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DIVISIBILITY OF THE CENTRAL BINOMIAL COEFFICIENT
(

2n
n

)

KEVIN FORD AND SERGEI KONYAGIN

ABSTRACT. We show that for every fixed ℓ ∈ N, the set of n with nℓ|
(

2n
n

)

has a positive asymptotic density cℓ ,

and we give an asymptotic formula for cℓ as ℓ → ∞. We also show that #{n 6 x, (n,
(

2n
n

)

) = 1} ∼ cx/ log x
for some constant c. We use results about the anatomy of integers and tools from Fourier analysis. One novelty

is a method to capture the effect of large prime factors of integers in general sequences.

1. INTRODUCTION

That (n+1)|
(2n
n

)

for every positive integer n is a consequence of the integrality of the Catalan numbers.

In [12], Pomerance raised the question of how frequently n+ k|
(

2n
n

)

, where k is a fixed integer. Pomerance

showed with a simple argument that when k is positive, almost all n have the property n + k|
(2n
n

)

, and the

exceptional set up to x is O(x1−ak) for some ak > 0. When k 6 0, he proved that the set of such n is

governed by the set of such n corresponding to k = 0; more precisely,

#

{

n 6 x : (n+ k)
∣

∣

(

2n

n

)}

= #

{

n 6 x : n
∣

∣

(

2n

n

)}

+O(x1−ak).

Pomerance conjectured that n|
(2n
n

)

on a set of positive lower density, and showed that it has upper density

at most 1 − log 2; this is an easy consequence of the fact that if n has a prime factor larger than
√
2n, then

n ∤
(

2n
n

)

. The upper asymptotic density was later improved by Sanna [13] to 6 1− log 2− 0.0551.

Divisibility of
(2n
n

)

by higher powers of n has also been considered by several people; see the On-line

Encyclopedia of Integer Sequences [11], sequences A014847, A121943, A282163, A282672. A283073,

and A283074.

Our main result is the following.

Theorem 1. Fix ℓ ∈ N. The set of n with nℓ|
(2n
n

)

has a positive asymptotic density cℓ. The density may be

computed as follows: Let U1, U2, . . . be independent uniform-[0, 1] random variables, and let

(1.1) g1 =

⌊

1

U1

⌋

− 1, g2 =

⌊

1

(1− U1)U2

⌋

− 1, . . . , gj =

⌊

1

(1− U1) · · · (1− Uj−1)Uj

⌋

− 1, . . . .

Then

cℓ = E
∞
∏

j=1

(

1− 2−gj

ℓ−1
∑

h=0

(

gj
h

)

)

.

Numerically, c1 ≈ 0.114247, which matches the accumulated data, e.g. [11, Sequence A014847]. See

Section 7 for details of the calculation.
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Theorem 2. We have

cℓ ∼ ρ

(

2ℓ+ 1− log(2ℓ log(2ℓ)) − log log(2ℓ)

log 2ℓ

)

,

as ℓ→ ∞, where ρ is the Dickman function.

The Dickman function ρ is the unique continuous solution of the differential-delay equation

(1.2) ρ(u) = 1 (u 6 1), −uρ′(u) = ρ(u− 1) (u > 1).

Roughly, ρ(u) decays like 1/Γ(u), and in fact ρ is strictly decreasing for u > 1 and

(1.3) ρ(u) = e−u(log u+log log u+O(1)).

Given Theorem 1, a rought heuristic for the values given in Theorem 2 is that the factor

1− 21−gj

ℓ−1
∑

h=0

(

gj − 1

h

)

is close to 1 when gj is substantially larger than 2ℓ and is close to 0 when gj is substantilly smaller than 2ℓ.
Thus, cℓ should be close to the probability that gj > 2ℓ for all j, which equals ρ(2ℓ).

In [13], Sanna considered the set B of positive integers n such n and
(2n
n

)

are coprime and showed

that #(B ∩ [1, x]) ≪ x/
√
log x for all x > 1. On the other hand, B contains all odd primes, and thus

#(B ∩ [1, x]) ≫ x/ log x for all x > 2. We sharpen these results be proving an asymptotic formula for

#(B ∩ [1, x]).

Theorem 3. We have #{n 6 x : (n,
(2n
n

)

) = 1} ∼ cx/ log x, where

(1.4) c =
∞
∑

k=1

1

k!

∫

· · ·
∫

ui>0 ∀i
u1+···+uk=1

h(u1) · · · h(uk) du1 · · · duk, h(x) = x−121−⌊1/x⌋.

As h is bounded, the series for c converges rapidly. Numerically, c = 1.526453 . . . (See section 9).

1.1. Heuristics. For most n, the divisibility condition nℓ|
(

2n
n

)

is essentially determined by the largest prime

factors of n. By Kummer’s criterion (1852), if p is prime, then pℓ|
(2n
n

)

if and only the addition of n and n

in base-p has at least ℓ carries. This is equivalent to {n/ps} > 1
2 for at least ℓ values of s ∈ N. If p is large,

then this means (essentially) that the base-p expansion of n has at least ℓ digits which are >
p−1
2 (if a digit

equals p−1
2 , then it may or may not induce a carry). Supposing that p‖n, the final base-p digit is zero, and

the leading digit is < p/2 with high probability. There are k =
⌊

logn
log p

⌋

− 1 remaining base-p digits, and

if these are randomly distributed (over all n 6 x divisible by p and not by p2) then we expect that pℓ|
(2n
n

)

occurs with probability close to

1− 21−k
ℓ−1
∑

h=0

(

k − 1

h

)

.

Donelly and Grimmett [3] (see also [14]) proved that the largest prime factors of a random integer have,

asyptotically, the Poisson-Dirichlet distribution. A realization of this distribution is given in terms of in-

dependent uniform-[0, 1] random variables U1, U2, . . .. Let (X1,X2, . . .) be the infinite dimensional vector

formed from the decreasing rearrangement of the numbers

(1.5) Y1 = U1, Y2 = (1− U1)U2, Y3 = (1− U1)(1− U2)U3, . . . .
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Then (X1,X2, . . .) has the Poisson-Dirichlet distribution. Let pj(n) denote the j-th largest prime factor of

n. The paper [3] gives a simple, transparent proof that (X1, . . . ,Xk) and
(

log p1(n)

log n
, . . . ,

log pk(n)

log n

)

have identical distributions (asymptotically as x → ∞, where n is drawn at random from [1, x]). For a

discussion of other realizations of the Poisson-Dirichlet distribution, see Section 1 of [14]. Combining this

with our heuristic above about divisibility of
(

2n
n

)

by pℓ, we arrive at Theorem 1.

The heuristic for Theorem 3 is simpler. If n has k prime factors p1, . . . , pk, with pi = xui , then we

expect (n,
(

2n
n

)

) = 1 with probability
∏k

i=1 2
1−⌊1/ui⌋. Summing over all p1, . . . , pk with the prime number

theorem yields the result in Theorem 3.

We will make both of these heuristics precise utilizing harmonic analysis to detect the simultaneous

divisibility of
(

2n
n

)

by large prime factors of n. Section 3 contains the relevant estmates. In Section 2, we

show that the small prime factors of n divide
(2n
n

)

with very high probability, and can safely be ignored.

We prove a result about simultaneous fraction parts of quotients of primes in Section 4 that will be needed

for Theorems 1 and 3. The proof of Theorem 1 occupies Section 5 and we prove Theorem 3 in Section 6.

Sections 7 and 8 are devoted to the study of the constants cℓ, culminating in the proof of Theorem 2. Finally,

we desribe how to compute c accurately in Section 9.

2. SMALL PRIME FACTORS

In this section, we will see that only the largest prime factors of n matter for Theorems 1 and 3.

Lemma 2.1. Let p be prime, v ∈ N, ℓ ∈ N and pℓv 6 x1/100. Then

#
{

n 6 x : pv|n, pℓv ∤

(

2n

n

)

}

≪ x
1− 1

3 log p

pv
ev/3.

Proof. Suppose that n 6 x and pv|n. Write n in base-p as n = (bDbD−1 · · · b0)p, where D =
⌊

log x
log p

⌋

, so

that b0 = · · · = bv−1 = 0. Also observe that the hypotheses imply that D > 100v and hence that

ℓv 6
log x

100 log p
6
D + 1

100
<
D

99
6
D − v

98
.

The number of choices for bD is at most x/pD. By Kummer’s criterion, if pℓv ∤
(2n
n

)

, then at most ℓv − 1 of

the digits bv, . . . , bD−1 are >
p
2 . Hence, the number of choices for (bv, . . . , bD−1) is at most

ℓv−1
∑

j=0

(

D − v

j

)(

p− 1

2

)j (p+ 1

2

)D−v−j

≪
(

p+ 1

2

)D−v (D − v

ℓv

)

if p > 3, and O(
(D−v

ℓv

)

) when p = 2. Recalling that ℓv 6 (D − v)/98, by Stirling’s formula we have
(

D − v

ℓv

)

≪ e0.057(D−v)

and thus

#
{

n 6 x : pv|n, pℓv ∤

(

2n

n

)

}

≪ x

pv

(

e0.057(1 + 1
3 )

2

)D−v

≪ x

pv
e−(D−v)/3,

and the claimed inequality follows. �
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Proposition 1. For large x, let δ satisfy 0 < δ 6 1. For any 1 6 n 6 x, write n = AnBn, where

P+(An) 6 xδ < P−(Bn). Fix ℓ ∈ N. Then

#
{

n 6 x : Aℓ
n ∤

(

2n

n

)

}

≪ℓ xe
−1/(300ℓδ).

Proof. We may assume that log 2
log x < δ 6 1/(300ℓ), else the statement is trivial. Hence, by Lemma 1,

#
{

n 6 x : Aℓ
n ∤

(

2n

n

)

}

6
∑

p6xδ







∑

v6 log x
100ℓ log p

#
{

n 6 x : pv|n, pℓv ∤

(

2n

n

)

}

+
∑

v> log x
100ℓ log p

x

pv







≪
∑

p6xδ

[

x1−1/(3 log p)
∑

v6 log x
100ℓ log p

ev/3

pv
+ x1−

1
100ℓ

]

≪ x1+δ− 1
100ℓ + x

∑

p6xδ

x−1/(3 log p)

p

≪ x1−
1

150ℓ + xe−
1
3δ

≪ xe−
1

300ℓδ .

�

Next, we prove analogous bounds for integers with a given smallest prime factor.

Proposition 2. The number of integer n 6 x for which (n,
(2n
n

)

) = 1 and n has a prime factor smaller than

nδ is O( x
log xe

−1/(3δ)).

Proof. Fix p and consider those n with smallest prime factor p and such that p ∤
(

2n
n

)

. We argue as in the

ℓ = 1 case of Lemma 1, except that for fixed b2, . . . , bD we bound the number of possible b1 such that
∑D

j=1 p
jbj has no prime factor less than p with a sieve (e.g., [7, Theorem 2.2]), obtaining

#b1 ≪
p

log p
.

It follows that

#
{

n 6 x : n has smallest prime factor p, p ∤

(

2n

n

)

}

≪ x
1− 1

3 log p .

p log p
.

Summing over p 6 xδ completes the proof. �

3. EXPONENTIAL SUM ESTIMATES

We gather together in this section various estimates for exponential sum which we will need for the proof

of Theorem 1.

The first lemma is the ’Weyl-van der Corput inequality’ (see Theorems 2.2, 2.8 in [5]). It is far from the

best result of its kind, but has a relatively short proof and suffices for our purposes.

Lemma 3.1. Let j > 2 be an integer, let I be an interval and suppose that f ∈ Cj(I) and that

λ 6 |f (j)(x)| 6 αλ
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where λ > 0, α > 1. Then
∑

n∈I

e(f(n)) ≪ |I|(α2λ)
1

4J−2 + |I|1− 1
2J α

1
2J + |I|1−

2
J
+ 1

J2 λ−
1
2J ,

where J = 2j−2.

We apply this lemma to bound a certain class of exponential sums.

Lemma 3.2. Let N ∈ N, and

(3.1) f(u) = αu+

r2
∑

r=r1

βr
ur
,

where α ∈ R, 1 6 r1 6 r2, and for some A ∈ [1, N1/2] we have

(3.2) |βr1 | > N r1A, |βr/βr1 | 6 N (r−r1)/2 (r1 6 r 6 r2).

Then

max
I⊂(N,2N ]

∑

n∈I

e(f(n)) ≪r2 N
(

N−1/2j +A−1/4
)

,

where

(3.3) j = 3 +









log
(

|βr1 |
ANr1

)

logN







.

Proof. We apply Lemma 3.1. Firstly, we may assume that N is sufficiently large and that

(3.4) j 6
log logN

log 2
,

for otherwise the conclusion is trivial. Also note that j > 3. Denoting by r(j) the rising factorial r(r +
1) · · · (r + j − 1), and using (3.2), we have for N < u 6 2N the relation

f (j)(u) = (−1)j
r2
∑

r=r1

r(j)βr
ur+j

= (−1)j
r
(j)
1 βr1
ur1+j

(

1 +O

(

r2
∑

r=r1

(r(j)/r
(j)
1 )|βr/βr1 |
N r−r1

))

= (−1)j
r
(j)
1 βr1
ur1+j

(

1 +O

( r2
∑

r=r1

(r/r1)
j

N (r−r1)/2

)

)

=
(

1 +Or2

(

N−1/2
))

(−1)j
r
(j)
1 βr1
ur1+j

.

For large enough N it follows that

λ 6 |f (j)(u)| 6 αλ, λ =
r
(j)
1 |βr1 |

2(2N)r1+j
, α = 2r1+j+2.

Inserting this bound into Lemma 3.1, we have

(3.5)
1

N

∑

n∈I

e(f(n)) ≪r2 λ
1

4J−2 +N− 1
2J +N− 2

J
+ 1

J2 λ−
1
2J ,
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where J = 2j−2. We note that from (3.2) and the definition of j,

N2 |βr1 |
AN r1

6 N j 6 N3 |βr1 |
AN r1

and hence that
A

2r1+j+1N3
6 λ 6 r

(j)
1

(

A

N2

)

6 r
(j)
1 N−3/2.

When j = 3, therefore, the right side of (3.5) is

≪r2 λ
1/6 +N−1/4 +N−3/4λ−1/4 ≪ N−1/4 +A−1/4.

Now assume that j > 4 so that J > 4. Then the right side of (3.5) is

≪r2 N
− 3/2

4J−2 +N− 1
2J +N− 7

4J (N3)
1
2J ≪r2 N

− 1
4J .

Combining the two cases, j = 3 and j > 3, this concludes the proof. �

We now apply Lemma 3.2 to bound analogous sums over primes.

Lemma 3.3. Assume f satisfies (3.1), where the coefficients satisfy (3.2) for some A ∈ [1, N1/6]. Then

max
I⊂(N,2N ]

∑

p∈I

e(f(p)) ≪r2 N(logN)4
(

N
− 1

3·2j +A−1/10
)

,

where j is given by (3.3).

Proof. Our technique is standard. Throughout, constants implied by O− and ≪- may depend on r1, r2. We

begin by applying Vaughan’s identity (see, e.g. [2, Ch. 24]) to the exponential sum in question, obtaining
∑

p∈I

e(f(p)) = O(N1/2)− S1 + S2 + S3,

where

S1 =
∑

a6N1/3

Λ(a)
∑

b6N1/3

µ(b)
∑

abc∈I

e(f(abc)),

S2 =
∑

b6N1/3

∑

bc∈I

log(bc)e(f(bc)),

S3 =
∑

b>N1/3

h(b)
∑

bc∈I
c>N1/3

Λ(c)e(f(bc)),

where

h(b) =
∑

d|b

d>N1/3

µ(d).

Both S1 and S2 are “Type I” sums and we may apply Lemma 3.2 directly. For S1, we fix a and b and apply

Lemma 3.2 with N replaced by N/ab and βr replaced by βr/(ab)
r . We check that

A 6 N1/6
6 (N/ab)1/2,

∣

∣

∣

∣

β′r
β′r1

∣

∣

∣

∣

=

∣

∣

∣

∣

βr
βr1

∣

∣

∣

∣

(ab)−(r−r1) 6

(

N

ab

)(r−r1)/2

.

Thus, for any a, b we have

∑

abc∈I

e(f(abc)) ≪ N

ab

(

(N/ab)−1/2j +A−1/4
)
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and hence that

(3.6) S1 ≪ N(log2N)
(

N
− 1

3·2j +A−1/4
)

.

Bounding the inner sum over c in S2 is exactly analogous, where we use partial summation to remove the

logarithm factor. Since N/b > N2/3, we obtain a stronger bound

(3.7) S2 ≪ N(log2N)
(

N
− 2

3·2j +A−1/4
)

.

For S3, we break up the range b ∈ (N1/3, 2N2/3] into O(logN) dyadic intervals of the form (B, 2B]

where N1/3 6 B 6 2N2/3. Then we use Cauchy-Schwarz, followed by the trivial bound |h(b)| 6 τ(b) to

get

S3 ≪ (logN)max
B

∣

∣

∣

∑

B<b62B

h(b)
∑

bc∈I

Λ(c)e(f(bc))
∣

∣

∣

6 (logN)max
B

(

∑

B<b62B

h(b)2
)1/2( ∑

B<b62B

∣

∣

∣

∑

bc∈I

Λ(c)e(f(bc))
∣

∣

∣

2)1/2

≪ (logN)5/2 max
B

B1/2
(

∑

B<b62B

∣

∣

∣

∑

bc∈I

Λ(c)e(f(bc))
∣

∣

∣

2)1/2
.

Next, we expand the square and then interchange the order of summation:

(3.8)
∑

B<b62B

∣

∣

∣

∑

bc∈I

Λ(c)e(f(bc))
∣

∣

∣

2
=

∑

N
2B

<c1,c26
2N
B

Λ(c1)Λ(c2)
∑

b∈J

e(f(bc1)− f(bc2)),

where

J = {B < n 6 2B : bc1 ∈ I, bc2 ∈ I}
is a subinterval of (B, 2B]. Let R be a large constant, depending on r1, r2. The terms above with |c1 −
c2| 6 RN

BA1/5 contribute at most O(N2(logN)2/(A1/5B)) to the right side of (3.8). Now suppose that

|c1 − c2| > RN
BA1/5 . Write

f(bc1)− f(bc2) = αb(c1 − c2) +

r2
∑

r=r1

β′r
br
, β′r = βr

( 1

cr1
− 1

cr2

)

.

We apply Lemma 3.2 with βr replaced by β′r, N replaced by B and A replaced by

A′ =
AN r1β′r1
Br1βr1

.

Since

|β′r| ≍ |βr|
|c1 − c2|
cr+1
1

,

we see that
∣

∣

∣

∣

β′r
β′r1

∣

∣

∣

∣

≪ N−(r−r1)/2c
−(r−r1)
1 ≪ B−(r−r1)/2(N/B)−(r−r1)/2,

so that the hypotheses (3.2) hold. Also, A′ > A4/5 if R is large enough, and therefore
∑

b∈J

e(f(bc1)− f(bc2)) ≪ B
(

B−1/2j +A−1/5
)

.

Summing over all pairs c1, c2 we see that the expression in (3.8) is

≪ N2

B
(logN)2(N−1/(3·2j ) +A−1/5),
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and we conclude that

(3.9) S3 ≪ N(logN)4
(

N
− 1

3·2j +A−1/10
)

.

Combining (3.6), (3.7) and (3.9), this completes the proof. �

4. DETECTING FRACTIONAL PARTS

In this section we apply harmonic analysis to detect the simultaneous fractional parts of ratios of primes.

Denote by {x} the fractional part of x.

We begin with a result of Selberg.

Lemma 4.1. For any K ∈ N and any non-empty interval I ⊂ R/Z, there is a trigonometric polynomial

S+
K,I(x) =

∑

|n|6K ane(nx) which majorizes the indicator function of I and a trigonometric polynomial

S−
K,I(x) =

∑

|n|6K bne(nx) which minorizes the indicator function of I , and which satisfy the following:

• max(|an|, |bn|) 6 4/(|n| + 1) for all n.

•
∫ 1
0 SK,I(x)

± dx = length(I)± 1
K+1 .

Proof. For details and explicit construction of S±
K,I , see Chapter 1 in [10], especially formulas (16)–(22).

�

Definition. A subset R of Rk is said to be t-simple if, for any 1 6 j 6 k and any choice of zi ∈ R (i 6= j),
the 1-dimensional projection {zj : (z1, . . . , zk) ∈ R} consists of at most t disjoint intervals.

Proposition 3. Fix ε, ρ such that 0 < ρ < ε and let k ∈ N with k < 1/ε. Suppose that 1 6 m 6 x1/2, and

M1, . . . ,Mk are integers such that

(i) Mi > xε for all i;

(ii) x/2k < M1 · · ·Mkm 6 2x;

(iii) for all i, Mi 6∈
⋃

s61/ε+1(x
(1−ρ)/s, 4x1/s].

Let R be any t−simple subset of

{(x1, . . . , xk) :Mi < xi 6 2Mi (1 6 i 6 k), x < mx1 · · · xk 6 2x}.
and let Q denote the set of all k-tuples q = (q1, . . . , qk) of primes such that q ∈ R. For each 1 6 j 6 k, let

sj =
⌊

logx
logMj

⌋

−1. Then, for some ξ > 0, which depends only on ε,ρ and k, we have (writing n = q1 · · · qkm)

#
{

q ∈ Q : ∀j, qℓj
∣

∣

∣

(

2n

n

)

}

= (1 +O(ε))

k
∏

j=1

(

1− 2−sj

ℓ−1
∑

h=0

(

sj
h

))

|Q|+Ok,ε

(

tx1−ξ

m

)

,(4.1)

#
{

q ∈ Q : ∀j, qj ∤
(

2n

n

)

}

=
1 +O(ε)

2s1+···+sk
|Q|+Ok,ε

(

tx1−ξ

m

)

.(4.2)

Proof. The number of q such that qi|m for some i is O((k log x)x1−ε/m), hence we may ignore these. For

each 1 6 j 6 k and 1 6 s 6 sj , let σj,s ∈ {0, 1}, and denote by Σ the vector of the numbers σj,s. It is

possible that sj = 0 for some j, in which case terms σj,s do not appear. For each Σ let

QΣ :=

{

q ∈ Q :
{mq1 · · · qk

qs+1
j

}

∈
[σj,s

2
,
1 + σj,s

2

)

(1 6 j 6 k, 1 6 s 6 sj)

}

.

Our main task is to prove that

(4.3) |QΣ| =
(1 +O(ε)

2s1+···+sk
|Q|+Ok,ε

(

tx1−ξ

m

)

.
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For each q ∈ Q, let n = mq1 · · · qk. Since sk + 1 6 1/ε, (iii) implies that {n/qsj+2
j } < 1/2. Therefore,

(2n
n

)

is divisible by qℓj if and only if for at least ℓ values of s ∈ {1, 2, . . . , sj} we have {n/qs+1
j } > 1/2.

Likewise, qj ∤
(

2n
n

)

if and only if {n/qs+1
j } < 1/2 for every 1 6 s 6 sj . Hence, the left side of (4.1) is the

sum of QΣ over all Σ such that
∑

s σj,s > ℓ for all j, and the left side of (4.2) equals QΣ for the single Σ
with σj,s = 0 for all j, s. Thus, (4.1) and (4.2) follow from (4.3).

Fix Σ. We apply Lemma 4.1 to the intervals [0, 1/2] and [1/2, 1] and with

K =
⌊

kε−2
⌋

.

Define

ψ±
0,K(x) = S±

K,[0,1/2](x) =
∑

|n|6K

c±0,ne(nx),

ψ±
1,K(x) = S±

K,[1/2,1](x) =
∑

|n|6K

c±1,ne(nx).

Then

(4.4)
∑

q∈Q

k
∏

j=1

sj
∏

s=1

ψ−
σj,s,K

(mq1 · · · qk/qs+1
j ) 6 |QΣ| 6

∑

q∈Q

k
∏

j=1

sj
∏

s=1

ψ+
σj,s,K

(mq1 · · · qk/qs+1
j ).

Denote by λ the vector (λj,s : 1 6 j 6 k, 1 6 s 6 sj), where each component is bounded by K in absolute

value. Focusing on the lower bound (the upper bound analysis is identical), we then have

(4.5) |QΣ| >
∑

q∈Q

∑

λ

(

∏

j,s

c−σj,s,λj,s

)

e

(

m
∑

j,s

λj,s
q1 · · · qk
qs+1
j

)

.

Using Lemma 4.1, we find that the main term (λj,s = 0 for every j, s) equals

|Q|
∏

j,s

(
∫ 1

0
ψ−
σj,s,K

(u) du

)

=
|Q|

2s1+···+sk
(1 +O(1/K))s1+···+sk =

1 +O(ε)

2s1+···+sk
|Q|.

By Lemma 4.1,
∑

n |c±σ,n| ≪ logK and therefore we have

(4.6) |QΣ| > (1 +O(ε))
|Q|

2s1+···+sk
+E,

where

E ≪ (O(logK))O(k/ε)max
λ 6=0

∣

∣

∣

∣

∣

∑

q∈Q

e

(

m
∑

j,s

λj,s
q1 · · · qk
qs+1
j

)

∣

∣

∣

∣

∣

.

Fixing λ 6= 0, let h = min{j 6 k : λj,s 6= 0 for some s} and define r = min{s : λh,s 6= 0}. Fixing

qi (i 6= h), the t-simplicity of R implies that the variable qh ranges over primes in at most t subintervals I
(possibly t = 0) of (Mh, 2Mh]. We have

∑

j,s

λj,s
q1 · · · qkm
qs+1
j

= αqh +

sh
∑

s=r

λh,s
P

qsh
=: f(qh).

for some real number α (depending on m and the qi for i 6= h) and P = (q1 · · · qkm)/qh. By (ii) and (iii),

(4.7) P >
M1 · · ·Mkm

Mh
>

x

2kMh
> xρ2−kM sh

h .
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We also have |λh,s| 6 K ≪ M
1/10
h for large x. Therefore, for each interval I we may apply Lemma 3.3

with

N =Mh, r1 = r, βr1 = Pλh,r, A = 2−kxρ.

The condition βr1 > N r1A follows from (4.7), and the lower bound Mh > xε implies that A 6Mh, so that

(3.2) holds. We also have that

j 6 3 +
log(KP )

logMh
6 3 +

log x

logMh
6 3 + 1/ε.

Therefore, applying Lemma 3.3, we get

∑

qh∈I

e(f(qh)) ≪k Mh(logMh)
4

(

M
− 1

3·2j

h + x−ρ/4

)

≪ x−ξMh.

Summing over all qi (i 6= h), we find that E ≪k,ε tx
1−ξ. Combined with (4.6), this completes the proof of

(4.3). �

5. PROOF OF THEOREM 1

Throughout this section, we will assume that k is a large integer, and that ε, δ are functions of k that tend

to 0 as k → ∞; precisely, we take

(5.1) δ = e−2k/3, ε = k−2k.

Suppose that x is a large integer. We think of k being fixed and x → ∞. In this section only, we adopt the

following notation for functions f(k, x). The notation f(k, x) = o(g(k, x)) means that

∀k > 1 : lim
x→∞

f(k, x)

g(k, x)
= 0.

The notation f(k, x) = o(g(k, x)) means that

lim
k→∞

lim sup
x→∞

f(x, k)

g(x, k)
= 0.

For example, 1/k = o(1) and ekx1−1/k = o(x).
5.1. Sampling large prime factors. Take a large integer x, and select a random integer n ∈ (x, 2x]
with uniform probability. Following Donnelly and Grimmett [3], we select at random a k-tuple q(n) =
(q1, . . . , qk) of divisors of n at random, in a size-biased fashion, together with random variables X1(n), . . . ,Xk(n).
If n has fewer than k distinct prime factors, set q(n) = (1, . . . , 1) and X1(n) = · · · = Xk(n) = 0.

Otherwise, choose q1|n at random with probability
Λ(q1)
logn , where Λ is the von Mangoldt function. For

2 6 i 6 k, once q1, . . . , qi−1 are chosen, select qi|(n/q1 · · · qi−1) with probability
Λ(qi)

logn/(q1···qi−1)
. Then set

Xi(n) =
Λ(qi)

logn/(q1···qi−1)
for 1 6 i 6 k. We observe the relation

(5.2) qi = n(1−X1(n))···(1−Xi−1(n))Xi(n) (1 6 i 6 k).

The following is essentially Theorem 1 of [3], although we have stated the result with a slight modifica-

tion. For completeness, a proof is given in the Appendix.

Lemma 5.1. Fix k ∈ N. As x → ∞, the random vector (X1(n), . . . ,Xk(n)) converges weakly to the

uniform distribution (that is, Lebesgue measure) on [0, 1]k .
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We denote Px, Ex for the probability, respectively expectation, with respect to these random n, q(n) and

(X1(n), . . . ,Xk(n)), and use P and E for the uniform probability measure on [0, 1]k . For the latter, we

work with independent, uniform-[0, 1] random variables U1, . . . , Uk.

Definition. With x fixed, let Yk(x) denote the set of k-tuples y = (y1, . . . , yk) ∈ [1, x]k such that

(a) yi > xε for all i;

(b) x1−δ 6 y1 · · · yk 6 x1−δ2 ;

(c) for all i and all 1 6 s 6 1/ε + 1, yi 6∈ [x(1−ε2)/s, 4x1/s].

Lemma 5.2. The set Yk(x) is (1/ε + 2)-simple.

Proof. Fix j and let yi be arbitrary for i 6= j. Items (a) and (b) force yj into a single interval, from which

are cut at most 1/ε + 1 intervals by (c). �

Lemma 5.3. We have Px(q(n) 6∈ Yk(x) or some qi not prime) = o(1).

Proof. First, note that Px(n has fewer than k prime factors) = o(1). Now assume that n has at least k
distinct prime factors. By (5.2) and Lemma 5.1,

Px(some qi < xε) 6 Px(some qi 6 nε)

6 P
(

(1− U1) · · · (1− Ui−1)Ui 6 ε for some i
)

+ o(1)

6 P
(

Ui 6∈ [ε1/k, 1− ε1/k] for some i
)

+ o(1)

6 2kε1/k + o(1) = o(1),

upon recalling (5.1).

From (5.2), we have

q1 · · · qk = n1−(1−X1(n))···(1−Xk(n)).

Hence,

Px

(

x1−δ 6 q1(n) · · · qk(n) 6 x1−δ2
)

= Px

(

log n

log x

(

1− (1−X1(n)) · · · (1−Xk(n))
)

∈ [1− δ, 1 − δ2]
)

.

By Lemma 5.1, as k → ∞, the variable 1 − (1 − X1(n)) · · · (1 − Xk(n)) converges in distribution to

1 − (1 − U1) · · · (1 − Uk). Now E log(1 − Ui) = −1 for each i, and it follows from the Law of Large

Numbers that

(5.3) P
(

(1− U1) · · · (1− Uk) ∈ [e−1.1k, e−0.9k]
)

= 1− o(1).

Recalling the definition of δ from (5.1), we conclude that

Px

(

q1 · · · qk 6∈ [x1−δ, x1−δ2 ]
)

= o(1).

The probability that (c) fails is at most the probability that n has a prime power factor in one of the

intervals [x(1−ε2)/s, 4x1/s], which is easily bounded by Mertens’ theorem by

∑

s61/ε+1

∑

x(1−ε2)/s<q64x1/s

1

q
≪ ε2

ε
= ε = o(1).

Finally, if every qi > xε and some qi is not prime, then n is divisible by a prime power pa > xε with

a > 2. The number of such n ∈ (x, 2x] is O(x1−ε/2). This completes the proof. �
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5.2. Completing the proof. From now on, the variables qi will denote primes. Let n and q(n) be the

random quantities described above. Our main task is to show that

(5.4) Px

(

nℓ
∣

∣

∣

(

2n

n

))

= cℓ + o(1).

Theorem 1 follows immediately upon fixing k, letting x→ ∞, and then letting k → ∞.

We first show, using Proposition 1 and Lemma 5.3 that it suffice to consider large prime factors of n and

q(n) ∈ Yk(x). Let

Bn =
∏

pa‖n
p>y

pa,

where y is the smallest power of two that is > x2δ . Applying Proposition 1, followed by an application of

Lemma 5.3, we see that

(5.5) Px

(

nℓ
∣

∣

∣

(

2n

n

))

= o(1) + Px

(

Bℓ
n

∣

∣

∣

(

2n

n

))

= o(1) + Px

(

Bℓ
n

∣

∣

∣

(

2n

n

)

and q(n) ∈ Yk(x)

)

.

If q(n) ∈ Yk(x), then by (b), q1 · · · qk > x1−δ. It follows that Bn|q1 · · · qk, that is, q1 · · · qk contains all of

the large prime factors of n. On the other hand, Proposition 1 implies that the probability that some prime

factor q < y of n satisfies qℓ ∤
(2n
n

)

is o(1). Thus

Px

(

Bℓ
n

∣

∣

∣

(

2n

n

)

and q(n) ∈ Yk(x)

)

= Px

(

q(n) ∈ Yk(x) ∧ qℓj
∣

∣

∣

(

2n

n

)

(1 6 j 6 k)

)

+ o(1).

Combined with (5.5), this gives

(5.6) Px

(

nℓ
∣

∣

∣

(

2n

n

))

= o(1) +
∑

q∈Yk(x)

Px

(

q(n) = q ∧ qℓj
∣

∣

∣

(

2n

n

)

(1 6 j 6 k)

)

.

Write n = mq1 · · · qk. Direct computation gives

Px

(

q(n) = q ∧ qℓj
∣

∣

∣

(

2n

n

)

(1 6 j 6 k)

)

=
1

x

∑

x<mq1···qk62x

qℓj |(
2n
n ) (16j6k)

(log q1) · · · (log qk)
log n log(n/q1) · · · log n/(q1 · · · qk−1)

.

It is convenient to place each qi into a dyadic interval. For each i, let Mi be the unique power of two such

that Mi < qi 6 2Mi. By conditions (b) and (c) in the definition of Yk(x),

(5.7)
(log q1) · · · (log qk)

log n log(n/q1) · · · log n/(q1 · · · qk−1)
= (1 + o(1))

(logM1) · · · (logMk)

log x log( x
M1

) · · · log( x
M1···Mk−1

)
.

We insert this last estimate into (5.6), obtaining

Px

(

nℓ
∣

∣

∣

(

2n

n

))

= o(1) + (1 + o(1))
∑

M

(logM1) · · · (logMk)

log x log
(

x
M1

)

· · · log
(

x
M1···Mk−1

)

×
∑

x

2kM1···Mk
<m6 2x

M1···Mk

∑

q∈R

qℓj |(
2n
n ) (16j6k)

1,(5.8)

where we have written n = q1 · · · qkm and

R = R(M,m) = {(z1, . . . , zk) ∈ Yk(x) :Mi < zi 6 2Mi (1 6 i 6 k), x < mz1 · · ·mk 6 2x}.
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Now fix M and m. By Lemma 5.2, Yk(x) is (1/ε + 2)-simple and thus R is also (1/ε + 2)-simple. We

may then apply Proposition 3 to R. Condition (iii) in that Proposition holds with ρ = ε2 on account of (c).

Let sj = ⌊ log x
logMj

⌋ − 1 for each j, and define

F (b) = 1− 2−b
ℓ−1
∑

h=0

(

b

h

)

,

By Proposition 3, we get that

∑

q∈R

qℓj |(
2n
n ) (16j6k)

1 = (1 +O(ε))
k
∏

j=1

F (sj)
∑

q∈R

1 +Ok,ε(x
1−ξ),

for some ξ > 0. The final error term is negligible since the number of M is O((log x)k). Now sum over all

m and M, and rewrite the final result in terms of q using (5.7) again. By (5.8) we conclude that

Px

(

nℓ
∣

∣

∣

(

2n

n

))

= o(1) + (1 +O(ε))
∑

q∈Yk(x)

Px(q(n) = q)
k
∏

j=1

F (sj)

= o(1) + (1 +O(ε))Ex1q(n)∈Yk(x)

k
∏

j=1

F (sj),(5.9)

where (consistent with the earlier definition) by (c) we have

sj =

⌊

log x

log qj

⌋

− 1 (1 6 j 6 k).

Using Lemma 5.3 again, followed by Lemma 5.1, we arrive at

P
(

nℓ
∣

∣

∣

(

2n

n

)

)

= o(1) + Ex

k
∏

j=1

F (sj) = o(1) + E

k
∏

j=1

F (gj),

where gj is defined in (1.1). Finally, by the Law of Large Numbers, cf. (5.3) we have gj > ej/2 for all j > k
with probability 1− o(1) and this completes the proof of (5.4) upon recalling that

cℓ = E

∞
∏

j=1

F (gj).

6. PROOF OF THEOREM 3

The proof is similar to that of Theorem 1, but the details are simpler. In particular, we do not need the

work from Section 5.1. As before, the symbols q and qi denote primes.

For fixed k ∈ N and ε > 0 let

Nk,ε(x) = #
{

n = q1 · · · qk ∈ (x, 2x] :

(

n,

(

2n

n

))

= 1,∀i, qi > xε and qi 6∈
⋃

s61/ε+1

(x(1−ε3)/s, 4x1/s]
}

.

Lemma 6.1. For any fixed k > 2 and ε > 0 we have

|Nk,ε(x)| =
x

log x

{

(1 +O(ε))

∫

· · ·
∫

ε6u16...6uk61
u1+···+uk=1

h(u1) · · · h(uk) du1 · · · duk +Ok(ε
2) + o(1)

}

,
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as x→ ∞, where h(v) = v−121−⌊1/v⌋.

Proof. Consider n ∈ Nk,ε(x), and write n = q1 · · · qk with q1 < · · · < qk. Let

T =

{

xε 6 y1 < · · · < yk 6 x : x < y1 · · · yk 6 2x,∀i : yi 6∈
⋃

s61/ε+1

(

x(1−ε3)/s, 4x1/s
]

}

,

so that q = (q1, . . . , qk) ∈ T . For each i, let Mi be the unique power of two such that Mi < qi 6 2Mi, and

for a fixed M = (M1, . . . ,Mk) let T (M) = {y ∈ T :Mi < yi 6 2Mi (1 6 i 6 k)}.

With M fixed, define sj = ⌊ log x
logMj

⌋. Then the hypotheses of Proposition 3 hold with ρ = ε3. The set T
is (1/ε + 2)−simple and hence by Proposition 3 with m = 1, we get that

∑

q∈T (M)
(

q1···qk,(2nn )
)

=1

1 = (1 +O(ε))2−(s1+···+sk)
∑

q∈T (M)

1 +Ok,ε(x
1−ξ),

The prime number theorem implies that

∑

q∈T (M)

1 =
1 + o(1)

logM1 · · · logMk
Vol(T (M)).

Now for q ∈ T (M), we have sj =
⌊

logx
log qj

⌋

− 1 for each j. Thus, after summing over all M we obtain

∑

q∈T
(

q1···qk,(2nn )
)

=1

1 = Ok,ε(x
1−ξ/2) + (1 +O(ε))

∫

T

k
∏

j=1

2
1−⌊ log x

log yj
⌋

log yj
dy

= Ok,ε(x
1−ξ/2) + (1 +O(ε))

x

log x

∫

U
h(u1) · · · h(uk) du,

where

U =
{

ε 6 u1 6 · · · 6 uk 6 1 : u1 + · · · + uk = 1,∀i, ui 6∈
⋃

s61/ε+1

(1− ε3)/s, 1/s]
}

.

Since g() is bounded, the integral over the region where (1 − ε3)/s 6 ui 6 1/s for some i and some

s 6 1/ε+ 1 contributes Ok(ε
2) to the integral. This completes the proof. �

Proof of Theorem 3 from Lemma 6.1. Let Nk be the set of n ∈ (x, 2x] with k distinct prime factors and with

(n,
(

2n
n

)

) = 1. Fix ε > 0. Clearly

N1 ∼
x

log x
.

Now let k > 2. Then one of the following is true for any n ∈ Nk:

(1) n ∈ Nk,ε(x);
(2) n has a prime factor smaller than xε;

(3) n is divisible by the square of some prime larger than xε; or

(4) n has a prime factor in
⋃

s61/ε+1(x
(1−ε3)/s, 4x1/s].
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Lemma 6.1 gives the size of Nk,ε(x). By Proposition 2, the number of n satisfying (2) isO(e−1/(3ε)x/ log x).

The number of n satisfying (3) is evidently ≪ x1−ε/2. Fixing s, the number of n ∈ Nk, with all prime fac-

tors > xε and with a prime factor in I = (x(1−ε3)/s, 4x1/s] is zero for s = 1, and when s > 2 it is at

most
∑

q1∈I

∑

q2,··· ,qk−1
∀i: qi>xε

q1···qk−162x1−ε

π

(

x

q1 · · · qk−1

)

≪
∑

q1∈I

∑

q2,...,qk∈(xε,x]

x

εq1 · · · qk−1 log x

≪ x

log x

(log 2/ε)k−1ε3

ε
.

After summing the above over s 6 1/ε + 1, we conclude that

|Nk| =
x

log x

{

1

k!

∫

· · ·
∫

ε6u1,...,uk61
u1+···+uk=1

g(1/u1) · · · g(1/uk) du +O
(

e−1/(3ε) + ε(log 2/ε)k−1 + o(1)
)

}

.

The function g() is bounded above by 2, thus upon letting ε→ 0 we find that

(6.1) |Nk| ∼
x

k! log x

∫

· · ·
∫

06u1,...,uk61
u1+···+uk=1

h(u1) · · · h(uk) du (x→ ∞)

for each fixed k. On the other hand, if n has more than K prime factors, then n has a prime factor < x1/K ,

and by Proposition 2, there are O(e−K/3x/ log x) such integers. That is, for any fixed K ,

#{B ∩ [1, x]} =

K
∑

k=1

Nk +O

(

e−K/3 x

log x

)

.

Summing (6.1) and then letting K → ∞, Theorem 3 follows. �

7. NUMERICAL ESTIMATES OF THE DENSITY

It is convenient here to go back to the variables Yi given in (1.5). Moreover, in order for the product in

the definition to be nonzero, we need Yi 6
1

ℓ+1 for all i. In particular, this shows that

(7.1) cℓ 6 ρ(ℓ+ 1) = e−(1+o(1))ℓ log ℓ

as ℓ → ∞, where ρ is the Dickman function. We have

(7.2) cℓ = E

∞
∏

j=1

g(yj), g(y) =

{

1− 21−⌊1/y⌋
∑ℓ−1

h=0

(⌊1/y⌋−1
h

)

if 0 < y 6 1
ℓ+1

0 if y > 1
ℓ+1 .

We estimate cℓ using Laplace transforms. By Theorem 3.2 of [9], we have that

(7.3) F (s) :=

∫ ∞

0
e−st

(

E
∞
∏

j=1

g(tyj)
)

dt =
1

s
exp

(

∫ ∞

0

g(z) − 1

z
e−sz dz

)

(ℜs > 0).

Theorem 3.2 of [9] is only stated for real s > 0, but the proof gives the result in the full half-plane ℜs > 0.

The left side of (7.3) is an entire function of s ∈ C, since

E
∞
∏

j=1

g(tyj) 6 ρ(t(ℓ+ 1))
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decays faster than exponentially in t; however the right side is only well defined for ℜs > 0. We massage

the right side using the standard function

(7.4) E1(z) =

∫ ∞

z

e−t

t
dt.

Since g(z) = 0 for z > 1
ℓ+1 we may decompose

∫ ∞

0

g(z) − 1

z
e−sz dz =

∫ 1
ℓ+1

0

g(z) − 1

z
e−sz dz − E1

(

s

ℓ+ 1

)

.

We next use the fact that g(z) is a step-function with jumps at the points 1/k, where k is an integer satisfying

k > ℓ+ 1. Using the Pascal relation, adn in the notation of Stieltjes integration, we have

dg

(

1

k

)

= g

(

1

k − 1

)

− g

(

1

k

)

= −22−k
ℓ−1
∑

h=0

(

k − 2

h

)

+ 21−k
ℓ−1
∑

h=0

((

k − 2

h− 1

)

+

(

k − 2

h

))

= −21−k

(

k − 2

ℓ− 1

)

.

Thus, applying (Stieltjes) integration by parts we find that

∫ (1/(ℓ+1))+

0
(g(z) − 1)

e−sz

z
dz = E1

(

s

ℓ+ 1

)

+

∫ (1/(ℓ+1))+

0
E1(sz)dg(z)

= E1

(

s

ℓ+ 1

)

−
∑

k>ℓ+1

21−k

(

k − 2

ℓ− 1

)

E1

( s

k

)

.

Here we used that limy→0+ g(y) = 1 and limz→0E1(sz)(g(z) − 1) = 0. Inserting this into (7.3) and

inverting, we conclude the following:

Proposition 4. For any σ > 0, we have

cℓ =
1

2πi

∫ σ+i∞

σ−i∞

es

s
exp

{

−
∑

k>ℓ+1

21−k

(

k − 2

ℓ− 1

)

E1

( s

k

)}

ds.

Computing cℓ was accomplished with the Python scripts mpmath, which have a built-in function for

numerically inverting the Laplace transform, and which can can be computed to arbitrary precision 1.

from mpmath import *
mp.dps=100 # digit accuracy of internal computations

def F(s,l):

x=mpf(’0.0’)

for k in range(l+1,200):x=x+2**(1-k)*binomial(k-2,l-1)*mp.e1(s/k)

return(mp.exp(-x)/s)

c = lambda l : mp.invertlaplace(lambda z: F(z,l),mpf(1.0))

TABLE 1. Python code to compute cℓ

1We are not completely confident in these numerical values. They are the result of comparing the mpmath numbers with different

precision, and the displayed digits are those that are stable when increasing the working precision.
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We get

c1 = 0.11424743 . . .

c2 = 0.003227778 . . .

c3 = 0.000031511777490 . . .

c4 = 1.33012994669 . . . × 10−7

c5 = 2.83248121476 . . . × 10−10

c6 = 3.40390904801 . . . × 10−13.

When ℓ = 1, this is in fairly good aggreement with accumulated numerical data, e.g. [11, Sequence

A014847].

8. PROOF OF THEOREM 2

We use Proposition 4 and invert using the saddle-point method, as in §III.5 of [15]. By the shape of the

binomial distribution, g(z) transitions from being close to 1 to being very small in the vicinity of z = 1
2ℓ .

Recall the definition (7.4) of E1(z) and define

(8.1) Ein(s) := γ + log s+ E1(s) =

∫ s

0

1− e−t

t
dt,

which is an entire function of s. By [15, Theorem 5.10, §III.5], we have

(8.2) ρ̂(s) :=

∫ ∞

0
ρ(t)e−ts dt = eγ−Ein(s).

To bound the integral in Proposition 4, we define

(8.3) J(w, u) :=

∞
∑

k=ℓ+1

21−k

(

k − 2

ℓ− 1

)

(

E1(w)−E1

(wu

k

))

= E1(w)−
∞
∑

k=ℓ+1

21−k

(

k − 2

ℓ− 1

)

E1

(wu

k

)

.

In this notation, plus (8.1), Proposition 4 implies that

cℓ =
1

2πiu

∫ σ+i∞

σ−i∞
es exp

{

γ − Ein(s/u) + J(s/u, u)
}

ds

=
1

2πi

∫ σ+i∞

σ−i∞
euw exp

{

γ − Ein(w) + J(w, u)
}

dw,

(8.4)

where u > 1 is an arbitrary parameter, to be chosen later to make J(s/u, u) small when s ≈ σ.

Comparing (8.4) with (8.2), we will see that the optimal choise of u is very close to the optimal value

needed to compute ρ(u) by inverting ρ̂, namely

(8.5) σ = −ξ0 := −ξ(u),
where ξ = ξ(u) satisfies eξ = 1 + uξ. We note that

(8.6) ξ(u) = log(u log u) +
log log u

log u
+O

(

(log log u)2

log2 u

)

.

We record estimates for ρ̂(s) on vertical segments from [15, Lemma 5.12, Ch. III].
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Lemma 8.1. Let u > 2 and ξ = ξ(u). For w = −ξ + iτ , we have

ρ̂(w) = eγ−Ein(w) =



























O

(

exp
{

−Ein(−ξ)− τ2u
2π2

}

)

if |τ | 6 π

O

(

exp
{

−Ein(−ξ)− u
π2+ξ2

}

)

if |τ | > π

1
w

(

1 +O
(

1+uξ
|w|

))

if |τ | > 1 + uξ.

We also use a standard bound for the binomial distribution which follows quickly, for example, from

Hoeffding’s inequality applied to Bernouilli random variables Xi with P(Xi = 0) = P(Xi = 1) = 1/2.

Lemma 8.2. We have

21−k

(

k − 2

ℓ− 1

)

≪ exp

{

−(k − 2ℓ)2

2k

}

.

Lemma 8.3. Let Aℓ be the random variable with

P(Aℓ = k) = ak,ℓ := 21−k

(

k − 2

ℓ− 1

)

(k > ℓ+ 1).

Then, for ℓ > 4 we have

(a) EAℓ = 2ℓ+ 1;

(b) E|Aℓ − 2ℓ|B ≪B ℓB/2 for all B > 0;

(c) EA−1
ℓ =

1

2ℓ
+O

(

1

ℓ3

)

;

(d) EA−2
ℓ =

1

4ℓ2
+

1

8ℓ3
+O

(

1

ℓ4

)

.

(e) EAle
z/Aℓ ≪ ℓez/(2ℓ) uniformly for 0 6 z 6 ℓ4/3.

Remark. The random variables are well-defined since
∑

k P(Aℓ = k) = g(0+)− g(1/ℓ) = 1.

Proof. Identity (a) follows from

EAℓ = 1 + E(Aℓ − 1) = 1 +
∑

k

(k − 1)ak,ℓ = 1 + 2ℓ
∑

k

ak,ℓ+1 = 2ℓ+ 1.

The estimate (b) follows from Lemma 8.2:

E|Aℓ − 2ℓ|B ≪
∑

k>ℓ

|k − 2ℓ|Be− 1
2k

(k−2ℓ)2 ≪ ℓB/2.

We prove (c) and (d) in a manner similar to that of the proof of (a). First, for k > 4 we have

1

k
=

1

k − 2
− 2

(k − 2)(k − 3)
+O

(

1

k3

)

and thus

EA−1
ℓ = O

(

1

ℓ3

)

+
∑

k

(

1

k − 2
− 2

(k − 2)(k − 3)

)

ak,ℓ

= O

(

1

ℓ3

)

+
1

2(ℓ− 1)

∑

k

ak,ℓ−1 −
2

4(ℓ− 1)(ℓ− 2)

∑

k

ak,ℓ−2

=
ℓ− 3

2(ℓ− 1)(ℓ − 2)
+O

(

1

ℓ3

)

=
1

2ℓ
+O

(

1

ℓ3

)

.
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Similarly,

EA−2
ℓ =

∑

k>ℓ+1

ak,ℓ

(

1

(k − 2)(k − 3)
− 5

(k − 2)(k − 3)(k − 4)
+O

(

1

k4

))

= O

(

1

ℓ4

)

+
1

4(ℓ− 1)(ℓ − 2)

∑

k

ak,ℓ−2 −
5

8(ℓ− 1)(ℓ− 2)(ℓ− 3)

∑

k

ak,ℓ−3

=
2ℓ− 11

8(ℓ− 1)(ℓ− 2)(ℓ − 3)
+O

(

1

ℓ4

)

=
1

4ℓ2
+

1

8ℓ3
+O

(

1

ℓ4

)

.

Finally we prove part (e) using Lemma 8.2. Let k0 =
⌊

2ℓ− 10ℓ2/3
⌋

and k1 = 4ℓ. We have

EAℓe
z/Aℓ ≪ ℓ ez/k0 + ℓ

2ℓ
∑

k=k0+1

exp

{

− (2ℓ− k)2

2k
+
z

k

}

+ ℓ
∑

k>10ℓ

exp

{

− (k − 2ℓ)2

2k
+
z

k

}

≪ ℓ ez/(2ℓ) + ℓ
2ℓ
∑

k=k0+1

e−ℓ1/3 + ℓ
∞
∑

k=k1

e−k/8+z/k1

≪ ℓ ez/(2ℓ),

as required. �

We use the previous two lemmas to estimate J(w, u), as defined in (8.3).

Proposition 5. Suppose that u = 2ℓ+O(log ℓ) and ξ = ξ(u). Then, on the vertical line ℜw = −ξ we have

the crude bound

(8.7) J(w, u) ≪ eξ

|w| ≪
ℓ log ℓ

|w| .

Furthermore, if |w| 6 ℓ1/4 then we have the asymptotic

(8.8) J(w, u) = e−w

[

u− w − 1

2ℓ
− 1 +O(|w|2ℓ−3/2)

]

.

Proof. Using integration by parts, we see that

E1(w)− E1

(wu

k

)

=

∫ u/k

1

e−wz

z
dz

=
e−w − e−wu/k(k/u)

w
− 1

w

∫ 1

u
k

e−wz

z2
dz

≪ eξ + eξu/k(k/u)

|w| +
(k/u)max(eξ, eξu/k)

|w|

≪ (eξ + eξu/k)(1 + k/u)

|w| .

(8.9)
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Apply (8.3), followed by an application of Lemma 8.3 (a) and (e). We have

J(w, u) ≪ 1

|w|
∞
∑

k=ℓ+1

21−k

(

k − 2

ℓ− 1

)

(eξ + eξu/k)(1 + k/u)

=
1

|w|E
(

1 +Aℓ/u
)(

eξ + eξu/Aℓ
)

≪ EAℓ

(

eξ + eξu/Aℓ
)

u|w|

≪ ℓeξ + ℓeξu/(2ℓ)

ℓ|w| ,

and (8.7) follows from the bounds on u.

Now suppose that |w| 6 ℓ1/4. By (8.6), (8.9) and Lemma 8.2, the terms in the definition (8.3) of J(w, u)

corresponding to |k − 2ℓ| > 100(ℓ log ℓ)1/2 have total sum

(8.10) ≪ e2ξ

|w|
∑

|k−2ℓ|>100(ℓ log ℓ)1/2

(1 + k/u)ak,ℓ ≪
1

ℓ100
.

When |k − 2ℓ| < 100(ℓ log ℓ)1/2, the fraction u/k = 1 +O(
√

log ℓ
ℓ ). Hence

E1(w) − E1

(wu

k

)

= e−w

∫ u
k
−1

0

e−wv

1 + v
dv

= e−w

∫ u
k
−1

0

(

1− (w + 1)v +O(|w|2v2)
)

dv

= −e−w

[

1− u

k
+ (w + 1)

(

1− u

k

)2
+O

(

|w|2 |k − u|3
ℓ3

)]

.

By Lemma 8.3 (b),

E|k − u|3 ≪ E|k − 2ℓ|3 + |2ℓ− u|3 ≪ ℓ3/2

and thus the big-O term above is ≪ |w|2ℓ−3/2. Reintroducing the summands |k − 2ℓ| > 100(ℓ log ℓ)1/2,

which are negligible by (8.10), we find using Lemma 8.3 (c) and (d) that

J(w, u) = O

(

1

ℓ100

)

− e−w

[

1− uEA−1
ℓ + (w + 1)E

(

1− u

Aℓ

)2

+O(|w|2ℓ−3/2)

]

= O

(

1

ℓ100

)

− e−w

[

1− u

2ℓ
+ (w + 1)

(

(

1− u

2ℓ

)2
+
u2

8ℓ3

)

+O(|w|2ℓ−3/2)

]

= ew
[

u− w − 1

2ℓ
− 1 +O(|w|2ℓ−3/2)

]

.

Here we used repeatedly the bounds |w| > 1 and |u− 2ℓ| ≪ log ℓ. This completes the proof of (8.8). �

We now complete the proof of Theorem 2. Begin with the w-integral on the right side of (8.4) and define

(8.11) u = 2ℓ+ 1− ξ(2ℓ), σ = uξ(u).

Since

ξ′(u) =
ξ + 1

u(ξ − 1) + 1
≪ 1

u
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and ξ(2ℓ) ≪ log ℓ, it follows that

ξ(2ℓ) = ξ(u) +O

(

log ℓ

ℓ

)

and hence that

u = 2ℓ+ 1− ξ(u) +O

(

log ℓ

ℓ

)

.

Plugging this into (8.8), we see that when w = −ξ + iτ and |τ | < ℓ1/4, we have the bound

(8.12) J(−ξ + iτ, u) = e−w

(−iτ
2ℓ

+O(|w|2ℓ−3/2)

)

≪ |τ | log ℓ+ log3 ℓ+ |τ |2 log ℓ
ℓ1/2

(|τ | < ℓ1/4).

We now insert the estimates (8.12), (8.7) and the bounds from Lemma 8.1 into the right side of (8.4). Let

τ1 = 100

√

log u

u
, τ2 = π, τ3 = 1 + uξ(u).

Write w = −ξ + iτ , ξ = ξ(u).
Our fist task is to show that the part of the integral with |τ | > τ1 is negligible. When τ1 6 |τ | 6 τ2,

Lemma 8.1 and (8.12) imply that

eγ−Ein(w)+J(w,u) ≪ e−Ein(−ξ)−τ2u/(2π2)+O(|τ | log ℓ)

≪ e−Ein(−ξ)−1000 logu.

When τ2 6 |τ | 6 τ3, Lemma 8.1, (8.7) and (8.12) together imply

eγ−Ein(w)+J(w,u) ≪ e
−Ein(−ξ)− u

π2+ξ2
+O(ℓ3/4 log ℓ)

≪ e
−Ein(−ξ)− u

2ξ2 ,

and when |τ | > τ3, Lemma 8.1 and (8.7) give

eγ−Ein(w)+J(w,u) =
1

w

(

1 +O

(

ℓ log ℓ

|w|

))

.

We find that the portion of the w-integral in (8.4) corresponding to |τ | > τ1 is

≪ e−uξ−Ein(−ξ)

ℓ500
+ e−uξ

∫ ∞

τ3

∣

∣

∣

∣

∣

eiτu

τ

(

1 +O

(

ℓ log ℓ

τ

))

dτ

∣

∣

∣

∣

∣

≪ e−uξ−Ein(−ξ)

ℓ500
+ e−uξ ≪ e−uξ−Ein(−ξ)

ℓ500
,

upon appealing to the easy bound −Ein(−ξ) ≫ ξ−1eξ ≫ ℓ.
Finally, we consider |τ | 6 τ1. By Lemma 8.1 and (8.7) it follows that

1

2πi

∫ −ξ+iτ1

−ξ−iτ1

euweγ−Ein(w)+J(w,u) dw = K(u) +O

(

e−uξ−Ein(−ξ) log
2 ℓ

ℓ

)

,

where

K(u) =
1

2πi

∫ −ξ+iτ1

−ξ−iτ1

euweγ−Ein(w) dw.

Extending the limits to −ξ ± i∞ produces a small error term by Lemma 8.1 and it follows from (8.2) that

ρ(u)−K(u) ≪
∫

|τ |>τ1

|euw−Ein(w)| dw ≪ e−ξ−Ein(−ξ)

ℓ100
.
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Gathering these estimates together, we deduce that

cl = ρ(u) +O

(

log2 ℓ

ℓ
e−uξ−Ein(−ξ)

)

.

By Theorem 5.13 of [15, Ch. III], we have

(8.13) ρ(u) =

(

1 +O

(

1

u

))(

ξ

2π(u(ξ − 1) + 1)

)1/2

eγ−uξ−Ein(−ξ) ≫ 1

u1/2
e−uξ−Ein(−ξ)

and thus

(8.14) cl = ρ(u)

(

1 +O

(

log2 ℓ

ℓ1/2

))

.

Finally, we estimate the error made by replacing u by

u∗ = 2ℓ+ 1− log(2ℓ log(2ℓ)) − log log(2ℓ)

log 2ℓ

in (8.14). By (8.6),

|u− u∗| ≪ (log log ℓ)2

log2 ℓ
.

Hence, using (8.13), (8.6), the bound ξ′(u) ≪ 1/u and the bounds

Ein(−ξ(u)) − Ein(−ξ(u∗)) ≪ eξ(u)

ξ(u)
|ξ(u∗)− ξ(u)| ≪ |u− u∗|,

uξ(u)− u∗ξ(u∗) ≪ |u− u∗| log u,

we see that

ρ(u) ∼ ρ(u∗) (u→ ∞).

Combining this with (8.14), this completes the proof of Theorem 2.

9. NUMERICAL COMPUTATION OF c

The terms with k = 1 and k = 2 in (1.4) contribute 1, respectively,
∑∞

m=2 2
1−m log

(

m
m−1

)

=

0.507833922868438392189041 . . .. Define

f(t) =

∞
∑

k=3

1

k!

∫

· · ·
∫

ui>0 ∀i
u1+···+uk=t

h(u1) · · · h(uk) du1 · · · duk,

so that c = f(1) + 1.507833922868438392189041 . . .. Extend the definition of h to (0,∞) by defining

h(u) = 1/u for u > 1. In this way, h(u) = 1/u for u > 1/2, and thus h is C∞ near t = 1. As in previous

sections, define the Laplace transform

F (s) =

∫ ∞

0
f(t)e−st dt = eJ − 1− J2/2. J =

∫ ∞

0
h(u)e−su du.
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Using that h(u) = u−121−m for 1
m+1 < u 6 1

m , m > 1, and recalling the definition (7.4) of E1(z), we

quickly derive
∫ ∞

0
h(u)e−su du =

∞
∑

m=1

21−m

∫ 1/m

1/(m+1)

e−su

u
du+

∫ ∞

1

e−su

u
du

=

∞
∑

m=2

21−mE1(s/m).

Again, we use the Python package mpmath to numerically invert the Laplace transform F (s), and this gives

c = f(1) = 1.526453 . . ..

APPENDIX A. PROOF OF LEMMA 5.1

Recall that for random q = q(n) = (q1, . . . , qk) we defined

(A.1) Xi(n) =
Λ(qi)

log( n
q1···qi−1

)
.

It suffices to show that for any real numbers 0 < ai < bi < 1 (1 6 i 6 k),

(A.2) Px(ai 6 Xi(n) 6 bi (1 6 i 6 k)) →
k
∏

i=1

(bi − ai) (x→ ∞).

Below, constants implied by O− an ≪ − may depend on k and the ai, bi. From (5.2), if Xi 6 bi for all i
then

(A.3)
n

q1 · · · qi−1
> n(1−b1)···(1−bi−1).

Hence, writing c = (1 − b1) · · · (1 − bk)mini ai, we have qi > nc for all i under the assumption that

ai 6 Xi(n) 6 bi for every i. If some qi is not prime, then n is divisible by a prime power pa > xc/2/ log x

with a > 2 and the number of such n ∈ (x, 2x] is O(x1−c/2). Thus, we may assume that the qi are all prime.

We calculate, using (A.1),

Px(ai 6 Xi(n) 6 bi (1 6 i 6 k)) =
1

x

∑

x<n62x

∑

q1|n
a16X1(n)6b1

X1(n) · · ·
∑

qk|n
a16Xk(n)6b1

Xk(n).

On the right side, the variables qi are no longer random, but we still define Xi(n) by (A.1). Since log x 6

log n 6 log(2x), the above expression is bounded below by

(1 +O(1/ log x))
∑

a1 log(2x)6log q16b1 log x

log q1
q1

· · ·
∑

ak log( 2x
q1···qk−1

)6log qk6bk log( x
q1···qk−1

)

log qk
log x

q1···qk−1

,

and bounded above by the same expression with “x” and “2x” interchanged in the logarithms.

For each fixed q1, . . . , qi−1, Mertens’ estimate gives

∑

ai log(
x

q1···qi−1
)+O(1)6log qi6bi log(

x
q1···qi−1

)+O(1)

log qi
log x

q1···qi−1

= bi − ai +O

(

1

log x

)

,

and the desired result (A.2) follows.
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