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Abstract

KingdominoTM is a board game designed by Bruno Cathala and edited by Blue
Orange since 2016. The goal is to place 2× 1 dominoes on a grid layout, and get a
better score than other players. Each 1× 1 domino cell has a color that must match
at least one adjacent cell, and an integer number of crowns (possibly none) used
to compute the score. We prove that even with full knowledge of the future of the
game, in order to maximize their score at KingdominoTM, players are faced with an
NP-complete optimization problem.

1 Introduction

KingdominoTM is a 2-4 players game where players, turn by turn, place 2× 1 dominoes
on a grid layout (each player has its own board, independent of others). Each domino
has a color on each of its two 1× 1 cells, and when a player is given a domino to place
on its board, he or she must do so with a color match along at least one of its edges.
Also if a domino can be placed (with at least one possible color match), then it must be
placed. Finally, each player starts from a 1 × 1 tower matching any color. The winner
of the game is the player that has the maximum score among the competitors. The
computation of score will be precised in Section 3, it is basically a weighted sum of the
number of cells in each monochromatic connected components on the player’s board.

The purpose of this article is to prove that, even with full knowledge of the future of
the game (i.e. the sequence of dominoes he or she will have to place), a player is faced
with an NP-complete optimization problem.

Section 2 reviews some results around games complexity and domino problems, Sec-
tion 3 presents our theoretical modeling of KingdominoTM, Section 4 illustrates the com-
binatorial explosion of possibilities, and Section 5 proves the NP-hardness result.

2 Computational complexity of games and dominoes

KingdominoTM has been studied in [8], where the authors compare different strategies
to play the game, via numerical simulations.
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Understanding the computational complexity of games has raised some interest in
the computer science community, and many games have been proven to be complete for
NP or co-NP. Examples include Minesweeper [14, 18], SET [15], Hanabi [3], Nintendo
games [2] and Candy Crush [9, 20].

Domino tiling problems are a cornerstone for computer science, from undecidable
ones [4, 11, 13] to simple puzzles [10, 12, 19]. Tiling some board with dominoes under
constraints has already been seen to be NP-complete, and constructions vary according
to the model definition [5, 6, 16, 17]. The model of [21] is close to KingdominoTM, its
construction can be adapted to prove that starting from a board with some dominoes
already placed, completing it to optimize one’s score is NP-complete. The challenging
part of the present work is to start from nothing else but the tower of KingdominoTM.

3 Model and problem statement

The way dominoes are chosen by players is at the heart of strategies one may elaborate
to play KingdominoTM. In order to apply the theory of computational complexity to this
game, we will consider a one player model, which concentrates on an even more essential
aspect of the game: how to maximize one’s score, which is the source of domino choices.
Also, in the game KingdominoTM there is a fixed set of colors (6) and a fixed multiset
of dominoes (48, some dominoes have more than one occurrence), but we will abstract
these quantities to be any finite (multi)set. Definitions are illustrated on Figure 1.
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Figure 1: Example of K-tiling by ( 2 2 , 1 2 , 1 1 , 1 3 , 3 1 , 2 3 ), with
score 0 + 1 + 4 + 9 + 2 + 0 = 16 (regions are ordered from top to bottom, left to right).

A domino is a 2 × 1 rectangle, with one color among a finite set on each of its two
1× 1 cells. A domino also has a number of crowns on each of its cells, used to compute
the score. For convenience we consider colors to be integers, and represent a domino as
follows: 1 2 for the domino with one cell of color 1 with one crown, and one cell of
color 2 with no crown. A tiling is an overlap free placement of dominoes on the Z2 board,
with a special cell at position (0, 0) called the tower. Given a sequence of n dominoes
τ = ( c1 c2 , . . . , c2n−1 c2n ) possibly with crowns, a K-tiling by τ is a tiling respecting
the following constraints defined inductively.
◦ The tiling with only the tower at position (0, 0) is a K-tiling by ∅ (case n = 0).
◦ Given a K-tiling by the n− 1 first dominoes of τ , the last domino of colors c2n−1

and c2n can be placed on a pair of adjacent positions, if and only if at least one of
its two cells is adjacent to a cell of the same color that has already been placed,
or is adjacent to the tower. It is lost (not placed) if and only if it can be placed
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nowhere. This gives a K-tiling by the n dominoes of τ .
Hence dominoes must be placed in the order given by the sequence τ . Note that the
definition of K-tiling does not take into consideration the crowns. They are only used
to compute the score, as we will explain now.

The score of a K-tiling is the sum, for each monochromatic connected component
(called region), of its number of cells times the number of crowns it contains. Note that
a color may give rise to more than one region (as on the example of Figure 1), and
that a region scores no point if it contains no crown. We will say that some cell (resp.
domino) must be connected to some region, to mean that it (resp. one of its two cells)
must belong to this monochromatic connected component.

We are ready to state the problem.

K-tiling problem
input: a sequence of dominoes τ and an integer s.
question: is there a K-tiling by τ with score at least s?

Given a tiling where each domino of the sequence τ is identified (a potential solution,
aka certificate), one verifies domino after domino that it is indeed a K-tiling by τ , and
computes the score to verify that it is indeed at least s, in polynomial time. Hence
K-tiling problem belongs to NP.

4 Counting K-tilings

To give an idea of the combinatorial explosion one faces when playing KingdominoTM or
when deciding some K-tiling problem instance, we propose in Table 1 to count the
number of possible K-tilings for some small sequences of dominoes. These results were
obtained by numerical simulations.

dominoes ( 1

1

, 1

1

, 1

1

, 1

1

) ( 1

1

, 2

2

, 3

3

, 4

4

) ( 1

2

, 3

4

, 5

6

, 7

8

)

1st (score 2) 2 (24) 2 (24) 4 (24)
2nd (score 4) 19 (752) 13 (400) 52 (400)
3rd (score 6) 253 (35448) 63 (4032) 504 (4032)
4th (score 8) 3529 (2176064) 141 (18048) 2256 (18048)

Table 1: Number of K-tilings reaching the maximum possible score, for some small
sequences of dominoes. Rotations and axial symmetries are counted only once, and the
positions of crowns are not taken into account (in parenthesis the full counts are given).

Table 1 may be compared to the number of domino tilings of a 2n × 2n square,
appearing in the Online Encyclopedia of Integer Sequences under reference A004003 [1]:
1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . .
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5 NP-hardness of K-tiling problem

In this section we prove the main result of the article.

Theorem 1. K-tiling problem is NP-hard.

Proof. We make a polynomial time many-one reduction from 4-Partition problem,
which is known to be strongly NP-complete [7]. This is important, since we encode
the instance of 4-Partition problem in unary into an instance of K-tiling problem
(basically, with 28x domino cells for each item of size x).

4-Partition problem
input: n items of integer sizes x1, . . . , xn, and m = n

4 bins of size k,
with n a multiple of four, xi > 0 for all i, and

∑n
i=1 xi = km.

question: is it possible to pack1 the n items into the m bins,
with exactly four items (whose sizes thus sum to k) per bin?

Given such an instance of 4-Partition problem, we first multiply by 28 all item and
bin sizes (for technical reasons to be explained later) and consider the equivalent instance
with n items of strictly positive integer sizes x1 ← 28x1, . . . , xn ← 28xn and m bins of
size k ← 28k (for convenience we keep the initial notations with x and k). We then con-
struct (in polynomial time from a unary encoding) the following sequence of dominoes τ :

1. guardians 1 1 , 2 2 , 3 3 , 4 4 ,

2. square ( 1 1 )18m
2−6,

3. contour 1 5 , 5 6 , 6 7 , 7 8 , 8 1 , 8 1 , 8 2 , 8 9 ,

( 9 9 )9m−8, 9 10 ,

10 11 , 11 12 , 12 13 , 13 14 , . . . , 3m+ 10 3m+ 11 ,

3m+ 11 3m+ 12 , 3m+ 12 5 ,

4. guide ( 6 7 )18m
2+12m,

5. arms ( 10 11 )
k
4
+2, ( 13 14 )

k
4
+2, ( 16 17 )

k
4
+2, . . . , ( 3m+ 10 3m+ 11 )

k
4
+2

6. anchors ( 12 3m+ 13 )2, ( 15 3m+ 13 )2, . . . , ( 3m+ 9 3m+ 13 )2,

7. items for each xi we have 3m+ 13 3m+ 13 + i , ( 3m+ 13 + i 3m+ 13 + i )
xi
2
−1,

8. zippers 11 3m+ 13 + n+ 1 , 3m+ 13 + n+ 1 13 ,

14 3m+ 13 + n+ 2 , 3m+ 13 + n+ 2 16 ,

. . . ,

3m+ 8 4m+ 13 + n , 4m+ 13 + n 3m+ 10 ,

1Of course an item cannot be split.
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and the target score s = 72m2 + 54m+ k
2 (3m+ 1) + 1. This is our instance of K-tiling

problem. Let us now prove that there exists a packing of the n items into the m bins
of size k with four items per bin if and only if there exists a K-tiling by τ with score at
least s.

⇒ Suppose there exists a packing of the n items into the m bins of size k with
exactly four items per bin, and let Xj be the set of items in bin j. We construct the
following K-tiling by τ (see Figure 2).

1. Place the four guardians dominoes around the tower.

2. Around this create a square of size 6m × 6m with the square dominoes 1 1 ,
leaving three dents empty on the left border of the square at the fifth, twelfth and
thirteenth positions from the bottom left corner (the square has area 36m2, minus
9 cells already taken by the guardians dominoes and the tower, minus 3 dents,
hence exactly the 18m2 − 6 square dominoes are required).

3. Make a path clockwise around the square with the contour dominoes in this order,
filling the three dents with cells of color 1, leaving the cell of color 2 outside, and
starting with the first dent at the fifth position above the bottom left corner of the
square (the contour has length 4(6m + 1), corresponding exactly to the 12m + 4
contour dominoes with four dents).

4. Stack all guide dominoes on the left of the 7 6 domino of the border.

5. Stack all arms dominoes, color by color, below the corresponding dominoes of the
border. Observe that they match exactly one domino over three of the bottom
border, creating m+ 1 stacks of length k

4 + 2, and therefore m bins of size k+ 8 in
between.

6. Place a pair of anchors dominoes per bin, matching the existing colors, as on
Figure 2.

7. Place items dominoes corresponding to items of Xj in bin j, filling k cells of each
bin and leaving the last row of four cells empty.

8. Close each bin with the corresponding zippers dominoes (anchors dominoes fill
four cells, consequently the items dominoes leave four cells in each bin, exactly the
number of cells required for the zipper dominoes to match colors onto the arms on
both ends2).

The score of this K-tiling is s, as detailed on Figure 2.

⇐ This is the challenging part of the proof, where we will argue that the construc-
tion of a K-tiling by τ with score at least s is compelled to have the structure described
above and illustrated on Figure 2, which corresponds to solving the 4-Partition prob-
lem instance. The proofs of some claims are postponed.

2Note that the pattern of placement sketched on Figure 2 can be extended to pack each bin with
items dominoes corresponding to any four items of sizes summing to k, and leaving four cells on the
bottom end for the zippers dominoes.
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dominoes score

[ general form ]

soldiers 2

[ 2 ]

square 312

[ 2(18m2 − 6) ]

contour 79

[ 4(6m+ 1) + 3 ]

guide 396

[ 2(18m2 + 12m) ]

arms 256

[ 2(k4 + 2)(m+ 1) ]

anchors 6

[ 2m ]

items 348

[m(k − 4) ]

zippers 12

[ 4m ]

total 1411

[ 72m2 + 54m+ k
2(3m+ 1) + 1 ]

Figure 2: To reduce the height of this figure, original sizes have only been multiplied
by 4 instead of 28. A K-tiling by τ with score s (hence solving the K-tiling problem
instance), from a solution to the 4-Partition problem instance with n = 12, m =
3, k = 120 (originally k = 30), and item sizes 12, 12, 16, 16, 16, 16, 24, 40, 40, 48, 48, 72
(originally 3, 3, 4, 4, 4, 4, 6, 10, 10, 12, 12, 18): first bag 72 + 16 + 16 + 16, second bag
48 + 48 + 12 + 12, third bag 40 + 40 + 24 + 16. Dominoes soldiers in purple, square in
yellow, contour in red, guide in orange, arms in green, anchors in light blue, items in
dark blue (groups are highlighted in pink), and zippers in brown. Note that the anchor
color 3m+ 13 (on which groups of item dominoes can match) equals 22 on this exemple.
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Suppose there exists a K-tiling by τ with score s. First notice that s is an upper
bound on the score one can obtain with a K-tiling by τ , as it is the sum for each color
of the number of cells of this color times the number of crowns on cells of this color.
It must therefore correspond to a K-tiling with one region per color, except for colors
2, 3, 4 and 3m + 13 which have no crown. This will be the main assumption that will
guide us as we study the dominoes chronologically. Also remark that all dominoes must
be placed: at the beginning colors 2, 3, 4 can always match the tower, and afterwards
colors 2, 3m + 13 appear only on dominoes with another color bringing some necessary
points to the sum s.

1. There is no choice but to place the four guardians dominoes on the four sides of the
tower. As a consequence, we don’t have to treat the particular case of the tower
anymore.

2. All square dominoes are monochromatic, hence they form one large region of color
1 (remark that they can, and therefore must, all be placed). We have now 9 +
2(18m2 − 6) = 36m2 − 3 cells occupied by some dominoes or the tower.

3. For the contour dominoes the three cells of color 1 must be connected to the unique
region of color 1 since this color will not appear anymore. Let a pseudo-path be a
path on the grid which can contain some large connected component, i.e. a path
plus some domino cells connected to it. The length of a pseudo-path is the length
of the shortest path it contains from its first to its last cell.

Claim 1. All contour dominoes must be placed (to reach score s), and they must
form a pseudo-path that cycles, of length at most 4(6m+ 1).

It is connected to the region of color 1 via three dominoes 1 5 , 8 1 , 8 1 :

◦ two of them are intended to frame the 6 7 domino,
◦ and the last one is for parity of cells number, since we have an odd number

of occupied cells so far that is intended to form a square of even side length.
The pseudo-cycle of contour dominoes may have the region of color 1 either inside
its outer face, or inside its inner face (in this case the pseudo-cycle surrounds the
region of color 1).

4. The guide dominoes enforces that the cycle of contour dominoes surrounds the
region of color 1.

Claim 2. The guide dominoes must be stacked one after the other in a straight
segment, rooted at the analogous contour domino

Claim 3. The pseudo-cycle of contour dominoes must have the region of color 1
inside its inner face.

After this step we have 36m2−3 occupied cells surrounded by a cycle of 4(6m+1)
cells with three additional cells (with color 1) inside the cycle, hence (6m)2 cells
inside the cycle which is just long enough to make a square of side 6m+ 2 around
it. However, any other shape would either require a too long path, or leave a too
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small area inside.

Intermediate conclusion: at this point we have a square of contour cells with the
tower, guardians and square dominoes inside, three dents of color 1 inside, one dent
of color 2 outside, and a stack of guide dominoes starting from the corresponding
6 7 contour domino (the reader can refer to Figure 2 for an illustration).

We will argue thereafter why the contour is well aligned, with the third line of
contour dominoes all on the same side of the square.

5. The arm dominoes must create m bins.

Claim 4. The arm dominoes must be placed into m+1 bicolor stacks of length k
4 +2

starting from the corresponding contour dominoes (separated by four positions),
and joined with a pair of zipper dominoes.

This also explains why contour dominoes are well aligned, with the third line of
contour dominoes all on the same side of the square.

Intermediate conclusion: after these dominoes the K-tiling by τ with score s
must have created m bins (with m+ 1 arms) of size 4× (k4 + 2). This size explains
why the bin size (and consequently all item sizes) of the original 4-Partition
problem instance is converted to a multiple of 4.

6. Each pair of anchors dominoes must be placed so that each color already present
in the contour (from 12 to 3m + 9) form one region because these are the last
dominoes with these colors. So there is a pair of anchor dominoes at the rear
of each bin. Remark that color 3m + 13 has no crown hence it can be split into
multiple regions. The purpose of this color is to be an anchor inside each bin,
intended for groups of items dominoes to match.

7. For each item xi we have a group of items dominoes, where the first domino of color
3m + 13 allows to match a bin anchor, and then all other dominoes of the group
will form one region from this anchored domino (with the unique color 3m+ 13 + i
for each i), for a total of xi cells.

Claim 5. For each bin, at most four groups of items dominoes can match its
anchors.

Intermediate conclusion: As all n groups of items dominoes must be placed on
the board to reach score s, we must have exactly four groups of items dominoes
in each of the m = n

4 bins (corresponding to the values of four items from the
4-Partition problem instance).

8. The zippers dominoes have the purpose of closing bins, with one pair of zippers
matching the colors of each bin’s arms. They must join the two arms of each bin
with a path of length four (because of the unique pair of cell colors 3m+13+n+1
to 4m+13+n). However this is possible if and only if no items dominoes exceed a
volume of 4× (k4 + 1) inside the bin (leaving the last row of four positions of each
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bin for the zipper), i.e. each bin contains four groups of items dominoes for a sum
of at most k cells (anchors already occupy four cells). Observe that when they
contain a total of at most k

2 dominoes, it is always possible to place four groups of
items dominoes in a bin and leave the last row for a pair of zippers dominoes (as
on the example of Figure 2).

Conclusion: to reach score s with a K-tiling by τ , a player must close the zipper on top
of each of the m bins and therefore trap inside each of them four items of sum at most k,
for a total of 4m = n items, therefore solving the 4-Partition problem instance.

Proof of Claim 1. For the pseudo-path that cycles, by induction on contour dominoes:
◦ either there is no occurrence of a color after the contour dominoes hence it must

directly form one region (case of dominoes with color 8, and color 5 in the last
contour domino which must close the cycle; e.g. when placing domino 3m+ 12 5

its cell of color 5 must match the existing region),
◦ or there is no other placed occurrence of one of its colors apart from the previous
contour domino (case of all other contour dominoes; e.g. when placing domino
6 7 its cell of color 6 must match domino 5 6 ),

◦ and the group of 9 9 dominoes forms one region along the path.
For the length calculation, see Figure 3.

Proof of Claim 2. It follows from the fact that there are no other dominoes of colors 6
nor 7 after the guide dominoes. Details are given on Figure 4.

Proof of Claim 3. Observe that if the pseudo-cycle of contour dominoes have the region
of color 1 on its outer face, then the 18m2 + 12m 6 7 dominoes would have been

placed inside the pseudo-cycle (at most 4(6m+1)
2 of them) or inside the region of color 1

(at most 18m2 − 6 of them), but they are too numerous so it would be impossible to
have simultaneously a unique region for colors 6 and 7 (see Figure 5).

Proof of Claim 4. The placement describe in the claim is the only way to get one region
per color 10, 11, 13, 14, 16, 17, . . . , 3m+ 10, 3m+ 11. Details are given on Figure 6.

Proof of Claim 5. Each item has size at least 28 and therefore corresponds to at least 14
dominoes, however after placing a pair of anchors dominoes and four of these minimum
size groups of 14 items dominoes in any possible way, no anchor cell of color 3m+ 13 is
available for a fifth group of items dominoes (see details on Figure 7). This argument
explains why all item and bin sizes of the original 4-Partition problem instance have
been multiplied by 28 (and not simply by 4): so that each group of items dominoes is
large enough to enforce that at most four per bin can match the anchor.
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Figure 3: Contour dominoes must form a pseudo-path that cycles, with one large region
of color 9 that may not be, strictly speaking, a path (dashed, containing the 9m − 8
9 9 dominoes), one region of color 8, and one region of color 5. Colors 1 and 2 are not

part of the path, hence dominoes 1 5 8 1 , 8 1 and 8 2 count only one in its
length, which is therefore at most (domino by domino, if regions of colors 5, 8 and 9 are
as long as possible) 1+2+2+2+1+1+1+2+2(9m−8)+2+2(3m+1)+4 = 4(6m+1).
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Figure 4: Left: when a first domino is not correctly stacked (fourth domino in this
example), without loss of generality with color 7 disconnected, then a path of color 7
must join the two regions of this color (black and grey regions, example path hatched),
going around the region of 6 (because there are no more dominoes with color 6 nor 7
after guide dominoes). However this path must contain some 90◦ angle, leaving some cell
of color 7 with no neighbor of color 6, which is impossible with only 6 7 dominoes.
The same argument applies to all cases presented on the right. Right: possible ways
to arrange the 6 7 contour domino and the cells of colors 6 and 7 around it (up to
rotation, axial symmetry, and swap of colors 6 and 7), with possible stack positions
highlighted.
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Figure 5: If the pseudo-cycle of contour dominoes has the region of color 1 on its outer
face, then one cannot stack all the 18m2+12m 6 7 dominoes (the region of 1 contains
2(18m2 − 6) cells, and the contour contains 4(m+ 1) cells).

14 13

14 13 13

14 14 13

14 13 13 14

14 13

14 13

14

13

14 13

14 13

13 14

14 13

14 13

14

13

1 1 1 1 1 1 1 1 1 1

17 16 16 15 15 14 14 13 13 12

14 1317 16 36 1416 36 14

Figure 6: This case is similar to the stack of guide dominoes presented on Figure 4,
except that there will be one more cell of each color, in zipper dominoes (appart from 10
and 3m + 11). Domino 13 14 is taken as an example. Left: possible ways to misplace
an arm domino when some arm dominoes are already well stacked. In this case, at least
two extra cells of the disconnectedd color are required in order to have one region of
each color at the end. Right: the only possibility to exploit the extra cell (14 in brown)
would be to shift the stack of arm dominoes as illustrated. However, zipper dominoes
are forced to form paths of length four because of color 36, consequently to also have
one region of color 16 it is neccesary to shift the next stack of arm dominoes and join
it as illustrated with the pair of zipper dominoes, but then the pair of anchor dominoes
with color 14 would be lost, which is not permitted to reach score s.
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Figure 7: Up to axial symmetry, seven different ways to place a pair of anchors in a
bin (colors of the first bin are taken as an example). After placing the first group of at
least 14 items dominoes, at least one position on the eighth row of the bin (dashed) is
occupied (one can simply count available positions); after placing the second group, at
least a second position of the eighth row is occupied; after the third group a third one;
and after the fourth group the eighth row of the bin is full of items dominoes. However,
after these four groups of items dominoes, cells of anchor color 3m + 13 cannot exceed
the seventh row (the third row after the pair of anchors dominoes, plus one for each
group of items dominoes), consequently no more group of items dominoes can match an
anchor color and take place inside the bin.

6 Conclusion

Theorem 1 establishes that KingdominoTM shares the feature of many fun games: it re-
quires to solve instances of an NP-complete problem. Finding efficient moves is therefore3

a computationally hard task, and players may feel glad to encounter good solutions.
As we have seen in Section 4, the number of possible K-tilings may grow rapidly. The

main difficulty in the elaboration of the NP-hardness reduction to the K-tiling prob-
lem, has been to find an initial sequence of dominoes which imposes a rigid structure
(with very few possible K-tiling reaching a maximum score), and still allows to be con-
tinued in order to implement some strong NP-complete problem (given by the instance
from the reduction).

Our modeling of the game KingdominoTM abstracts various aspects of the game (as
board games are finite, this is necessary), and our construction in Theorem 1 is frugal in
terms of crowns, but it is opulent in terms of colors (in order to ease the argumentations).
As an opening, one may ask: is the K-tiling problem still NP-hard if the number of
colors is bounded?
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