic contrast to the polynomiality results above, Belkale and Brosnan [6, Theo-
rem 0.5] demonstrated that enumerating matrices of a given rank is a “wild” problem,
even for spaces of combinatorial origin. More precisely, given n > 1 and a set S, con-
sider the space Sym,,(F4;S) of symmetric n x n matrices [a;;] over F, with a;; = 0
whenever (i,5) ¢ S. Belkale and Brosnan showed that, in a precise technical sense,
enumerating invertible matrices in Sym,, (F;.S) is as difficult as counting F,-points on
arbitrary Z-defined varieties. (To the authors’ knowledge, it is unknown whether the
same conclusion holds for spaces of arbitrary or antisymmetric matrices with suitably
constrained supports.) Belkale and Brosnan used their result to refute a conjecture of
Kontsevich on the polynomiality of the numbers of F,-points of specific hypersurfaces
associated with graphs.

Halasi and Palfy [34] obtained results of a similar flavour on the numbers of matrices over
finite fields that satisfy prescribed “rank restraints”. In this context, too, polynomiality
results (requiring fairly restrictive combinatorial assumptions) mark the exception from
the rule of “wild” variation of the relevant numbers with the prime power gq.

1.2 Class numbers of unipotent groups

Class numbers. Let k(G) denote number of conjugacy classes (“class number”) of a
finite group G. Let U, (R) be the group of upper unitriangular n x n matrices over a
ring R. In an influential paper |36], Higman asked whether k(U, (F,)) is always given
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by a polynomial in g. This question has been answered affirmatively for n < 13 by
Vera-Lépez and Arregi [70] and for n < 16 by Pak and Soffer [53].

Beyond Higman’s conjecture. We are interested in problems in the spirit of Higman’s
question for other types of unipotent groups. Let G < U, be a subgroup scheme—we
may think of G as a subgroup of U, (C) defined by the vanishing of polynomials with
integer coefficients. What can be said about the class numbers k(G(F,)) as a function
of g7 In particular, when does k(G(F,)) depend polynomially on ¢?

Questions like these have been asked and answered, to varying degrees of generality, for
numerous group schemes realising e.g. (Sylow subgroups of) Chevalley groups or relatively
free p-groups of exponent p, by numerous authors, including the above-mentioned and
Evseev, Goodwin, Isaacs, Le, Lehrer, Magaard, Mozgovoy, Rohrle, and Robinson, to
name but a few; see, for instance, [29}32,51,/52] and the references therein.

The aforementioned problems are closely related to the enumeration of matrices of
given rank in Z-defined spaces of matrices over F,. We note, for example, that the
work in [34] on matrices with given rank constraints was motivated by a study of class
numbers of pattern groups, viz. certain combinatorially defined subgroups of U, (F,).
This connection also occurs in previous work [52,57,/60] of both authors. Moreover, it
turns out that if we are willing to exclude small exceptional characteristics, the study
of k(G(Fy)) for group schemes G < U, as above essentially reduces to those of class 2.
(For a proof, combine [60, Proposition 6.4] and [60, Lemma 7.1].)

Alternating bilinear maps. As a variation of the classical Baer correspondence [2], we
may construct a (unipotent) group scheme G, of class at most 2 from each alternating
bilinear map ¢: Z"™ x Z™ — M, where M is a free Z-module of finite rank; see for
details. We call G, the Baer group scheme associated with ¢. Commutators in G,
are given by o. For example, if o: Z? x Z? — Z is the standard symplectic form, then the
associated Baer group scheme is Us, the Heisenberg group scheme.

Rather than consider the maps ¢, we may equivalently use antisymmetric matrices.
Let s0,(Z) C M, (Z) denote the module of antisymmetric n x n matrices over Z. Then

every Z-module homomorphism M LN $0,(Z) defines an alternating bilinear map
[0]: Z" x Z"" — M* := Hom(M, Z)

such that 2[f]y is the functional @ ~ z(af)y . In particular, for a submodule M C so,,(Z),
we obtain a Baer group scheme Gy := Gy, where ¢ is the inclusion M < 50,,(Z2).

We note that using essentially a variation of the above construction, finite p-groups
associated with spaces of antisymmetric matrices over F,, have found applications relating
graph- and group-theoretic problems in recent work of Bei et al. [5] and Li and Qiao [45].

Average sizes of kernels. Again, up to excluding small characteristics, as a function
of g, the study of the class numbers k(G s (F,)) for modules M C s0,,(Z) turns out to be
essentially equivalent to the study of k(G(F)) for arbitrary unipotent group schemes G.
By focusing on the Baer group schemes of the form G, we may easily relate the study
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of class numbers to that of enumerating antisymmetric matrices of given rank as in
Namely, if A is a finite ring and if M C s0,(A) denotes the submodule generated by the
image of M, then
K(Ga(4)) = A" i - [Ker(a).
aceM

where m is the rank of M as a Z-module; cf. Proposition That is, up to a harmless
factor, the class number of Gj;(A) is the average size of the kernels of the elements of M
acting on A". Thus, if A = F, is a finite field, then we may express k(Gs(F,)) in terms
of the numbers of F ,-points of the Z-defined rank loci in M; see [57, §2.1] for details.

1.3 Zeta functions

We have seen that the study of the class numbers k(G(F,)) for group schemes G < U,
is intimately related to the study of average sizes of kernels of matrices over F,. Class
counting and ask zeta functions provide convenient tools for generalising this connection to
much more general finite rings, including those of form Z/p*Z (p prime) and F[2]/(z%).

Class counting zeta functions. Let R be the ring of integers of a local or a global field.
Let G be a group scheme of finite type over R. The class counting zeta function
of G is the Dirichlet series

= > k(G(R/I))-|R/I|™*.

0£I<R

Class counting zeta functions were introduced by du Sautoy [23] for p-adic linear groups.
They were further studied by Berman et al. |§] for Chevalley groups and by the first
author [57,[60] and Lins [46-48] for unipotent groups; other names for these functions in
the literature are “conjugacy class zeta functions” and “class number zeta functions” The
use of zeta functions as a tool in group theory was pioneered by Grunewald et al. [33].

Euler products and variation of the place. As we will now explain, the study of class
counting zeta functions in characteristic zero immediately reduces to a local analysis.
Let K be a number field with ring of integers O. Let Vg be the set of non-Archimedean
places of K. For v € Vg, let O, denote the valuation ring of the v-adic completion of K.
Let 8, denote the residue field of O, and let g, = |R,|. Let G be a group scheme of finite
type over O. Then the Chinese remainder theorem yields an Euler product factorisation

= 1 ¢Geo.(s (1.1)

vEVEK

For a general G, it is unknown how the Euler factors (g, (s) vary with the place v.
However, if G is a Chevalley group [8] or unipotent [57], then (& 0, (s) can, for almost
all v € Vg, be expressed in terms of the numbers of &,-points of certain O-defined
varieties and rational functions in ¢, and ¢, °. In both cases, it is an open problem to
prove meaningful theorems on the class of varieties “required” to describe (Fyp. (5).
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Uniformity. Among the ways that the Euler factors of a class counting zeta function as
above might depend on the place, the tamest conceivable case has played a central role
in the literature. Namely, we say that the group scheme G over the ring of integers O of
a number field K has uniform class counting zeta functions if there exists a rational
function W(X,T) € Q(X,T) such that (&yp, (s) = W(qu,q,*) for all v € Vk. For
example, if (i denotes the Dedekind zeta function of K, then

Cr(s = 1)Ck (s — 2) —
(Uawo(s) = = 1] Wlew.a,”
Va0 Cx () ng ( )
where W(X,T) = Atz see [8, §8.2] and [57, §9.3]. A natural variation of

(I—XT)(1—-X2T)’
Higman’s question asks if the class counfing zeta function of each U, is uniform. While

the above notion of uniformity is natural in view of the Euler product , both stronger
and weaker concepts are frequently of interest.

We wish to add a further direction by allowing local base extensions. Namely, we
say that G as above has strongly uniform class counting zeta functions if there exists
W(X,T) € Q(X,T) such that for all compact discrete valuation rings (DVRs) © endowed
with an O-algebra structure, we have (& o(s) = W(q,q~°), where ¢ denotes the residue
field size of O. (Note, in particular, that we do not insist that O has characteristic zero.)
Again, Uj is an example of a group scheme with strongly uniform class counting zeta
functions; this can be verified directly or deduced from much more general results below.

While it is relatively easy to produce examples of group schemes with non-uniform
class counting zeta functions (see [57, §7]), as in the study of class numbers over F,
in it remains unknown just how erratically Euler factors of class counting zeta
functions may vary with the place.

Ask zeta functions: analytic form. In the same way that the class counting zeta
function (& (s) (and its Euler factors) of a group scheme G generalises the collection of
class numbers k(G(F))) as p ranges over the primes, we may similarly define a Dirichlet
series which generalises the average sizes of kernels that appeared in

Let R be a commutative ring. Consider an R-module homomorphism M 9, M xm (R),
where M is finitely generated. If R is finite, then the average size of the kernel associated
with 6 is the rational number

ask(0) := |J\14| 3 [Ker(af).
aceM

S
For each R-algebra S, we obtain a map M ® S LA M, xm (S). Suppose that R is the ring
of integers of a local or global field. The (analytic) ask zeta function [57,60] of 6 is

ak(s) = Y ask(@®T)-|R/II7.
0#I<R
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Class counting and ask zeta functions. The following by-product of [60] (to be proved
in §2.4) asserts that ask zeta functions associated with modules of antisymmetric matrices
essentially coincide with class counting zeta functions of associated group schemes.

Proposition 1.1. Let M <4 50,,(Z) be the inclusion of a submodule of Z-rank m. Define
a unipotent group scheme Gyr as in §1.3 Let R be ring of integers of a local or global
field of arbitrary characteristic. Then

(& yonr(s) = (s —m).

Beyond antisymmetric matrices, by [57, §8], ask zeta functions associated with general
Z-module homomorphisms M — M,,»,(Z) are of natural group-theoretic interest: they
enumerate linear orbits of suitable groups (although perhaps not conjugacy classes).

Ask zeta functions: algebraic form. In the local case, it will be convenient to switch
freely between the above ask zeta functions and the following algebraic counterpart.
Let © be a compact DVR and let M 9, M, xm(9) be an O-linear map, where M is
finitely generated. Let B3 be the maximal ideal of ©. Then

Z3K(T) = i ask(02/F) Tk € Q[T
k=0

is the (algebraic) ask zeta function of §. The Dirichlet series (3*(s) and ordinary

generating function Z3%(T') determine each other in the sense that
G (s) =28 (a7),

where ¢ = |O/B| denotes the residue field size of O. For this reason, we shall call each of
these functions “the” ask zeta function of 6.

1.4 Groups, graphs, and hypergraphs

In this section, we introduce (somewhat informally) the real protagonists of the present
article: graphical groups and adjacency and incidence representations of graphs and
hypergraphs, respectively; a more complete and rigorous account will be given in

Throughout, graphs are finite without parallel edges but they may contain loops;
graphs without loops are simple.

Graphical groups and negative adjacency representations. Let I' be a simple graph;
for simplicity, we assume that 1,...,n are the vertices of I'.

The following construction of a module of antisymmetric matrices derived from I
was used by Tutte [68]. Let e;; denote the n x n matrix with entry 1 in position (i, j)
and zeros elsewhere. Let M~ (I') C s0,(Z) be the submodule generated by all matrices
eij — eji, where (i, 7) runs over pairs of adjacent vertices. In the spirit of M—(T) is
the largest module of antisymmetric n X n matrices over Z such that the support of each
matrix in M ~(T") is contained in the set of pairs (4, 7) with i adjacent to j in T
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Let Gr := G- (r) be the group scheme associated with M~(T) as in We call Gr
the graphical group scheme associated with I'; see for details. We refer to the
groups of points Gr(R) over rings R as the graphical groups associated with I" over R.
For example, it is easy to see that if P,, denotes the path on n vertices, then Gp, (Z) is
the largest nilpotent quotient of class at most 2 of U, 41(Z). More generally, the groups
Gr(Z) are precisely the class-2 quotients of right-angled Artin groups; see Remark

Among the central objects of interest in the present article are the class counting zeta
functions of graphical group schemes. Based on what we described above, the study of
these class counting zeta functions becomes a part of the study of ask zeta functions.
Namely, define the negative adjacency representation v_ of I' to be the inclusion
M~(T") < so0,(Z). By Proposition the ask zeta function of v_ essentially coincides
with the class counting zeta function C&CF(S) of the graphical group scheme Gr.

Positive adjacency representations. As the adjective “negative” indicates, the functions
just defined admit “positive” analogues. Suppose that I' is a graph as before except that
we now allow I to contain loops. Let Mt (T") be the submodule of the module Sym,,(Z)
of symmetric n X n matrices over Z generated by the matrices e;; + ej; for different
adjacent vertices ¢ and j and all e;; for loops i. We define the positive adjacency
representation . of I to be the inclusion M*(T") < Sym,,(Z).

Even though the ask zeta functions associated with the maps v; lack an obvious
group-theoretic interpretation (akin to our interpretation of Csik(s) in terms of the class
counting zeta function of Gr), they are of natural interest in light of the results due
to Belkale and Brosnan [6] mentioned in . Using our present terminology, Belkale
and Brosnan showed that, as " varies over all finite graphs (with loops permitted), the
number of invertible matrices in the image of M (I') ® F, in Sym,,(F,) is “arbitrarily
wild” as a function of ¢. It is therefore natural to ask whether this wildness survives
taking the average both over F, and, similarly, on the level of suitable ask zeta functions.

Hypergraphs and incidence representations. As we saw, graphs (with loops permitted)
provide a combinatorial formalism for discussing modules of antisymmetric or symmetric
matrices with support contained in a given set of positions. In the same spirit, we may
use hypergraphs to encode modules of arbitrary rectangular matrices with constrained
support. Here, a hypergraph H on the vertex set {1,...,n} consists of symbols e1, ..., e,
called hyperedges and, for each j = 1,...,m, a support set |e;| which is an arbitrary
subset of {1,...,n}. Define M(H) C M;,xm(Z) to be the module of all matrices [a;;] with
a;j = 0 whenever the vertex i and hyperedge e; are not incident (i.e. whenever i ¢ |e;]|).

We refer to the inclusion M (H) A M, xm(Z) as the incidence representation of H.
The ask zeta functions C;Sk(s) associated with hypergraphs are of interest in view of
work of Lewis et al. [44], Klein et al. [39], and others on rank distributions in spaces
of matrices defined in terms of support constraints. In addition, over the course of the
present article, we will encounter group-theoretic incentives for studying these functions.
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1.5 Results I: strong uniformity

Our first main result establishes that whatever wild geometry can be found in the rank
loci of the modules M*(I") € M, (Z) and M(H) C M,xn(Z) from disappears on
average in the sense that it is invisible on the level of ask zeta functions. As before, ¢
denotes the residue field size of a compact DVR ©O.

Theorem A (Strong uniformity).

(i) Let H be a hypergraph with incidence representation n over Z. Then there exists
Wh(X,T) € Q(X,T) such that, for each compact DVR O,

Z23(T) = W (a, 7).

(i) Let T' be a simple graph with negative adjacency representation y— over Z. Then
there exists a rational function Wy (X, T) € Q(X,T') such that, for each compact
DVR 9,

Z3¥(T) = Wy (¢, 7).

(iii) Let T be a (not necessarily simple) graph with positive adjacency representation 4
over Z. Then there exists a rational function Wi (X,T) € Q(X,T) such that, for
each compact DVR O of odd residue characteristic,

z%k(T) =W (q,T).

By [57, Theorem 1.4], each of the generating functions Z;%"(T), Z";%‘(T), and Zi%‘(T) in
Theorem [A] is rational in 7" provided that O has characteristic zero. What is rem;rkable
is that these functions are in fact rational in both 7" and ¢ without any restrictions on 9.
This is not a general phenomenon for ask zeta functions; see [57, §7].

The dichotomy between “tame” (i.e. strongly uniform) and “wild” behaviour is a
recurring theme in the study of zeta functions associated with various group-theoretic
counting problems. Uniformity results (akin to our Theorem have been obtained in
various situations; see e.g. [33, Theorem 2], [66, Theorem B] and [17, Theorem 1.2].

By minor abuse of notation, we refer to the rational functions Wy (X, T) and W (X, T)
in Theorem [A] as the ask zeta functions associated with H and T, respectively. These
rational functions are, to the best of our knowledge, new invariants of graphs and
hypergraphs which, as we will see, reflect interesting structural features of the latter.

An immediate consequence of Theorem[A]is that upon taking the average, the arbitrarily
wild numbers of invertible matrices over Fy provided by Belkale and Brosnan cancel.

Corollary 1.2. Let n > 1 and a set S be given. Define Sym,, .(Fy;S) to be the set of
matrices of rank r in Sym, (Fg; S) (see §1.1). Then there exists a polynomial f,, 5(X) €
QI[X] such that for each odd prime power q,

Z‘Symn,r(Fq; S)’ qnfr = fn,S(Q)' (12)

r=0
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Proof. Let d be the F4-dimension of Sym,,(F;S) and note that d does not depend on g.
Let T' be the (not necessarily simple) graph with vertices 1,...,n and such that two
vertices ¢ and j of I' are adjacent if and only if (7,7), (j,i) € S. Let f, s(X) € Q(X) be
the coefficient of T' of the rational power series Wit (X, X9T) in T from Theorem .
By the definition of ask zeta functions in is satisfied for all odd prime powers q.
It is a simple exercise to show that since f;, s(q) is an integer for infinitely many ¢, the
rational function f, ¢(X) is in fact a polynomial, as claimed. ¢

In the same way, parts f of Theorem |A| imply analogous results for spaces of
general n X m and antisymmetric n X n matrices with supports constrained by sets.
Proposition [1.1{and Theorem imply the following group-theoretic result (see §3.4)).

Corollary B (Class counting zeta functions of graphical group schemes).
Let T be a simple graph with m edges. Then, for each compact DVR O (of arbitrary
characteristic) and with residue field size q,

(Greo(s) = Wr(g,¢"°).
In particular, graphical group schemes have strongly uniform class counting zeta functions.

As a very special case, we obtain the following consequence in the spirit of Higman’s
question on the class numbers k(U, (F,)) for graphical groups over F,,.

Corollary 1.3. Let I be a simple graph. Then there exists a polynomial fr(X) € Q[X]
such that, for all prime powers q, we have k(Gr(Fy)) = fr(q).

Proof. We may take fr(X) € Q(X) to be the coefficient of T" of the rational power series
W (X, X™T) in T. As in the proof of Corollary fr(X) is a polynomial. ¢

Ingredients of the proof of Theorem [Al While our proof of Theorem can be
recast in terms of existing machinery from the theory of zeta functions (“monomial p-adic
integrals” as in , parts f involve the development of several new tools that
are likely to have further applications beyond the present article. These include (a) a
new type of zeta function associated with modules over polynomial rings (see and,
more generally, over toric rings (see , (b) a notion of “torically combinatorial” modules
(see which provides an algebraic explanation of uniformity, and (c¢) a novel blend of
graph theory and toric geometry in §0]

We note that the first author previously used toric geometry in the study of zeta
functions of groups and related structures; see [54,55]. However, in that work, it turned
out to be extremely challenging to characterise those groups or algebras that are amenable
to toric methods. In contrast, in the present setting, every graph provides an example of
such a group (scheme) via Theorem and Corollary
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Beyond uniformity. Apart from being surprising in light of what is known about rank
distributions and matrices with restricted support, Theorem [A] also raises intriguing
follow-up questions. Which general features do the rational functions Wl? (X,T) and
Wy(X,T) possess? How do they depend on the graph I'" and hypergraph H, respectively?
Do they afford a meaningful combinatorial interpretation? Can they be computed?

Our proof of Theorem [A]is constructive and will thus provide an affirmative answer
to the last of these questions. Regarding the first question, general results on ask zeta
functions from [57] have consequences such as the following:

Corollary 1.4 (Functional equations). Let W(X,T) be one of the rational functions
Wu(X,T) or W%(X, T) associated with a hypergraph or graph on n vertices. Then:

WX LT = - X"TW(X,T).
Proof. Combine [57, Theorem 4.18] and [59, §4]. ¢

Corollary 1.5 (Reduced zeta functions). Let the notation be as in Corollary[1.4} Then
w1, T)=1/1-T).

Proof. Apply |57, §4.6]. ¢

Theorem [A| and general results on zeta functions of algebraic structures (cf. e.g. [57,
Theorem 4.10]) imply that each of the rational functions in Theorem [A| can be written
in the form f(X,T)/g(X,T), where f(X,T) € Q[X*!,T] and g(X,T) is a product of
factors of the form 1 — X*T? for a,b € Z with b > 0. As we will see, we can often
be much more precise here. In particular, our next main results will cast light on the
rational functions Wy (X, T) for arbitrary hypergraphs and on the rational functions
W (X, T) (and hence associated class counting zeta functions) for certain graphs, namely
the so-called cographs.

1.6 Results Il: weak orders and explicit formulae for hypergraphs

While constructive, the intricate recursive nature of our proof of Theorem f
provides few indications as to how the rational functions obtained depend on the graph
in question. In contrast, in the case of hypergraphs we make the uniformity statement in
Theorem fully explicit, as our next main result shows.

Up to isomorphism, a hypergraph H as in is completely determined by a vertex
set V' and, for each subset I C V, a “hyperedge multiplicity” p; which counts how many
hyperedges of H have support I. We can explicitly describe Wy(X,T') in terms of these
multiplicities. Let WO(V) denote the poset of flags of subsets of V, i.e. (essentially) the
poset of weak orders on V'; see Definition [5.3

Theorem C (Ask zeta functions of hypergraphs and weak orders). Let H be a hypergraph

with vertex set V' and given by a family p = (ur)rcv € NZ)D(V) of hyperedge multiplicities.

Then
X|J|_ZIMJ;&@ wrmp

Wh(X,T)= Y (1-XxHlseWIT] (1.3)

= .
yeWO(V) Jey 1 — xVIm2nsze by

10
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The number of summands in (1.3) grows rather quickly. Indeed, let n = |V|. As
explained in Remark IWO(V)| = 4f,, where f, is the nth Fubini (or ordered Bell)

number, enumerating weak orders on V. In particular,

n!

~—_— 1.4
Jn 2(log 2)n+1 (1.4)
grows super-exponentially as a function of n; see [3] or [72} §5.2]. The value of Theorem
lies not primarily in providing an algorithm for computing Wy(X,T) but in the rich
combinatorial structure of these functions that it reveals.

We note that the right-hand side of (1.3 is similar but not identical to the “weak

order zeta functions” of Carnevale et al. |17, §1.2].

Consequences. We exhibit three main applications of Theorem [C| First, it imposes
severe restrictions on the denominators of the functions Wy (X, 7). This turns out to
have remarkable consequences for analytic properties of ask zeta functions associated
with hypergraphs; see Theorem Secondly, for specific families of hypergraphs of
special interest here, we will obtain more manageable versions of Theorem [C} see §§5.1.1]
(.2.1] and 5.3.1] Finally, Theorem [C]will allow us to capture the effects of several natural
operations for hypergraphs on the level of the rational functions Wy(X,T); see
This will prove to be particularly valuable when combined with the results in

Ingredients of the proof of Theorem [Cl Let O be a compact DVR. Beginning with
the integral formalism for ask zeta functions from [57], our proof of Theorem |C|is based
on a formula of the same type as ((1.3)) for multivariate monomial integrals such as

Z(S) = H Hxilaxizv"';yHSI du(m,y), (1'5)
Onxd I={i1,i2,...}c{17...,n}

where s = (s1);cq1,..n) is a family of complex variables, |- | denotes the (suitably
normalised) maximum norm, and u denotes the additive Haar measure on O™ with
pu(O" 1) = 1; see Theorem 5.5

Weak orders on a set encode the possible rankings of its elements that allow for ties.
Given non-zero xi,...,Ts,y € 9O, their valuations give rise to such a ranking via the
usual order. In this way, weak orders naturally arise in the study of the integrals (|1.5)).

1.7 Results Ill: cographs and their models

Most of what we will learn about ask zeta functions associated with hypergraphs rests
upon explicit formula such as . As indicated above, the starting point of these
formulae is an expression for the local ask zeta functions (i.e. those over compact DVRs)
associated with a hypergraph by means of a monomial integral as in . We have no
reason to expect that such an approach will succeed for adjacency representations of
graphs. (Example ﬂ will show that the integrals in cannot suffice.) This explains
why our proof of parts f of Theorem |A|is vastly more involved than that of part .

11



1 Introduction

Our next main result exhibits a miraculous connection between the rational functions
W (X, T) associated with certain simple graphs and the rational functions Wy(X,T)
associated with hypergraphs in Theorem [C]

Cographs. The class of graphs known as cographs admits numerous equivalent char-
acterisations; see For instance, it is the smallest class of graphs which contains
an isolated vertex and which is closed under both disjoint unions (denoted by @) and
“joins” (denoted by V) of graphs; here, the join of two graphs I'; and I'y is obtained from
their disjoint union by inserting edges connecting each vertex of I'; to each vertex of I's.
Equivalently, cographs are precisely those graphs that do not contain a path on four
vertices as an induced subgraph.

Theorem D (Cograph Modelling Theorem). Let I" be a cograph. Then there exists an
explicit hypergraph H on the same vertex set as I' such that

Wi (X, T) = Wy(X,T).

Informally, we think of the hypergraph H in Theorem [D] as a “model” of I' in the sense
that, through the techniques that we developed here, the former allows us to determine
and study the rational function Wy (X,7") much more easily than by the using methods
underpinning Theorem |Affii). In particular, for a cograph I', Theorem @ allows to express
W (X, T) via Theorem [C| We will construct a particular hypergraph H as in Theorem @
for each cograph I'; we refer to this hypergraph as “the” model of I" in the following.

Our construction reveals a number of specific properties of models. For instance,
models always have fewer hyperedges than vertices. Moreover, the sum over the entries
of an incidence matrix of a model is always even (this will follow from Remark , just
as for graphs. These conditions further illustrate the level of generality of Theorem [C]

We note that the special case of Theorem [D| obtained by taking I' to be a complete
graph I' on n vertices and H to be a hypergraph on n vertices with n — 1 hyperedges, the
support of each is the set of all vertices, was (implicitly) proved in [57, Proposition 5.11].

Ingredients of the proof of Theorem In the same way that our proof of Theorem [A]
goes beyond merely establishing uniformity of zeta functions by elucidating the structure
of certain modules, the cograph modelling theorem is based on more than a mere
coincidence of rational functions. Instead, it is a consequence of a structural counterpart
(Theorem of Theorem @ which establishes that for each cograph I', there exists
an (explicit) hypergraph H such that the “negative adjacency module” of I' and the
“incidence module” of H, while generally non-isomorphic, are “torically isomorphic” (up
to a well-understood direct summand). Our proof of this fact involves once again a blend
of graph theory and toric geometry. We note that we have found no evidence that would
point towards a modelling theorem for the rational functions Wi (X, T) associated with
an interesting class of (not necessarily simple) graphs T

12
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Group-theoretic applications. By a cographical group (scheme), we mean a graph-
ical group (scheme) (see §1.4) arising from a cograph. By combining Corollary
Theorem |C}, and Theorem E we obtain an explicit formula for (local) class counting zeta
functions of cographical group schemes in terms of the associated modelling hypergraphs.

In particular, many of our results on ask zeta functions of hypergraphs (e.g. explicit
formulae and information on analytic properties) have immediate applications to the class
counting zeta functions of the associated cographical group schemes. These are recorded
in §8 For instance, as a substantial generalisation of several previously known formulae,
we explicitly determine the (local) class counting zeta functions of the cographical group
schemes associated with the following classes of cographical groups over Z:

(i) The class of finite direct products of finitely generated free class-2-nilpotent groups.
(ii) The class of class-2-nilpotent free products of free abelian groups of finite rank.

(iii) The smallest class of groups which contains Z and which is closed under both direct
products with Z and class-2-nilpotent free products with Z.

The class counting zeta functions of the cographical group schemes associated with free
class-2-nilpotent groups and class-2-nilpotent free products of two free abelian groups
have been previously determined by Lins [47, Corollary 1.5].

As we noted above, right-angled Artin groups are close relatives of our graphical groups.
Right-angled Artin groups associated with cographs have e.g. been studied in [38}63].

1.8 A recurring example

We illustrate Theorems [A] [C| and [D] by means of a simple yet instructive example that
we will repeatedly revisit throughout this paper.

Example 1.6. Let I' be the following simple graph:

Using the constructive arguments underpinning Theorem 7, we may explicitly
compute the rational functions W (X, T) (see :
14+ X T —2X 4T —2X 3T + X 1T+ X777
(1-T7)%(1-XT)
WH(X,T) = F(X,T)/(1 - X"T*(1 - X °T?*)(1 - X 5T)(1 — X *T)
(1-X3TH(1 - X271 - T2X3)(1 - 1T)?), (1.7)

Wi (X, T) = and (1.6)

13
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where the (unwieldy) numerator F(X,T) of Wi (X, T) is recorded in Table |5 on p. @

Alternatively, the first of these rational functions can be found using Theorems [CHD]
Indeed, I' is a cograph for the subgraph induced by all vertices excluding those two
depicted on the central horizontal edge is a disjoint union of two complete graphs on
three vertices each. As the aforementioned central vertices are connected to all other
vertices, it follows that I' is a cograph; in fact, we have just shown that I' is isomorphic
to (K3 @ Ks) V Kg, where K,, denotes the complete graph with vertices 1,...,n

Let H be a hypergraph on 8 vertices with 7 hyperedges and incidence matrix

€ Mgx7(Z). (1.8)

=
_ =0 00O
_ =0 OO~

OO O
[ eNelloNoNoll

1
1
1
1
1
0
0
0

= = = = e e e

Write [n] = {1,...,n}. Using the notion of hyperedge multiplicities from , up to
isomorphism, H is thus given by the family p = (1)) with

B8] = M[5] = H{1,2,6,7,8) = 2, M2 =

and p; = 0 for all remaining subsets I C [8]. Then the explicit form of Theorem D] (see

shows that W (X,T) = Wy(X,T); see Example In particular, the formula (1.6]
for W (X, T) is, in principle, given by Theorem as a sum indexed by the poset

WO([8]). Rather than handle a sum over the 2,183,340 elements of this poset directly,
it is far more convenient to apply some of the tools for recursively computing ask zeta
functions associated with hypergraphs that we will develop in For details of this short
computation of Wy (X, T), see Example

1.9 Results IV and open problems

We collect consequences of our main results from above—to be proved in §8.I}—that are
both closely related to topics of interest in asymptotic and finite group theory and that
seem likely to provide promising avenues for fruitful further research.

Non-negativity. Let I' be a simple graph with m edges. Let W (X,T) be as in
Theorem and expand

Wi (X, X™T) = prk

for frx(X) € Q(X). By Corollary B fr x(q) is the class number of the graphical group
Gr(9/9*) for each compact DVR © with maximal ideal 8 and residue field size q.

14
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In particular, fr;(X) is precisely the polynomial (!) that we denoted by fr(X) in
Corollary Our proof of the latter result implies that, in fact, each fr;(X) is a
polynomial in X. Inspired by Lehrer’s conjecture [43] on character degrees and similar
results on class numbers of the groups U,,(F,) by Vera-Lépez et al. (see, for instance, [69)),
both refinements of Higman’s conjecture from we obtain the following.

Theorem E. Let I' be a cograph. Then the coefficients of each fr(X) as a polynomial
in X — 1 are non-negative.

Question 1.7. For which simple graphs I' does the conclusion of Theorem [E]| hold?

Analytic properties. The most fundamental analytic invariant of a (non-negative)
Dirichlet series is its abscissa of convergence which encodes the precise degree of polynomial
growth of the series’s partial sums. In a seminal paper [24], du Sautoy and Grunewald
showed that subgroup zeta functions associated with nilpotent groups have rational
abscissae of convergence. The same turns out to be true for class counting zeta functions
of arbitrary Baer group schemes. (For a proof, combine Proposition below and
[57, Theorem 4.20].) For cographical group schemes, we can do much better.

Theorem F. Let ' be a cograph with n vertices and m edges. There exists a positive
integer a(I') < n+m+ 1 such that if Ok is the ring of integers of an arbitrary number
field K, then the abscissa of convergence of (& g0, (s) s equal to a(I'). Moreover, if O
is a compact DVR, then the real part of each pole of (EEF@)D(S) is a positive integer.

By [57, Theorem 4.20], for an arbitrary simple graph I', there is a (unique) positive
rational number «(I") with properties as in Theorem [F| However, it is not clear if «(T") is
always an integer. The positivity of local poles in Theoremis related to [57, Question 9.4].
The integrality of local poles in Theorem [F] does not carry over to arbitrary graphs. For
instance, for the graph I' in Example the function (& g0 (s) has a pole at 3/2.

Question 1.8. Let I' be a simple graph.
(i) Is a(T") always an integer?
(ii) Are the real parts of the poles of (& oo (s) for compact DVRs O always half-integers?

(iii) Is there are a meaningful combinatorial formula (in the spirit of Theorem |C]) for
the functions Wl? (X, T) which is valid for all graphs on a given vertex set?

iv at do the numbers « an e poles of class counting zeta functions o

iv) What do th b r d th 1 f cl ti ta functi f
graphical group schemes tell us about a graph? How are they related to other
graph-theoretic invariants?

1.10 Outline

Section[2l In we collect basic facts about ask zeta functions including, in particular,
the crucial duality operations from [60]. Along the way, in we formally define
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Baer group schemes and relate their class counting zeta functions to ask zeta functions
attached to alternating bilinear maps. Apart from reviewing background material, we
also develop a “cokernel formalism” (see for expressing ask zeta functions in terms
of p-adic integrals. In we use this to interpret ask zeta functions as special cases of
a more general class of zeta functions attached to modules over polynomial rings.

Section[3] After reviewing basic constructions and terminology pertaining to graphs and
hypergraphs in we define, in §§3.2H3.3] the adjacency and incidence representations
informally described in §I.4] We further define adjacency and incidence modules and
relate their zeta functions in the sense of §2.6] to the ask zeta functions associated with
adjacency and incidence representations. In we formally define graphical groups and
group schemes and relate class counting zeta functions of the latter to ask zeta functions
of adjacency representations.

Section [l Toric geometry enters the scene in §4 We begin by collecting basic facts
from convex geometry in §4.1] and on toric rings and schemes in §4.2] In §4.3] we further
enlarge the class of zeta functions introduced in (which, as we saw, includes ask
zeta functions) by attaching zeta functions to modules over toric rings. In we prove
Theorem and introduce the key concept of “torically combinatorial” modules that
will also form the basis of our proof of Theorem f.

Section [5] is devoted to a detailed analysis of the rational functions Wy(X,T)
attached to hypergraphs H via Theorem . In we prove (a slightly more general
version of) Theorem [C| The remainder of §5| then focuses on two main themes. First,
for several classes of hypergraphs of interest, we provide more manageable forms of
Theorem . These classes are the “staircase hypergraphs” in disjoint unions
of “block hypergraphs” in §5.2.1] and the “reflections” of the latter family in §5.3.1]
Secondly, as we will explore and exploit throughout the general formula provided
by Theorem [C| behaves very well with respect to natural operations on hypergraphs.
Finally we deduce, in consequences for analytic properties of ask zeta functions of
hypergraphs.

Later on, our results from will find group-theoretic applications in via the
Cograph Modelling Theorem (Theorem E proved in . In particular, the hypergraph
operations alluded to above will translate to natural group-theoretic operations.

Section @. In §§|, we prove Theorem f and also Corollary Our proof considers
positive and negative adjacency representations of graphs simultaneously by means of a
common generalisation, the “weighted signed multigraphs” (WSMs) introduced in
Multigraphs are more general than graphs in that they allow parallel edges. Each WSM
gives rise to an adjacency module (over a suitable toric ring) which generalises the positive
and negative adjacency modules of graphs from In we describe a number of
“surgical procedures” for WSMs that do not affect the associated adjacency modules.
Even when the original multigraph was a graph, these procedures may introduce parallel
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edges—this justifies introducing the concept of WSMs. After some technical preparations
in we use these procedures in to give an inductive proof of Theorem f.

Section The Cograph Modelling Theorem (Theorem @ is the subject of We
first recall basic facts about cographs in §7.1] In §7.2] we then explain how Theorem
follows from a structural comparison result (Theorem [7.1)) relating adjacency modules of
cographs and incidence modules of hypergraphs. Extending upon ideas underpinning the
proof of Theorem 7, the remainder of §7|is then devoted to proving Theorem |7.1
An overview of the ingredients featuring in our proof and of our overall strategy is given
in §7.3] This is followed by an implementation of this strategy in §§7.4H7.7

Section[8l In this section we combine Theorem [A] Corollary [B] Theorem [C] Theorem
and our further analysis of the rational functions W (X, T') associated with hypergraphs
from §F] to deduce structural properties and produce explicit formulae for class counting
zeta functions associated with “cographical group schemes”, i.e. graphical group schemes
arising from cographs. We consider, in particular, the cographical group schemes associ-
ated with the families of nilpotent groups listed in the final part of and also relate
our results to work of Lins [46],47] on bivariate conjugacy class zeta functions.

Section [OHI0, Based on our constructive proof of Theorem [A] and computational
techniques developed by the first author, in §9, we provide further examples of the
rational functions Wﬁc (X, T) associated with graphs I' on few vertices. Many of these
examples are not covered by Theorems [CHD] Motivated by such computational evidence,
in we pose and discus a number of questions for further research beyond those
already mentioned in §I.9]

1.11 Notation

Sets. The symbol “C” signifies not necessarily strict inclusion. We write U for the
disjoint union (= coproduct) of sets. Throughout, V' denotes a finite set, typically of
vertices of a graph or hypergraph and of cardinality n. The power set of V' is denoted
by P(V). We write N = {1,2,... } and Ng = NU{0}. The complement of I within some
ambient set V' is denoted by I¢ := V' \ I. We write [n] = {1,2,...,n} and [n]o = [n]U{0}.

Rings and modules. Rings are assumed to be associative, commutative, and unital.
Let R be a ring. The unit group of R is denoted by R*. The dual of an R-module M is
M* = Hom(M, R). An R-algebra consists of a ring S together with a ring map R — S.

For a set V, let RV = @ Rwv be the free module on V; we extend this notation to
veV

subsets of R in the evident way and e.g. write R>oV =4¢ > Av: Yo e V., € R;g} -
veV

RV, where R>g = {z € R: z > 0}. For z € RV, we use the suggestive notation =z =
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> xyv = (xy)pey. Often, X = (X,)yev denotes a family of algebraically independent
veV
elements over R.

We let My, xm (R) (resp. M, (R)) denote the module of all n x m (resp. n X n) matrices
over R. The transpose of a matrix a is denoted by a .

Discrete valuation rings. Throughout this article, ) denotes a discrete valuation ring
(DVR) with maximal ideal . We write Oj, = O/B* and (), = (-) @Oy Let ¢ = |O/P|
denote the size of the residue field of O. We write (k) for the number 1 — ¢=F.

Let v: O — N U {oo} denote the (surjective) normalised valuation on O and let |- |
be the absolute value |a| = g7 on O. For a non-empty collection C' of elements of O,
write ||C|| = max{|a| : a € C}. For a free O-module M of finite rank, pps denotes the
additive Haar measure on M with pu(M) = 1.

For a non-zero D-module M, we write M* = M \ BM; we let {0}* = {0}.

Miscellaneous. Maps usually act on the right. In particular, we regard an n x m matrix
over a ring R as a linear map R" — R™.

The n x n identity matrix is denoted by 1,,. In contrast, 1, %, (and 1, = 1,x,) denotes
the respective all-one matrix. The all-one vector of length n is denoted 1. The free
nilpotent group of class at most ¢ on d generators is denoted by F, 4.

We write d;; for the usual “Kronecker delta”; more generally, for a Boolean value P,
we let p = 1 if P is true and dp = 0 otherwise.

Further notation

Notation comment reference
&(s) | class counting zeta function 1.3
Wh(X,T), W (X,T) | ask zeta functions of (hyper)graphs Thm [A]
65, n°, 'yﬁ, ... | base change of module representations §2.1
0°, 0* | Knuth duals §2.1]
AQU’V’W(Z ), CGU’V’W(X ) | matrices of a module representations §2.2
ask(0), (3% (s), Z&*(T) | average size of kernel, ask zeta functions §2.3
Cm(s) | zeta function associated with a module §§2.6] [4.3]
V(H), E(H) | vertex and (hyper)edge set of a (hyper)graph §3.1
v ~v', v~ e | adjacency and incidence relation §3_1
H(w), HV | 3 purl) | hypergraph with given hyperedge multiplicities | Def. 3.1|
H; & Hi, Hi ® He | disjoint resp. complete union §3.1
inc, Inc, 1 | incidence modules and representations §3_2
adj, Adj, v+ | adjacency modules and representations §§3.3 7j
G1 ® G | free class-2-nilpotent product of groups 3.11
Gr | graphical group scheme 3.4
|F| | support of a fan 4.1
F1 A Fo | coarsest common refinement of fans 4.1
<o | preorder defined by a cone 4.1
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R, | toric ring
o(9O) | “rational points” of a cone over a DVR
gp (z) (resp. g/}zg(:(})) 2= (resp. ﬁ)
WO(V), WO(V) | weak orders Def.
F(T)*G(T) | Hadamard product
HY,Hi,H® Hg | insert all-one or all-zero row or column Def.
I' | weighted signed multigraph (WSM)
H(S), I'(S) | hypergraph and WSM defined by a scaffold
Kite(k) | kite graph

2 Ask zeta functions and modules over polynomial rings

In this section, we recall background material on module representations and associated
ask zeta functions from [57,60]. We also relate the latter functions to class counting zeta
functions associated with Baer group schemes. Finally, we develop a “cokernel formalism”
for ask zeta functions which allows us to view the latter as special cases of a more general
class of functions attached to modules over polynomial rings.

Throughout, let R be a ring.

2.1 Module representations

In §1.3] we attached ask zeta functions to module homomorphisms M — M, (R).
Rather than focusing on such parameterisations of modules of matrices, we will use the
following coordinate-free approach from |60} §2]; as shown in [60], disposing of coordinates
elucidates duality phenomena.

By a module representation over R, we mean a homomorphism A 4, Hom(B, C),
where A, B, and C' are R-modules.

Base change. For a ring map R LN S, an R-module M, and an S-module N, we let
M* = M®pgS (resp. Ny) denote the extension (resp. restriction) of scalars of M (resp. N)
along A; this is an S-module (resp. an R-module). When the reference to A is clear, we
simply write M® = M?* and N = Nj.

Let A % Hom(B, C) be a module representation over R. Given a ring map R A S,
extension of scalars along A yields a module representation

JRLAN Hom(B*, C?)

over S. When the reference to \ is clear, we write 6 = 6.

Knuth duals. Given a module representation A 4, Hom(B, C), let 6° denote the module
representation B — Hom(A, C') with a(b0°) = b(af) for a € A and b € B.
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Write (-)* = Hom( -, R). Apart from 6°, the module representation 6 also gives rise to
a module representation C* &, Hom(B, A*) defined by a(b(160°%)) = (b(ah))y for a € A,
be B, and ¢ € C*.

Note that (#*)° = (6°)* for each ring map R 2 S. Moreover, if A and C are both
finitely generated and projective, then we may identify (6*)* = (#*)°. For more on the
operations 6 — 6° and 0 — 0°, see [60, §§4-5].

Direct sums, homotopy, and isotopy. Let A LN Hom(B,C) and A’ LN Hom(B’,C") be
module representations over R. The direct sum of 6 and ¢’ is the module representation

Agp A 227 Hom(B® B',C® ("), (a,d') af®add'.

A homotopy 6 — #' is a triple of homomorphisms (4 % A/, B LA B'.C L ) such
that the following diagram commutes for each a € A:

B“—6>C

Bl lv
B e o,

Module representations over R together with homotopies as morphisms naturally form a
category. An invertible homotopy is called an isotopy.

2.2 Matrices associated with module representations involving free modules

Up to isotopy, a module representation involving free modules of finite rank can be

equivalently expressed in terms of a matrix of linear forms. In detail, let A LN Hom(B, C)
be a module representation over R. Suppose that each A, B, and C is free of finite rank.
By choosing bases U, V, and W of A, B, and C, respectively, we may identify A = RU,
B =RV, and C = RW.

Let Z = (Zy)uev consist of algebraically independent variables over R. Define an
R[Z]-linear map

AFYY(2) = (30 Zuu)0R7 € Hom(R[ZV, R[Z]W).
uelU

Informally, AGU’V’W(Z ) is the image of a “generic element” of A = RU under 6. The matrix

of AQU’V’W(Z ) with respect to the bases V and W of R[Z]V and R[Z]|W, respectively, is
the matrix of linear forms associated with 6 (and the chosen bases) from [60, §4.4].
As we will now explain, by specialising AQU’V’W(Z ), we may recover # (and 0 for each

ring map R LN S).

Lemma 2.1. Let S be an R-algebra and let z € SU. Let S, denote S regarded as an
R[Z]-algebra via Zys = z,s (u € U,s € S).
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(i) Ag’v’w(z) = Ag’V’W(Z) ®p(z) S= € Hom(SV, SW) coincides with 26
(ii) Coker(20%) ~g Coker(Ag’V’W(Z)) ®R[z] S=-
Proof. Part (fi]) is clear. Part (jii]) follows from ({il) and right exactness of tensor products. ¢

Remark 2.2. The isomorphism types of the cokernels in Lemma (over S and
R[Z], respectively) clearly only depend on the isotopy type (see §2.1J) of 6.

Recall the definition of #° from In subsequent sections, we will analyse and
compute certain zeta functions associated with 6 by studying the sizes of Coker(z(6°)°)
for suitable finite R-algebras S and x € SV. For this purpose, it will be convenient to use
explicit (finite) presentations of these cokernels. Let X = (X,)yey consist of algebraically
independent variables over R. In accordance with the notation in [57, §4.3.5], let

Co M (X) = A () = (Z Xv”) (6°)"X) € Hom (RIX]U, RIX]W). (2.1)

veV

Informally, the image of Cg’V’W(X ) is the “additive orbit” M = {za: a € M}, where
x is a “generic element” of RV and M denotes the image of §. We can read off explicit
generators for the image of Cg’V’W(X ) and hence a presentation for the latter’s cokernel.

Lemma 2.3. Im(Cg’V’W(X)) = <(Z va) (udfX]) ;e U>. ¢
veV

Note that we may identify u6 X! = uf @5 R[X] for u € U.

2.3 Reminder: ask zeta functions

Let A % Hom(B, C) be a module representation over a ring R. If A and B are both
finite as sets, then the average size of the kernel of A acting on B via 6 is the number

ask(0) := |i1| 3 |Ker(af)|.

a€A

Suppose that R admits only finitely many ideals of a given finite index. Further
suppose that A, B, and C are finitely generated. The (analytic) ask zeta function
associated with 6 is the Dirichlet series

5%(s) =Y ask(6®/)| R/,
I<R

where s is a complex variable and the summation extends over those ideals I < R with
|R/I| < co. If R is the ring of integers of a global or local field, then (3%(s) defines an
analytic function on a right half-plane {s € C : Re(s) > a}; cf. [57, §§3.2-3.3]. The
infimum of all such real numbers « > 0 is the abscissa of convergence oy of (3% (s).
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Let O be a compact DVR with maximal ideal 3. We write ), = O/B* and, more

generally, (+)r = (-) ®p Ok. Let A LN Hom(B, C') be a module representation over .
Suppose that each of A, B, and C is free of finite rank. We may identify 0y = 0 @ O
and 09+ (see §2.1)). Consider the generating function

Z3H(T) =3 ask(6),)T*.
k=0

By slight abuse of terminology, we also refer to Z2K(T') as the (algebraic) ask zeta
function of . By [57, Theorem 1.4], if O has characteristic zero, then Z3*(T) € Q(T)).
Note that the analytic function (3%(s) and its algebraic counterpart Z3°k(T') determine
one another: (3%(s) = Z3%(q~*), where ¢ denotes the residue field size of O. As explained
in [57, §8], ask zeta functions (of either type) arise naturally in the enumeration of orbits
and conjugacy classes of unipotent groups. Most of the main results of this article
(e.g. Theorems D)) are stated in terms of the generating functions Z3*(7") while the
analytic functions (§*¢(s) feature in our proofs by means of suitable p-adic integrals.
We will rely heavily on the fact that the duality operations 6 — 6° and 6 — 6° (see

have the following tame effects on ask zeta functions.

Theorem 2.4 ([60, Corollary 5.6]). Z3*(T) = Z3 (qu(B)_rk(A)T) = Z3M(T).

2.4 Application: class counting zeta functions of Baer group schemes

Consider an alternating bilinear map ¢: A x A — B of Z-modules. Suppose that B is
uniquely 2-divisible (i.e. a Z[1/2]-module). The Baer group associated with ¢ is the
nilpotent group G, of class at most 2 on the set A x B with multiplication

1
(a,b) * (a', V') = <a+a’,b+b'+§(a<>a'));

this construction is part of the Baer correspondence [2]. We now describe a version
of the operation ¢ ~» G, for group schemes.

Let V and F be disjoint finite sets and let ¢:ZV x ZV — ZFE be an alternating
bilinear map. We obtain a nilpotent Lie Z-algebra (“Lie ring”) g, of class at most 2 with
underlying Z-module ZV & ZE and Lie bracket [z + ¢,y +d] = z oy for x,y € ZV and
c,d € ZFE.

Let C be a total order on V U E. By [66, §2.4.1], there exists a (unipotent) group
scheme G, = G, C over Z such that for each ring R, we may identify Go(R) = RV & RE
as sets and such that group commutators in G, (R) coincide with Lie brackets in g, ®z R.
The multiplication * on G, (R) is characterised by the following properties:

(i) Forvy C---Cogin Vand rq,...,7 € R, (r1vy) % - -+ % (rpog) = r1v1 + -+ + rpvg.
(ii) For v,w € V with v C w and r, s € R, we have (sw) * (rv) = rv + sw — rs(v o w).

(iii) RE is a central subgroup of G¢(R) and x * ¢ = x + ¢ for x € G,(R) and ¢ € RE.
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2 Ask zeta functions and modules over polynomial rings

Up to isomorphism, G, does not depend on C. We call G, the Baer group scheme
associated with o. For each ring R in which 2 is invertible, G, (R) is isomorphic to the
Baer group attached to the alternating bilinear map RV x RV — RFE obtained from .

Proposition 2.5. Let 0: ZV x ZV — ZE be an alternating bilinear map. Let ZV =
Hom(ZV,ZFE) be the module representation with v(wa) = vow forv,w € V.. Letm = |E)|.
Let R be the ring of integers of a local or global field of arbitrary characteristic. Let G,
be the Baer group scheme associated with ¢ as above. Then (& o p(s) = ;S,;t‘(s —m).

Proof. For each finite ring A, commutators in G,(A) are given by Lie brackets in g, ®z A.
By the same reasoning as in [60, Lemma 7.1], we see that k(G4(A)) = |A|™ ask(a?). 4

Proof of Proposition @ Let ¢:Z™ x Z™ — M™ be the alternating bilinear map given
by a(z oy) = zay' from Let Z" % Hom(Z", M*) with 2(ya) = zoy. By
Proposmon H (& or(s) = CZ%((S —m). We claim that o® (see is isotopic to
M < 50,(Z). By [60, Proposition 4.8], this is equivalent to ¢* being isotopic to a which
is easily verified using the isomorphism (Z")* ~ Z" given by matrix transposition. Using
Theorem we conclude that ¢ ;’i'%‘(s) =( fﬁk(s) provided that the field of fractions of
R is a local field. Finally, using [60, Remark 5.5], the global case reduces to the local
one. ¢

2.5 Cokernel integrals

From now on, let © be a compact DVR. Let A 4 Hom(B, C) be a module representation
over £, where each of A, B, and C is free of finite rank. For a € A and y € O, the map

0 = 02/
BY gives rise to an induced map B ®¢o O/y ab20/y =SV ®p O /y. Define

Co(a,y) := |Coker(al ® O/y)|.
The following is equivalent to [57, Theorem 4.5], but with kernels replaced by cokernels.
Theorem 2.6. For Re(s) > 0,
GH) = (=g ) [ O Cyfary) dpaco(ay).
AxO

Proof. As in [57, Definition 4.4] (see [60, §3.5]), write Kgy(a,y) = |Ker(af ® O/y)|. The
claim then follows immediately from [57, Theorem 4.5] (cf. [60, Theorem 3.5]) and the fact
that by the first isomorphism theorem, Kg(a,y) = Co(a,y) - [y OB for y £ 0. ¢

Remark 2.7. In the present article, we express ask zeta functions in terms of sizes
of cokernels, rather than kernels; see Corollary 2.8 Cokernels turn out to be more
convenient here since they commute with base change (both being colimits).
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2 Ask zeta functions and modules over polynomial rings

Explicit dual form of Theorem[2.6, We can make Theorem [2.6|more explicit by choosing
bases. Let A=9U, B=9V,and C = OW, where U, V, and W are finite sets. As in
let Z = (Zy,)uev consist of algebraically independent elements. By Lemma

Co(a,y) = |Coker(Ag""" (Z) @iz (D/y)a)l. (2.2)

where (O/y), denotes O /y with the O[Z]-module structure Z,r = a,r (v € U, r € O/y).

It will be convenient to express (3%(s) in terms of §° via Theorem Let X = (Xy)vev
consist of algebraically independent variables over 9. Recall from the definition of
the O[X]-homomorphism Cg’V’W(X ).

Corollary 2.8. For Re(s) > 0,

@) = (=g )™ [ Iy Coker (€YY (X)) @opx) (9/y)e] dptov <o(.p)
OVxO

Proof. Combine Theorem equation (2.2)), and Theorem ¢

2.6 Zeta functions associated with modules over polynomial rings

We will study ask zeta functions by considering a sequence of successive generalisations
of the integrals featuring in Corollary 2.8] As our first step in this direction, we consider
integrals obtained from Corollary . 8 by allowing Coker(CUVW(X )) to be a more general
type of O[X]-module.

As before, we write X = (X, )yev, where the X, are algebraically independent variables
over O (or whichever base ring we consider).

Let M be a finitely generated O] )((A -module. The example of primary interest to us at
this point is the case M = Coker(CY"""" (X)) (see (2.1)), where 6 is a suitable module
representation over 9. As in @ for x € OV, let O, denote O endowed with the
O[X]-module structure X,r = z,r (v € V, r € O). More generally, for an arbitrary
O-module N, we let N, denote the O[X]-module N ®p O, (cf. Lemma [2.10).

Definition 2.9. Define a zeta function
Cus)i= [ 1ol IMe 00 9/y] dpov o (. p) (23)
OV xO

The following simple observation will be used repeatedly throughout this article.

Lemma 2.10. Let R be a ring. Let S and S’ be R-algebras. Let X' = Spec(S’)/R and
let v € X'(S). Let S’ X S be the R-algebra map corresponding to x. Let M be an
S-module and let M’ be an S’-module. Let M := (M')X and M, := M, (see §2.1));
these are both (S, S")-bimodules. Then My ®s M' and M ®g M, both carry naturally
isomorphic (S, S")-bimodule structures.

Proof. Apply [9, Ch.1I, §3,no. 8] with A =S5, B=S"E=M,F=S,,andG=M'. ¢
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3 Modules and module representations from (hyper)graphs

Remark 2.11. Note that for z € OV = Spec(O[X])(D), the definitions of the O-
modules M, and (O/y), provided Lemma coincide with those given above. In
particular, Lemmaallows us to identify M, ®9 O /y = M ®go(x) (O/y). in 2.3). (For
a proof, relabel M «» M’ and take S = O, S’ = O[X], and M = O/y in Lemma [2.10])

Remark 2.12. If 9 has characteristic zero, then standard arguments from p-adic
integration show that (y/(s) € Q(¢™*) and also establish “Denef-type formulae” in a
global setting; cf. |57, §4.3.3].

The following is immediate from Corollary

Corollary 2.13. Let U, V, and W be finite sets and X = (X,)pey as before. Let

oU 4 Hom(OV,OW) be a module representation over O. Let M = Coker(CeU’V’W(X));

see . Then
G () =M= ) Culs = [V +[W]). ¢
In particular, the zeta functions attached to modules over polynomial rings in Defini-
tion generalise local ask zeta functions. We will further generalise the former functions
by suitably replacing polynomial rings by toric rings; see Definition 4.4 As we will see,
this greater generality will provide us with the means to study “toric properties” of ask
zeta functions by purely combinatorial means.

3 Modules and module representations from (hyper)graphs

In this section, we begin by fixing our notation for various concepts related to graphs and
hypergraphs. Formalising and generalising our discussion from for each hypergraph H
and (simple) graph I', we define the incidence representation 1 of H and the adjacency
representations v+ of I', as well as corresponding incidence and adjacency modules Inc(H)
and Adj(T'; £1). We also define graphical group schemes and express their class counting
zeta functions in terms of ask zeta functions.

Throughout, let R be a ring.

3.1 Graphs, multigraphs, and hypergraphs

For a general reference on hypergraph theory, see e.g. [13].

Hypergraphs. A hypergraph is a triple H = (V, E, | - |) consisting of a finite set V' of
vertices, a finite set E of hyperedges, and a support function F u> P(V). We
often tacitly assume that V' N E = @. When confusion is unlikely, we often omit |- | (and
occasionally even V and E) from our notation. We write V(H) = V, E(H) = E, and
||y = 1] Two hyperedges e and €’ are parallel if |e| = |¢/|. An edge is a hyperedge
e with #|e| € {1,2}. An edge e with #|e| = 1 is a loop. The reflection of H is the
hypergraph H® = (V, E, | -|°) with |e|/ =V \ |e|. An isomorphism between hypergraphs
H and H’ consists of bijections V(H) LN V(H") and E(H) N E(H’) such that |e|y P(¢) =
ley|y for each e € E(H), where P(¢) is the direct image map P(V(H)) — P(V(H'))
induced by ¢.
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3 Modules and module representations from (hyper)graphs

Incidence matrices. Let H = (V, E,|-|) be a hypergraph. A vertex v € V and hyperedge
e € E are incident, written v ~y e or simply v ~ e, if v € |e|. Let I(H) denote the set
of all pairs (v,e) € V x E with v ~y e. Write V. = {vy,...,v,} and E = {e1,...,en},
where n = |V| and m = |E|. The incidence matrix of H with respect to the given
orderings of the elements of V' and E is the n x m (0, 1)-matrix [a;;] with a;; = 1 if and
only if v; ~p €;.

Hypergraph operations. The disjoint union H; ®H, of hypergraphs H; = (V;, E;, | - |,)
(i = 1,2) is the hypergraph on the vertex set V; U V5 (disjoint union) with hyperedge set
E1 U E5 and support function ||e;|| = |e;|; for e; € E;. If A; € My, xm,(Z) is an incidence
matrix of H;, then the block-diagonal matrix

A 0
[ 0 A2‘| € M(n1+n2)x(m1+m2)(z)

is an incidence matrix of H; @ Hs.

The complete union H; ® Hy is the hypergraph on the vertex set Vi U V, with
hyperedge set £ U Ey and support function ||e;|| = |e;|, UVj for e; € E; and i+ j = 3. If
A; € My, xm,(Z) is an incidence matrix of H;, then

Al 1n1 Xma
1712 Xmi A2

] S M(n1+n2)x(m1+m2)(z)

is an incidence matrix of Hy ® Ho; recall that 1,,«,, denotes the n x m all-one matrix.

Both disjoint unions and complete unions naturally extend to families of more than
two hypergraphs. These two operations are related by reflections of hypergraphs via the
identity (H1 @ H2)¢ = Hf @ HS.

(Multi-)graphs. A multigraph is a hypergraph I' = (V, E, | - |) all of whose hyperedges
are edges. A graph is a multigraph without parallel edges; note that we allow graphs
to contain loops. Two vertices v and v’ of a graph I' are adjacent if there exists an
edge e € E with |e| = {v,v'}; we write v ~p v/ or v ~p ¢’ in that case. (This notation is
unambiguous whenever V N E = & which we tacitly assume.) The set of neighbours
ofveVinlis{weV:v~w} A graph is simple if it contains no loops. The join
I'1 vV T'9 of two simple graphs I'; and I'y is the simple graph obtained from the disjoint
union 'y @ I's by adding an edge between each pair of vertices (vy,v2) € Vi x Va.

Parameterising hypergraphs. Up to isomorphism, a hypergraph H = (V| E,|-|) deter-
mines and is determined by the cardinalities of the fibres puy := #{e € E : |e] = I} € Ny
for I € V(H). More formally:

V)

Definition 3.1. Let V be a finite set. Given a vector u = (ur);cy € Ng of non-

negative multiplicities, define a hypergraph H(u) with

V(H(w)) =V, EMH(w) ={U,j): I cV.jeluly, [l =1
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3 Modules and module representations from (hyper)graphs

In other words, H(u) contains precisely u; hyperedges with support I for each I C V.
We often write m = > 7~y pr for the total number of hyperedges of H(u). Clearly, for
each hypergraph H, there exists a unique vector p as in Definition such that H and
H(p) are isomorphic by means of an isomorphism fixing each vertex.

We will use the following shorthand notation for the hypergraphs H(u). For a finite
set V, suppose that we are given numbers p; € Ny for some but perhaps not all subsets
I C V. We may then extend the collection of these u; to a family p as in Definition
by setting py = 0 for the previously missing subsets J C V. We set

H(V | 32wt = Hp);

to further simplify our notation, we often drop coefficients u; = 1 and summands p;/
with p; = 0 from the left-hand side.

Important families of (hyper)graphs. The following hypergraphs will feature in several
places throughout this article; most have vertex set V = [n].

The discrete (hyper)graph on n vertices (often called an “empty graph” in the litera-
ture) is
A, :=H([n] | 0) := H([n] | 0[n]). (3.1)

The n x m block hypergraph is the hypergraph

BH,,;m := H([n] | m[n]). (3.2)

We denote the reflection of BH,, ,,, by PH,, ,,,; that is, PH,, ,, = H([n] | m@). More
generally, given n = (ny,...,n,) € N” and m = (mq,...,m,) € Np, let

BHnm :=BHp, m, &---®BH,, », and (3.3)

PHnm = BHy 1 = PHuy iy ® - ®@ PHyy i, (3.4)

The complete graph on n vertices is

Kp:=H(n] | > {i.5}). (3.5)

1<i<j<n

The star graph on n vertices (with centre 1) is

Star, ;== H([n] | Y {1,i}). (3.6)

1<i<n

The path graph on n vertices is

P, :=H([n]| > {i,i+1}). (3.7)

1<i<n
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3 Modules and module representations from (hyper)graphs

The cycle graph on n > 3 vertices is

Cn:=H(n]| > {i,i+1}+{1l,n}). (3.8)

1<i<n
The staircase hypergraph associated with m = (mq,...,my) € Ng“ is
n
YH,, :=H <[n] | Zmﬁz])) ) (3.9)
i=0

3.2 The incidence representation and module associated with a hypergraph
Let H= (V,E,|-|) be a hypergraph. We construct a module representation nf over R

which we call the incidence representation of H over R.

Description of 7 in terms of hypergraph coordinates. For (v,e) € V x E, let [ve] be
the R-homomorphism RV — RE which satisfies uve] = dy-€ (v € V). Recall that
I(H) = {(v,e) € V x E : v ~y e}. Define n¥ to be the module representation

RI(H) — Hom(RV,RE), (v,e) > [vel;

write 7 = nZ. We refer to 1 as the (absolute) incidence representation of H. Note that
the notation 7 is unambiguous: if R — S is a ring map, then (n%)% = 7.

Description of 7 in terms of matrices. Write m = |E|, n = |V|, V = {v1,...,v,}, and
E ={e1,...,em}. Let

M = {[aij] € Myxm(R) : ajj = 0 whenever v; & \ej\}.
Then 7%, as defined above, is isotopic (see §2.1)) to the inclusion M < M, s (R).

Incidence modules. Let X = (X,),ecy consist of algebraically independent variables
over R. Define

inc(H; R) := <Xve v~pe(veV,ee E)> < R[X]E.

The incidence module of H over R is

R[X|E

the (absolute) incidence module of H is Inc(H) := Inc(H; Z). Clearly,

RIX]

Inc(H; R) A RIX] @ m

eck

(3.10)

Lemma 3.2. Inc(H;S) = Inc(H; R)SX! for each ring map R — S.
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3 Modules and module representations from (hyper)graphs

Proof. Immediate from the right exactness of tensor products. ¢
The incidence module of H determines the ask zeta functions associated with 7:

Proposition 3.3. For each compact DVR O,

GR(s) = (1—=a )" Cine(nioy (s = V] + | EI).

Proof. By Lemma Im(CfI(DH)’V’E(X)) = inc(H;O) (see (2.1)) whence Inc(H;9) =
Coker (Ci(DH)’V’E(X )) . The claim thus follows from Corollary [2.13 ¢

For any suitable ring R, we refer to (3f(s) as the ask zeta function of H over R. We
can use the structure of Inc(H; R) in (3.10) to make Proposition more explicit.

Proposition 3.4. For each compact DVR O,

—1\— — — -1
G == [ I T eaul duovao(ay)
OVxD eel

where x. = {x, : v € |e|}.

Proof. For ideals a,b < R of a ring R, there is a natural R-module isomorphism R/a ®p
R/b ~ R/(a + b); this follows e.g. from |10, Ch. I, §2, no. 8]. Equivalently, given a

surjective ring map R LN S, we have R/a ®pr S ~g S/(a)). Let x € OV and 0 # y € O.
Using (3.10) and Remark we then obtain ©-module isomorphisms

O[X] . -
oo eley 2o O/~ D

Inc(H; O) ®o(x] (O/y)z = @ lTey)
e€ @

eckE

The common cardinality of these modules is therefore [] [|ze;yl|™*. The claim now
eckl

follows from Corollary ¢

Remark 3.5. Suppose that H = BH,, ;,, is the nxm block hypergraph; see . In terms
of matrices, 77R parameterises all of M;,»,,(R). A formula for the ask zeta function of (the
identity on) My xm, (D) is given in [57, Proposition 1.5]; see Example [5.10|(l). The integral
in the proof of this proposition is exactly the corresponding special case of Proposition
here. Similarly, the determination of the ask zeta functions of modules of (strictly) upper
triangular matrices over 9 in [57, Proposition 5.15] proceeded by computing the integral
in the corresponding special case of Proposition see Example . We thus

recognise various ad hoc arguments from [57] as instances of the cokernel formalism here.

As we will see in Proposition [3.4] can be used to produce an explicit formula for
the ask zeta functions associated with all hypergraphs on a given vertex set.
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3 Modules and module representations from (hyper)graphs

3.3 Two adjacency representations and modules associated with a graph

Let I' = (V, E,|-|) be a graph. We construct two module representations 4 and ~y_
associated with I" which we call the adjacency representations of I'. The first of these
module representations is defined for all graphs I' and parameterises symmetric matrices
with suitably constrained support. The second is defined whenever I' is simple and
parameterises antisymmetric matrices with support constrained by I'. For our purposes,
the antisymmetric case is usually more interesting.

Denote the exterior (resp. symmetric) square of a module M by M A M (resp. M ® M).

Alternating case: construction of v_. Let I' be simple. For an R-module M, let
(M A M)* 222 Hom(M, M*)
be the module representation which sends ¢ € (M A M)* to the map
M — M*, mw— (n— (mAn)).

If M = R", then the evident choices of bases furnish an isotopy between so;; and the
inclusion so,(R) — M, (R), of alternating (= antisymmetric with zero diagonal) n x n
matrices into M,,(R). We define the negative adjacency representation v of I' over
R to be the composite

RV ARV \*

where N(I', —1; R) is the submodule of RV A RV generated by all v Aw such that v,w € V
are non-adjacent in I' and the first map is the dual of the quotient map. For an explicit
description of v# in terms of matrices, let V = {v1,...,v,}, where n = |V|. Let

M~ = {[aij] € 50,(R) : a;; = 0 whenever v; vj};

cf. the definition of M~ (T') in It is easy to see that v is isotopic to the inclusion
M~ < M,,(R); a proof is implicitly given in the proof of Proposition below.

We refer to y_ := v% as the (absolute) negative adjacency representation of I'. As with
incidence representations in this notation is unambiguous: (v7)% = ~° for each
ring map R — S.

Symmetric case: construction of v,.. Let I" be not necessarily simple. For an R-
module M, let

(M © M) M Hom (M, M*)
be the module representation which sends ¢ € (M ® M)* to the map

M—M*, m— (n— (mon)).

Sympn is isotopic to the inclusion Sym,,(R) < M, (R) of symmetric matrices.
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3 Modules and module representations from (hyper)graphs

We define the positive adjacency representation fyf of I' over R to be the composite

RV ® RV \* . Sympy .
SV ORY N (RV 0 RV 2BV, Hom(RV, (RV
(N(F,+1;R)> (RV O RYV) om(RV, (RV)"),

where N(T', +1; R) is the submodule of RV ® RV generated by all v ©w such that v,w € V
are non-adjacent in I'. In terms of matrices, let V' = {v1,...,v,}, where n = |V|]. Let

Mt = {[aij] € Sym,,(R) : a;; = 0 whenever v; vj};

cf. §1.1land the definition of M*(T') in Then % is isotopic to the inclusion M+ <
M,,(R). As above, we call v, := 7% the (absolute) positive adjacency representation of T'.

Adjacency modules. Let X = (X,),cy as in For v,w € V, define

Xow £ Xy, ifv#w,
[v,w; £1] := )
+X,v, if v=w,
an element of Z[X]V, and
adj(T, £1; R) := <[v,w;j:1] v,w €V, v~ w> < RIX]V.

The (positive resp. negative) adjacency module of I" over R is

. R[X|V
Adj(T, £+1; =
0 ELR) = G 1R
Lemma 3.6. Adj(T",+1;5) = Adj(T, :i:l;R)S[X] for each ring map R — S. ¢

We write Adj(T, £1) := Adj(T', £1; Z).

Adjacency modules and ask zeta functions of graphs. In the same way that incidence
modules of hypergraphs determine the ask zeta functions associated with incidence
representations, adjacency modules of I' are related to ask zeta functions derived from ..

Proposition 3.7. For each compact DVR O,
C;%k(s) = (1—q ") Caqjr+1,0)(5)-
(Here, we assume that T" is simple in the negative case.)

Proof. We only spell out the “negative case”; the positive one can be established along
similar lines. Let C be an arbitrary total order on V. Let

A, L) :={(v,w) e VX W:v~wand vCw}.

Let V* = {v* : v € V} denote the dual basis associated with the basis V of RV.

The images of the symbols v A w for (v,w) € A(I',C) form a basis of %; let
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3 Modules and module representations from (hyper)graphs

& = {pyw : (v,w) € A(I',C)} denote the associated dual basis of (%)*, indexed

H=0L
in the natural way. Define a module representation R A(I',C) ——=s Hom(RV, RV),
where for (v,w) € A(I',C) and u € V,

4w, ifu=w,
u((v,w)d) = ¢ —v, if u=w,

0, otherwise.

It follows that the diagram

rv % Ry
H J
e

RV 5 (RV)*

commutes, where RV < (RV)* is the isomorphism vv = v* (v € V). Hence, v and 6
are isotopic (see §2.1)). Lemma [2.3[ shows that

Im(c;,“(FE)’V’V(X)) - <Xvw — X : (v,w) € A, g)> = adj(T, - 1; R)

whence
Coker(CjﬁV’V* — (X)) ~RIX] Coker(Cﬁ(F’E)’V’V(X)) = Adj(T", —-1; R).
The claim now follows from Corollary ¢

3.4 Graphical groups and group schemes

Let I' = (V, E,| - |) be a simple graph. Let C be an arbitrary total order on V. Define an
alternating bilinear map
01V X2V - ZFE

by letting, for v,w € V with v C w,

e, if there exists e € E with |e| = {v, w},
vow = i
0, otherwise.

We leave it to the reader to verify that the isomorphism type of the Baer group
scheme G, (see associated with ¢ only depends on I' and not on the chosen total
order C. We call Gr := G, the graphical group scheme associated with I'. If T" is
a cograph (see § , we talk about the cographical group scheme associated
with I'. By a (co-)graphical group (over R) we mean a group of rational points of
a (co-)graphical group scheme, i.e. a group of the form Gr(R) for some ring R and
(co)graph I.
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3 Modules and module representations from (hyper)graphs

Remark 3.8. The group Gr(Z) of Z-points of Gr is a finitely generated torsion-free
nilpotent group. It admits the presentation

Gr(Z) = <VUE ’ [v,w] = e for e € E with |e| = {v,w} and v C w,
[v,w] = 1 for non-adjacent v,w € V, and

[v,e] = e, f] =1 for all v € V and e,f€E>.

Equivalently, Gr(Z) is the maximal nilpotent quotient of nilpotency class at most 2 of
the right-angled Artin group

(V| [v,w] =1 for all non-adjacent v,w € V)

associated with the complement of T'; see e.g. |1§]. It will prove advantageous for our
graph-theoretic arguments in §§6H7] to work with I" rather than with its complement.

The following variant of Proposition (which was proved in §2.4) will be crucial in
establishing Corollary [B] in

Proposition 3.9. Let I' be a simple graph with m edges and let v_ denote its negative
adjacency representation over Z. Let R be the ring of integers of a local or global field of
arbitrary characteristic. Then (& o p(s) = (:f/%‘(s —m).

Proof. Let ZV = Hom(ZV, ZE) be the module representation with v(wa) = v o w for
all v,w € V. By Proposition (Gror(s) = C;SF‘;(S —m). A straightforward calculation
as in the proof of Proposition shows that the dual a® (see §2.1)) of « is isotopic to y_.
Using Theorem and the final argument from the proof of Proposition (see §2.4)),
we conclude that ¢ ;Shlf(s) = Cj%k(s) which completes the proof. ¢

Disjoint unions and joins. Let I'; and I's be simple graphs. Recall from that I'ely
and I'; VI'y denote the disjoint union and join of I'y and I'e, respectively. Clearly, Gr,sr,
and Gr, x Gr, are isomorphic group schemes whence Gr,gr,(R) ~ Gr, (R) x Gr,(R) for
each ring R. Denote the lower central series of a group G by G =v,(G) = v,(G) > - -
For groups G and Ga, let

G1® Gy = (Gl * GQ)/’Y3(G1 * Gg) (311)

be their free class-2-nilpotent product, i.e. the maximal nilpotent quotient of class at
most 2 of the free product Gy * G3. Note that Gr,yr,(R) =~ Gr,(R) ® Gr,(R) if R=7Z
or, more generally, R = Z/nZ for n € Z.

In particular, we conclude that the class of cographical groups over Z is precisely the
smallest class of torsion-free finitely generated groups which contains Z and which is
closed under taking both direct and free class-2-nilpotent products.
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4 Modules over toric rings and associated zeta functions

4 Modules over toric rings and associated zeta functions

By Corollary the functions (j/(s) attached to modules M over polynomial rings
generalise ask zeta functions. In this section, we introduce a further generalisation of
these functions by replacing polynomial rings by more general toric rings. This more
general setting will provide us with a sufficient criterion (Proposition for proving
uniformity results such as Theorem |Al Part of the latter will be proved here while
parts (ii)—(i) will be proved in §6]

Throughout, as before, V' is a finite set and R is a ring.

4.1 Cones and fans

We recall some standard notions from convex and toric geometry; see |21 Ch. 1-3].

Unless otherwise indicated, by a cone in RV we mean a closed, rational, and polyhedral

cone—in other words, cones are finite intersections of Z-defined linear half-spaces in RV.
A fan in RV is a non-empty finite set F consisting of cones in RV such that

(i) every face of every cone in F belongs to F and
(ii) the intersection of any two cones in F is a common face of both.

The support of a fan F is |F| = JF. The fan F is complete if |F| = RV. Let F
and G be two fans in RV. We say that G refines F if every cone in G is contained
in some cone in F. The coarsest common refinement of F and G is the fan (!)
FAG:={oNT:0¢eF,7eG}its support is | F A G| = |F| N|[G|.

Let - be the standard inner product x-y = > z,y, on RV. If 0 C RV is a cone,
veV
then so is its dual o* = {z € RV : Yy € 0:z-y > 0}.

Let 0 C R>oV be a cone. Recall that a preorder on a set is a reflexive and transitive
relation. If all elements are comparable, then the preorder is total. We note that
“total preorders” and “weak orders” (cf. § are equivalent concepts. We define a
preorder <, on ZV by letting x <, y if and only if y — x € o*.

Lemma 4.1. For every fan F in RV and finite set ® C ZV, there exists a refinement
F' of F with |F'| = |F| and such that <, induces a total preorder on ® for each o € F'.

Proof. We may assume that ® # @. For x € RV, let 2% := {y € RV : -y > 0} be
the associated linear half-space and = := 2+ Nz~ = x'. We obtain a complete fan
Fr:={xt, 27,27} consisting of precisely three cones, except when z = 0 in which case

Fz = {RV}. Clearly, the refinement 7' := F A A JF,_, has the desired property. 4
z,yed

4.2 Affine toric schemes and their rational points over DVRs

Toric rings and affine toric schemes. Let 0 C RV be a cone. By Gordan’s lemma
(see |21, Proposition 1.2.17]), the additive monoid ¢* N ZV is finitely generated. Let
X = (Xy)vey consist of algebraically independent variables over R. For a € ZV, write
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4 Modules over toric rings and associated zeta functions

X = I] X3». In the same way, we define 2%, where z = > x,v and all the z, are
veV veV
units (in some ambient ring). We let

R, == R[X“:a € 0" NZV]
be the toric ring associated with o and R. We let X, p = Spec(R,,) be the associated

affine toric scheme over R; we write X, := &, 7.

Rational points over DVRs. Let 0 C R>oV be a cone and let © be a DVR. Recall that
v denotes the normalised valuation on 9. For z = > z,v € OV with [] x, # 0, we

veV veV
write v(z) :== Y. v(z,)v € ZV. Define
veV

o(9):= {x e OV H xy # 0 and v(z) € a}.

veV
Alternatively, o(9) admits the following dual description.
Lemma 4.2. ¢(9O) = {z € OV : H Ty 0 and % € O for each a € 0" NZV'}.

veV
Proof. Let x € OV with [] z, # 0. Then z¢ € O if and only if v(z®) = v(z)-a > 0.
veV
The latter condition holds for all &« € 0 N ZV if and only if v(z) € o** = 0. ¢

Recall that X, = Spec(Z,). As before, write X = (X, )yev.

Lemma 4.3. Let ¢ be the natural map X5(O) — OV induced by the inclusion o C R5oV.

Let Z = {x € OV : [] z, =0} and let Z' be the preimage of Z under ¢. Then ¢ induces
veV
a bijection Xy (D) \ Z' — o(9).

Proof. Let x € X,(9)\ Z'. Then x corresponds to a ring map Z, A0, Let 2 = TP SO

that x, := X,\. Since © &€ Z', we have [] z, # 0. Let a € 0* NZV be arbitrary. Then
veV

there exists 3 € Z=oV C o* with a + 3 € Z>oV. We conclude that z°+7 = (X+F)\ =
(XN (XN = (X)X 28 and therefore (X*)A = 2z € O\ {0}). By Lemma
x = xp € 0(O). We have thus shown that A (hence x) is uniquely determined by x
which implies that ¢ injectively maps X,(O) \ Z’ onto a subset of o(9). It remains to
show that the latter subset is all of o(9). Indeed, for each y € o(9), by Lemma we
obtain a ring map

Z, — 9O, X%—y~

whose corresponding point y € X, (9) does not belong to Z’' and satisfies yp = y. ¢
We henceforth tacitly embed o(9) C X;(9O) via Lemma
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4.3 Zeta functions associated with modules over toric rings

We now generalise the definition of the zeta functions (s (see attached to modules
over polynomial rings to those over toric rings.

Let 0 C R>V be a cone. Recall that X, = Spec(Z,) is the affine toric scheme (over Z)
associated with o. Let 9 be a compact DVR and let M be a finitely generated -
module. Generalising the definition of M, in (cf. Lemma [2.10), for each z € X,(O)
(= X, 0(9)), let M, denote the O-module M ®gp, O, where the O,-module structure on
9 is induced by the ring map O, — O corresponding to . When o = R>V, we recover
the definition of M, given in Recall that we identify o(O) C OV with a subset of

X5 (9O) via Lemma
Definition 4.4. Define a zeta function
()= [ 19 M. © /4] dnpyo (@)
(D)X
Remark 4.5.
(i) If M is an O[X]-module (= ORr_,v-module), then we recover Definition
(ii) The function (ps(s) only depends on the isomorphism type of M as an O,-module.
(iii) Exactly as in Remark we may identify M; ®o O/y =M ®o, (O/y)s.

Lemma 4.6. Let o C R>oV be a cone. Let M, be a finitely generated O,-module. Let
F be a fan with |F| = o. For o € F, let M, denote the O,-module M, ®p, Oy. Then

On(s)= > (=DFEFGy (s),

G+ECF
where we wrote o := () X.
Proof. This follows by combining the inclusion-exclusion principle and the identification

(My)y = (My)y for 0 € F and x € 0(O) C o(D) (“transitivity of base change”). ¢

Global setting. We now provide a global setting for the functions (3. Let R be a
Noetherian ring, let o C R0V be a cone, and let M, be a finitely generated R,-module.

For each ring map R LN 0, let

Mo (8) = (Mo, 0, (S);
where the ring map R, 2o, 9, is induced by \; when the reference to X is clear, we also
write (a0 in place of (a7, in the following.

This global setting is compatible with Lemma[£.6]in the sense that for a cone o C o, by
transitivity of base change, we may identify (M, ®p, O,) ®o, Oy = (M, g, Ry) @R, Oo-
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4.4 Combinatorial and torically combinatorial modules

Toric properties. Let R be a ring. Let P be a property of objects of types A, B, ...
(e.g. modules) defined over all base R-algebras of the form R, for cones ¢ contained
within some ambient cone in RV. We assume that (i) P is invariant under isomorphisms,
(ii) for each inclusion 7 C o of such cones, every R,-object A gives rise to an R--object
A®p, R;, and (iii) this base change operation is transitive (up to isomorphism). We say
that specific objects A, B, ... over a specific R-algebra R, have the property P torically
if there exists a fan F of cones in RV with |F| = ¢ such that the R;-objects A ®g, R,
B ®p, R;,... have property P for all 7 € F.

Transitivity of toric properties. Let the property P be as above. Further suppose that
P is stable under shrinking cones in the sense that for each inclusion 7 C ¢ of cones,
whenever objects A, B, ... over R, have P, then so do A®pr, R;,B®pg, R,,....

Let o C RV be a cone and let F be a fan of cones in RV with support 0. Let A, B, ...
be objects over R, and suppose that the R,-objects A ®g, Rs, B ®p, R, ... torically
have property P for each 0 € F. Then A, B, ... themselves torically have property P
over R,; for a proof, apply (which is self-contained) below; cf. Corollary

Combinatorial modules. Let ¢ C RV be a cone. Let R be a ring. By a monomial
ideal I of R,, we mean an ideal generated by (finitely many) Laurent monomials X
for « € 0* NZV. We say that an R,-module is combinatorial if it is isomorphic to
R,/11 & --- @ R,/Iy, where each I; is a monomial ideal of R,.

Example 4.7 (Incidence modules are combinatorial). Let H be a hypergraph with vertex
set V. By (83.10), the incidence module Inc(H; R) is a combinatorial R[X]-module, where
X = (X’U)UEV'

Proposition 4.8 (Uniformity of zeta functions of torically combinatorial modules).
Let 0 C RV be a cone and let M be a torically combinatorial Ry-module. Then there
exists W(X,T) € Q(X,T) such that (pa(s) = Wig,q~*) for each compact DVR O and

ring map R ENES)

Proof. Fix R A 0. First, let A C 0* NZV be a finite set. Let I = (X*: a € A)< R,
and N = R,/I. Let x € o0(O) and y € O \ {0}. The evident free presentation
R,A — R, — N — 0 yields, by base change, a presentation of the O /y-module

(N ®R, Do)z @0 Ofy = N Qr, (O/y)x = O/{x" (v € A); y) =t Nuy;

cf. Proposition In particular, [N, ,| = |z* (a € A); y| ™", independently of A.

Next, by Lemma after shrinking o if necessary, we may assume that M is in fact
combinatorial instead of merely torically combinatorial, say M ~ Ry, /11 ® -+ ® Ry /I,
where I; = (X% : o € Aj) <R, and each A; C 0* NZV is finite. We thus obtain

-1
lyl”

(D) xD Hleo‘ (€ Aj); ol
]:

Cua(s) = dpovxo(z,y).
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5 Ask zeta functions of hypergraphs

The claimed uniformity result for p-adic integrals defined by such monomial expressions
is well-known, see e.g. [54, Proposition 3.9]. ¢

Remark 4.9.

(i) If R admits any ring map to any compact DVR, then the rational function W (X, T)
in Proposition is uniquely determined. Indeed, if R — £ is such a ring map,
where O has residue field size ¢, then we obtain ring maps from R to a compact DVR
with residue field size ¢f for each f > 1. Uniqueness of W (X, T) then essentially
boils down to the fact that infinite subsets of C are Zariski dense.

(ii) The preceding condition is satisfied, in particular, if R is finitely generated over Z.
To see that, let m be an arbitrary maximal ideal of R. By the Nullstellensatz for
Jacobson rings (see e.g. [27, Theorem 4.19]), R/m is then a finite field. We then
e.g. obtain a ring map R — (R/m)[z].

Proof of Theorem (@) Combine Example and Proposition ¢

In §6] we will show that negative adjacency modules of graphs are always torically
combinatorial and that their positive counterparts are torically combinatorial over any
ground ring in which 2 is invertible.

5 Ask zeta functions of hypergraphs

Let H= (V,E,|-|) be a hypergraph. We write n = |V| and and m = |E|. As explained
in §3.2] this allows us to think of the incidence representation 1 of H in terms of a
generic n X m matrix with support constrained by the hyperedge support function |- |.
In we derive an explicit combinatorial formula for the rational function Wy (X, T')
in Theorem and thus, for each compact DVR ©O, for the ask zeta function (2% (s).
We then consider two natural operations of hypergraphs: disjoint unions (see §5.2)) and
complete unions (see §5.3| and . As special cases, we derive explicit formulae for ask
zeta functions of hypergraphs with pairwise disjoint (resp. codisjoint) hyperedge supports
in §5.2.1| (resp. . In , we describe the effects of four further fundamental
hypergraph operations on the rational functions Wy (X, T'). In we use our explicit
formulae to deduce crucial analytic properties of local and global ask zeta functions
associated with hypergraphs.
Throughout this section and beyond, we use the notation (d) = 1 — ¢~¢.

5.1 An explicit formula for the ask zeta function of a hypergraph

The main result of this section, Corollary provides an explicit formula for the rational
function Wi,y (X, T) (see Theorem ) associated with an arbitrary hypergraph H(u)
given by a vector p of hyperedge multiplicities; see Definition This formula will, in
particular, imply Theorem [C]
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5 Ask zeta functions of hypergraphs

Socles. For applications later on, it will prove advantageous to study the rational
function Wi,y (X, T) in (what appears to be) a slightly more general setup.

Definition 5.1. Given a d-element set D with VN D = @ and a vector p of hyperedge
multiplicities as in Definition define a hypergraph H(u, D) with vertex set D LUV
and vector of hyperedge multiplicities (v;) cpuy given by

wr, if J=DUI for some I CV,
vy =
0, otherwise.

Informally speaking, the hypergraph H(u, D) arises from H(w) by inflating each
hyperedge by the same fixed set (“socle”) D. Thus, if A € M, (Z) is an incidence
matrix of H(u), then

Laxm
[ d;; ] S M(d-i—n)xm(z)

is an incidence matrix of H(p, D).
We now derive an explicit formula for Wy, py(X,T'); the shape of this formula will
often allow us to reduce to the case D = @.

Setup and strategy. From now on, let O be an arbitrary compact DVR with residue field
cardinality g. Without loss of generality, suppose that 0 ¢ V U D and write Dy := DU{0}.
Recall from that for a non-trivial O-module M, we write M* = M \ PM and
{0}* ={0}. For J C V, define p-adic integrals

Z;p(s):=Z;p (So, (SI)ICJ)) = / ol [T lzr: wlI** duosxop,(x,y) and
DJx9Dyg IcJ
o) = [ ol [ lersol™ duoscno(e.n), (5.1
(DJ)X xP Dy IcJ

where 7 1= (z; : i € I) € OI C O©J. Depending on context, we regard Z;p(s) and
Z; p(s) both as functions of the 1 + 271 variables s and (s1)rcs and also as functions of
the 1 + 2IVI variables s and (s7)1cv; in any case, sg and sg are different variables.

Let 1,,p be the incidence representation of H(u, D); see We seek to determine
Wh(,p0) (X, T) (and hence also Wy, (X, T))) by expressing (;% . (s) as a rational function

in ¢ and ¢~ °. By Proposition

1\ — —(n+d _ _
G @==a ) [ 1wl T T gl ™ dpsovcony (@)
’ OV XD Do Icv

= (1 —q_l)_l ZV’D(S— (n+d)+m— 1, (_MI)ICV>' (5.2)

This allows us to study Wy (X,T') by analysing the functions Zy p(s).
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5 Ask zeta functions of hypergraphs

A recursive formula. Our first goal is to derive a recursive formula for Zy p(s); see
Proposition In the following, we write t; = ¢~ (where I C V or I =0) and t = ¢~ %.
We identify DDy = O x OD and decompose OV x ODg = OV x O x OD in the form

(OV)* x P xPD) U (PV x P xPD) U (OV x O x OD) U (OV x P x (OD)*) .
(5.3)
Write gp () = z/(1 — z) and gpg () = 1/(1 — x). Using a change of variables (cf.
[37, Proposition 7.4.1]) and the well-known (and easily proved) identity

w0l dpo (o) = W ep (47 '10) (54)
RY
we rewrite Zy p(s) as

ZV,D(S) :IV7D(S) +q " 1= dto (H t1> ZVD ( ) (1 + (d)gp (qiltg)) .

Icv
For J CV, let
1—q %

—q 4 (1) Zsn(s); (5.5)

ZJ7D(S) =

here, and in the following subsections, we often abbreviate Z;(s) := Z;(s). Thus,

Zy,p(s) :gPO( T 11 751) ) 2v.p(8) (5.6)
Icv

and hence, by combining (5.2)) and (5.6]),

1

CS[SLkD( s) = 1—¢ 2v.p (S —(n+d)+m-1, (—M)Icv)- (5.7)

The function Zy p(s) admits the following recursive expression.
Proposition 5.2.
1— qfd 1t L
Zvp(s) = 7= - S+ > W ep (gl [T 1) Z50(s). (5.8)
7t gov icJ

Proof. We decompose the first factor of the domain of integration of Zy p(s) defined
in according to precisely which entries of x € (OV)* are PB-adic units; no such
entry affects the integrand. By Fubini’s theorem, we may then split off the relevant
copies of O, each of Haar measure (1), and write

Typ(s) =Y @) / ol T llez; Il dposxon, (@, y) - (5.9)
Jov B %B Do icJ

= 3,D(S)
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A change of variables shows that

I5p(s) = q I to(H tl) / lyol ™ [Tl wll*" duosxop, (@, y)-
IcJ OJIx9DDo IcJ

Using a decomposition of O.J x DDy = OJ x O x DD analogous to (5.3), we obtain

I;D(S) 1-— q_l_dto
: =Zyp(s)+Iips)+ ()| —=—
q*d*1*|J| tO( 11 t[) P 1—-g¢q Lt
IcJ
and hence
o —d—1-|J] 1—q ¢
IJ,D(S) =8gp\9 to H tr (1) m +Z;p(s)
IcJ
= 1) gp (qdl‘]l to ] tl) Z;p(8). (5.10)
IcJ

By combining (5.5)) and (5.9)—(5.10)), we finally obtain

1— q—l—dto .
Zv.p(s) = = + (1) Zv,p(s)
1— q —1— dto -1
= + ARNE
1— q 1t0 JEC%/ J,D( )
1—q "% J —d—1—|J
=T + Z n—|J| ( 1—] ‘to H tl) Zip(s). ¢
a7t oy icJ

An explicit formula in terms of weak orders. Our next goal is to translate the recur-
sive formula in Proposition into an explicit form given by a sum over a suitable
combinatorial object.

Definition 5.3. Let %(V) be the poset of flags of subsets of V. That is, %(V)
consists of elements of the form

y=(hchc - Ch),

where £ > 0 and I; C V fori =1,...,¢. Note that we allow both Iy = @ and d Iy =V but
do not require either condition to be satisfied. We define the rank of y € WO(V) to be

rk(y) = |sup(y)| = sup{|I| : I € y} € Ny;

empty flags have rank 0. We denote by VV(/)(V) the subposet of WO(V) consisting of all
flags of non-empty subsets of V only. We often write WO,, and WO,, instead of WO([ 1)
and WO([n]), respectively.
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Remark 5.4.

(i) Clearly, rk(y) = 0 if and only if y is either the empty flag or the singleton flag ().
At the other extreme, rk(y) = |V| = n if and only if V' € y. The latter condition
is satisfied for precisely half of the elements of \%(V) The fact that V' € y is
permitted for elements y of \%(V) marks the difference between the latter and
the poset WO,, of weak orders of n objects; cf. e.g. [62, Section 2.3]. In particular,
LWO(V)| = [WO(V)| = 2|WO,| = 2f,, where f, denotes the nth Fubini number
as in §L.6} cf. [30], [19, p. 228], and (1.4).

(ii) The poset WO(V) is isomorphic to WO, in [17, Section 3.1].
We obtain the following explicit formula for Zy p(s).
Theorem 5.5.

1—q 41t
Zyp(8)= ————

= > W [T ep(¢ ™ IT 4).
yeEWO(V) Jey ICV\J

Proof. Recursively apply Proposition to the terms Z; p(s) on the right-hand side

of . ¢

In particular, using (5.7)), we obtain the following explicit formulae for the rational
function Wy, p)(X,T') associated with the hypergraph H(u, D).

Corollary 5.6.

Wh(p,0) (X, T)

1— X" o .
= (1= XdFnmTy (1 - T) > -xH)* W ]ep (X' =2 1020 “’T) (5.11)
ye\/N\é(V) Jey
1— xn=mT o o
= a1 XM ep (X' =Y tsso MT> (5.12)
yeEWO(V) Jey
1—XmmT
= 1= xdrnmg V(X T). ¢
Proof of Theorem[(. Apply Corollary [5.6 with D = &. ¢

Remark 5.7.

(i) For n = 0, we recover the formula for the ask zeta function associated with the

block hypergraph BHg ,,, in (3.2)); see Example .

(ii) The rational functions in (5.11) and (5.12]) are reminiscent of the “generalised
Igusa function” I, (X) associated with the all-one-vector 1 = (1,...,1) in
|17, Definition 3.5]. The curious factors (1 — X ~1)**®) however, set these two types

of combinatorially defined functions apart.
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Example 5.8. We write out the formulae for the functions Wi,y (X, T') = Wi(,0) (X, T)
given in (5.12) for n € {2,3}. We identify V' = [n] and set, for J C [n], gpy := gps(p) :=

]
gp(Xl‘]'_ INJ#o ‘”T). Write gp; := gpy,y and similarly gp;;... := gp ({4,4,... }).

(i) (n = 2) The ranks of the six flags in WO, are given as follows.

yeWOs | ) ({1.2h) ({13¢f12h) (2rc{L2h ({1 ({2
rk(y) | 0 2 2 2 1 1

Thus

Wh(u (X, T) =
% (14 (1= X7)%ep1y (14 gpy +gpo) + (1= X71) (gpy + 8p2)) , (5.13)
where the relevant substitutions are given by the numerical data
X2-m—me—p2 o for J = {1,2},
XV 2insze iy = ) x1-p-ma, for J = {1},
X1-m—pp for J = {2}.

(ii) (n = 3) Here, [WO3| = 26 and

1 _
Wi (X, T) = 1= (1 (1= X")’gp1ag (1 + 8p1 + 8p2 + £y

+gp1o (148p; +8p2) +8P13 (14+8p; +8p3) +8p2s (1+8p2+8p3))
+ (1= X% (gp1o (1 + gpy + gpy) + gP13 (1 + gpy + &p3)
+ gPa3 (14 8Dy + 8p3) + (1 — X 1) (g1 + gpa +8P3) ) ;

we omit the lengthy substitutions.

It seems remarkable how slight the dependence of Wy, p)(X,T) on the “socle” D is.
The final equality in Corollary often allows us to reduce to the case D = & or,
equivalently, to assume that no vertex of our hypergraph is incident to every hyperedge.

5.1.1 A special case: staircase hypergraphs

Let m = (my, ..., my) € NgTH and write m = mq + - - + my,. Recall the definition of
the staircase hypergraph ¥H,, from (3.9)). The upper block-triagonal “staircase matrix”

My, = [5J>Zm] e Mun(@)

1<i

is the incidence matrix of ¥Hy, with respect to the natural order on [n] = V(XH,,) and
the lexicographic order on E(XH,,) (where the first components are ordered by inclusion);
see Example for an illustration.

The rational function Wyy,_ (X, T) associated with ¥H,, admits the following concise
description.
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Proposition 5.9.

1 —14+n—j— E m,
1 "H1-X i T
Wy (X, T) = T | R S (5.14)
=0 1-x =T
Proof. Combine Proposition [3.4] and [57, Lemma 5.6]. ¢
Proposition generalises several previously known results.
Example 5.10.
(i) If mp = ... =mp—1 =0 and m,, = m, then ¥Hy, = BH,, ,,. Proposition yields,
in accordance with |57, Proposition 1.5],
1 n—1 1 — X~ Hn—j—mp
W X, T) =W, X, T)= .
SHm (X, T) BHum (X, T) 1_Tj1;[0 T
. 1-XT
(1 -T)(1—XnmT)’

(ii) If mp = 0 and m; = ... = m, = 1, then My, = [0i;] € M,,(Z). Proposition
yields, in accordance with [57, Proposition 5.13(ii)],

1 "o x i) (1 - x-lT)n
0% X, T) = ' - = :
ZHm( ) ) 1—-T Jl_{) 1— anjf(n*])T (]_ — T)n-i-l

5.2 Ask zeta functions of disjoint unions of hypergraphs

In this section, we consider ask zeta functions associated with disjoint unions of hyper-
graphs. As our main result, in §5.2.1] we record an explicit formula for ask zeta functions
attached to hypergraphs with pairwise disjoint (hyperedge) supports.

Hadamard products. Recall that the Hadamard product of two generating functions

&8 o0
F(T)= ;;o aTF and G(T) = z_: b, T* with coefficients in some common field is

F(T)xG(T) := i arbpT*.
k=0

If F(T) and G(T) are both rational, then so is F'(T") x G(T'); see [65, Proposition 4.2.5].
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Disjoint unions. Let H;,...,H, be hypergraphs with pairwise disjoint vertex sets
Vi,...,V;. Let H:=Hy @ --- @ H, be the disjoint union of Hy,...,H, as in §3.1]

Proposition 5.11. Wy, g..gn, (X, T) = Wh, (X, T) *---* Wy, (X, T).

Proof. Let n; and n be the incidence representations of H; and H, respectively. We may
identify n = m @- - -®n, (see §2.1). Now apply |60, Lemma 3.1]; cf. [57, Corollary 3.6]. ¢

We conclude that the set of rational functions Wy (X, T) associated with hypergraphs
(or, equivalently, the class of rational functions given by the right-hand side of ) is
closed under taking Hadamard products.

It is natural to seek to exploit this closure property. Let H; ~ H(u(i)) for a vector
1@ of hyperedge multiplicities as in Definition . By combining Corollary and
Proposition [5.11}, we obtain

1 ) _ (%)
Wigon, (X, T) =Sk 3 (1— X710 T] gp(x1"2mse i) (5.15)
=1y ewov) Jev

The right-hand side of (5.15) falls short of being truly explicit due to the rather
mysterious nature of Hadamard products. On the other hand, Corollary provides an

explicit formula for Wi (X, T') in terms of the hyperedge multiplicity vector p € NZ)D(V),

where V:=ViU--- UV, and pr == > 71— d1cy; /L%Vi for I ¢ V. This approach, however,
takes no advantage of the fact that H is a disjoint union. As we will now see, it turns out
that we can do much better at least when each H; is a block hypergraph as in (3.2)).

5.2.1 A special case: hypergraphs with disjoint supports

Let n = (ny,...,n,) € N" and m = (my,...,m,) € N"; write n = n; + -+ + n, and
m = mi +---+m,. Let H := BH, m be the disjoint union of the block hypergraphs
H; := BHp, m,; see . Let V; be the set of vertices of H; and V = Vi U---UV, be that
of H. Note that 1, xm; € My, xm,(Z) is the (unique!) incidence matrix of H;. It follows
that

diag (1ny xmys - - 5 Lnyscm,) € Muxm(Z) (5.16)

is an incidence matrix of BH, m. Note that, up to reordering of rows and columns
where necessary, this is the general form of incidence matrices of hypergraphs with
disjoint supports (i.e. whenever uruy # 0, then I = J or I NJ = &) and which also
satisty U, so L = V. (We will see that the latter condition imposes no real restrictions,
nor would allowing some m; = 0 offer anything new; see Remark )

In Corollary we obtained an expression for Wiy (X, T) as a sum over \be(V) ~ WO,.
Our main result (Corollary of this section provides an expression for Wy (X, T) as
a sum over WO,. Apart from better reflecting the structure of the hypergraph H, in
light of the rapid growth of Fubini numbers in , our formula has a more favourable
complexity if 7 < n; see also Remark
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5 Ask zeta functions of hypergraphs

Auxiliary functions. We consider the specialisation
Z7(8) = Z(50; 8vis- -+, 8v,) i= 2y (50, (53ie[r]:I:Vi 81)

of the function Zy(s) = Zyx(s) from (5.5). In other words, Z£(s) is obtained from
Zy(s) by setting all variables s; corresponding to subsets I C V' to zero, except for those
subsets equal to one of the pairwise disjoint sets V;. From (5.7) (with D = &), we obtain

K 1

C;fge}m@nrg(S) = 17_7521? (S —-—n+m — 1, —mi,..., —mr) .

Icv) (5.17)

Given J C [r], write ny = 37;c;n; and ny = (n;)jes. Generalising (5.17), we define

Zy (s):=Zy <807 (53jeJ;1:\/j SI)ICv> :

A recursive formula. We obtain the following recursive formula for Z2(s); the proof is
similar to that of Proposition and hence omitted.

Proposition 5.12.

z2(s) =1+ > (I](w)) ep <q_1_”"t0 11 tvj> Z3 (s). ¢

JClr] kgJ jeJ

An explicit formula. Just as Proposition implies Theorem [5.5] we obtain the
following by unravelling the recursive formula in Proposition

Theorem 5.13.
z8s)= > ( II ) Tep <q‘1‘"+"Jto I1 tvj). ¢
yeWO,. €sup(y) Jey J€lr\J
In particular, Theorem allows us to produce the following explicit formula for the

,
rational function Wy, ,,,(X,T’) associated with the disjoint union BHy m = @ BHy, 1, -
i=1

Corollary 5.14.

Weram (X, T) = > ( [[ (1=Xx7)) [[ep

yeEWO, i€sup(y) Jey

Example 5.15. For r = 2, formula (5.18]) for the ask zeta function associated with the
disjoint union of two block hypergraphs BH,, ,,; reads

5 nym,
<XJ‘€J T>. ¢ (5.18)

WBH(”L”Q)’(""LWIQ) (X, T) e
ﬁ (14 (1= X™)gp (X™7™T) 4 (1 - X "2)gp (X" 7"™T) +
(1 - X*nl)(l - X*n?)gp (Xn1+n27m17m2T) (1 + gp (anfmlT) +gp (XanmgT))) .

(5.19)
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5 Ask zeta functions of hypergraphs

It is instructive to compare (5.19)) and the general formula (5.13) for W (X, T) in the
special case that H is a hypergraph on two vertices.

5.3 Ask zeta functions of complete unions of hypergraphs

Let H; and Hs be hypergraphs on disjoint sets Vi and V5 of vertices. Recall from
the definition of the complete union H; ® Hs of Hy and Hs, a hypergraph with vertex set
V1 U Va. In the main result of this section, Corollary we express Wy, eH,(X,T) in
terms of Wy, (X,T) and Wy, (X,T). In we also record an explicit formula for the
rational function Wy (X, T) whenever H has pairwise codisjoint hyperedge supports; such
hypergraphs are precisely the reflections (see of those considered in §5.2.1]

Let H; have n; vertices and m; hyperedges; write n = n; + ng, and m = my + mo.
Let Hy, Hy, and H := H; ® Hy be given by the multiplicity vectors p, u®, and p,
respectively; cf. Definition |3.1} For I C V := V3 U V5, let I; := I NV, so that

(1)

1 2
ur = 512=V2 NIl 2

+ dn=vy py, -

An auxiliary function. Recall the definition of Zy (s) = Zy »(s) from ({5.5) and consider
the specialisation
1) (2 1 2
Z(%,VQ)(S) = Z(%LVQ)(SO, s ) .= 2y, (so, (512:V2 sgl) + 0n,=v, 8(12))Icv>‘

In other words, Z(C’?/l VQ)(S) is obtained from Zy (s) by setting all variables sy for I C V'
to zero, except for those I that contain one of the disjoint sets V; and Vs; note that the
variable sy is substituted by sg/ll) + sg/?. Thus, Z(@%/l VQ)(S) is a function of 1 + 2"t 4 22

. (1) — (D 2) — (2 : 1)
complex variables sg, s (s I )11CV1’ and s (s Iy )I2Cv2. In particular, sg, sy,
and sg) are three distinct variables.

Let n1, m2, and 11 ® 12 be the incidence representations of Hy, Ho, and Hy ® Ho,
respectively. From (5.7) (with D = @), we obtain

C(a;r@m)g (s) = % Z(@?/lsz) (S —n+tm-—1, (_’u%))hcvl’ <_’ug))12cv2)'

Recursive formulae. This identity allows us to relate the rational functions Wy (X, T),
Wh, (X, T), and Wy, (X, T). We first express Z2 (s) in terms of (translates of) the

(n1,n2)

functions Zy; (so, s@); of. (5.5)). Let tg := g—*°.

Proposition 5.16.

Z((?/hVQ)(S) = (qinilto -1+ ZVI (80 + na, 3(1))(1 _ q*TLQ*ltO)

+ Zv;(s0 + 11, 8)(1 = ¢ o)) /(1 — g M) (5.20)
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5 Ask zeta functions of hypergraphs

Proof. Tt suffices to analyse the function

Z(@;),h%)(s) =
[ e ( 1 ||:c$?,w<2>,y|%) ( 1 lei),:v(”,yllsfz) dpioy <o (2,y),
(OV)X xP LW ICVa
where x%) = (mgz) cjel)and z = (¢, 2(?)) = (xgl), . .,:L‘%ll),l'?), . ,:U,%)). Indeed,

Z(®Vly2)(.s) =1+ (l)_II((%LVQ)(s); see ((5.5)). We proceed by decomposing the domain of
integration of this function. On the set S x B for

S = {(a:(l),x(z)) e (OV)*:zM £0#£ 2% (mod ‘B)},
the integral is very simple. Indeed, u((OV)*\ §) = (n1)g™" + (n2)g~™ whence

" [ 1y ( I1 um%%x@%y\%) ( 11 rrx§§>,x<l>,y|ffz) dpvxo(e,y) =

SxP nLcw I,CVa

(L—q " = (m)g ™ = (n2)g ™) ep (¢ 'to)

by (5.4). It remains to deal with

/e ( 1 |rx§1%m<2>,y||%) ( 1 |rx§?,x“>,y||%) dptoy <o ()
(OV)X\S <P

I %) IoCVa

= / ly|* ( 11 ||$g),33(1),y|\812) dpovxo(,y)

PV1 x (OVa)X xP 12CV2
1
+ / ‘y|80 ( H Hx§1)7l‘(2)7y"811) dMDVXD(‘rvy)
(OV1)* xPVi xP hcwv

= Ty, v (s0,82) + Ty, v, (s0, s1);

cf. (5.1). For ¢ = 1, by invoking (5.5 again and also Theorem [5.5 we obtain

(1) 1y 1—=qg ™
IV17TL2 (30’ s ) = (l) ZVLVQ(SO’ S ) - ﬂ
1—q "

1-— q_lto

=) (2vi (50 + 2, s0) = 1) ;

the argument for ¢ = 2 is analogous. ¢

We now obtain the following expression for the rational function Wy, gn, (X, T") associ-
ated with the complete union Hy ® Hs of the hypergraphs Hy and Hs.

48



5 Ask zeta functions of hypergraphs

Corollary 5.17.

WhieH, (X, T) = (X""T -1
+ Wh (X, X7™T)(1 - X"™T)(1 - X™"™T)
+ W, (X, X ™MT)(1 - X"™T)(1 - X"""T))
/(1 =T)(1 = X""™T)). (5.21)
In particular, if Hy is the block hypergraph BHy,, m,, then

(1— X~™T)(1 — X"2~™T)

X, T) = X, x-m™mT .22
WH1®H2( ) ) WHz( ’ ) (1 _ T)(l _ anmT) (5 )
Proof. Write t = ¢~*. As
as 1 2
C(ni‘@"ﬂ ( ) - WH1®H2 ((:I’ t) - 1 Z(G%/l V2)< —n + m — 1 ( :U’gl))hCVl ( l’LgQ))IQCVQ)’

we seek to describe the effect of replacing so by s —n +m — 1 and each sg) by — ,ug) in

each of the two functions Zy; (so + n3_;, s%) in (5.20). Since

1
ask =W, _ —n. A (1)
Cn? (S) — HI(Qat) - . tZVz (3 n; +m7, 1, ( IU‘[ )

1 ICV)

by (5.7]), we obtain
_ _ . — () m3—q _ g M3—i
Zvi(s n+m 1+n3,z,( ,LLIZ_)ICv) Wh,(¢,¢7™t) (1 — ¢ t).

This establishes the first claim. The special case follows from a simple computation using
WaH,, ., (X, T) = (1= X7"™T)/((1 = T)(1 — X™~"™T)); see Example [5.10[(f). ¢

Given hypergraphs Hy, ..., H,, repeated application of Corollary yields explicit
formulae for Wy, g...en, (X, T') in terms of Wy, (X, T),..., Wh, (X, T).
5.3.1 A special case: hypergraphs with codisjoint supports

Let n,m € N”. The main result of this section, namely Corollary provides an
explicit formula for the rational function Wy(X,T) associated with H := PHym =
PHu my ®--- ® PH,, ., the reflection of BHy m; see . . Note that

1n><m - diag (1n1 XMy 1nr><mr) S Mnxm(z)

is an incidence matrix of H; up to reordering rows and columns, this is the general form
of incidence matrices of hypergraphs with codisjoint supports (i.e. whenever pruy # 0
for I, J CV, then I = J or I°NJ° = &) and which also satisfy 1,50/ = @

Let V; be the set of vertices of PH,,, ,, and let V.=V U---UV, be that of H = PH, m.
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5 Ask zeta functions of hypergraphs

An auxiliary function. Consider the specialisation

®,codis . ~®,codis . L
ZV (S) = ZV (So, SVIC, ceey SVTC) = ZV (So, (53i€[r]:12‘/;c SI)ICV)

of Zy(s). In other words, Z&°(s) is obtained from Zy (s) by setting all variables s;
to zero, except for those with I = V,° for some 1.

Letn=n14+---+n,andm=mq+---+m,. Let nl(?,m be the incidence representation
of H. From (with D = &), we obtain the identity

1 .
S R S

As before, we write t; := ¢~ 1.

An explicit formula and its consequences

Theorem 5.18.

codi 1 e L () ¢ (te — 1
Z‘@?co 15(8):m 1—q n 1t0 1_Zl_qn<1+ni ) .

i1 to t‘/'iC

Prior to proving Theorem [5.18] we record our main result here, namely the following
immediate consequence of Theorem and (5.23).

Corollary 5.19.

1 . XM (X 1
Wotoon (1) = (4 (1 — x07) (1 o <1 -2 S )>> |

Note that the formulae in Corollaries [5.17] and indeed coincide where they overlap.

Remark 5.20. Using “Big Theta Notation”, the estimate from [3] for the nth Fubini

number f,, cited in (1.4)) implies that f,, = @(W). We have thus produced explicit

formulae of three (generally strictly decreasing) complexities:

(i) For a general hypergraph H on n vertices, Corollary expresses Wh(X,T) as a
sum of |[WO,,| = @( !

(k)ggw) rational functions.

(ii) If H = BHpm for n,m € N", then Corollary expresses Wy(X,T) as a sum of

S/ (W) rational functions.

(iii) Finally, if H = PHp m is the reflection (see §3.1)) of BHy m, then Corollary
expresses Wi(X,T) as a sum of O(r) rational functions.
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5 Ask zeta functions of hypergraphs

Writing m = |E(H)|, the rational functions appearing in these sums are products of O(n)
factors of the form +£X?, +£X°T,1— X%, and (1 —XT)*! for a € Z with |a| = O(n+m).

For another point view, write each of the above formulae over a common denominator.
Then we saw that the denominators can (essentially) be written as products of O(2")
factors of the form 1 — XAT in case , products of O(2") such factors in case , and as
products of O(r) factors in case . While cancellations may reduce the actual number
of factors for any given hypergraph, experiments suggest that our bounds generally
indicate the correct order of magnitude.

Proof of Theorem [6.18] The following observation will be helpful.
Lemma 5.21. For all N € N,

q_ao_aN_l_UV+1Nl)(1——q_aU_N)
(1 =g o)1 — g roen—=N) -

/ |y‘a0 Hxla v 7xn—1)yHaN_1 dMDNxD(I)y) =
PV <P

Proof. This is a straightforward corollary of |57, Lemma 5.8] which implies that

F(ao,0,...,0,an_1,0) = / Y[ |21, w1,y Ao o (2, y) =
ONxO
(D@ =g )
(1 =g a0=1)(1 — g eoan—1=N)’

¢

Proof of Theorem[5.18 Consider
.,
2200 (5, Sye, ..., sye) =1+ (1~ / |yo|*° I_IHUUVZ.C;yOHSViC dpov <o (T, yo)-
(OV)* x P =1

Note that the product in the integrand is trivial unless x € (OV)* has its B-adic units
concentrated in exactly one of the sets V;. We therefore split up the first factor of the
domain of integration in the form (OV)* = S U ((OV)*\S), where

S = {:BG OV :#{jer]: e Viz, € O} > 1}.

Clearly p((OV)*\ S) =>i_1(ni)g™ "™ whence

r

,
O [ 1ol Tlavesoll ™ duovo(e.) = (1=47" = Yo tm)a™ ) ep (47't0)
SXP =1 =1
(5.24)
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5 Ask zeta functions of hypergraphs

By applying Lemma for each j € [r] (with N =n —n; + 1, ap = so, ay—1 = syc),
we obtain

T
— S
W[ W Tl sl ™ deovso(ey)
©OV)\sxp

r
— S
=) > (nig / 1901 |2 n—ngs 9l dpgn-nisi o (2, y)
i=1 ;
mn—nz-&-lxgp

T Cn— )
(1 =g " Mmity) e lam,
= Z(&) (1 — q_lto) gp (q " 1+nlt0t\/ic> . (525)
i=1

Combining ([5.24]) and (5.25) yields, after some trivial simplifications, that indeed

.
290 (505 sye,. .., spe) =1+ (1 —q " - Z(@)q"“”)gp (q_lto) +

=1
T (1 _ q7n71+nit0)

z;(&) (1 _ q_lto) gp (q_n_l—’_nitotvic)
i=

AUz —
— _ 1—q¢g " |1— i @)g (tViC 1) .
1— q_lto 1-— q_"_1+nit0 tViC

=1

¢

5.4 Four basic operations on hypergraphs

In this section, we study four fundamental operations for hypergraphs: insert either a row
or a column of either all Os or all 1s into any incidence matrix. In Proposition [5.23] we
record the effects of these operations on associated ask zeta functions. For group-theoretic
applications of these results, see

Throughout, let g = (1) 7cv be the vector of hyperedge multiplicities of a hypergraph H
on the vertex set V; see Definition [3.1{ and the comments that follow it. Let n = |V| and
m = |E(H)| = Y ;cy p1. Let o be a singleton set disjoint from V.

Definition 5.22. We define
up, ifJ=IUefor I CV,

i = (V ° b vy =
(1) p1 = (ws)scvue by vy {0’ otherwise,

KT, itJCV,

ii) po = (v o by vy =
(i) po = (V5)scvue by v {0’ otherwise,

cee 1 _
(iii) p* = (,u] + 5[:V)ICV’ and

(iv) 1= (pr+0r-0), -
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5 Ask zeta functions of hypergraphs

In other words, beginning with an arbitrary incidence matrix of H, we obtain associated
hypergraphs

Hi :=H(pq) Dby inserting a 1-row, Ho := H(pg) by inserting a O-row,

H := H(u') by inserting a 1-column, H®:= H(u%) by inserting a 0-column.
Note that H(u;) = H(u, @) in the sense of Definition We write p10) = p and, for
r €N, pyt) = (Uq0—1));- Likewise, we write H1” — H and H1" = (H(l(ril))). We use

analogous notation for the other three operations. All four operations turn out to have
tame effects on the ask zeta functions associated with H.

Proposition 5.23.

1— X"

Wi (X, T) = Ty WHX,T), (5.26)

WHo(Xa T) = Wh(X, XT), (5.27)
1-XxX-'T

Wi (X, T) = ﬁWH(X,X_lT), (5.28)

Who (X, T) = Wh(X,T). (5.29)

Proof. The statement about Wy, (X, T) and Who (X, T') follow from [57, §3.4], the others
by inspection of (5.11)) (with d =1 for Wy, (X, T)). ¢

Remark 5.24. For the purpose of determining Wy (X, T) for a hypergraph H ~ H(u),
Proposition allows us to assume that p satisfies uy = pug =0, 501 = 9, and
Up;>01 = V. In other words, we may assume that no incidence matrix of H(p) has rows
or columns comprised exclusively of Os or 1s. Conversely, by adding suitable rows or
columns of 0s, Proposition also allows us to e.g. assume that incidence matrices of
hypergraphs are squares; cf. [57, Cor. 3.7].

We may now continue the story that began in Example [I.6]

Example 5.25 (Example part II). Let H be the hypergraph on 8 vertices with
incidence matrix in Example We are now in a position to compute the
rational function Wi (X, T). Indeed, H is isomorphic to (BHz 2 @ BH32)° @ BHg 5. Using
equations (with ny = ng = 3 and m; = mg = 2) and , we obtain

14+ X 4T —2X 2T —2X 1T+ XT + X372
Wi o ogpy. 0(X,T) = Tl .
(BH3,2 & BH3.2) (1-T)(1—-XT)(1 - X3T)

Therefore, by (5.22)),

WH (X7 T) = W(BH3,2 (&) BH3,2)0®BH2,2 (X7 T)
(1-XT)(1-X"'T)
HEeH®)°( (1-T)1 - XT)

1+ X 5T — 2X 4T — 2X 3T 4 X 'T + X772

- (1—T)%(1— XT) ' (5:30)

= W( X, X72T)
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5 Ask zeta functions of hypergraphs

Note that Wi (X, T') coincides with the formula for W (X, T') given in (1.6)). We will be
able to explain this following our proof of the Cograph Modelling Theorem (Theorem @
in §7} see Example [7.28

5.5 Analytic properties of ask zeta functions of hypergraphs

Let K be a number field with ring of integers O = Ok Let (x(s) be the Dedekind zeta
function of K. As in let Vi be the set of non-Archimedean places of K and, for
v €V, let O, be the valuation ring of the v-adic completion of K. Let g, be the residue
field size of O,,.

Let n be the incidence representation (see of a hypergraph H = H(u) on a set V

V)

of cardinality n > 1, where pu = (ur)rcv € NZ]) is a vector of hyperedge multiplicities.

By [57, Proposition 3.4],
¢ (s) = I ¢ ()= 11 Walaw, a).

vEVEK vEVEK
The explicit formula for Wi (X, T') in Corollary [5.6| allows us to deduce the following.
Theorem 5.26. Let m' := Y ozicv i1 be the number of non-empty hyperedges of H.

(i) For each compact DVR O, the real parts of the poles of g;gk(s) are contained in

Py = {‘J]— Z M[:JCV}C{l—m’,2—m’,...,n—1,n},
INJ#2

a set of integers (!) of cardinality at most min{2", n + m'}.

(ii) The abscissa of convergence a(H) of C:‘]?ng(s) is a positive integer. It satisfies
a(H) < n+1 and is independent of K.

Proof. First note that if m’ = 0, then (;%k(s) =1/(1—-¢"*) and Cz?ng (s) = Cr(s —n);
cf. [57, p. 577]. As n > 1, both claims then follow immediately. Henceforth, suppose
that m’ > 0 so that |J| — X jn 21 € {1 —m/,...,n} for each J C V. Since g‘;gk(s) =
Wu(q,q~ %), part (il) thus follows from Corollary (with D = @).

For part , we first paraphrase in the form

N
Wh(X,T) = ﬁ (1 +3 LY ep (XA”'T)) (5.31)
=1

Jjel;

for some N € Ny, non-empty subsets I; C N, non-constant polynomials f;(Y) € Z[Y]
with constant term f;(0) = 1, and A;; € Py. We may assume that N > 0 and write ([5.31])
over a common denominator

1+ g% < g% (Mkkﬂ>frk
k=1 \I=—
(1-T)[1(1 — X44T)

1,J

WH(XvT) =
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5 Ask zeta functions of hypergraphs

As a product of finitely many translates of (x(s), the Euler product

1
. = (i () T Cr (s — Ay)
I a=ma—=op " HK 7

vEVEK

i7j X:qv 7T:q;S

has abscissa of convergence a := max{1,4;; +1:4 € [N],j € I;} < n+ 1, where the
estimate follows as in . Moreover, this product may be analytically continued to a
meromorphic function on the whole complex plane. It thus suffices to show that the
abscissa of convergence, o/ say, of the Euler product

N = T ( S ( 5 X) )

vEVK k=1 \I=—c0

(5.32)

X=qv,T=q, *

is strictly less than a. By [22, Lemma 5.4],
/ l+ 1 / /
o < max T:ZEZ,kEN,alk#O :max{al,a>2},
where
, , I+1
oy =sup{l+1:1€Z,aq #0} and aly=sup ¢ leZ,keNso,ap, 07 .

The coefficient of T" in each Euler factor on the right-hand side of (5.32) is

[eo]

Z alle = Z(fz(X_l) — 1>XA"J'.

l=—00 1,J

Hence, by the aforementioned properties of the polynomials f;(Y'), we conclude that
o) < a. Next, for each subset S C I x --- x Iy with |S] > 2,

L+ )es Aij < Z(i,j)ES(l + Ajj)

<max{l+ A4;;:(5,j) € S} <

Bl B
whence o, < a. The independence of a(H) from K has been established, in greater
generality, in |57, Theorem 4.20]. ¢
Remark 5.27.

(i) As we mentioned in Remark for specific g the formula may simplify
due to cancellations, possibly leading to a much smaller set of real parts of poles
than Py. Based on experimental evidence, however, for suitably “generic” u, we
expect most of these at most 2" candidate real poles in Py to survive cancellation.

(ii) Every integer from 1 up to (and including) n+1 arises as the abscissa of convergence
of the ask zeta function of a hypergraph on n vertices. Indeed, a(BH; ;) =
max{1,n — m + 1}; see Example [5.10|(({)) and cf. [57, Example 3.5].
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6 Uniformity for ask zeta functions of graphs

(iii) The fact that both a(H) and all elements of Py are integers seems noteworthy.
Indeed, the abscissae of convergence of Dirichlet generating functions arising from
related counting problems in subgroup or representation growth tend to be rational
but typically non-integral numbers; cf. [25, Theorem 1.3 and §6] and [56, Theo-
rem A(ii)] for (non-)integrality results in the area of subgroup and submodule zeta
functions and, for instance, |1, Theorem 1.2], |26, Corollary B], and [64, Theo-
rem 4.22] in the context of representation zeta functions.

(iv) Example shows that, in general, integrality statements such as those in The-
orem hold neither for the (Euler products of instances of the) functions
Wi (X, T) featuring in Theorem nor for the functions Wy (X, T) in Theo-
rem , unless I' is a cograph; cf. Theorem @ and see Question

For staircase hypergraphs (§5.1.1)), we can considerably strengthen Theorem .
Indeed, inspection of (5.14)) yields the following result.

Proposition 5.28. Let m = (myg,...,my,) € NS'H. Let on,, denote the incidence

representation of the staircase hypergraph YHpy,; see (3.9). Then for each number field K

with ring of integers Ok, the abscissa of convergence of Cg%'jn(s) is given by

a(XHm) :max{l, 1+n—j—ZmL :ij,...,n—l}.
>3

ask

b, (8) may be meromorphically continued to the whole of C. ¢
ONm

Moreover, the function

6 Uniformity for ask zeta functions of graphs

The main result of this section, Theorem [6.4] establishes that, subject to very mild as-
sumptions, a simultaneous generalisation of the two types of adjacency modules from
is torically combinatorial (see §4.4)). This will, in particular, provide a constructive proof

of Theorem f.

In we develop the general setup for the class of adjacency modules that appear in
Theorem [6.4] In §6.2] we describe several graph-theoretic operations with tame effects
on adjacency modules. In §6.3] we show that “torically torically combinatorial” and
“torically combinatorial” are equivalent properties. Both §§6.2H6.3] are then employed in

the proof of Theorem in
Throughout, let R be a ring.

6.1 Weighted signed multigraphs and their adjacency modules
Definition 6.1. A weighted signed multigraph (WSM) (over o) is a quadruple

' = (T, 0, wt,sgn),

where

o6
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W1) T'= (V, E,|-|) is a multigraph (see §3.1),
W2

o C R0V is a cone,

(W1)
(W2)
(W3) wt is a function F — ZV with u + wt(e) € o for all e € E and u € |e|, and
(W4) sgn is a function £ — {+1}.

Henceforth, let T' be a WSM as above. Let X = (X,),ecv as before. For u,v € V and
w € ZV, define
Xty £ X0y, if u#w,

u,v; 1, w|g =
[ I {:l:X“+“u, if u=w,

an element of R[X*!]V; we usually drop the subscript R in the following. Note that
if u # v, then [v,u; +1,w] = £[u,v; +1,w]. Further note that [u,v;+1,0] = [u,v; +1],
where the right-hand side is defined as in

By in Definition for e € E and u € |e|, we have X"+Vt€) ¢ R, : see §4.2| for
a definition of R,. Let

adj(T; R) := <[u,v;sgn(e),wt(e)]3 :e € E with |e| = {u,v}> < R,V.

The adjacency module of I" over R is the R,-module

. R,V

Remark 6.2.

(i) If T is a graph, then Adj(T", RV, 0,+1; R) coincides with the adjacency module
Adj(T', +£1; R) of T over R as defined in (Here, we assume that I' is simple in
the negative case.)

(ii) Of course, the signs of loops have no effect on adjacency modules. They are included
for notational convenience only.

Lemma 6.3.
(i) Adj(T; S) = Adj(T; R)% for each ring map R — S.

(ii) Let T” be the WSM obtained from T by replacing o by a cone T C o. Then
Adj(T’; R) =g, Adj(T; R) ®g, R-. ¢

The following result and its constructive proof constitute the main contribution of the
present section; a proof will be given in

Theorem 6.4. Let I' = (I', o, wt,sgn) be a weighted signed multigraph. Let R be a ring.
Suppose that one of the following conditions is satisfied: (i) 2 € R*. (ii) 2 =10 in R.
(iii) sgn = —1 (irrespective of R). Then Adj(T; R) is torically combinatorial (see §4.4)).

Theorem [6.4] easily implies Theorem [A}

o7



6 Uniformity for ask zeta functions of graphs

Proof of Theorem[4] Part (i) was already proved in For 7, combine Proposi-
tion Proposition[4.8] Remark[6.2)fi), and Theorem[6.4] (with R = Z or R = Z[1/2]). ¢

Proof of Corollary[B. Combine Theorem [A] and Proposition [3.9] ¢

While the preceding two proofs only applied Theorem in the special case that T’
arises as in Remark [6.2] our recursive proof of Theorem [6.4] heavily relies on the greater
generality developed here.

A particularly easy special case of Theorem [6.4] deserves to be spelled out at this point.
We say that a graph is solitary if each of its edges is a loop.

Proposition 6.5. Let 0 C R>oV be a cone. Let T' be a WSM over o (with underlying
vertex set V') such that the underlying graph of T is solitary. Then Adj(T'; R) is a
combinatorial R,-module. ¢

Informally, our proof of Theorem [6.4] given in proceeds by induction on an invariant
which measures to what extent a graph fails to be solitary; the base case of our induction
will be provided by Proposition [6.5

6.2 Multigraph surgery

As we will see in this subsection, subject to various assumptions, we may modify the
edges (as well as their weights and signs) of weighted signed multigraphs without affecting
the isomorphism type of the associated adjacency module. This will constitute the heart
of our proof of Theorem in

Throughout let I' = (T', o, wt,sgn) be a WSM, where I" = (V. E,|-|). An incident
pair of T' is a pair (“formal product”) wu.e, where e € F and u € |e|. Recall that <,
denotes the preorder on ZV such that u <, v if and only if v — u € ¢*. Given incident
pairs u.e and w.f of I', we say that u.e dominates w.f (in I') if u+wt(e) <, w+ wt(f).

The next three lemmas and their proofs (nearly) follow an identical pattern: subject to
dominance conditions, suitable edges of I' can be transplanted to produce a new WSM T
such that adj(T'; R) = adj(I'; R) for every ring R. The effects of the operations I ~ I on
the underlying multigraphs are indicated in Figure[I] Note that these figures only depict
those parts of the respective multigraphs that are relevant for the result in question.

Lemma 6.6 (Dominant loop vs non-loop). Let u,v € V be distinct. Let {,h € E
with |¢| = {u} and |h| = {u,v}. Suppose that u.l dominates v.h. Define a multigraph
I":= (‘/a E, H ’ ||); where

{v}, ife=h.
Define wt': E — ZV via

wt'(e) m {wt<e>, if e # h,

u—v+wt(h), ife=nh.

Then the following hold:

o8
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(i) T/ := (I, 0, wt’,sgn) is a WSM.

(ii) adj(T; R) = adj(I"; R) for every ring R; in particular, Adj(T; R) = Adj(I'; R).

Proof.

(i)

(i)

We need to check that z + wt'(e) € o* for all e € E and = € ||e||. For e # h, this
clearly follows since I" is a WSM. It also follows in the remaining case e = h since
v+ wt'(h) = u+ wt(h) € o*, again since I' is a WSM.

Let
I:= <[a;,y; sgn(e),wt(e)] : e € E'\ {h} with |e] = {a:,y}> C adj(T; R) N adj(T'; R).
Further define

a = [u,v;sgn(h), wt(h)] € adj(T; R),
a’ = [v,v;sgn(h),wt'(h)] € adj(I’; R), and
b :=[u,u;sgn(l),wt()] € I

and note that adj(T; R) = (a)+ I and adj(I'"; R) = (a’) +I. Since u.¢ dominates v.h,
we have t := Xvtwth)—u—wt(l) ¢ R Therefore,

sgn(h)a’ = Xy = g — sgn(h) sgn(£)th,

whence a = +a’ (mod I). ¢

Lemma 6.7 (Dominant non-loop vs loop). Let u,v € V be distinct. Let {,h € E
with || = {v} and |h| = {u,v}. Suppose that u.h dominates v.l. Define a multigraph

I':= (‘/a E, H ’ H): where
el :=
{u}, ife==".
Define wt': E — ZV via
Wt/(€> - Wt(e)7 Zfe 7é 67
20 —2u+wt(l), ife="¢

and sgn’: E — {+1} via

/( ) e sgn(e), Zfe 7& Z?
semle = —sgn(h)sgn(l), ife==~¢.

Then the following hold:

(i) T/ := (I, 0, wt/,sgn’) is a WSM.
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(ii) adj(T; R) = adj(I’; R) for every ring R; in particular, Adj(T; R) = Adj(I"; R).
Proof.

(i) We need to check that x + wt’'(e) € o* for all e € F and z € ||e|. For e # ¢ and
z € |le|| = |e|], we have = 4+ wt'(e) = z + wt(e) € o* since T is a WSM. Moreover,
v+ wt(h) € o* since I' is a WSM and v + wt(¢) — u — wt(h) € o* since u.h
dominates v.£. Hence, u + wt'(£) = 2v — u + wt({) € o*.

(ii) Let
I:= <[m,y;sgn(e),wt(e)] ce€ E\ {{} with |e| = {x,y}> C adj(T; R) N adj(T’; R).
Further define

a = [u,v;sgn(h), wt(h)] € I,
b :=[v,v;sgn(l),wt(¢)] € adj(I'; R), and
' t

b = [u,u;sgn’(¢), wt' ()] € adj(T’; R)

and note that adj(I'; R) = (b) + I and adj(I"; R) = (V') + I. Since u.h dominates v./,
we have t ;= Xvtwt()—u=wt(h) ¢ R Therefore, b — sgn({)ta = V', whence b = b/
(mod I). ¢

Lemma 6.8 (Dominant non-loop vs non-loop). Let u,v,w € V be distinct. Let h € E
with |h| = {u,v} and i € E with |i| = {v,w}. Suppose that u.h dominates w.i. Define a
multigraph T .= (V, E, || - ||), where

lel, if e # 1,
lell := Lo
{u,w}, ife=1.

Define wt': E — ZV via

wt'(e) = wt(e), if e # 1,
C v —utwt(i), ife=i
and sgn’: E — {+1} via
oy ) sen(e), if e #1,
sgn (e) := {— sgn(h)sgn(i), ife=1.

Then the following hold:
(i) T/ := (I, 0, wt/,sgn’) is a WSM.
(ii) adj(T; R) = adj(T'; R) for every ring R; in particular, Adj(T; R) = Adj(T'; R).
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Proof.

(i) We need to check that x 4+ wt'(e) € o* for all e € F and z € ||e||. For e # i and
x € |le]| = le|], x + wt'(e) = z + wt(e) € o*. As T' is a WSM, each of v + wt(h),
v+ wt(7), and w + wt(i) belongs to o*. Since u.h dominates w.i, we conclude that
u+wt'(i) = v+ wt(i) € o* and

w+wt' (i) = w+v—u+wt(i) = (v+wt(h)) + (w+ wt(i)) — (u + wt(h)) € ™.
(ii) Let
1= ([, y;sgn(e), wi(e)] : e € B\ {i} with |e] = {@,y}) C adj(T’; R) N adj(I"; R).
Further define
a = [u,v;sgn(h),wt(h)] € I,
b = [v,w;sgn(i), wt(:)] € adj(T; R), and
b = [u,w;sgn’ (i), wt'(i)] € adj(I’; R)
and note that adj(I'; R) = (b) + I and adj(I"; R) = (V') + I.
Since u.h dominates w.i, we have t := Xwtwt@)—u—wt(h) ¢ R Therefore, b —
sgn(i)ta = b/, whence b = b (mod I). ¢
Lemma 6.9 (Parallel edges I). Let h,i € E be distinct with |h| = |i|. Suppose that
wt(h) <o wt(i). Define a multigraph T := (V, E\ {i},||-||) and a WSM

I := (I, o, wt', sgn’),

where || - ||, wt', and sgn’ are the restrictions of | -|, wt, and sgn to E \ {i}, respectively.
Suppose that one of the following conditions is satisfied: (i) h (hence i) is a loop.
(ii) sgn(h) = sgn(i). Then adj(T'; R) = adj(I'; R) for every ring R; in particular,
Adj(T; R) = Adj(T'; R).

Proof. Write |h| = {u,v}. Since wt(h) <, wt(i), we have t := X"O-"h) ¢ R The
claim follows since, in each one of the two cases listed,

L 4

t-[u,v;sgn(h), wt(h)] = £[u,v;sgn(i), wt(i)].

Lemma 6.10 (Parallel edges II). Let u,v € V be distinct. Let h,i € E with |h| = |i| =
{u,v}, sgn(h) = —sgn(i), and wt(h) <, wt(i). Define a multigraph T := (V. E,| - |)),

where
H H ’6‘7 ’Lf€ 7& (3
el :=
{v}, ife=i.
Define wt': E — ZV wvia
Wt,(e) — Wt(e), . Zfe 7& Z.a
u—v+wt(i), ife=1

Then the following hold:
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(i) T/ := (I, 0, wt’,sgn) is a WSM.

(ii) adj(T; R) = adj(I';R) for every ring R in which 2 is invertible; in particular,
Adj(T; R) = Adj(T'; R) for such rings R.

Proof.

(i) For e # i and x € |le|| = |e|, we have x + wt/(e) = z + wt(e) € 0*. As T is a WSM,
u + wt (i) belongs to o* whence v + wt'(i) = u + wt(i) € o*.

(ii) Let
I:= <[x,y; sgn(e), wt(e)] : e € E'\ {i} with |e] = {:z,y}> C adj(T; R) N adj(T’; R).
Further define

a = [u,v;sgn(h), wt(h)] € I,
b := [u,v;sgn(i), wt(i)] € adj(T'; R), and
V= [v,v;sgn(i), wt'(i)] € adj(T'; R)

and note that adj(T'; R) = (b) + I and adj(T"; R) = (V') + I.

Since wt(h) <, wt(i), we have t := X)Wt ¢ R~ As b+ ta = 2V, we
conclude that adj(T; R) = adj(I'; R) whenever 2 is invertible in R. ¢

By a spike of ', we mean a pair (u,v) of distinct vertices of I" such that (i) u is the
only neighbour of v, (ii) there is only one edge e € E with |e| = {u, v}, and (iii) u <, v.

Lemma 6.11 (Trimming spikes). Let (u,v) be a spike of I'. Let h € E be the unique
edge with |h| = {u,v}. Define a multigraph T := (V, E, || -||), where

H || o ‘€|, lf@ # ha
R {v}, ife=h.

Define wt': E — ZV via

t/( )_ Wt(e)’ Zfe#ha
T vt wt(h), ife=h

(i) T/ := (I, 0, wt’,sgn) is a WSM.

(i) Adj(T; R) ~gr, Adj(T’; R) for every ring R. (However, in contrast to the preceding
lemmas, adj(T; R) and adj(T'; R) may differ.)

Proof.

(i) For e € E\ {h} and z € |le|| = |e|, we have = + wt/(e) = x + wt(e) € o*. Moreover,
v+ wt/(h) = u+ wt(h) € o* since T is a WSM.
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(ii) Since u <, v, we obtain an R,-module automorphism 6 of R, V given by
x, if x # v,
xf =
v —sgn(h) X" "u, ifx=nw.

We now show that adj(T; R)f = adj(I"’; R); the claim then follows immediately.

Let e € E\ {h} with |e|] = {z,y}. Since (u,v) is a spike but e # h, we have v ¢ |e|.
Hence, 0 fixes [z, y;sgn(e), wt(e)] (= [z, y;sgn(e), wt'(e)]). The claim follows since

[u, v;sgn(h), wt(h)] 0 = X4t My = 4]y, v;sgn(h), wt'(h)]. ¢
Corollary 6.12. Let the WSM I = (I, o, wt/, sgn’) be derived from T using any one of
Lemmas [6.6-Lemma or Lemma|6.11. If sgn = —1, then sgn’ = —1. ¢

Remark 6.13. Note that even if the underlying multigraph of a WSM admits no parallel
edges, each of Lemmas [6.6]-Lemma Lemma [6.10} or Lemma [6.11] might introduce
parallel edges.

6.3 Torically torically combinatorial modules are torically combinatorial

This section establishes the (intuitively evident) fact that a torically {torically combina-
torial} module over a toric ring is itself torically combinatorial; see Corollary

Lemma 6.14. Let T be a non-empty finite set of cones in RV. Then there exists a
fan F' in RV such that the following conditions are satisfied:

(i) For each T € T, there exists ¥ C F' with T =JX.
(ii) For each o € F', there exists T € T with o C 7.
(iit) |F'|=UT.

Proof. For x € RV, define 2% and 2= as in the proof of Lemma For each 7 € T, there

exists a non-empty finite set H, C ZV such that 7= () h™. For h€ H := U H,,
heH, T€T
define a complete fan Fj, := {ht,h=,h=}. Let F:= A Fpand F':={c € F:3I7 €
heH
T.o C 7}. Since F is a fan, so is F'. We claim that F has the desired properties, (iil)

being satisfied by construction.
For H let 7 € T. Recall that 7 = (] h". Let x € 7 be arbitrary. For each h € H,

heH
define o, (h) € F, via
hE, if hE\ h=
oalh) = 11 ifze _\ ,
W=, ifxzeh=:

in other words, o,(h) is the unique cone in F;, which contains x in its relative interior.

Let 0, = () o.(h) € F and note that z € .. Since x € 7= () h™, for each h € H,,
heH heH,

we have o,(h) € {h',h=} and hence o,(h) C h*. Thus,
Oy = ﬂ ox(h) C ﬂ ox(h) C ﬂ ht =7

heH heH, heH,
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in particular, o, € F'. We may thus take X to be the finite (!) set {0, : x € 7}. Finally,
by ({)-(i), we have JT C |F'| c UT. ¢

In particular, we can construct “fans of fans” as follows.

Corollary 6.15. Let F be a fan of cones in RV. For each o € F, let F, be a fan of
cones in RV with |F,| = 0. Then there exists a fan F" of cones in RV with the following
properties:

(i) F" refines F.
(ii) |F"| = |F].
(iii) For each o € F and o' € F,, there exists ¥ C F" with o' = J%".

(iv) For each o" € F", there exist o0 € F and 0’ € F, with o C o’.

Proof. Let F' be as in Lemma [6.14] with T := U F,. Let F” := F AN F'. The first
oEF
property holds by definition and the second one since |F'| = JT = |F|. For , let

o € Fand o' € F, CT. By Lemma [6.14i), there exists ¥ C F’ with o/ = JX. As
o' C o, we have o/ =Y/, where ¥ :={pNo:pe€ X} C F". For (iv), every cone in F”
is contained in a cone from F' and each cone in F’ is contained in an element of 7. ¢

Corollary 6.16. Let o C R>gV be a cone. Let M be an R,-module. Suppose that F is
a fan in R=oV with |F| = o such that M ®p, R, is torically combinatorial over R, for
each o € F. Then M is torically combinatorial as an R,-module.

Proof. By assumption, for each o € F, there exists a fan F, with support ¢ such that
(M ®p, Ry) ®r, Rr =r, M ®g, R is combinatorial over R, for each 7 € F,. Now apply
the preceding corollary and note that a change of scalars of a combinatorial module along
a natural ring map R, < R, (coming from an inclusion 7" C 7 of cones) preserves the
property of being combinatorial. ¢

6.4 Proof of Theorem [6.4; “solitary induction”

Let T' = (T', 0, wt,sgn) be a WSM, where I' = (V, E,|-|) and 0 C R>( V.

Define s(I') (the “social degree” of I') to be the number of non-loops of I' in E. Note
that s(I') = 0 if and only if T is solitary (see §6.1)). Let R be a ring. If 2 =0 in R, then
Adj(T; R) does not depend on sgn(-) at all so we may assume that sgn = —1 in this case.
To prove Theorem it thus suffices to show that Adj(T'; R) is torically combinatorial
whenever sgn = —1 or 2 is invertible in R. We proceed by induction on s(T").

Base case. If s(I') =0, then T is solitary and Adj(T'; R) is combinatorial (not merely
torically combinatorial) by Proposition

Henceforth, suppose that s(I'") > 0.
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General assumptions and reductions. We first carry out a number of general reductions;
none of these increases s(I).

The following operations amount to (i) constructing a fan F with support ¢ and
(ii) considering the cases obtained by replacing o by a cone in F; this strategy is justified
by Lemma [6.3] and Corollary

Thus, by shrinking o via Lemma 4.1 and using Lemma we may assume that I' has
no parallel edges except possibly parallel non-loops with different signs. By shrinking o
yet further, we may also assume that for any two incident pairs of I', one of them
dominates the other; see for this notion. The last condition is clearly equivalent to
the preorder <, from being total on elements = + wt(e) € ZV for e € E and x € |e].

Parallel non-loops with opposite signs. Suppose that I'" has parallel non-loops with
opposite signs. In particular, sgn Z —1 and we may assume that 2 is invertible in R. Let
u,v € V be distinct and let h,i € E with |h| = |i| = {u,v} but sgn(h) # sgn(i). Our as-
sumption on dominance of incidence pairs implies that wt(h) <, wt(i) or wt(h) =, wt(7).
Without loss of generality, suppose that we are in the former case. Let IV be the WSM
obtained from T' using Lemma By construction, s(I'") < s(T'). Indeed, the non-loop
1 of " is a loop of IV and other edges coincide in the sense that they have the same support
in each multigraph. By induction, Adj(T'; R) = Adj(T; R) is torically combinatorial.

We may therefore assume that I' has no parallel edges at all. Recall that we also assume
that given any two incident pairs of I', one of them dominates the other. Since s(I") > 0,
we may choose a connected component, = say, of I' with s(Z) > 0.

Using a dominant loop. Suppose that ¢ € E is a loop at v € V in = such that u./
dominates each incident pair of Z. Since = is not solitary but connected, it contains a
non-loop h € E with u € |e]. Let I be the WSM obtained from I' using Lemma
Since h is a loop of I and all other edges are unchanged as above, s(I") < s(I"). Hence,
Adj(T'; R) = Adj(T; R) is torically combinatorial by induction.

Using a dominant non-loop. We may thus assume that u.h is an incident pair of =
which dominates all incident pairs of Z and that h is not a loop. Write |h| = {u, v} and
note that u <, v since u.h dominates v.h.

For each edge i € £\ {h} with v € |i|, we then obtain a WSM I" as in Lemma [6.7| or
Lemma with v 7 i and such that all other edges of IV have the same support in T’
and I". We may repeatedly apply these lemmas to all such edges 7, one after the other,
to derive a WSM T with Adj(T'; R) = Adj(T'; R) and such that the underlying graph I of
T satisfies s(I') = s(I'). By construction, (u,v) is then a spike of I'. By deriving I’ from
I' via Lemma we obtain s(I") < s(I') = s(I') whence Adj(I'; R) ~p, Adj(I';R) =
Adj(T; R) is torically combinatorial by induction.

Restrictions on R. 'We only made use of the assumption that 2 be invertible in R when
we considered parallel edges with opposite signs. If all edge signs of a WSM T are —1,
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then by Corollary [6.12] the same is true for all the graphs derived from I' as part of
our inductive proof above. Hence, no restrictions on R are needed in this case and this
completes the proof of Theorem ¢

Remark 6.17. Given a WSM T' = (I', 0, wt,sgn) as above, our inductive proof of
Theorem [6.4] gives rise to a recursive algorithm for constructing a fan F with support o and
for each 7 € F a WSM I'; with solitary underlying graph such that Adj(T; R)®g, R ~r,
Adj(T';; R) for each 7 € F (and subject to the assumptions on R from above). Together
with Proposition and the techniques for computing monomial integrals from [54, 58],
we thus obtain an algorithm for explicitly computing the rational functions in Theorem [A]
This algorithm turns out to be quite practical; see §9]

Remark 6.18. In the setting of Theorem , the arguments developed in this section
do not apply to compact DVRs of characteristic 2 due to the factors +2 in the penultimate
line of the proof of Lemma Indeed, the conclusion of Theorem does not
generally hold for compact DVRs O with residue characteristic 2. For example, using
either the method from [57, §9.1] or the one developed here (see §9.1)), we find that

Wi (X, T) = (T*+T+1-3X"'T? —6X 'T +6X *T° +3X °T — X °T% - X °T"
—X3T)/(1-T)4
=14+ (G-6X"14+3X2-XT +0(T?).
=:g9(X)

On the other hand, a simple calculation shows that the average size of the kernel of a
matrix of the form

< 8 O
n oK
o v

over Fo; is given by h(27), where h(X) = 1+ X + X ~2; note that g(x) # h(z) for all real
x > 1. In particular, for each compact DVR © with residue field size ¢ = 27, the function
W;S (q,q~ %) differs from the ask zeta function of the positive adjacency representation
associated with K3 over O.

7 Graph operations and ask zeta functions of cographs

In this section, we deduce the Cograph Modelling Theorem (Theorem@[) from a structural
result (Theorem which relates incidence modules of hypergraphs and adjacency
modules of cographs. After collecting some facts about cographs in §7.1], we formally
state Theorem [7.1]in §7.2 We give an outline of the latter theorem’s proof in §7.3| which
is then fleshed out in §§7.4-§7.7

Since we will focus exclusively on negative adjacency representations of simple graphs,
in this section, we frequently omit references to the “negative” part. Throughout, R is a
ring, V' is a finite set, and X = (X,),cv consists of algebraically independent variables
over R. All graphs are assumed to be simple in this section.
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7.1 Background on cographs

A cograph is a graph which belongs to the smallest class of graphs which contains
isolated vertices and which is closed under both disjoint unions and joins of graphs. In
this definition, “joins” can be replaced by “taking complements”. Cographs have appeared
in various contexts and under various names such as “complement reducible graphs”
and “Py-free graphs”; see [20]. They admit numerous equivalent characterisations; see
[20, Theorem 2]|. For instance, cographs are precisely those graphs all of whose connected
induced subgraphs have diameter at most 2. Moreover, cographs are also precisely those
graphs that do not contain a path on four vertices as an induced subgraph.

As explained in [20], each cograph can be represented by a cotree: a rooted tree
whose internal vertices are labelled using one of the symbols @ and V (corresponding to
disjoint unions and joins, respectively) and whose leaves correspond to the vertices of the
cograph. This representation is unique up to isomorphism of rooted trees provided that
(i) each internal vertex has at least two descendants and (ii) adjacent internal vertices
are labelled differently.

7.2 Comparing adjacency and incidence modules

Generalising the definition of incidence modules Inc(H; R) in for a hypergraph
H= (V,E,|-]) and cone 0 C R>oV, we let

inc(H,o; R) := <Xve cv~pge(veV,ee E)> < R,E

and we define the incidence module of H with respect to o over R to be

R,E
Inc(H,0; R) := .o )’
Clearly,
Inc(H, 05 R) ~, Tnc(H; R) @ Ry, (7.1)

For a simple graph I' with vertex set V and a cone o0 C R>oV, we obtain a weighted
signed multigraph (see I':=(T0,0,—1). We set

adj(T, 0} R) = adj(T; R) = <Xvw — Xyv:v,w €V, v~ w> < R,V

and define the adjacency module of I with respect to o over R to be

R,V

To further simplify our notation, we let Adj(I'; R) := Adj(I', R>oV; R); note that this
notation is consistent with §3.3] Observe that
Adj(T', 03 R) =g, Adj(I'; R) ®px) Ro; (7.2)

cf. Lemma [6.3] In the following, we often omit R from our notation in case R = Z.
The following is the main result of the present section.
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Theorem 7.1 (Cograph Modelling Theorem: structural form). Let T' be a cograph.
Let C be the set of connected components of I'. Then there exists a hypergraph H with
V(') = V(H), |[E(H)| = |V(T')| — |C|, and such that Adj(T') and Inc(H) ® Z[X]C are
torically isomorphic Z[X]-modules, where X = (Xy)vpev -

Our proof of this theorem in below is based on a number of algebraic and graph-
theoretic techniques developed in the following. Our proof is effective: given a cograph T,
we can write down an explicit hypergraph H (a “model” of T" in a sense to be formalised

in §7.6) as in Theorem n The final piece towards a proof of Theorem @ is the following
comparison result for adjacency and incidence representations.

Lemma 7.2. Let I" be a graph and let H be a hypergraph, both with common vertex set V.
Let ¢ > 0 and suppose that |E(H)| = |[V|—c. Let ¥ be a set of cones with | J¥ = R>oV and
such that Adj(I', o) =z, Inc(H,0) ® ZS for each o € ¥. Then Wi (X, T) = Wy(X,T).

Proof. Let v (= v—) and n be the adjacency and incidence representation of I' and H over
Z, respectively; see §§3.2H3.3] As always, let O be a compact DVR. First, for each cone
o C R>oV and finitely generated O,-module M, we clearly have (0, (s) = Car(s — 1);
cf. [57, Corollary 3.7]. Using Lemma and 7, we may assume that 3 is a
fan of cones with support R>oV. Now combine Proposition Proposition and
Lemma to obtain

¢G8(s) = (1— ¢ ) aqimwoi(s) = (1= ¢ Cinerysopx) (s — ¢) = (3(s).

We may now deduce the version of the Cograph Modelling Theorem from the intro-
duction.

Proof of Theorem [D. Combine Theorem and Lemma [7.2{ with ¢ = |C|. ¢

Remark 7.3. Assuming the validity of Theorem we actually proved a slightly
stronger result than Theorem [D] Namely, for each cograph I', there exists a hypergraph H
on the same set of vertices with [E(H)| < |V(I')| and W (X,T) = Wn(X,T'). By repeated
application of ([5.29)), we may assume that [E(H)| = |V(I')| — 1. The incidence matrices
of H are then “near squares” in the sense that only one column is missing from a square.

We note that the hypothesis of Theorem [D] itself is not optimal:

Example 7.4. The rational function Wy, (X, T) associated with a path on four vertices
coincides with Wi (X, T'), where H is a hypergraph with incidence matrix

SO O =
S O ==
=

This can be verified by direct computations; see We regard examples such as the
above as evidence that the existence of a toric isomorphism in Theorem [7.1]is perhaps a
more natural question to investigate than coincidence of rational functions.
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7 Graph operations and ask zeta functions of cographs

Likewise, the conclusion of Theorem [D] does not hold for arbitrary graphs:

Example 7.5. Let I' be the graph

By an explicit computation using §6] (see §9.1)), we find that

Wi (X, T) = (—X3T* +5X2T* 6 X?T? +4X?T? —6XT* +14X T3 — 15X T* +4XT+T°
—5T* 4+ 573 +5T2 =57 + 144X 1T — 15X 7173 + 14X 17% —6X T
+4X 7273 —6X 2T? 45X 2T — X 3T /(1 - T)(1 — XT)3(1 — X3T?)),

(7.3)

where the numerator and denominator are both factored into irreducibles in Q(X)[T].
In view of the quadratic irreducible factor 1 — X372 in (7.3), Theorem |C| shows that
W (X, T) is not of the form Wy (X, T) for any hypergraph H.

7.3 Informal overview of the proof of Theorem [7.1]

Let I' be a cograph with vertex set V. At the heart of our constructive proof of
Theorem lies the notion of a scaffold on V over a cone o C R>oV; see Definition [7.7]
Informally, scaffolds are forests (i.e. disjoint unions of trees) on V' with the same connected
components as I'. These forests all come with outgoing orientations given by specifying
a root in each of the forest’s trees and letting all edges point away from their associated
root. Crucially, these orientations are required to be compatible with the preorder <,
on ZV induced by the cone o; see By shrinking o, we may further assume that
the restriction of this preorder to V is total, i.e. a weak order. In addition to the above,
the edges of a scaffold carry weights in the form of subsets of V. In this way, scaffolds
give rise to hypergraphs and also to weighted signed multigraphs (WSMs; see and
adjacency modules.

We say that a scaffold encloses a (co)graph I' over o if the adjacency module of the
WSM associated with the scaffold and the adjacency module of T' (with respect to o)
coincide in a strong sense. In this case, we call the scaffold’s hypergraph a local model of
I' over o; see Definition .

A fundamental idea behind our proof of Theorem is to approximate the graph I
by scaffolds attached to various cones. These cones cover the positive orthant R>oV.
Crucially, all scaffolds realise the same (!) hypergraph H (up to suitable identifications)
as local models of I'. In this case, we call H a global model of T'; see Definition .

As cographs (save for singletons) arise as either disjoint unions or joins of smaller
cographs, we are looking to recursively construct (global) models of disjoint unions and
joins of cographs. The case of disjoint unions is comparatively simple: Proposition [7.23]
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7 Graph operations and ask zeta functions of cographs

establishes that if I'; and I's are cographs with modelling hypergraphs H; and Ho, then
the disjoint union Hy; @ Hs is a model of I'; & I's.

The case of joins of (co)graphs, which is settled in Theorem 7.24] is much more involved.
In we construct a model for the join of 'y V I'y of I'; and T's by implementing the
following strategy.

We fix a cone 0 C R>oV and scaffolds S;(¢) enclosing I'; for i = 1,2. In Phase 1,
using a process governed by removing, one at a time, suitably chosen connecting edges
between I'; and I'y, we modify the disjoint union of the scaffolds S;(o) to obtain a scaffold
SW) which “almost encloses” the join I'y VV I's; more precisely, it encloses said join up to
factoring out a particular submodule. It then remains to consider this “error term”.

The scaffold SOV) differs from the disjoint union of the scaffolds Sj(c) and Sy(o) only
in the weights borne by its edges. The disjoint union of two scaffolds is, in particular, a
disjoint union of two forests. In order to obtain a scaffold enclosing the connected (!)
graph I'y V I's, we grow, in Phase 2 of our construction, a single oriented tree out of
the two oriented forests comprising S®V). In order to ensure that the resulting scaffold
S() has the desired property of giving rise to a local model of T'; V I'y over o, we
graft judiciously chosen (directed and weighted) edges between pairs of roots from both
forests. A final analysis shows that the given procedure is sufficiently independent of
the many choices made along the way and, crucially, the chosen cone o. In particular,
the hypergraph associated with S(°) essentially only depends on the graphs I'; and T'y
and the hypergraphs associated with the scaffolds S;1(0) and Sz(0). This allows us to
combine global models of each of I'; and I'y into a global model of the join I'y V I's.

7.4 Outgoing orientations of forests

By an orientation of a graph I' = (V, E, | -|), we mean a function ori: E — V x V which
assigns an ordered pair (u,v) = ori(e) to each edge e € E with |e| = {u,v}. We call
v and v the source and target of e, respectively. We use the notation u = v for an
oriented edge e with ori(e) = (u,v).

The indegree (resp. outdegree) indeg(u) (resp. outdeg(v)) of u € V' with respect to
an orientation is the number of edges with target (resp. source) u. An orientation of I' is
outgoing if each vertex has indegree at most one.

If T is a tree and u is a vertex of T, then the rooted orientation of T with root u has
all edges pointing away from u. More formally, let e be any edge with |e| = {v, w}, where
v precedes w on the unique simple path from u to w. We then define v to be the source
of e. This orientation of T is clearly outgoing. Trees endowed with such orientations are
often referred to as arborescences or out-trees in the literature. Outgoing and rooted
orientations of trees are identical concepts:

Proposition 7.6 (Cf. [31] §3.5]). Let T be a tree endowed with an outgoing orientation
ori. Then T contains a vertexr u such that ori is the rooted orientation of T with root u.

Proof. Let n be the number of vertices of T. Then T contains precisely n—1 edges. Hence,
the sum of the indegrees of all vertices is n — 1. Since ori is an outgoing orientation, we
conclude that a unique vertex u has indegree zero; see [35, Theorem 16.4]. Let vy,..., v,

71



7 Graph operations and ask zeta functions of cographs

be the distinct neighbours of u. Let Ty,...,T,, be the different trees that constitute
the forest obtained from T by deleting u; we assume that T, contains v;. Then each T;
inherits an outgoing orientation from T. Moreover, v; is the unique vertex in T; with
indegree zero. By induction, the induced orientation of each T; is therefore the rooted
orientation with respect to v;. The claim for T then follows immediately. ¢

In particular, each outgoing orientation of a forest ® naturally induces a partial order
< on V(®). In detail, vertices u,v € V(&) are comparable if and only if they belong to
the same connected component, C' say, and in that case, u < v if and only if u precedes v
on the unique simple path from the root of C' to v. The <-minimal elements of V(®) are
exactly the roots of its connected components.

7.5 Scaffolds

Definition 7.7. A scaffold S = (®,0,o0ri, || -||) on the vertex set V over a cone o C
RV consists of a forest & = (V, E, | -|) endowed with an outgoing orientation ori: £ —
V x V and a support function |- |: E — P(V) such that the following conditions are
satisfied:

(S1) For each oriented edge u = v in ®, we have u <, v (see §4.1)).
(S2) |le|]| # @ for each e € E.

Given a scaffold S as in Definition we obtain a hypergraph H(S) := (V, E, || - |));
note that E(H(S)) = E(®) = E. Apart from the outgoing orientation, a scaffold consists
of a forest ® and a hypergraph H(S) related by a common set of (hyper)edges. A
scaffold S as above also gives rise to a weighted signed multigraph (see Definition

I(S) = (I(S). 0, wts, ~1)
constructed as follows:
(i) T(S) = (V,E(S),] -|), where
B(S) = {(e.w) : ¢ € E(®),w € [le]}}

and |(e,w)|g := |e| for each (e, w) € E(S).

In other words, I'(S) is obtained from the forest ® by replacing each edge e in ®
by a set of parallel edges with the same support as e, one for each element of | e]|.
By condition [(S2)] the forest ® and multigraph I'(S) determine one another.

(ii) The weight of an edge (e,w) of I'(S) for an oriented (!) edge u < v of ® and
w € ||e] is given by wts(e, w) = w — u.

Note that u+ wts(e,w) = w and v + wts(e,w) = v +w — u both belong to o* (the
latter since u <, v by [(S1)) so that condition |(W3)|in Definition is satisfied.
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For a scaffold S, we write adj(S; R) := adj(T'(S); R) and Adj(S; R) := Adj(T'(S); R);
as before, we often drop R when R = Z. By definition, for each ring R,

adj(S; B) = (X"v = X" u:u S vin & and w € [e] ) < R,V (7.4)

Lemma [7.2] provides a sufficient condition for equality of ask zeta functions of adjacency
and incidence representations. In order to use this lemma, we need to be able to establish
“toric isomorphisms” between suitable adjacency and incidence modules. Scaffolds provide
natural examples of such isomorphisms:

Proposition 7.8. Let S be a scaffold as in Definition[7.7. Let C be the set of connected
components of ®. Then Adj(S; R) =g, Inc(H(S),0; R) & R,C.

Proof. By a weak scaffold on V, we mean a quadruple S as in Definition [7.7] except that
® is allowed to be a forest on a subset Vjy := V(®) of V. (This notion will not be used
elsewhere.) The hypergraph H(S) associated with a weak scaffold has vertex set V. We
define adj(S; R) < R,Vp as in and Adj(S; R) := R,Vy/adj(S; R).

We will establish Proposition [7.8] for weak scaffolds on V' by induction on the number
of edges of ®; our proof uses the same idea as in Lemma [6.11] First, if ® contains no
edges, then |C| = |Vo|, Adj(S; R) = RsVo =g, R,C, and Inc(H(S),o; R) = 0.

Now suppose that & contains at least one edge. Consider any connected component
T (a tree!) of ® consisting of more than one vertex. Then T contains a vertex v with
indegree 1 but outdegree 0 (i.e. a leaf distinct from the root). Let u < v be the unique
oriented edge with target v in T (and in ®). The change of coordinates on R,V} given by

= v+ X"y, ifx=w,
x, if € Vo \ {v}

maps the defining generator of adj(S; R) corresponding to e and w € ||e|| on the right-hand
side of to X™v while preserving generators arising from the other edges (as all these
have trivial v-coordinate). Let S’ be the weak scaffold on V' obtained by deleting v and
e from ®; the underlying forest ® of &’ satisfies V(®') = V{ \ {v}. Note that

Adj(S; R) ~ Adj(S"; R) ® R, /(X" : w € ||e]]).

Since v is a leaf of T but not a root, deleting it did not increase the number of con-

nected components; hence, ® has precisely |C| connected components. Therefore,
Adj(S’; R) =g, Inc(H(S'); R) ® RyC by induction and the claim follows using (3.10). ¢

Proposition [7.8| allows us to compare adjacency and incidence modules associated with
scaffolds. Our next step is to relate the latter to adjacency modules of general graphs.

Definition 7.9. Let I' be a simple graph and S = (®,0,ori, || - ||) be a scaffold as in
Definition both on the same vertex set V = V(I') = V(®). We say that the scaffold
S encloses I (over the underlying cone o of S) if the following conditions are satisfied:

73



7 Graph operations and ask zeta functions of cographs

(i) I' and the underlying forest ® of S have the same (vertex sets of) connected
components.

(ii) adj(T, o) = adj(S).

Example 7.10 (Scaffolds and discrete graphs). Recall that A,, is the discrete graph on
the vertex set V = {1,...,n}; see (3.1). Trivially, for each cone o0 C R>oV/, there is a
unique scaffold on V with underlying forest A, and this scaffold encloses A,,.

Example 7.11 (Scaffolds and complete graphs). Consider the complete graph K,, on n
vertices; see . To avoid notational confusion, we also denote its vertices by vy, ..., v,
(where v; =1i). Let

o={r cRLy: 2 <x2,..., 2}

Recall from that Star, denotes the star graph on {1,...,n} with centre v; = 1.
Let S = (Star,, o,ori, || - ||) be the scaffold on {1,...,n}, where (i) the edges of Star,, are
oriented in the form v; — v; and (ii) ||e|| = {v1} for each edge e of Star,. Note that S
is indeed a scaffold by our definition of o. In other words, our orientation of Star, is
compatible with the preorder on vertices induced by o. Figure [2| depicts the scaffold S
and the graph K,, for n = 3; edges of the former are labelled by their supports in the
associated hypergraph.

{vi}

Figure 2: A scaffold enclosing K3 over the cone z1 < x2, x3

We claim that S encloses K,, over o; our proof of this fact contains ideas that will
feature in our proof of Theorem [7.1]
First note that we may identify

Zo=Z[X1,. .., Xn, X7 Xo, .., X1 X,] = Z[ Xy, X7 M Xo, ., X7 P X
Next,

adj(Kn,a) = <Xi'Uj — XjUi 1<
adJ(S) = <X11)j — Xj’l}l 12 <] < n> .

In particular, adj(S) C adj(K,, o). To show the reverse inclusion, let 1 < i < j < n.
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Then, over Z, and modulo adj(S),
Xv; — Xjvi = (Xivj — Xj05) + X7 X (X v — Xivg)
= Xv; — X7 ' Xi X 0
= X' X (X0 — Xj01)
=0 (mod adj(S)).
Thus, adj(S) = adj(K,, o) and S encloses K,, over o.
Example 7.12 (Scaffolds and P3). Consider the path I' = P3 on three vertices:

In the following, we identify v; = i as in Example [7.11] For i = 1,2, 3, let

o= {v e Ry @ <ajfor j=1,2,3}.

We construct scaffolds enclosing P3 over o; for each i = 1,2,3. For i = 2, let S be the
scaffold on {vy, vy, v3} with underlying forest P3 oriented in the form vy < vy — v3 and
with supports ||e|| = {ve} for both edges e, as depicted in Figure

{v2} {v2}
U1 \'U_Q/ V3

Figure 3: A scaffold enclosing P3 over the cone xo < 1,23

Arguments similar to those in Example [7.11] then show that S encloses I' over o2. Next,
by symmetry, the cases i = 1 and i = 3 are interchangeable; we only consider the former.
Let S be the scaffold depicted in Figure [l Since

{vi}
{ve}

Figure 4: A scaffold enclosing P3 over the cone 1 < z9, 3

adj(P3,0) = (Xjvy — Xovy, Xovg — X3v9)
=:f1 =:f2
= (f1. fo+ X7 ' X3 f1)
= <f17X2 (1)3 - Xf1X3v1)>
2di(S),

S encloses P3 over o7.
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Remark 7.13. Clearly, if S encloses I" over o and if ¢/ C o is a cone, then by shrinking
the cone of S, we obtain a scaffold S’ which encloses I" over o”.

7.6 Models

Definition 7.14. Let I" and H be a (simple) graph and hypergraph, respectively, both
on the same vertex set V.

(i) We say that H is a local model of I" over a cone 0 C RyoV if there exists
a scaffold S on V' over o which encloses I' (see Definition together with a

bijection E(H(S)) SN E(H) such that ||e|| = |e¢|y for all e € E(H(S)).

(ii) We say that H is a (global) model of I" is there exists a finite set ¥ of cones with
UX = R0V such that H is a local model of I" over each o € .

In other words, H is a local model of I" over o if, up to relabelling of its hyperedges, H
“is” the hypergraph H(S) (see of some scaffold S enclosing I' over ¢. In the case of
a global model, the particular scaffold and the relabelling of hyperedges may vary with
the particular cone but the hypergraph remains fixed.

Remark 7.15. By Lemma and Remark we may equivalently require the set
¥ in Definition to be a fan of cones.

Example 7.16. The discrete graph A,, is a model of itself.

Example 7.17. The block hypergraph BH,, ,—1 (see (3.2))) is a model of the complete

graph K;,. To see that, consider the cover R%y = |J o, where
i=1

oi={reREy:z; <zjforj=1,...,n}

here and in the following, we use the notation from Example [7.11] Let S; be the scaffold
over o; whose underlying graph is the star graph on 1,...,n with centre i, oriented
edges of the form ¢ — j for i # j, and all hyperedge supports of H(S;) equal to {i}. By
Example S; encloses K,, over o;.

Let H; be a hypergraph with vertices 1,...,n and n — 1 hyperedges, each with
support {i}. Then, up to relabelling of its hyperedges, H(S;) coincides with H; which is
therefore a local model of K,, over o;.

Next, by construction, X; divides each X; in Z,,. In particular, if we redefine all
hyperedge supports of H(S;) to be {1,...,n} instead of {i}, the resulting scaffold still
encloses I'" over ;. Therefore, up to relabelling of its hyperedges, H(S;) coincides
with BH,, ,,—1 for each i =1,...,n. We conclude that BH,, ,_1 is a global model of K,,.

Example 7.18 (A model of P3). We now construct a global model of P3. We continue
to use the notation from Example[7.12] For i =1,2,3, let

gi={rcRZy:x; <xjforj=1,...,3}
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Let H; be a hypergraph with vertices 1,2,3 and incidence matrix A;, where the rows are
ordered naturally and A; is given by

10 00 00
Ar=10 1|, Ay=1|1 1|, As;=1|0 1
00 00 10

We showed in Example that H; is a local model of P3 over o; for i = 1,2,3. Let H
be a hypergraph with vertices 1, 2,3 and with incidence matrix

1
A=]1
1

S = O

By redefining hyperedge supports of scaffolds as in Example and using that X;
divides each X; in Z,,, we conclude that H is a global model of P3.

Lemma 7.19. Let H be a local model of I' over some cone o. Let ¢ be the number of
connected components of I'. Then |E(H)| = |V(I')| — c.

Proof. There exists a scaffold S which encloses T" over ¢. As the underlying forest, ® say,
of § and I' have the same connected components and since a tree on n vertices contains
n — 1 edges, the number of hyperedges of H (= number of edges of ®) is as stated. ¢

Proposition 7.20. Let H be a global model of I'. Let C' be the set of connected components
of I'. Then Adj(I") and Inc(H) @ ZC' are torically isomorphic.

Proof. Let ¥ be a finite set of cones in R>oV with (J¥ = R>¢V and such that H is a
local model of T" over each o € 3. By Remark we may assume that ¥ is a fan. Fix
o € ¥. Then, up to relabelling of E(H), H is the hypergraph H(S) associated with a
scaffold & which encloses I' over 0. Hence, by Proposition Adj(T, o) = Adj(S) ~z,
Inc(H, o) @ Z,C. ¢

Corollary 7.21. IfH is a (global) model of I', then W (X,T) = Wy(X,T).
Proof. Combine Lemma [7.2] and Proposition [7.20 ¢
Remark 7.22.
(i) Example|7.17 and Corollary provide a new proof of the identity Z;"g: (D)(T) =
Zlavslkx( _1)(9)(T) from [57, Proposition 5.11].

(ii) Corollary shows that the graph in Example does not admit a global model.

Our definition of models is specifically chosen to allow us to prove Proposition [7.20]
and its consequence Corollary as well as Proposition and Theorem

Proposition 7.23 (Models of disjoint unions of graphs).
Let T'; = (Vi, Ei, |- |;) be a graph for i =1,2. Let H; = (V;, H;, || -||;) be a model of T';.
Then Hy @ Hy (see is a model of I'1 & T'5.
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Proof. We may assume that V43 NVo = @. For i = 1,2, there exist a collection of
cones X; with [JX; = R>oV; and a collection of scaffolds (S;(0;))s,ex, on V; such that
each S;(0;) encloses I'; over o; and such that each H(S;(0;)) coincides with H; up to
relabelling of hyperedges. Let V := Vi UV, and ¥ := {01 X 02 : 0; € ¥;51 = 1,2} so
that R>oV =U2X. For 0, € &; (1 = 1,2), let S(01,02) be the scaffold on V' over o1 X o9
whose underlying forest is the disjoint union of the underlying forests of Sj(op) and
Sa(02), whose associated hypergraph is the disjoint union of H(S1(01)) and H(S2(02)),
and whose outgoing orientation is induced by those of the scaffolds S;(0;); note that
conditions [(S1) are satisfied here so that S(o1,02) is a scaffold. Next, note that
adj(I'y @ I'y, 01 X 03) is generated by (the images of) adj(I'1,01) and adj(I'2,02). By
construction, S(o1,09) thus encloses I'1 @ I'y over o1 X o9 whence the claim follows. ¢

While formally similar to the preceding proposition, our next result requires considerably
more work; a proof of the following theorem will be given in §7.7

Theorem 7.24 (Models of joins of graphs).

Let T'; be a non-empty graph for i =1,2. Write V; = V(I';). Let H; = (Vi, Hy, || - ||;) be a
model of I';. Suppose that V1 N Vo = @ = Hy N Hy. Let ¢; be the number of connected
components of I';. Let fi; (i =1,2; j=1,...,¢;, —1) and g be distinct symbols, none
of which belongs to Hy U Hy. Define a hypergraph H = (V, H, || -||), where V :=V; U V3,
H:=H UHyU{f;;:i=1,2;=1,...,¢;, —1}U{g}, and H MP(V) is defined by
|\hll, U Va, ifhe H,

Viulhlly, if he Hy,

[All == V2, ifh=fij forj=1,...,c1 -1,

Vi, ifh= fo; forj=1,...,c0—1,

Viu Vs, ifh=g.

Then H is a model of the join I'y V Iy (see of I'1 and I's.
Remark 7.25.

(i) The hypergraph H in Theorem may be expressed in terms of complete unions
of hypergraphs as follows. For each i € {1,2}, let HY = (Hi)o(ci_l); cf. Defini-
tion . Informally speaking, H; and HZ-D coincide except for the multiplicity
of the empty hyperedge; an incidence matrix of HY may be obtained from an
incidence matrix of H; by inserting ¢; — 1 zero columns. One proves inductively
that these are |V;| x (|Vj| — 1)-matrices, i.e. “near squares” (cf. Remark [7.3)). Then

H = (HY ® H5)1; cf. Definition |5.22|(ii).

(ii) If A; € My, x(n;—c;)(Z4) are incidence matrices of H;, then the following (with
n =mnjq + ng) is an incidence matrix of H:

Ay 1

n2><(n1—01) 2

n1X(n2—cg) Onlx(cl—l) (ca—1) 1n,x1

1 X
eM (7).
Lisx(ei-1) Onax(ea-1) Lnaxi nx(n 1)()

1
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Corollary 7.26. FEvery cograph admits a model.

Proof. Combine the description of cographs in terms of disjoint unions and joins in

Example [7.16| (for n = 1), Proposition and Theorem ¢
Proof of Theorem [7.1. Combine Corollary [7.26] and Proposition [7.20} ¢

Remark 7.27 (Canonical models). Let I be a cograph represented by a cotree as in
The uniqueness of cotrees shows that the model, H(T") say, of I constructed in the proof
of Corollary is uniquely determined by I" up to isomorphism of hypergraphs fixing
all vertices of the set V(I') = V(H(T)).

The hypergraphs of the form H(I") for cographs I' are rather special. Recall that, by
Corollary [7.21) Wi (X, T) = Wiy (X, T). Let n = |[V(T')|. By Lemmal7.19} [E(H(T"))| =
n — ¢, where ¢ is the number of connected components of I'. In particular, Remark [5.20]
shows that Wy (X, T) can be written over a denominator which is a product of fewer

than 2n factors of the form 1 — X AT for general hypergraphs on n vertices, we obtain
an upper bound of 2" such factors. For another restriction,

> #lellury = 2/EMD)];
ecE(H(T))
in particular, the number of non-zero entries in any incidence matrix of H(I") is even.

Example 7.28 (Example part III). We resume the story begun in Example Let
the graph I' &~ (K3 @ K3) V Ky and hypergraph H be as defined there. As we observed in
Example H~ (BH32® BH372)0 ® BHy 2. By Example m the block hypergraph
BH32 (resp. BHg 1) is a model of the complete graph K3 (resp. K3). Therefore, by
Proposition[7.23} the disjoint union BHz » ® BH3 2 is a model of K3 @ K3. By Theorem|[7.24]

(see also Remark [7.25(i)),
((BH32 ®BH32)? ® BHa1)! ~ (BH32®BH32)? ® BHa 2 ~ H

is a model of I'. By Corollary Wi (X, T) = Wh(X,T) is thus given by (/5.30)).

7.6.1 Models and the addition of one vertex

Before we turn to the proof of Theorem [7.24] we record, for later use, the effects on models
of taking disjoint unions and joins with a simple graph on a single vertex.

We denote, more precisely, by ¢ = K; = A; a fixed (simple) graph on one vertex and
study the effects of the operations I' ~» I" @ @ and I" ~~ ' V o. Given a hypergraph H, set
HY = (H%), = (Ho)° and likewise H} = (H'), = (H1)"; cf. Definition

Proposition 7.29. Let H be a model of T.
(i) HY is a model of T @ e,

1) Let ¢ be the number of connected components of I'. Then HO“""N1 s 4 model o
1
T'Ve.
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Proof. This follows from Proposition (for @) and Theorem (for V). ¢
Corollary 7.30.

(i) For each graph T, we have Wrge(X,T) = Wp(X, XT),

(ii) For each cograph I', we have Wrye(X,T) = 1:();:? Wr(X, X~IT).

Proof. The assertion in ({i) follows from [57], §3.4]. For , combine Proposition [7.29|(iil
with ((5.26) and (/5.28)). ¢

Remark 7.31. The question whether the assumption in that I be a cograph is
unnecessary is generalised in Question [10.1

7.7 Proof of Theorem

At this point, there is but one missing piece towards our proof of Theorem [7.1| (and
Theorem D)), namely Theorem whose notation we now adopt. Write I' :=T'y V I's.

7.7.1 Phase 0: setup

Suitable collections of cones. Similar to the proof of Proposition [7.23] we obtain a
collection ¥ of cones with [J¥ = R>oV and, for each 0 € ¥ and i = 1,2, a scaffold §; =
Si(o) on V; which encloses I'; over the image o; of o under the projection R>qV — R>oV;
such that H(S;(o0)) coincides with H; up to relabelling of hyperedges. Using Lemma
Lemma and Remark to modify ¥ if necessary, we may further assume that <,
(see induces a total preorder on V for each o € X.

Note that in contrast to our proof of Proposition [7.23] we do not assume that each
o € % is of the form o0 = 01 X g2. However, ¢ C o1 X g9 which allows us to identify
Zo, C 2y x5y C 2y and also e.g. Z,,V; C ZsV.

A fixed cone. Henceforth, let ¢ € ¥ be fixed but arbitrary. It suffices to construct
a scaffold S which encloses T over o and whose associated hypergraph H(S) coincides
with H (as defined in the statement of Theorem up to relabelling hyperedges.
Write S; := Si(0) = (@i, 04,011, | - ||;) and ®; = (V;, E;, |- |;). We may assume that
EiNEy, =@. For w; € V; and v; € Vj, we use the suggestive notation w;v; both for
(ui,vj) € Vi x Vj and, if i = j and u; ~ v; in ®;, for the oriented edge u; — v; of ;.

Strategy. For u,v € V, let [uv] := X% — X"u € Z,V (so [uv] = [u,v; —1] as in §3.3).
For A C Vi x Va, write [A] := {[viva] : vivg € A}. Let S© = (O o ori@ |- [|©)
be the “disjoint union” of §; and Ss as constructed in the proof of Proposition
This is a scaffold enclosing the disjoint union I'y & I's over . The underlying forest
= &) = d, @ P, satisfies E(tI’(O)) = E1 U E5 with the evident support function.
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Let M© := V; x V5. Recall that o; denotes the image of ¢ under the projection
R0V — R>oV;. Since S; encloses I'; over o; and we identify Z,, C Z, as above,

adj(T' 7) = (adj(T', 1)) + (adi(T, o) + (M)
= (adi(S1)) + (adi(S2) + (M)
= adi(S®) + (M)

Beginning with S© and M, in the following, we use graph-theoretic operations to
construct a finite sequence of scaffolds S over ¢ and sets M c V; x V4 such that

adj(T', o) = adj(8™) + ([M ™))

for each n > 0. The very last of these will satisfy M(*) = @ and S will enclose
I' over 0. Moreover, by construction the hypergraph H(S(OO)) will coincide with H as
defined in Theorem up to relabelling of hyperedges.

7.7.2 Phase 1: eliminating non-radical joining edges

In order to construct SV from S we will employ the following observation based
on the same idea as Lemma Recall that we assume throughout that <, induces a
total preorder on V.

Lemma 7.32 (“Triangle reduction”). Let & = (®,0,ori, | -||) be a scaffold on V. Let
u — v be an oriented edge in ®. Let M C V xV, let z € V', and suppose that uz,vz € M.
Let M' := M \ {vz}. Define a scaffold S’ = (®,0,ori, ||-||") via

luo||U{z}, if h =uw.

Then adj(S) + ([M]) = adj(S’) + ([M]).
Proof. By condition |(S1)|in Definition we have u <, v. Condition |(S2)| allows us to

choose a vertex w € ||uv||. Define

g = X" — XUy ¢ adj(S),
g = X*v— X" "y € adj(S"),

and note that adj(S’) = adj(S) + (¢’). Further observe that
g + [vz] = XV "[uz]. (7.5)

We claim that (g, [uz],[vz]) = (g,¢,[uz]) over Z,. To prove that, we consider two
cases. First suppose that w <, z. Then ¢’ = X?* %g over Z, and (7.5) implies that
(g, uz], [vz]) = (g, [uz]) = (g, ¢, [uz]). Next, suppose that z <, w. Then

g _|_Xw—z[vz} _ X(v—u)+(w—z) [UZ]
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over Z, whence <ga [UZ] [ ]> -
over Z,, we have ([uz], [vz]) = (g

([uz], [vz]). Moreover by (7.5)) and since g = XV ?¢’
/

,[uz]) = (g, q', [uz]). The clalm now follows since

adj(S) + ([M]) = adj(S) + (9, [UZ] [v2]) + ([M7])
= adj(S) + (9,4, [u2]) + ([M'])
= adj(8’) + <[M’]>- ¢

Remark 7.33. Since [zu] = —[uz], the preceding lemma remains true if uz is replaced
by zu or vz is replaced by zv.

Invariants. Let <; be the natural partial order induced on V; by the given orientation
ori; on ®;; see Let < := <1 X <3 be the product order on V; x V5. Recall that F;
denotes the edge set of ®;. Suppose that

o scaffolds S(O), o ,S(”) onV,
o subsets Vi x Vo= M©® 5 MM 5 ... 5 M) and

o elements vz-(o), .. .,UZ("_I) cVifori=1,2

have been constructed and that the following conditions are satisfied for £ =1,..., n:
(M1) O = (@,0,0ri, |- | ).
(M2) M is downward closed with respect to <.

(M3) M©® contains all <-minimal elements of V; x Va.
(M4) ool e MED and MO = MED {ui DoY),
(M5) For i+ j = 3, if usv; € E;, then [Jugvi]|“Y c lugwi|© ¢ lugvi|“D U {vj(.é_l)}.

(M6) There exist i € {1,2} and an edge u; — UZ-(Z_I) in ®; with vj(-e_l) € ||uivl(e_1)||([) for
it+j=3.

(M7) adj(T', o) = adj(S®) + ([M)]).

Some comments on these conditions are in order. Formalising the strategy in
condition asserts that adj(I", o), the module of primary interest to us, coincides
with adj(S®), except for an error measured by M©). As outlined earlier, the objective
of our construction is to eventually eliminate this error term.

Condition states that M®) is obtained from M~V by removing a single distin-
(£-1)

guished pair v (e Y n our construction, these distinguished pairs will be chosen
among <-maximal elements of M1 when working with the latter, will be crucial.
Condition [(M1)| asserts that S() only differs from S in its support function. This

is made more precise by [(M5)| which asserts that if e is any edge in ®;, then the || - H(E)
1

support of e coincides with its || - 1)—Support except possibly for the addition of the
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distinguished vertex vj(-gfl)—here, j € {1,2} is the “index distinct from ¢”, captured
succinctly by the identity “¢ + j = 3”. Note that this does not yet rule out the possibility
that He||(£) = ||e||(£_1) for all edges e in ®. However, by there is some edge e in
some ®; such that HeH(e) = He||(é_1) U {UJ(.K_I)}; in addition, there exists such an edge e

such that vZ@_l), the other vertex incident to the distinguished edge from|(M4)}, is incident

to e. Finally, will guarantee that after finitely many steps, M) stabilises at the
set of minimal elements of M(©) = 1 x Vbo; this will conclude Phase 1.

Removing non-minimal pairs. Let R; denote the set of <;-minimal elements of V;; note
that this is precisely the set of roots of the connected components of ®;. Clearly, R1 X Ro
is the set of <-minimal elements of V7 x V5.

Suppose that M D R; x Ry and choose a non-minimal pair vjvh € M\ (R; x Ry).
Let v1vo be any <-maximal element of M™) with vivé < v1vo; note that vive € Ry X Ra.
Define vin)vén) .= vyvg and MO+ .= MO\ {v105}; clearly, MY is downward closed
and M"Y 5 Ry x Ry.

Next, we construct S, Without loss of generality, suppose that v; & R;. (If both
v] € Ry and vy & Ra, we proceed as in the following.) Let u; € V; be the (unique)
<1-predecessor of vy. Define |- |"V: By U By — P(V) via

g = 1R it b £ o,
Hu11)1||(”) U{va}, if h =wujv.

Let S+ .= (®, 7, ori, || - H(”H)). Then are clearly satisfied for £ =n + 1.

Since vivg € M () and M™ is downward closed, ujvy belongs to M (") and also to
M@+ Tt thus follows from Lemma that is satisfied for { =n + 1.

Changing support. Since each M"Y is a proper subset of M (™ and both of these are
supersets of Ry X Re, the above construction terminates after finitely many steps when
M®) = Ry x Ry for some N > 0. A key property of SWV) is the following:

Lemma 7.34. Let i+ j = 3. Then for each oriented edge u; — v; in ®;,
usoil| U Ry € Jfusvi| ™ < s U V5

Proof. The second inclusion is immediate from To prove the first inclusion, we
assume, without loss of generality, that ¢ = 1 and j = 2. (When ¢ = 2 and j = 1,
we only need to suitably reverse ordered pairs in the following.) Let ro € Ry be
arbitrary. It suffices to show that ro € ||u11;1||(N). Since vy & Ry (because u1 <1 v1) and
MW) = Ry x Ry, we have viry € MO\ M), Hence, by‘@ for some ¢ € {1,..., N},

we have viry = vgg_l)véé_l). As 7y is a root (= <g-minimal element) of one of the

connected components of ®5, the edge u; — 1)1@_1) in |(M6)| has to be the given edge
u1; — v1. In particular, imply that ro = oY e Jurvr |9 € ugvr [N, @

To proceed further, we need another lemma.
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Lemma 7.35 (“Support addition”). Let S = (®,0,ori, | -||) be a scaffold on V. Let
u — v be an oriented edge of ®. Let w € |uv||, let z € V, and suppose that w <, z.
Define a scaffold S' = (®, 0, ori, || -||") via

]/ = {th, h # uv,
luwv|| U{z}, h=uwv.
Then adj(S) = adj(S").
Proof. Define
g = X"v — XUy € adj(S),
g = X%y — X" %y € adj(S")
so that adj(S’) = adj(S) + (¢'). By assumption, ¢ = X*%g € adj(S) over Z,. ¢
Define || - | NV By U Ey — P(V) via

RN = [|hll, UV2, ifhe Ey,
Viu|lhlly, if h € Es.

Let SNV .= (@, o, ori, || - |M*Y) and MY+ .= M) = R x R,.
Corollary 7.36. adj(T’, o) = adj(SV+1)) + ((M(V+1]).

Proof. By it suffices to show that adj(S™)) = adj(SN*V). Let i +j = 3 and

let h be any oriented edge of ®;. Let z; € V; be arbitrary. Let r; € R; be the root of

the connected component of ®; which contains z;. By condition in Definition
N

rj <o 2j. By Lemmas [7.34 adj(S™)) remains unchanged after adding z; to ||h||
Repeated application gives the desired result. ¢

7.7.3 Phase 2: growing a tree from two forests

Constructing a scaffold enclosing I'; VI's. By assumption, there exists v € V = VUV,
such that v <, u for all u € V. Without loss of generality, suppose that v € Vi. Let a1
be the root of the connected component of ®; which contains v. By condition in
Definition a1 <, v so that aj too is a <,-minimum of V. Choose by € Ry among
the <,-minima of Ry. Define S(°) := (&) 5, ori(>) || -[|®)) as follows:

o () is the tree (1) with orientation ori(>) obtained from ® = ®; @ ®, by inserting
a directed edge a; — r; for each r; € (Ry \ {a1}) U R2. Note that this orientation
is outgoing with a1 as the root of ®(°°),

e |- ||(Oo)¢ E(®(®)) — P(V) is defined via

1, if h = ayre for ro € R\ {ba},
HhH(OO) _ V1 UVQ, ifh:albz,

Vg, ifh:alTl for 1 ERl\{al},

12| NFY otherwise.
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By our choice of a1 as a <,-minimal element of V', we see that S () is a scaffold on V.
Lemma 7.37. S(®) encloses T’ = I't VI overo.

Proof. First note that ®(°°) and I' are both connected: the former by construction and
the latter since it is a join of non-empty graphs. It thus only remains to show that
adj(T", o) = adj(S(>)). Let

F .= <Xw*al[a1,r] :r € (R \{a1}) URs, w € HG17“H(OO)> <Z,V

and note that, by (7-4), adj(S(*)) = adj(S®+V) + F.

By condition in Definition and since R; consists of the roots of ®;, for each
v; € V;, there exists r; € R; with r; <, v;. Moreover, a1 <, v for each v € V and
by <, v2 for each ve € Vo by our choices of a; and be. Hence, by the definition of || - H(oo),

F= <Xb2_“1[a1,r1] :r1 € Ry \ {a1}> + <[a1,r2] 119 € R2>.

On the other hand, setting G := ([R1 X Rs]) < Z,V, by Corollary [7.36] adj(I’,o) =
adj(SN*D) + G. Tt thus suffices to show that F = G. Write H := ([ay,72] : 72 € Ry) C
FNG. Forry € R\ {a1} and ry € Ry, since a; <, m1 and a1 <, r2, we obtain the
“triangle identity” (cf. Lemma [6.8)

[7“1, 7"2] = Xrl_al [al, 7“2] — sz_al [al, 7“1]. (76)

As [a1,7m9] € H C F and X" %[ay, 7] = X"2702. XP2=%[qy,r ] € F, we obtain G C F.
Conversely, by taking ro = by in (7.6)), we see that X?2~[a1,r] € G whence F C G. ¢

Remark 7.38. The proof of Lemma rested on the validity of the following conditions:
® a1 € ”aﬂ“gH(oo) for all o € Rs.

o by € |lair || c Vo for all 1 € Ry \ {a1}.

In particular, numerous alternative definitions of || - ||(°°) are possible while maintaining
the validity of Lemma The crucial point of the definition that we chose—to
be exploited in the upcoming final step of our proof of Theorem [7.24—is that, up to
relabelling hyperedges, the specific choice that we made works uniformly in all possible
cases. That is to say, it works uniformly for all possible choices of a; and by and also in
the case that all <, elements of V' belong to V5 (in which case we choose as € V5 and

by € V1 and proceed analogously to what we did above).

Finale. Recall that ¢; denotes the number of connected components of I';. Note that
¢; = |R;i| by condition in Definition Hence, by unravelling the definition of
Il H(Oo) from above, we see that, up to relabelling of hyperedges, the hypergraph H(S(%))
coincides with H in Theorem In particular, H is a local model of I" over our fixed
but arbitrary cone o from the beginning of this section. This completes the proof of

Theorem ¢
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8 Cographs, hypergraphs, and cographical groups

As in §7] all graphs in this section are assumed to be simple.

The story so far. In §3.4 we attached a unipotent group scheme (“graphical group
scheme”) Gr to each graph I'. For each compact DVR O we expressed, in Corollary
the class counting zeta functions of the group scheme Gr ® £ in terms of the rational
function Wi (X, T') from Theorem :

(&ranls) = Wi (g, PO,

For a cograph T', the Cograph Modelling Theorem (Theorem D[) established that there
exists an explicit modelling hypergraph H = H(T') for I'. This is a specific hypergraph on
the same vertex set as I' which satisfies

WI‘_(X7 T) = WH(XvT)a

where Wy (X, T) is the rational function associated with H in Theorem [AJ(fi).

Our proof of the Cograph Modelling Theorem was constructive. Indeed, cographs (save
for isolated vertices) are disjoint unions or joins of smaller cographs. Given modelling
hypergraphs of two cographs we constructed, in Proposition and Theorem
modelling hypergraphs of their disjoint union and join, respectively; cf. Remark [7.27]

In §5|, we carried out an extensive analysis of the rational functions Wy (X, T') associated
with hypergraphs H resulting, in particular, in an explicit formula, viz. Theorem [C] We
also investigated the effects of taking disjoint unions and complete unions of hypergraphs.
This ties in well with our constructive proof of the Cograph Modelling Theorem. Namely,
by Proposition the disjoint union H; @ Hy of modelling hypergraphs H; and Hs
of cographs I'y and I's is a model of the cograph I'y @ I'o. Moreover, the modelling
hypergraph of the join I'y V I's can be described in terms of the complete union H; @ Ho
and the operations from ; cf. Remark .

In the present section, we apply the results from §5 to class counting zeta functions of
cographical group schemes.

8.1 Proofs of Theorems [EHFI

Proof of Theorem[E]. Let V be the set of vertices of the cograph I'. Let H=H(T') be a
modelling hypergraph for I" with hyperedge multiplicities (p;)7cy as in Theorems
Our proof of Theorem E in §7 shows that we may assume that ) ; ur = n — ¢, where
n and c¢ are the numbers of vertices and connected components of I', respectively; cf.
Lemma [7.19] Let m be the number of edges of I'. The bound m > n — ¢ then implies
that for each summand of Wy (X, X™T) in , the coefficients of T% in X — 1 are
non-negative. ¢

Proof of Theorem[F] For the first part and the integrality of local poles, combine Corol-
lary Bl Theorem [D] and Theorem [5.26 It remains to prove that the real parts of the
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poles of C&?F@)DK(S) are positive. Let ', V., H, (ur)rcv, m, and n be as in the proof of
Theorem [Fjabove. As we argued there, m —3-;n ;.4 pr > 0 for each J C V. In particular,
f():=1]J|+m— > pr >0 whenever J # &. Unless I is discrete, f(&) =m > 0.

INnJ#2
IfI' = A, is discrete, then the real parts of the poles of (&, go(s) =1/(1 —¢"*) are
equal to n which is positive since cographs are non-empty. ¢

8.2 Disjoint unions of hypergraphs and direct products of cographical
groups

Much as for hypergraphs in for arbitrary graphs I'y and I's, the rational function
I/Vri1 or, (X, T) is the Hadamard product of W;—Ll (X,T) and Wﬁ; (X,T). In particular, if
R is the ring of integers of a number field or a compact DVR, then the class counting
zeta function C&?ﬁ@rz or(8) is the Hadamard product of the Dirichlet series Cgﬁ@ r(s)

and C&CFQ or(8); this simply reflects the fact that class numbers of finite groups are
multiplicative: k(H; x Ha) = k(H;) x k(Hz) for finite groups H; and Hs.

8.2.1 A special case: hypergraphs with disjoint supports and direct products of
free class-2-nilpotent groups

We now apply §5.2.1]to study class counting zeta functions of cographical groups modelled
by hypergraphs with disjoint supports.

Let n = (n1,...,n,) € N". We write n = }i_; n; and (3) = >i_; (5). We consider
the cographical group scheme associated with the cograph

Kn=Kn &...0K,,;

see (3.5) and note that K, has m = (3) edges. These cographs are of specific group-
theoretic interest since Gk, (Z) = Fopn, X ... X Fyy, is the direct product of the free
class-2-nilpotent groups on n; generators; in particular, Gk, (Z) = Fa .

Remark 8.1. Conflicting notation in the literature notwithstanding, the cograph K, is
not to be confused with the complete multipartite graph on disjoint, independent sets of
cardinalities ny,...,n,; the latter graph will feature as Ay in §8.3.1]

Combining Proposition and Example we see that Ky, is modelled by the
hypergraph H(Ky) = BHyn—1 = @j—; BHy, n,—1. By Corollary (noting that n; —
m; = n; — (nz — 1) =1forallie [7’]),

Wi (X, T) = Wy, (X, T)

= WBHn,n—l (X7 T)
e —
yeWO, \i€sup(y) Jey
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Corollary 8.2. Let n = (ny,...,n,) € N". For each compact DVR O,

(&e.o0(s) = Wit (0.0D) ) = 3 ( 11 (m)) I1 ep (q(‘;)+|J|—s)' ¢

yeWO,. \i€sup(y) Jey
Example 8.3.

(i) If r =1 and n = (n), then (3) = (), whence

& ool = Aol
(1 —q(z) s) (1 — q(2)+1 s)

in accordance with [47, Corollary 1.5]. There Gk, goes by the name F, 5, where
n = 2n+¢ with § € {0,1}. See Example for a bivariate version of this formula.

(ii) If r = 2 and n = (n1,n2), then n = ny +ng and (3) = (3') + ("), whence

cc
GK(nl,nz)

1+ q(;)'i'l_s (1 _ q*nl _ q*nz _ qfn1+1 _ qfn2+1 + qfnJrl) + q2('2‘)—n+3—s

(1 - q(g)*s) (1 - q(rzl)Jrl*S) (1 _ q(g)+275>

8.3 Complete unions of hypergraphs and free class-2-nilpotent products of
cographical groups

20(5) = (&, w0(9) % (&, an(s) =

(8.1)

The results of on complete unions of hypergraphs have direct corollaries pertaining
to class counting zeta functions of joins of graphs. Recall from that for graphs I'y
and I'y, the graphical group Gr,yr,(Z) is the free class-2-nilpotent product of Gr, (Z)
and Gr,(Z).

Proposition 8.4. Let I'y and I'y be cographs on ny and na vertices, respectively. Then

Wi o, (X, T) = (X727 — 1
+ W (X, X7™T)(1 - X ™T)(1 - X717
+ W (X, X™™MT)(1 - X"™T)(1 - X""™T))
/(A=T)1 - XT)). (82)

In particular, if T' is a cograph, then Wp, (X, T) = % Wr (X, X7IT).
Proof. We may assume that V(I'1) N V(I'y) = @. By Corollary each I'; admits a
model, H; say. In particular, Wy (X,T) = Wy, (X, T) for i = 1,2 by Corollary

Let H= (HY ® HQD)1 (see Definition , where HY = (H;)®“" and ¢; is the number
of connected components of I';. By Theorem and Remark H is a model of

88



8 Cographs, hypergraphs, and cographical groups

I'y vV T'y. Hence, by Corollary Wr yr, (X, T) = Wh(X,T). By Proposition W
(applying (5.29) ¢ resp. c2 times and ([5.28]) once),

1-Xx"'T
1-T
The claim now follows from Corollary by substituting n; — 1 for m; in (5.21]). This

.

reflects the fact that the hypergraphs HiD are “near squares”: they have n; vertices and a
total number of n; — 1 hyperedges; see Remark ¢

Wh(X,T) = Wy eH, (X, X 1T).

Let Gr, and Gr, be the cographical group schemes associated with the cographs I'y
and I'y. Let I'; have n; vertices and m; edges. For each compact DVR 9O, Proposition [8.4
now allows us to express

cc _ — mi1+meo+nine—s
CGFIVF2®D - WFI\/FQ ((I7 q )

in terms of C&CFl@D(S) and Cé’FQ oo (5). As a special case, we record the following.

Corollary 8.5. Let I' be a cograph with n vertices and m edges. Write @« = K1 = Aj.
Then for each compact DVR 9O,

1— qm+n—1—s

(Cryeno(8) = WC&}@D(S +1—=m—n). ¢
Remark 8.6. Via the functional equations Wy (X, 77!) = —X"T Wy (X, T) in Corol-
lary the numbers n; and ny in Proposition [8.4—and hence the left-hand side of
([8.2)—are already determined by the rational functions W (X, T).

8.3.1 A special case: hypergraphs with codisjoint supports and free
class-2-nilpotent products of abelian groups

We now apply the results and formulae developed in §5.3.1]to cographical groups modelled
by hypergraphs with codisjoint supports.

As before, let n = (n1,...,n,) € N", n=377_n;, and (3) = >i_; (5). We consider
the cographical group scheme associated with the cograph

Api=An, V...VA,,

viz. the complete multipartite graph on disjoint, independent sets of cardinalities
ni,...,n,. Note that Ay has m = () — () edges. These cographs are of specific group-
theoretic interest since G, (Z) = Z™ ®--- ® Z"" (see (3.11])) is the free class-2-nilpotent
product of free abelian groups of ranks nq,...,n,. In particular, GAN) (Z) = F», is the
free class-2-nilpotent group on r generators.

By Remark [7.25((ii) and using the notation in Definition and (3.4), Ay is modelled
by H(A,) = (PHn,n_l)l(Pl). By Proposition (applying (5.28)) » — 1 times),

1-X'—rT
Whian) (X, T) = ————Wpn

1 T n,nfl(X’Xl_rT)'
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8 Cographs, hypergraphs, and cographical groups

Combining Corollary [B| with the explicit formula for Wey,, ,_, (X, T) in Corollary [5.19
(substituting n — r for m there), we obtain the following.

Proposition 8.7. Let n = (n1,...,n,) € N" and m = () — (5). For each com-

pact DVR O,

1— q1—7‘+m—s

177"+mfs)
1— qm—s

CGa,00(8) =Wy (¢,4"7°) = Wha,(¢,4"°) = WhHum-1(a, 4

1
i &)

—n+m—s - (qni — 1)(qni_1 — 1)
(1 — ql * <1 - Z 1 — q2n,-—n+m—s )) : ¢

i=1

Example 8.8. Proposition unifies and generalises a number of known formulae.
(i) If r =1 and n = (n), then m = (}) — () = 0, confirming the trivial formula

1

n—s’
—q

Cngn®o(3) = C&;@D(S) = 1
where G, denotes the additive group scheme.

(ii) If n =17 € N", then (3) =0 = ¢"~! — 1. Proposition [8.7 thus reconfirms

cC cc 1-— q(rgl)_s
CGAl(T) ®D(5) = QGKT®D(8) = (1 B q(;)_s) (1 ~ q(g)+1_3) ;

see Example [8.3|(if).

(iii) If r =2 and n = (N, N), then m = () — (3) = N? and 2n; = n = 2N, whence
CEfANvAN@)D(S) =

(1 N qN(N—l)—s)(l _ qN(N—1)+1—s) + qN2—s(1 _ q—N)(l _ q—N—H)

(1 _ qN2fs)2(1 _ q1+N2fs) ’

in accordance with [47, Corollary 1.5], where Ga,va, goes by the name Gy.

8.4 Kite graphs

In this section we introduce and study a specially well-behaved class of cographs admitting,
in particular, ask zeta functions of “Riemann-type”; see Theorem [8.19] Throughout,
e = K; = A denotes a fixed simple graph on one vertex.

Definition 8.9. A kite graph is any graph belonging to the class Kites which is
recursively defined to be minimal subject to the following conditions:

(i) e € Kites.
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8 Cographs, hypergraphs, and cographical groups

(ii) If T’ € Kites, then o VI' € Kites and I" @ e € Kites.
(iii) If ' € Kites and T' is isomorphic to a graph I, then I' € Kites.

As we will see in Theorem below, ask zeta functions associated with (negative
adjacency representations of) kite graphs admit a particularly nice and explicit description.

Note that every kite graph is a cograph. Further note that any kite graph contains
at most one connected component consisting of more than one vertex and that such a
component is a kite graph itself.

Further note that the Z-points of cographical group schemes associated with kite graphs
form exactly the class of those torsion-free finitely generated groups of nilpotency class at
most 2 which contains Z and which is closed under taking direct and free class-2-nilpotent
products with Z.

Example 8.10. The following is an example of a connected kite graph:

Note that the central vertex is connected to all other vertices. Its removal results in a
disconnected graph consisting of one isolated vertex and another component which is a
star graph on four vertices. The above graph is therefore isomorphic to

(((o@o@o)\/o)@ )\/o
and is thus a kite graph.

Remark 8.11. Neither the so-called Krackhardt kite graph|nor the graph on five vertices
called “kite” on |11} p. 18] are kite graphs in the sense of Definition

We seek to parameterise kite graphs in a useful fashion. Let ki, ko, ... be a sequence of
non-negative integers. Define Kite() to be the empty graph and recursively define

® Ay, if cis even,

Kite(k:l, cey k‘c
ko) V Kg if ¢ is odd.

Kite(ky,..., ke =
(k1 +1) {Kite(k:l,...,

)
C) 17

Clearly, Kite(kq, ..., k.) is a kite graph for each ¢ > 1 and choice of k1, ..., k., provided
that at least one k; is positive. (The empty graph is neither a kite graph nor a cograph.)

Example 8.12. Kite(n) = A,, and Kite(1,n — 1) = K,,.

Recall that a composition of a non-negative integer n is a sequence k = (ki,...,k.)
of positive integers with n = k; + - - - + k.. We tacitly identify compositions and infinite
sequences k = (ki1, kg, ...) such that k; = 0 for some 7 and, in addition, k; = 0 whenever
i< jandk; =0.
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Proposition 8.13.

(i) Every kite graph on n vertices is isomorphic to Kite(ki, ..., k.) for some composition
(ki,...,ke) of n.

(ii) Let k and k' be compositions of positive integers. Then Kite(k) and Kite(k') are
isomorphic if and only if k = k'.

Proof. Given a label ¢ and rooted labelled trees Ty,..., Ty, let (£, T1,...,T,) denote the
rooted tree whose root, v say, has label £ and such that the descendant trees of v are
precisely the trees Tq,...,T,. For notational convenience, we identify a label £ and the
rooted labelled tree (¢). We see that kite graphs with vertex set {1,...,n} are precisely
those cographs with cotrees (see §7.1)) of the form

<...{@,[V,(@,1,2,...,]{71),]€1—l—l,...,kl—i—kg],kl—i-kg—i-l,...,kl+k2+k3},...>,

where (k1,ka,...) is a composition of n and we used different types of parentheses for
clarity. The uniqueness of cotrees of cographs (see §7.1)) now implies both claims. ¢

Example 8.14 (Example part II). The kite graph in Example is isomorphic
to
((A3 VKi) & Ay) VK = Kite(3,1,1,1).

Corollary 8.15. Let n > 2. Up to isomorphism, there are precisely 2"~' kite graphs
on n vertices. Among these, precisely 2"~2 are connected.

Proof. By construction, for a composition k = (ki, ..., k.), the graph Kite(k) is connected
if and only if ¢ is even. As is well-known, there are precisely 2! compositions of n and
it is easily verified that precisely half of these have even length. ¢

t
Let k = (k1, ka,...) be a composition of a positive integer. For ¢ > 1, let k(t) := > k;
i=1
00 4
and k[t] := 3 (—=1)""1k;; note that k[t] = 0 = k; for ¢ > 0. The following is easily proved
i=t
by induction.

Lemma 8.16.
V(Kite(k)] =3 ki, [E(Kite(k))] = 3 (k(;i)) _ <k:<2z'2— 1>>. A
=1 i=1

Recall from (3.9) the notion of the staircase hypergraph Y Hy, associated with a vector
m = (mo,...,m,) € NgtL

Proposition 8.17. Every kite graph admits a staircase hypergraph as a model.

92



8 Cographs, hypergraphs, and cographical groups

Proof. We proceed by induction on the length ¢ of the composition k = (ki,...,k.)
representing a given kite graph. For ¢ = 1, note that ¥H o) is a model of Kite(k1) =
Ak, . Next, supposing that Kite(ky, ..., k.—1) admits a model of the form ¥H,y,, we obtain
a model ¥ H,, of Kite(ky, ..., k) by repeated application of Proposition ¢

Example 8.18 (Example part III). The staircase hypergraph H := 2H0,1,2,0,0,1,1)
with incidence matrix

1 1 1 1 1
01 1 11
0 0 0 11
00 011
00 0 11
0 0 0 0 1]
is a model of the kite graph Kite(3,1,1,1) in Example

Combining Proposition B.17] with Proposition [5.9] we see that the rational function
ngte(k) (X, T) associated with a kite graph Kite(k) is of a particularly simple form. The
following theorem, which is the main result of the present section, spells this out.

Theorem 8.19. Let k = (ki,ka,...) be a composition of a positive integer. Then

1

T 1 — xkOT 1;[1

B (1 _ Xk[2i+1]—k2¢+1T)(1 _ Xk[2i+1]—k2iT)
w (1 — XHFRIAHFITY(1 — XARIHIT)

Kite(k) (X’ T>

(8.4)

Proof. Straightforward induction along blocks
(k1 ko, .o kop_1,kop) ~ (K1, ko, ... koptt, kopto)

using Corollary ¢

Example 8.20 (Example part IV). Consider the graph Kite(k) for k£ = (3,1,1,1)
from Example Here, k[1] = 2 and k[3] = k[5] = 0. Theorem thus asserts that
(X.T) = 1 -7a-Xx"'7) A-7)01-X"'T)
’ 1-X2T (1-XT)(1-T) (1-XT)(1—-T)
(1—-X717)2
(1—-XT)2(1 - X2T)

WKite(?),l,l,l)

For kite graphs, we can strengthen Theorem [F| Recall that |E(Kite(k))| is given by
Lemma [8.16

Theorem 8.21. Let k = (ki,ka,...) be a composition of a positive integer. Then for
every number field K with ring of integers O, the abscissa of convergence of the class
counting zeta function Cngite(k)®OK(S) is equal to

a(Kite(k)) = |B(Kite(k))| + max {k[1] + 1, k[2i + 1] + 2 : i € N}.

The function Cg':Kite(k)@OK (s) may be meromorphically continued to all of C.
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Proof. By Theorem the Euler product

|E(K1tc(k))\ s
CGKlte(k)®OK H WKlte (@, 4 )
vEVEK

is a product of finitely many translates of the Dedekind zeta function (x(s) and inverses
of such translates. The abscissa of convergence is then readily read off from (8.4)). ¢

Example 8.22 (Example part V). The graphical group scheme Gite(s,1,1,1) has
the property that, for each number field K,
Cr (s —9)%Ck (s — 10)

CGche(?, 1,1 1)®OK( ) - CK(S _ 7)2 )

with global abscissa of convergence a(Kite(3,1,1,1)) =11 = 8 + max{2 + 1,0 + 2}, in
accordance with Theorem

8.5 Bivariate conjugacy class zeta functions associated with cographical
group schemes

For a finite group G, let cc,(G) denote its number of conjugacy classes of size n and let
£&(s) = Z ccn, (G)n™? be the associated Dirichlet polynomial; note that k(G) = £&(0).

Let G be a unipotent group scheme over the ring of integers O = Ok of a number
field K; see |66} §2.1]. For a place v € Vg, let B, € Spec(O) be the associated prime
ideal with residue field size ¢, = |O/B,| and let O, = lim, O JRE.

In 46| Definition 1.2], Lins defined the bivariate conjugacy class zeta function

Z&o0(s1,82) = Y €& (o/n(81) - 10/1|7 = 11 280, (s1,52) (8.5)
02140 VeV

associated with G, where the Euler factors are given by

ZG@O 51, 82) Zg(; (O/Pi) 31)( 2)- (8.6)

For all but (possibly) finitely many places v € Vi, the Euler factors are rational
functions in ¢~ and ¢~*2; see [46, Theorem 1.2]. Both these local and the global zeta
functions (8.5)) refine the class counting zeta functions defined in Indeed, as observed
in [46] §1.2],

28,000, 5) = (Eoo(s). (8.7)

(Lins used slightly different notation for these functions; see Remark [8.24]) Just as
univariate ask zeta functions may be expressed in terms of carefully designed univariate
p-adic integrals, Lins expressed bivariate conjugacy zeta functions in terms of suitably
defined bivariate p-adic integrals; see [46, §4].

We record here, in all brevity, that expressing class counting zeta functions (¢ wo(8) =

Wh(q, q|E(F)‘_5) associated with a cographical group scheme Gr in terms of the ask zeta
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8 Cographs, hypergraphs, and cographical groups

function of a modelling hypergraph H is compatible with Lins’s bivariate refinement of
class counting zeta functions. The reason for this is the common multivariate origin of
all the p-adic integrals involved.

To be more precise, let H= (V| E,|-|) be a hypergraph with incidence representation 7.
For each compact DVR O, we define the bivariate ask zeta function

oo = (=)™ [yl OV T s 707 daoy o (. y):
OV XD eel

note that C;Ek(s) = g;gk(o, s); cf. Proposition One may define bivariate ask zeta
functions in greater generality but we shall not need this here.

Generalising (for D = @), we may express the bivariate ask zeta functions in
terms of the multivariate function Zy,z(s) (see (5.1)):

(3 (s1:52) = (1= )7 Zvg ((s1 + DIE + 52 — [V] = 1 (r(=s1 = 1)) ;cy) -
As in there exists a rational function Wy (X, T1,Ts) € Q(X,T1,T») such that
(23 (51, 82) = Wa(X, T1, To);

of course, Wy (X,T) = Wy(X,1,T). We may then use the multivariate nature of
to deduce a “trivariate” analogue of the formula for Wy (X, T') given in Corollary

If H is a model of a cograph I', then Lins’s bivariate conjugacy class zeta function is
recovered via the formula

)

ZE wo(s1,52) = Wa(g, g1, ¢B)==2)

this is based on a trivariate form of Theorem
Example 8.23. For the block hypergraph BH,, ,,,, we readily obtain

1 — X-mTmT,

W, (X, 11, T2) = (1—Ty)(1 — Xr—"TTy)’

(8.8)

generalising the bivariate formula given in Example . Using the fact that BH,, ,—1
is a model of the complete graph K,, (see Example [7.17)) we may use this formula (with
n=2n+d and m = n — 1) to recover Lins’s formula (cf. [47, Theorem 1.4])

zZee zee 1- q(ngl)_(n_l)sl_SQ
S 78 - S 78 - n n °
Fn,5®D( 1,52) GK"®D( 1 52) (1 — q(z)_s2) (1 — q(2)+1—(”—1)81—82)

As predicted by (8.7)), setting (s1, s2) = (0, s), we recover the formula in Example .
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Remark 8.24.

(i) Lins’s notation [46,47] differs slightly from ours. Her Z5&( R)(Sl,SQ) is what we
called Z& r(s1,52), for various rings R. Our class counting zeta function (&g r(s)
goes by the name class number zeta function Clé(R)(s) in Lins’s work. We note that
our (Eep(s) may not only be obtained by suitably specialising Lins’s bivariate
conjugacy class zeta function as in but also by specialising her bivariate
representation zeta function Ziér(o)(sl, s2). The latter is defined analogously
to by enumerating the ordinary irreducible characters of the finite groups
G(O/I) by degree (rather than conjugacy classes by cardinality); see [46, (1.2)].

As is apparent from our discussion here, the techniques developed and employed
in our study of class counting zeta functions of (co)graphical group schemes are
slanted towards counting conjugacy classes rather than irreducible characters.

(ii) Many of our results about univariate local and global class counting zeta functions
associated with (co)graphical group schemes have bivariate analogues. The bivariate
version of Theorem [5.26] for instance, describes the domain of convergence of the
bivariate ask zeta functions from above. General analytic properties of bivariate
conjugacy class and representation zeta functions associated with unipotent group
schemes over number fields are studied in [48].

(iii) Beyond cographs, using suitable bivariate versions of Theorem and Corollary
we may strengthen Corollary as follows: for each simple graph I' and k > 1, the
number of conjugacy classes of Gr(F,) of size ¢* is given by a polynomial in g.

9 Further examples

In this section, we collect a number of further examples of the function W (X, T) for
graphs I' beyond the infinite families covered in

9.1 Computer calculations: Zeta

Our constructive proof of Theorem |Af (see § leads to algorithms for computing
the rational functions Wy (X, T') and W%(X , T') associated with a hypergraph and graph,
respectively, complementing the formulae derived in In detail, given a hypergraph H,
Proposition expresses Wiy (X, T) in terms of a combinatorially defined p-adic integral.
The latter can be expressed as a univariate specialisation of the integrals studied in [54} §3].
In particular, [54, Proposition 3.9] and [58, §6] together provide practical means for
computing Wy (X,T). Behind the scenes, these techniques rely on algorithms due to
Barvinok and Woods [4] for computing with rational generating functions enumerating
lattice points in polyhedra.

Regarding the case of a graph T', the inductive proof of Theorem [6.4] in §6.4] readily
translates into a recursive algorithm for computing Wpi(X ,T'). For the base case, combine

Proposition [6.5| and Proposition [4.8| with [54, §3] and [58|, §6] as above.
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Based on the steps just outlined, the first author’s software package Zeta [61] for
the computer algebra system SageMath [67] includes implementations of algorithms for
computing the rational functions Wy(X,T') and WE—L(X ,T) in Theorem [Al In practice,
these algorithms often substantially outperform the previously existing functionality for
computing ask zeta functions based on [57] that is available in Zeta; note, however, that
the present algorithms are only applicable in the context of ask zeta functions associated
with graphs and hypergraphs. We used them, for instance, to compute the rational
functions W (X, T) for all simple graphs on at most seven vertices.

In the remainder of this section, we record a number of explicit examples of the
functions Wi (X, T) and W2 (X, T) computed with the help of Zeta.

9.2 Graphs on at most four vertices

Table |1 lists both types of rational functions le[ (X,T) for all 18 (isomorphism classes
of non-empty) simple graphs on at most four vertices; any entry “%” in the column
Wi (X, T) indicates that Wi (X, T) = Wt (X, T) for the specific graph I' in question. All
graphs in Table[T] save for the path Py, are cographs. In particular, 17 of the formulae in
Table [I] could, in principle, be derived from Theorems [CHD] We further note that all but
the following graphs in Table [1] are kite graphs: Ko @& Ko, P4, and Cy; see Question [10.5

9.3 Graphs on five vertices

In this subsection, we list W (X,T) for all 34 simple graphs on five vertices. By
Corollary and using Table (1] it suffices to consider simple graphs on five vertices
without isolated vertices; there are precisely 23 of these and their associated rational
functions W[ (X, T') are listed in Table 2 We chose not to include the (often bulky)
corresponding rational functions W; (X,T). In Table 2, cographs are flagged and kite
graphs are labelled as such.

9.4 Paths and cycles on at most nine vertices

Recall that P, and C,, denote the path and cycle graph on n vertices, respectively;
see (3.7)-(3.8). The rational functions Wy (X,T) and W (X,T) for n < 9 are given
in Tables [3] and @ For a group-theoretic interpretation in the case of paths, as in
let U,, denote the group scheme of upper unitriangular n x n matrices. As we
noted in @ the graphical group scheme Gp, is isomorphic to the maximal quotient
Unt1,3 = Upy1/v3(Ups1) of Uyyq of class at most 2. The class numbers of the finite
groups Up413(F;) were determined by Marjoram [50, Theorem 7]. For n < 9, in
accordance with Corollary [B] his general formulae agree with the coefficients of T" in the
expansions of the rational functions Wy (X, X" 'T) recorded in Table

9.5 The numerator of Wy .y )k,

We may now finish Example Table |5| records the numerator of Wi (X, T) in (L.7).
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36

r Wr (X, T) Wi (X, T)
° 1/(1-XT) %
o o 1/(1 - X27) %
1-x"'7
o aA-T)(1—-XT) %
e o o 1/(1 — X3T) %
1-T

e—o o (I-XT)1-X°T) %

1-xX"'T
oo (A=-XT)? I

i 1_x-2T (T? +T+1-3X"'T? —6X T +6X 2T? +3X 2T — X 373 -

-T)(1-XT) X312 - X3T)/(1-T)*

e o o 1/(1 - X4T) %
1-XT

o - X*T)(1-X°T) ) )

XT—2T+14+ X 'T? 22X 'T4+X 2T
¢ oo 7§1J£)<<F2T)(1—)<*T)(1—T§ o

° (1_X22Tx)2 2 —173 —1mp2 - -1 —2
—XT2?43T 7T+17(1X_T)7(“11r))§T)3T —3X'THX T g
TH+1-2X"'T-2X 274 X 3724 X 3T %

DY Y

A-T)2(1-XT)

(1-X"'Ty(1-X"2T)

A-T)2(1—XT)

(1-x"1'7)
A—-XT)(1-X2T)

(1-XxX"'T)?
A-T)(1—XT)2

1-xX"'T
(I—XT)(1—X2T)

1-XxX"3T
A-T)(A—XT)

(T2 +27% +37 +1 - 3X T3 —7X'T? —4X'T +3X T3 -
3X 72T +4X 7373 + 7X3T? 4+ 3X 3T — X 47 — 3X 473 —
2X AT - X /(1 — X7MT)(1 = T)2(1 — XT?))

(X2T? —3XT? + XT — T3 +6T% —6T+1—- X" 'T? +3X'T -
X72T)/(1 - XT)*

(—XT* = XT3+ 4T +4T% - 3T* + 2T +1 - 8X 'T* 42X 173 +
2X M2 — XTI + X275 42X 2T — 3X 273 44X 27? +
4X7°T - X737% - X37) /(1 = T)3(1 — XT)(1 — XT?))

%

(143X 12 45X 143X 273 8 X 272 — 14X 2T —10X 313+
10X 3T+ 14X 473 + 8X 4T2? —3X 4T —5X 573 —3X°7? —
X TH/(1-X'T*)(1-X'T)(1-T)%)

Table 1: Graphs on at most four vertices and their ask zeta functions
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Table 2: Graphs without isolated vertices on at most five vertices and their negative ask
zeta functions
comment Wy (X, T)

. 1-X—I1T
Kite(4,1) —(1—(XT)(1—X)3T)

XT—-2T+1+ X172 2X— 174X 2T
(1-XT)2(1—X2T)

no cograph

. (1-X~1T)(1-T)
Kite(1,1,2,1) XTI -X2T)
(—2XT? + XT +47% - 2T + 1 — X '73 +
no cograph (P5) 2X7'7% —4X~'T — X272 + 2X2T)/(1 —
X1t

—XT2+3T2—T+1—X(*1T3+))(4*1T2—3X*1T+X*2T
1-XT

no cograph

Kite(2,1,1,1) ﬁ%

TH1-X"1T—2X2T-_X3T4+ X 4124 X4T

Cogl“aph (1_X—1T)(1_XT)2
; 1-X21(-X"'T
Kite(3, 2) s
no cograph —XT24T24143X 172 3X 17— X273 X274 X 3T

(A-T)(1—XT)3

TH+1-2X"1T—2X 274X 3724 X 3T
(A-T)(1—XT)Z

no cograph

Kite(1,2,1,1) (17()1(::;?()1(3);)_?)

—XT24T2 143X 123X 17— X273 X274 X 3T
A-T)(1—XT)3

no cograph

Y4B XY+
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9 Further examples

T+1-2X 72X 2T+ X 3724+ X 3T
A-XT)2(1-T)

cograph

(T?4+37T+1-5X"1? —5X T 45X 212 -
no cograph (Cs) 5X 2T + 5X 372 4+ 5X 3T — X473 —
3XAT? - XA /(1 - T)3(1 — XT))

1-X 172X 1743X 272 3X 274 X 3724 X 3T7—X 4713

no cograph

(I-T)3(1—-XT)

1-X 1724 X272 _3X2743X 372X 3T+ X 47X 573
cograph A-XT)(1-X1T)(1-T)2
. 1-X27)2

Klte(1,1,1,2) W

14X 172X 272X 3T+ X 4T+ X572

cograph A-—X-1TTY(1-T)1-XT)
. (1-X-3T)(1-X2T)

Kite(2, 3) O—X-TT)(1-T)(1—XT)

_v372 22 3 2_ _y-1 -2
cograph X372+ X2T (ffx??iiif_x?’gﬁ% X'+ X221

XT-T+1-2X"'"T4+X 272X 2T+ X 3T
cograph A-T)(1-XT)(1-X2T)

(T +1—-2X71T% - 2X 1T 4+ 4X727% —
no cograph AX 72T 42X 73T? 4+ 2X 3T — X413 —
X4T?) /(1 - T)*(1 - XT))

_ -4
Kite(1,4) = K5 247
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9 Further examples

L | We(X,T)

P, [ 1/(1-XT)

P, | 1 -X"'1)/((1-T)(1-XT))

P; | (1-X"'T)/((1-XT)?

Py | (—XT?+3T% -T+1- XT3+ X 1T? - 3X T+ X2 /(1 - XT)3(1-1T))

Ps | (2XT? 4+ XTH4T? 2T +1-X " '"T342X 11?2 4X 1T X2T? 12X 2T) /(1-XT)*
(X2T* — X273 + X2T? —6XT* + 11XT? — 13XT? +3XT + 7T* — 127° + 2077 —

Pg | 6T+1—-X"1T°+6X"1T*—20X 1734+ 12X 172 —7X " 'T —3X2T* 413X 273 —
NX 7272 4+ 6X 727 - X373 + X372 - X3T) /(1 - T)(1 — XT))
(X3T3+3X2T* —12X2T3 +7X2T? —12XT* +41XT3 —40XT* +7XT +9T* — 2873 +

Pr; | 4572 — 12T +1— X 'T° + 12X~ 1T* — 45X 173 4 28X 172 —9X 1T — 7X 2T +
40X 273 41X 2T 412X 2T—7X 3T3+12X 3T?-3X 3T-X4T%) /(1-XT)")
(=XT5 + XT* — X375 + 14X3T° — 28X3T* + 14X3T3 + 10X2T° — 84X°T5 +
200X 27T* — 150X 273 +31X2T? —25XT6 + 185X T5 — 496 XT* + 462X T3 — 161XT? +
14XT + 1176 — 76T° + 3107* — 37473 + 18972 — 26T + 1 — X 'T7 + 26X 176 —

Pg | 189X 175 4+374X 1T* —310X ' T3 +76X 172 - 11X 'T—14X 276+ 161X 275 —
462X 72T4 4496 X 273 — 185X 272 425X 2T —31X ~3T5 +150X ~37T*—200X ~3T3 +
84X 7372 — 10X 3T — 14X *T* + 28X 4T3 — 14X 472 + X*T — X573 +
X5T2) /(1 — XT)7(1 - T))
(XPT® —16X*T° + 26X T* —4X3TC +110X3T° — 282X°3T* +109X°T3 + 25X 2T° —
376X2T° + 1162X2T* — 798X 2T? + 109X3T? — 46 XTC + 559XT° — 2042XT* +
1962X T3 —486 X T2 +26 X T +8T°6 —94T° +918T* — 152613 +582T2 —50T+1— X ~1T7 +

Py | 50X 176 — 582X 175+ 1526 X 17% — 918X 173 494X 172 —8X 1T — 26X 276 +

486X 7275 — 1962X ~27% 4+ 2042X 273 — 559X 272 4+ 46X 27 — 109X —37° +
798X ~3T4 — 1162X 373 4 376X 372 — 25X 3T — 109X ~4T* 4+ 282X 473 —
110X 472 44X 4T — 26X 573 + 16X °T?% — X~ T%)/((1 — XT)%)

Table 3: Ask zeta functions associated with paths on at most nine vertices
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9 Further examples

I | Wy (X,T)

Cs

(1-X°T)/((1 - XT)(1 - T))

Cy

(TH1-2X"T-2X 2T+ X 3T+ X3T) /(1 - XT)(1 - T)?)

Cs

(T?+3T+1-5X"1T? —5X T +5X2T? - 5X 2T +5X 3T?+5X 3T - XT3 —
3XT? - X4 /(1 - XT)(1 - T)3)

Cs

(T3 +8T% +8T + 1 — 6X 1T — 33X 17T? — 15X 1T + 13X 273 4+ 28X 2712 —
EX 2T —5X3T3 428X 3T2 413X 3T —15X 4T3 33X 472 _6X 4T+ X 5T+
8XOT3 48X T2 + X 5T) /(1 — XT)(1 - T)%)

Cr

(T 17T+ 41T* 17T +1—7X 1T —98 X 173 —168 X 172 - 35X 1T +21X 2T*+
189X 278 + 175X 272 — 28X 3T4 — 70X 3T3 + 70X 3T%2 428X 3T — 175X 4T3 —
180X 472 — 21X 4T + 35X °T* 4+ 168X 573 + 98X 372 + 7X 3T — X675 —
17X767% — 41X 673 —17X7672 — X7 /((1 — XT)(1 —T)?)

Cs

(TP +33T*+158T3+158T%+33T+1-8X 1T°—236X ~1T% 924X 173 —676 X 172~
76X T 428X 215 + 660X 2T 4+ 1884X ~2T3 + 860X ~2T2 + 24X ~2T — 54X ~3T° —
772X 3T —1128X 373 —12X 3T% 446X 3T 4+46X ~4T° —12X T4 —1128X 4T3 —
772X T2 —54X 4T 424X ~5T5 + 860X ~5T* +1884X 5T +660X 512 +28X 5T —
76X 5T° — 676X 6T% — 924X 673 — 236X 672 — 8X 6T + X776 + 33X 7T +
158X 774 4 158X 7T + 33X~ "T? + X "T) /(1 — XT)(1 — T))

Co

(T®+60T°+516T% 4101573451672 +60T +1—9X 17T —504X ~1T° —3798X 1T —
6192X 173 — 2358 X 172 — 153X T + 36X 276 4 1770X ~2T° + 10974X ~2T* +
13896X ~2T3 + 3603X 272 4+ 87X 2T — 84X 370 — 3141 X 3T° — 14154X ~3T* —
11760X 373 — 1287X 3T? + 60X 3T 4 117X 4T 4+ 2268 X ~4T5 + 3456 X ~4T* —
3456X ~4T3 — 2268 X ~4T2 — 117X 4T — 60X ~°T6 + 1287 X ~5T° + 11760X —°T* +
14154 X —5T3 4 3141 X ~°T2% 4 84X —°T — 87X 676 — 3603X 67> — 13896 X 6T* —
10974X 673 — 1770X —6T? — 36 X T + 153X ~"T% + 2358 X ~"T° 4 6192X ~"T* +
3798 X ~TT3 +504X T2 49X "T— X877 —60X 876 — 516X 875 —1015X 87+ —

516X —8T% — 60X 572 — X~5T)/((1 — XT)(1 - T)7)

Table 4: Ask zeta functions associated with cycles on at most nine vertices
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9 Further examples

145X 272 + 18X 2T —4X 3T? + 12X 4T3 4+ 4X5T* — 60X 3T + 44X 472 —
120X 7573 — 56X 7% — 21 X775 + 83X 4T — 359X 572 4+ 345X 673 +
105X 77T* + 28X 7875 4+ 32X 7976 — 106X °T + 707X 7% — 623X "T3 +
210X 7 87* + 265X 97° — 95X 1076 4 74X ~UT7T 4 92X 6T — 477X "T? +
1415X 873 — 626X 7T* — 500X ~197° + 137X 170 — 497X 1277 4+ 18X 1378 —
43X7'T + 59X 787% — 2179X T3 + 409X 107 — 602X 1'7° — 570X ~127° +
1320X " B77 — 150X 17® + X719 4+ 8X 8T + 33X 972 + 1872X 1073
6X N7 +2093X 1270 +1360X 1370 — 1815 X ~MT7 + 425X 1578 — 100X 71677 +
93X 1072 _ 947X 173 301X 127* — 2468 X 1375 — 1348 X "M 70 41086 X 1T —
608X 1678 4+ 553X 1770 — g X 1810 _ 194 X172 4 35X 1273 — 459X 137 4
2585 X M TP 4806 X P TO4+741 X 167741004 X 1 T8 1174 X BT 4117 X OO0
3X 7207 4 56X 1272 4 379X 1373 4+ 2070 X AT — 1762X ~19T0 4+ 268 X 1676 —
1682X ~17T7 — 2568 X ~187® 41093 X 1970 — 546X 20710y 10X 2 g x 13T
258 X ~14T3 2141 X7 —196 X 71675 — 1798 X 1770 4+ 88 X~ TT +3403X 1978 —
458X 72079 41253 X 2710 474X~ L 37X 1573 1 688 X 10T 1 2069X 17T +
2381 X BT 4+ 1478 X T7 — 1543X7207% 4+ 401X 27° — 1607X 2T —
379X BTN 15X M2 L 96X 1073 4 315X 1T — 2168 X ~18T° — 1973 X 1970 —
1887 X 2077 — 2220X2'78 — 887X T + 974X BT 4 go8x 7L 4
120X 5712 —9x 1773 — 353X 187 4 667X 19T° 4 529X 2076 4 1568 X 2177 +
4496 X ~22T8 +1568 X 2370 4520 X ~24 710 L 667X ~ 2511 — 353X 26712 g Xx 2713 4
120X 1974 4 428 X 2070 4974 X ~2170 — 887X 2277 — 2220 X ~23 78 — 1887 X ~4TY —
1973 X 571092168 X 2671 4+ 315X 27712 4 26 X 8713 15X 2074 379X 2175 _
1607X 2276 + 401X 277 — 1543X 2478 + 1478 X ~7° + 2381 X 26710
2069X 27T 4 688 X ~28T12 4 37X 29T 4 74X 22 T0 411253 X B T0 458X ~HTT 4+
3403X T8 4+ 88X 7279 — 1798X2"710 _ 196X 72871 _ 2141 X712 —
258 X 73013 _gx 34 4 10X 2375 — 546 X 2470 + 1093 X P TT — 2568 X ~2678 —
1682X 72779 4+ 268X 28710 — 1762X 297 4+ 2070X 30712 4+ 379X 3T 4
56X 321 3 x24T0 4 117X 270 — 1174 X 72577 +1094X 27T 4 741 X BT +
806X ~29710 4 9585 X 301 _ 459 X 3112 4 35 X 3213 _ 194 X 331 _ g x 2676 4
553X 2777 — 608X 2878 4+ 1086X 2977 — 1348X 30710 _ 9468 X BT —
301X 32712 o947 X BT 493X 3414 100X BT +425 X 79T — 1815 X 3079 +
1360X 3171042093 X 3271 6 X 33712 41872 X T3 133X T3 4 g X 3615 4
X72977 150X 73078 + 1329 X 3179 — 570X 32710 — 602X 33T 4+ 400X ~3HT12 —
2179X 73713 4 59X 73614 _ 43X 3715 418 X 38 — 497X 3270 + 137X 733710 —
500X ~H T 626X T2 41415 X 30713 477 X 3714 492 X 38T L 74 X 330 —
95X 3471049265 X 3T 41910 X 30712 623X 37T 4707 X 38T 106 X T+
32X 73710 4 o8 X 361 L 105X 37712 4 345 X —3T13 — 359 X 3914 L g3 X 4015
21X—37T11 o 56X—38T12 _ 129X—39T13 + 44X—40T14 _ 60X—41T15 + 4X—39T12 +
12X740T13 o 4X741T14 + 18X742T15 +5X742T14 _|_X744T16

Table 5: Numerator F(X,T) of W(‘EB@KB)VKQ in (|1.7)
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10 Open problems

10 Open problems

Inspired by the theoretical results and the explicit formulae in this article, we raise a
number of further questions (beyond Questions and [1.8)) pertaining to the topics
covered here.

10.1 The algebra of graphs

As we mentioned in §8.2] the effect of taking disjoint unions of graphs corresponds
to taking Hadamard products of the rational functions Wl? (X,T). In particular, for
arbitrary simple graphs I'y and I'y, the rational function Wy op (X, T') does not depend
on the individual graphs I'y and I's but only on the rational functions attached to these.

In the special case that I'; and I'y are both cographs, Proposition [8.4] similarly expresses
Wr yr, (X, T) in terms of the Wr (X, T). As we mentioned in Remark even though
the formula in Proposition [84] involves the numbers of vertices of I'; and TI'g, these
numbers can be recovered from the corresponding rational functions via the functional
equation in Corollary

Question 10.1 (Joins). Do the conclusions of Proposition hold for all simple graphs?

The smallest graph which is not a cograph is the path P4 on four vertices; the rational
function Wy, (X, T) is recorded in Table (and also in Table . Using Zeta, we find that

Wp,yp, (X, T) = (142X 3T - 2X 4T — 6X °T — X S7% + 2X 6T — 2X '1?
+ X7+ 6X 872 42X 972 — o x 1072
— X BT /(1 -X3T)2(1-T)1 - XT)).

A routine calculation shows that, even though P4 is not a cograph, Wp,vp, (X,T) is
indeed correctly calculated by (8.2) for I'y = 'y = Py.

While we defined cographs in terms of disjoint unions and joins, either one of these
two operations could be replaced by complements. For instance, the class of cographs is
the smallest class of graphs that contains a single vertex and which is closed under taking
disjoint unions and complements. Write I for the complement of a simple graph T'.

Question 10.2 (Complements). Is there an involution W (X, T) — W (X, T) of rational

A

generating functions in T such that WF_ (X,T) =Wy (X,T) for each simple graph I'?

10.2 Connections with statistics on Weyl groups

We noted in that the class of functions Wy (X, T) attached to hypergraphs is closed
under Hadamard products. However, it remains an open problem to exploit the Hadamard
factorisation in a way that improves upon the general Theorem . For disjoint
unions BHy m of block hypergraphs, we achieved this in . Even in the special case
n = m, the latter formula seems to admit substantial further improvements. We illustrate
this for n = m = (a,...,a). Recall from [57, §5.4] the definitions of the statistics N and
dp on the group B, = {£1} 1S, of signed permutations of degree 7.
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10 Open problems

Proposition 10.3. Let a = (a,...,a) € N". Then

> (=X~ )N@)dp(o)

Br
WBHa,a(X’ T) ==

e (10.1)

Proof. The proof of [57, Corollary 5.17] of the case a = 1 (a consequence of a result due
to Brenti [12, Theorem 3.4]) carries over to a general a; just replace —q~! by —¢~%. ¢

The intriguing shape of the numerator of the right-hand side of ((10.1) prompts the
following.

Question 10.4. Is there an interpretation of the rational functions

(a) WeH, (X, T) in (5.18) for n € N”,
(b) WaHym(X,T) in (5.18) for n,m € N”, or possibly even

(¢) Wh(w (X, T) in (5.12)) for general p € NZ)D(V)
in terms of statistics on Weyl (or more general reflection) groups?

Note that @ includes, as a special case, the problem of finding an interpretation of
the class counting zeta functions C&fKn oo (8) in terms of permutation statistics; see ~,

10.3 Analytic properties

The determination of the rational functions W (X, T) for all simple graphs on at most
seven vertices inspired us to raise the following.

Question 10.5 (Characterising kites). Let I' be a simple graph. Are the following
properties equivalent?

(a) T is a kite graph.
(b) Wi (X, T) is a product of factors of the form (1 — XATB)*1,

The implication |(a)=(b)| in Question follows from Theorem Let v be

the negative adjacency representation of I'. Then is equivalent to ;ik(s) factoring
as a product of factors ((Bs — A)*!, where ¢ denotes the Riemann zeta function. In
particular, class counting zeta functions of cographical group schemes associated with
kite graphs over rings of integers of number fields admit meromorphic continuation to C.

One may speculate that the condition in Question [10.5(b)|is not just sufficient but

also necessary for the Euler product

(& oo ()= T] Wr (g, qPT1™)

vEVEK

associated with an arbitrary simple graph I' and number field K with ring of integers O
to admit meromorphic continuation to the whole complex plane. Indeed, consider an
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Euler product [T ey, f(qv; g, °), where f(X,T) € Z[X,T] is a fixed polynomial. Then a
general conjecture based on work of Estermann [28] and Kurokawa [40,41] predicts that
such an Euler product admits meromorphic continuation to all of C if and only if f(X,T)
is a product of unitary polynomials; cf. [22, Conjecture 1.11] for details and related work.

In a similar spirit, recall from Theorem that for a hypergraph H with incidence
representation 7, we denoted the common abscissa of convergence of C;%kK (s) for each
number field K by a(H). By [57, Theorem 4.20], there exists a positive real number 6(H),
independent of K, such that the function C;?ng (s) can be meromorphically continued to
the domain {s € C: Re(s) > a(H) —d(H)}.

Question 10.6. What is the largest value of 6(H) (if such a value exists)? When
does ¢ ;?ng (s) admit meromorphic continuation to all of C for each number field K7

By Proposition [5.9] staircase hypergraphs have the latter property.
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