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Abstract. In this letter we show that the results of degree growth (algebraic entropy)

calculations for lattice equations strongly depend on the initial value problem that one

chooses. We consider two problematic types of initial value configurations, one with

problems in the past light-cone, the other one causing interference in the future light-

cone, and apply them to Hirota’s discrete KdV equation and to the discrete Liouville

equation. Both of these initial value problems lead to exponential degree growth for

Hirota’s dKdV, the quintessential integrable lattice equation. For the discrete Liouville

equation, though it is linearizable, one of the initial value problems yields exponential

degree growth whereas the other is shown to yield non-polynomial (though still sub-

exponential) growth. These results are in contrast to the common belief that discrete

integrable equations must have polynomial growth and that linearizable equations

necessarily have linear degree growth, regardless of the initial value problem one

imposes. Finally, as a possible remedy for one of the observed anomalies, we also

propose basing integrability tests that use growth criteria on the degree growth of a

single initial value instead of all the initial values.

1. Introduction

By now it is common knowledge that discrete integrable systems possess some beautiful

underlying mathematical structures. For example, in the case of integrable bi-rational

mappings, insights from algebraic geometry have led to the development of rigorous

criteria (and tests) for integrability [1, 2, 3, 4], and to a widely accepted definition of an

integrable mapping: it must have zero algebraic entropy [5]. The algebraic entropy for

a rational mapping is defined as

E = lim
n→∞

log(dn)

n
,

where dn is the degree of the nth iterate of the mapping, and can be thought of as

measuring the complexity of the mapping, in the sense of Arnold [6]. Note that E ≥ 0

and that it is non-zero only if the degree growth is exponential.

The situation for lattice equations, however, is very different and a definition of

integrability in that context remains elusive. (As a general reference see [7].) Attempts
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have been made to introduce to the lattice setting certain integrability criteria that

proved useful in the context of mappings, such as algebraic entropy [8, 9, 10], but in

this letter we wish to warn against any such attempt that does not take into account

the crucial role that initial value problems play in the lattice setting.

1.1. The lattice setting

In this letter we only consider lattice equations, i.e. partial difference equations, defined

on the basic elementary square or quadrilateral of the Z2 lattice, see Figure 1. Such

equations are called quad equations. The four corner values of the 2 × 2 stencil are

related by a multi-linear equation

Q(xn−1,m−1, xn,m−1, xn,m−1, xn,m) = 0, (1)

which may also contain various parameters.

sxn−1,m s xn,m

sxn−1,m−1 s xn,m−1

Figure 1. The elementary square in the Z2 lattice. The independent variable n grows

to the right, m grows upward.

Any multi-linear quad equation allows propagation or evolution once suitable initial

data is given, for example on a staircase or on a corner, as in Figure 2, but here we

shall also consider some more exotic initial value problems. Note however that all initial

value problems we shall consider are well-posed in the sense of [11].

In this letter we illustrate our results using two quad equations:

• Liouville equation:

xn,mxn−1,m−1 − xn,m−1xn−1,m = 1, (2)

which linearizes to (non-autonomous) second order ordinary difference equations,

in the n as well as in the m direction.

• Hirota’s discrete KdV equation

xn,m − xn−1,m−1 =
1

xn,m−1
− λ

xn−1,m
, (3)

which is integrable for λ = 1 but non-integrable for any other non-zero value of λ.
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a) b)

Figure 2. a) The Cartesian lattice with given corner-type initial values (at black

discs) from which one can then compute the values at open discs in the upper right

quadrant. b) The same with a staircase of initial values.

⊗

past light-cone

future light-cone

Figure 3. Past and future light-cones, for equations (2) and (3), for the point ⊗ in

the middle. The past light-cone contains all points that can influence the value at ⊗,

while the future light-cone contains all points that can be influenced by the value at

⊗.

1.2. Algebraic entropy

As already mentioned, one property that is believed to be strongly associated with

integrability is zero Algebraic Entropy. For lattice equations (2) or (3), given initial

values such as in Figure 2, xn,m at any of the open discs will be a rational function of

the initial values given at the black discs in the past light-cone of that open disc, c.f.

Figure 3. The degrees of the numerator and denominator of xn,m will grow as n and m

grow, but if the system is integrable there will be cancellations and the growth slows

down [1, 2, 13, 8].

In [8] it was shown that for initial values as in Figure 2, Hirota’s discrete KdV

equation (3) exhibits quadratic degree growth whereas the discrete Liouville equation

(2) has linear degree growth (see also section 2.1). In fact, besides exponential growth

(i.e. non-zero algebraic entropy), the degree growths that have been reported in the
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literature for lattice equations [9, 10] coincide with those observed for second order bi-

rational mappings: bounded growth, linear growth or quadratic degree growth. Hence

the ‘rule of thumb’ that is in common use today (cf. [2, 5, 12, 8, 14, 15])

• if the degree growth is linear in n,m the equation is linearizable.

• if the degree growth is polynomial the equation is integrable.

• if the degree growth is exponential the equation is not integrable.

It is important to stress that although the above statements can be considered to be

rigorous in the context of second order bi-rational mappings [16], when it comes to

lattice equations these should be thought of as mere experimental observations.

In this letter we will discuss how the form of the initial value boundary may influence

degree growth computations and distort the algebraic entropy results. We concentrate

on two particular effects that have their origin in:

(i) The number of initial values in the past light-cone. Usually this number grows

linearly, but it may in fact grow faster.

(ii) The number of initial values in the future light-cone. Usually there are none but

for some allowed (well-posed) initial value problems this number can be non-zero.

In this letter we will only discuss what can happen for the Liouville equation (2) and for

Hirota’s discrete KdV (3) equation, both defined on a 2× 2 stencil, and we shall report

work on other kinds of stencils elsewhere.

2. Growth results for various initial value problems

2.1. Corner initial values

Let us first consider conventional corner initial values as in Figure 2a. Figure 4 shows the

degrees of the numerator in xn,m for the Liouville equation (2), which are given by dn,m =

n + m, and for Hirota’s KdV equation (3) with λ = 1: dn,m = 4nm − 2 max(n,m) + 1

(cf. [8]). As before, black discs depict initial values. Figure 5 gives the degrees for

a non-integrable version (λ = 2) of Hirota’s KdV equation and this time the growth

is exponential. The first difference between the integrable and non-integrable versions

occurs at lattice points (2, 3) and (3, 2) where the integrable version has a numerator

of degree 19 while the non-integrable one has degree 22. One can easily compute the

corresponding rational functions xn,m. It turns out that for any λ the denominator of

x3,2 has the degree 3 factor

x1,0 x0,1 x0,0 − x1,0 λ+ x0,1.

If we now insist that this should also be a factor of the numerator (in order to have

cancellations) one finds that this is only possible if λ = 1 or 0.



Algebraic entropy computations for lattice equations 5

• • • • • • • • • •

• 2 3 4 5 6 7 8 9 10

• 3 4 5 6 7 8 9 10 11

• 4 5 6 7 8 9 10 11 12

• 5 6 7 8 9 10 11 12 13

• 6 7 8 9 10 11 12 13 14

• 7 8 9 10 11 12 13 14 15

• 8 9 10 11 12 13 14 15 16

• 9 10 11 12 13 14 15 16 17

• 10 11 12 13 14 15 16 17 18

a)

• • • • • • • • • •

• 3 5 7 9 11 13 15 17 19

• 5 13 19 25 31 37 43 49 55

• 7 19 31 41 51 61 71 81 91

• 9 25 41 57 71 85 99 113 127

• 11 31 51 71 91 109 127 145 163

• 13 37 61 85 109 133 155 177 199

• 15 43 71 99 127 155 183 209 235

• 17 49 81 113 145 177 209 241 271

• 19 55 91 127 163 199 235 271 307

b)

Figure 4. a) For the Liouville equation (2) the degree growth is linear, as expected:

dn,m = n + m. b) Hirota’s KdV equation (3) for λ = 1 is integrable and the degree

rule is dn,m = 4nm− 2 max(n,m) + 1 (see also [8]).

• • • • • • • • • •
• 3 5 7 9 11 13 15 17 19

• 5 13 22 33 46 61 78 97 118

• 7 22 47 82 130 193 273 372 492

• 9 33 82 167 299 494 769 1143 1637

• 11 46 130 299 601 1097 1868 3013 4652

• 13 61 193 494 1097 2197 4067 7082 11736

• 15 78 273 769 1868 4067 8137 15221 26959

• 17 97 372 1143 3013 7082 15221 30445 57406

• 19 118 492 1637 4652 11736 26959 57406 114815

Figure 5. Hirota’s KdV with λ = 2 (non-integrable). On the diagonal the growth is

exponential, approximately 0.85 · 3.7n. It can be shown however (see section 2.3) that

the asymptotic degree growth on the diagonal is actually ∝ 4n.

2.2. Problems originating in the past light-cone

For a quad equation and with evolution to the NE direction, the initial values fα,β that

appear in xn,m are those in its past light-cone, except that of the fα,m the only initial

value that is included is the first to the left. Possible problems with the past light cone

are illustrated in Figures 6 and 7. Let us first take a closer look at the computations in

the case of the Liouville equation. In Figure 6 we use numbering in which the rightmost

column is at n = 0. For the first two points in that column we find

x0,1 =
f0,0 f−1,1 + λ

f−1,0
, (4)
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• •
• • • • 2

• • • • • • 2 3 4 6

• • • • • • • • 2 3 4 5 6 8 9 10 12

• • • • • • • • • • 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 20

• • • 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 26 27 28 30

10 11 12 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 32 33 34 35 36 38 39 40 42

Figure 6. Liouville equation for a left-leaning parabolic boundary. Bullets depict the

initial values. The degrees in the rightmost column grow as m(m+ 1).

• •
• • • • 3

• • • • • • 3 5 7 11

• • • • • • • • 3 5 7 9 11 15 21 27 33

• • • • 3 5 7 9 11 13 15 19 25 31 37 43 49 57 67 77

13 15 17 19 23 29 35 41 47 53 59 65 73 83 93 103 113 123 135 149

57 63 69 75 81 89 99 109 119 129 139 149 159 171 185 199 213 227 241 257

145 155 165 175 185 195 207 221 235 249 263 277 291 305 321 339 357 375 393 411

285 299 313 327 341 355 369 385 403 421 439 457 475 493 511 531 553 575 597 619

Figure 7. Hirota’s KdV with parabolic boundary to the left. The growth in the

rightmost column is now cubic, 1
6 (8m3 − 9m2 + 25m− 9)± 1

2 .

x0,2 =
f0,0 f−1,1

2 f−2,1 f−3,1 f−4,2 + l.o.

f−1,1 f−1,0 f−2,1 f−3,1 f−4,1
. (5)

Thus x0,2 depends on all initial values of type fn,0 and fn,1 but only on f−4,2 in the

m = 2 row, i.e. it depends on 7 initial values and the highest degree term depends on

exactly 6 of them.

Usually the number of initial values in the past light-cone grows linearly with n

or m; this is what happens for the corner and staircase initial configurations of Figure

2. However, if the number of initial values grows quadratically with m (as in the case

of the boundaries in Figures 6 and 7 where it grows as m2 + m + 1) then complexity

grows one unit faster: the degree growth in the m direction is quadratic for Liouville

and cubic for Hirota’s KdV, as can be seen from Figure 7. But the complexity can be

made to grow exponentially for Hirota’s KdV or even for Liouville, if the initial values

for the left-hand boundary are located for example at −2m ≤ n ≤ −2m−1.

The effects induced by a faster-than-linear growth of the number of initial values

in the past light-cone, illustrated above, are fairly interesting by themselves. However,

if we wish to use degree growth as an objective criterion and, most importantly, as a

tool for identifying integrable lattice equations then these effects are best eliminated.
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One solution would be to consider the degree growth with respect to only a single

initial value. (In practical computations all other initial values can then be numerical.)

Such an approach is illustrated in Figures 8 and 9. In each of these figures the missing

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • 1 1 1 1 1 1 1 1

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

◦ 1 2 2 2 2 2 2 2 2

Figure 8. Degrees w.r.t an individual initial value: Liouville equation. With the

linear growth of the boundary eliminated the degree growth is bounded.

corner point is taken to be at (0, 0) and the sole initial value at (1, 1). The initial values

f1,m (m > 1) and fn,1 (n > 1) are numerical. For the Liouville equation the degrees

are then bounded (dn,m = min(n,m, 2)) whereas for the usual, integrable, version of

Hirota’s KdV the degrees in Figure 9a) are given by dn,m = 2 min(n,m) − 1, i.e. they

now exhibit linear growth. For the non-integrable version of Hirota’s KdV equation of

Figure 9b) the growth is still exponential. It is interesting to observe that the degrees

in Figures 9b) and 5 satisfy very similar recursion relations:

dn,m = dn−1,m + dn,m−1 (n 6= m) and dn,n = dn−1,n + dn,n−1 + 1,

λ = 1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • 1 1 1 1 1 1 1 1

◦ 1 3 3 3 3 3 3 3 3

◦ 1 3 5 5 5 5 5 5 5

◦ 1 3 5 7 7 7 7 7 7

◦ 1 3 5 7 9 9 9 9 9

◦ 1 3 5 7 9 11 11 11 11

◦ 1 3 5 7 9 11 13 13 13

◦ 1 3 5 7 9 11 13 15 15

◦ 1 3 5 7 9 11 13 15 17

a): λ = 2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • 1 1 1 1 1 1 1 1

◦ 1 3 4 5 6 7 8 9 10

◦ 1 4 9 14 20 27 35 44 54

◦ 1 5 14 29 49 76 111 155 209

◦ 1 6 20 49 99 175 286 441 650

◦ 1 7 27 76 175 351 637 1078 1728

◦ 1 8 35 111 286 637 1275 2353 4081

◦ 1 9 44 155 441 1078 2353 4707 8788

◦ 1 10 54 209 650 1728 4081 8788 17577

b):

Figure 9. Degrees w.r.t an individual initial value: Hirota’s KdV for λ = 1 (integrable)

and λ = 2 (non-integrable). When the linear growth of the boundary is eliminated

the degrees in the integrable case grow linearly, while for the non-integrable cases the

degrees still grow exponentially.
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for Figure 9b) and

dn,m = dn−1,m + dn,m−1 + 2 (n 6= m) and dn,n = dn−1,n + dn,n−1 + 3,

for Figure 5. In fact, the number sequence on the diagonal in Figure 9b) is known, it

is sequence M2811 or A006134 in [17] and it can be shown to grow asymptotically as

4n. As the only difference between the settings in Figure 9b) and Figure 5 is that in

the latter the number of initial values grows linearly with n and m, whereas in Figure

9b) there is only a single initial value, it follows that asymptotically the degrees on the

diagonal in Figure 5 should grow at least as fast as 4n. It can be shown that this is

indeed the exact asymptotic growth rate.

In summary, if we only measure the degree growth with respect to a single specific

initial value (as opposed to all initial values as one does in standard algebraic entropy

calculations) any problems due to the past light-cone are eliminated. One may say

that the effects from the past light-cone are “additive” and by choosing only one initial

value as independent variable we can take care of this artefact. An added bonus of this

approach is that, in practice, instead of symbols one can assign numerical values to all

other initial values, which dramatically reduces the calculation time. Obviously, finding

even just a single set of such values for which the degree growth becomes exponential

is sufficient to show that the equation exhibits exponential degree growth in the usual

sense. But if the aim is to establish integrability by showing that exponential growth is

absent from the system, then of course one has to perform the calculations with greater

care and verify that the result does not depend on the specifics of the numerical initial

values or, indeed, on the choice of position for the initial value for which the degree is

calculated.

2.3. Problems originating in the future light-cone

If the boundary on which the initial values are given intersects the future light-cone, the

effect on the degree growth can be even more dramatic than in the previous case. With

such a boundary there can be (from the viewpoint of integrability tests) potentially

catastrophic interference when new independent variables—i.e. initial values—prevent

cancellations. Such interference will result in much faster degree growth than one would

find for ordinary corner or staircase-type initial value problems.

One such case is illustrated in Figure 10 for Hirota’s discrete KdV equation. Instead

of a vertical boundary as one would have in a corner-type initial value problem, we now

have a 45o forward leaning boundary. Note that the upper boundary is not a staircase

and therefore evolution is well defined, i.e. the initial value problem is well-posed. (A

staircase would allow evolution to the SE direction, conflicting eventually with evolution

starting from the bottom boundary.) We observe that on the diagonal the degree growth

is exponential, dn,n = 3(2n − 1), and that one step to the right from the diagonal the

degrees are given by dn,n−1 = 9(2n−1 − 1) − 2n. After these first two steps the degree

growth for a given m as a function of n is the same as in Figure 4 b), namely (4m−2)n.
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• • • • • • • • • • • •
• 3 5 7 9 11 13 15 17 19 21 23

• 9 21 27 33 39 45 51 57 63 69

• 21 55 65 75 85 95 105 115 125

• 45 125 139 153 167 181 195 209

• 93 267 285 303 321 339 357

• 189 553 575 597 619 641

• 381 1127 1153 1179 1205

• 765 2277 2307 2337

• 1533 4579 4613

• 3069 9185

• 6141

Figure 10. The integrable Hirota dKdV with 45 degree corner configuration. Along

the horizontal axis the growth is linear after the first 2 lattice points, but along the

diagonal the growth is exponential dn,n = 3(2n − 1) and next to it 9(2n−1 − 1)− 2n.

λ = 1

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ 1 1 1 1 1 1 1 1 1 1 1

◦ 2 4 4 4 4 4 4 4 4 4

◦ 4 10 10 10 10 10 10 10 10

◦ 8 22 22 22 22 22 22 22

◦ 16 46 46 46 46 46 46

◦ 32 94 94 94 94 94

◦ 64 190 190 190 190

◦ 128 382 382 382

◦ 256 766 766

◦ 512 1534

◦ 1024

Figure 11. The integrable Hirota dKdV with 45 degree corner configuration and a

single variable . Along the diagonal the growth is exponential dm,m = 2m−1 and for

n > m dn,m = 3 2m−1 − 2.

We note that for the Liouville equation the degrees in the 45o corner region are in fact

the same as in the 90o corner of Figure 4a).

Above we have found that the past light-cone artefacts can be eliminated by

calculating degrees with respect to just one independent variable among the initial

values. It should be clear however that the same approach will not resolve problems

that have to do with the future light-cone. For example, if we calculate the degree

growth with respect to a single intial value for the initial value problem of Figure 10 we

get the result in Figure 11. Observe that the growth rate on the diagonal m = n is 2m

for both cases. Though degree growth calculations with respect to a single initial value
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do not remove the problem, they do yield results that display it in a distilled form.

As mentioned before, when computing the degree growth with respect to a single

initial variable all the other initial values can be taken as (generic) numerical values,

and the degrees in Figure 11 are in fact obtained in this way. One could of course

wonder why in such a calculation where all but a single initial value take numerical

values, the growth on the diagonal in Figure 11 is so much faster than that on the

diagonal for the corner initial value problem of Figure 9. But it should be noted that

the values derived from the corner configuration are intricately related, allowing subtle

cancellations, which is the reason for slow growth. If we replace these variables by

random numbers the relations are eliminated and cancellations are no longer possible.

(One can say that the future light-cone problems are “multiplicative” in nature.) Vice

versa, we can note that the initial conditions on the vertical boundary in Figure 9 needed

to reproduce these exact numerical values on the line m = n+ 1 are in fact increasingly

complex rational expressions in the (sole) symbolic initial value.

We have also studied some other initial boundaries that can be problematic. One

possibility is to have a wedge type boundary as in Figure 12 for the discrete Liouville

equation. From the degrees on the shaded diagonal it is, at first, difficult to determine

the rule for the degree growth but after computing more steps the type of growth

on the diagonal becomes clearer, see Figure 13. There are regions of slow growth

• • •

• 2 3 • • •

• 3 4 5 6 7 • • •

• 5 7 8 9 11 12 13 • • •

• 6 8 10 11 13 15 16 17 18 19 • • •

• 7 9 11 12 14 16 17 18 19 20 21 22 23 • • •

• 11 13 14 16 18 19 23 24 25 27 28 29 31 32 33

• 12 15 16 18 20 21 25 29 30 32 34 35 37 39 40

• 13 16 17 19 21 22 26 30 31 33 35 36 38 40 41

• 17 18 23 25 26 30 34 35 37 39 40 42 44 45

• 18 19 24 29 30 34 38 39 41 43 44 46 48 49

• 19 20 25 30 31 35 39 40 42 44 45 47 49 50

• 21 27 32 33 37 41 42 45 47 48 50 52 53

• 22 28 34 35 39 43 44 47 50 51 53 55 56

• 23 29 35 36 40 44 45 48 51 52 54 56 57

• 31 37 38 42 46 47 50 53 54 56 58 59

• 32 39 40 44 48 49 52 55 56 58 60 61

Figure 12. Discrete Liouville equation in a step 3 wedge.
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Figure 13. Same situation as in Figure 12 but for extended range. The vertical axis

gives the degree of the numerator and the horizontal axis the order of iteration n. The

approximate fit is with dn,n = 0.1455 · exp[3n
1
4 ].

followed by jumps and we get a fairly good fit for the degree growth with the curve

0.1455 · exp[3x
1
4 ], but similar fits with slightly different exponents are also possible. In

all cases the exponent was found to be close to x
1
4 and thus asymptotically the growth

is sub-exponential but faster than any polynomial: anα < dn,n < beβn for all α, β > 0

(and suitable constants a(α), b(β)), and the algebraic entropy as conventionally defined

is still zero.

3. Summary

In this letter we have discussed how the choice of initial value problem can affect the

degree growth in a lattice equation. Conventional initial value problems use corner or

staircase boundaries, but one can have a well defined (well-posed) evolution starting

with other kinds of initial value boundaries.

One of the problems we have identified concerns the number of initial values in a

point’s past light-cone, which influences the subsequent degrees. In particular, for a

boundary that recedes exponentially, we found that one can obtain exponential degree

growth even for linearizable equations. In order to avoid any such ambiguous growth

due to past light-cone effects, we propose to study the degree growth with respect to

one individual initial value instead of all initial values. If this growth is polynomial,

then its degree is one less than that for the conventional corner and staircase initial
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values. Moreover, in such a calculation the remaining initial values may be taken to be

purely numerical, but in that case sufficient care must be taken to ensure that the choice

of initial values does not influence the observed degree growth (e.g., due to accidental

cancellations).

The situation is even more interesting and problematic in cases where the initial

value boundaries intersect the future light-cone. We have shown that if, for Hirota’s

discrete KdV equation, the boundary of the corner configuration is tilted forward to a

45o angle, one can observe exponential degree growth even though the lattice equation

is supposedly integrable. Another interesting finding is the behaviour in the wedge

between sloping boundaries as in Figure 12. For the Liouville equation we find growth

that is faster than polynomial but still sub-exponential. As far as the authors know this

is the first time this type of degree growth has been observed in lattice equations.

As we have shown, when testing the degree growth for a lattice equation, it is

imperative that one avoid initial value problems in which initial values appear in the

future light-cones of the lattice points that one wishes to calculate. (It is not immediately

clear however whether this simple safeguard is actually sufficient or whether there exist

other boundary-induced effects that should be taken into account.)

In this letter we have presented results for two quad equations, the discrete Liouville

equation and Hirota’s discrete KdV. However, we have obtained similar results also for

Hirota’s bilinear KdV equation (2× 3 stencil) and for the bilinear Toda lattice equation

(star-shaped, 5 points.) For the Toda equation we have several rigorous results for the

degrees which will be presented elsewhere.

While we have been discussing integrability from the point of view of the growth of

complexity, there are other viewpoints as well, e.g. relying on symmetries and Lax pairs.

One can then again ask whether a given initial value problem allows the construction

of a sufficient number of symmetries or of a meaningful Lax pair [18, 19, 20, 21]. These

approaches are for future consideration.
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