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DIVISIBILITY OF THE CENTRAL BINOMIAL COEFFICIENT (2:)
KEVIN FORD AND SERGEI KONYAGIN

ABSTRACT. We show that for every fixed £ € N, the set of n with ne| (2:) has a positive asymptotic density c ,

and we give an asymptotic formula for ¢, as £ — co. We also show that #{n < z, (n, (2:)) =1} ~cx/logx

for some constant c. We use results about the anatomy of integers and tools from Fourier analysis. One novelty
is a method to capture the effect of large prime factors of integers in general sequences.

1. INTRODUCTION

That (n + 1) (27:’) for every positive integer n is a consequence of the integrality of the Catalan numbers.
In [[12]], Pomerance raised the question of how frequently n + k| (2: ), where k is a fixed integer. Pomerance
showed with a simple argument that when £ is positive, almost all n have the property n + k| (2:), and the

exceptional set up to z is O(z'~%) for some a; > 0. When k < 0, he proved that the set of such n is
governed by the set of such n corresponding to k£ = 0; more precisely,

#{n <z:(n+k) <2:>} = #{n <@ :n <2:>} + O(x' 7).

Pomerance conjectured that n| (2:) on a set of positive lower density, and showed that it has upper density

at most 1 — log 2; this is an easy consequence of the fact that if n has a prime factor larger than v/2n, then
nt (2;:) The upper asymptotic density was later improved by Sanna to < 1 —log2 — 0.0551.

Divisibility of (277) by higher powers of n has also been considered by several people; see the On-line
Encyclopedia of Integer Sequences [11]], sequences A014847, A121943, A282163, A282672. A283073,
and A283074.

Our main result is the following.

Theorem 1. Fix { € N. The set of n with n‘| (2: ) has a positive asymptotic density cy. The density may be
computed as follows: Let Uy,Us, ... be independent uniform-|0, 1] random variables, and let

1 1 1
1.1 =1L = —— =1, ... g = —1,...
o {UlJ 92 {(1—U1)U2J rereo i {(1—U1)"'(1—Uj—1)UjJ ’
Then

h=0

%) /—1
cp = Ejl;[l 1—279 Z <‘CZ>

Numerically, ¢; ~ 0.114247, which matches the accumulated data, e.g. [[11, Sequence A014847]. See
Section [7lfor details of the calculation.
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Theorem 2. We have

cp~p <2€ + 1 —log(2¢log(2¢0)) — M) ,

log 2¢
as { — oo, where p is the Dickman function.

The Dickman function p is the unique continuous solution of the differential-delay equation
(1.2) plu) =1 (u<1), —up'(u)=plu—1) (u>1).
Roughly, p(u) decays like 1/T'(u), and in fact p is strictly decreasing for v > 1 and

(1.3) p(u) _ e—u(logu-ﬁ-loglogu—i—O(l))'

Given Theorem Il a rought heuristic for the values given in Theorem [2]is that the factor

/-1 ) 1
S <91}; >

h=0
is close to 1 when g; is substantially larger than 2/ and is close to O when g; is substantilly smaller than 2¢.
Thus, ¢, should be close to the probability that g; > 2¢ for all j, which equals p(2¢).
In [13], Sanna considered the set B of positive integers n such n and (2: ) are coprime and showed

that #(B N [1,2]) < x//logx for all z > 1. On the other hand, B contains all odd primes, and thus
#(BN[1,z]) > x/logz for all x > 2. We sharpen these results be proving an asymptotic formula for

#(BN[1,z)).

Theorem 3. We have #{n < z : (n, (2")) = 1} ~ cx/log x, where
(1.4) = Z o / / (uq) -+ h(ug) dug - - - dug, h(z) = 2~ 2t 1/=],
u; >0 Vi
ur+--tup=1

As h is bounded, the series for ¢ converges rapidly. Numerically, ¢ = 1.526453 . .. (See section [9)).

1.1. Heuristics. For most n, the divisibility condition n‘| (27:‘ ) is essentially determined by the largest prime
factors of n. By Kummer’s criterion (1852), if p is prime, then p| (2:) if and only the addition of n and n
in base-p has at least ¢ carries. This is equivalent to {n/p°} > l for at least £ values of s € N If p is large,
then this rneans (essentially) that the base-p expansion of n has at least ¢ digits which are > r-l(ifa digit
equals 2=, then it may or may not induce a carry). Supposing that p||n, the final base-p dlglt is zero, and

the leadlng digit is < p/2 with high probability. There are k = “gi ZJ — 1 remaining base-p digits, and

if these are randomly distributed (over all n < z divisible by p and not by p?) then we expect that p°| (2:)
occurs with probability close to

-1
k—1
1217k :
> (%)
h=0
Donelly and Grimmett [3] (see also [14]) proved that the largest prime factors of a random integer have,
asyptotically, the Poisson-Dirichlet distribution. A realization of this distribution is given in terms of in-

dependent uniform-[0, 1] random variables Uy, Us, . ... Let (X7, Xo, .. .) be the infinite dimensional vector
formed from the decreasing rearrangement of the numbers

(1.5) Y1 =U,Yo=(1-U)Us, Yz =(1-U1)(1—-Us)Us,....
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Then (X1, X, ...) has the Poisson-Dirichlet distribution. Let p;(n) denote the j-th largest prime factor of
n. The paper [3]] gives a simple, transparent proof that (X1, ..., X}) and

<log pi(n) 10gpk(”)>

logn 7777 logn

have identical distributions (asymptotically as x — oo, where n is drawn at random from [1, z]). For a
discussion of other realizations of the Poisson-Dirichlet distribution, see Section 1 of [14]. Combining this
with our heuristic above about divisibility of (27:‘ ) by p’, we arrive at Theorem 1l

The heuristic for Theorem [3] is simpler. If n has k prime factors p1, ..., px, with p; = z%, then we
expect (n, (2:)) = 1 with probability Hle 21-11/uil  Summing over all py, . . ., p; with the prime number
theorem yields the result in Theorem 3l

We will make both of these heuristics precise utilizing harmonic analysis to detect the simultaneous
divisibility of (%:L) by large prime factors of n. Section 3] contains the relevant estmates. In Section 2] we
show that the small prime factors of n divide (277) with very high probability, and can safely be ignored.
We prove a result about simultaneous fraction parts of quotients of primes in Section [ that will be needed
for Theorems [[land 3l The proof of Theorem [I] occupies Section [3land we prove Theorem [3]in Section [6l
Sections [7land [Blare devoted to the study of the constants ¢y, culminating in the proof of Theorem[2l Finally,
we desribe how to compute ¢ accurately in Section [0l

2. SMALL PRIME FACTORS

In this section, we will see that only the largest prime factors of n matter for Theorems [Iland 3
Lemma 2.1. Let p be prime, v € N, £ € N and va < 21100 Then

1—_1
2n T 3logp
#in <z :pn, p™ 1 < T3,
n pY

Proof. Suppose that n < x and p¥|n. Write n in base-p as n = (bpbp_1 - - - by)p, Where D = Uggﬂ, SO

that by = --- = b,—1 = 0. Also observe that the hypotheses imply that D > 100v and hence that
< log x <D+1<2<D—v'
1001og p 100 99 98

The number of choices for bp is at most z/p”. By Kummer’s criterion, if p® ¢ (27:‘), then at most /v — 1 of
the digits b,,...,bp_1 are > g. Hence, the number of choices for (b,,...,bp_1) is at most

L /D—v\ (p—1\ (p+1\P"7  [p+1\PV/D—v
Z ] 2 2 < 2 L
=0 7 !
ifp > 3, and O((Dé;”)) when p = 2. Recalling that v < (D — v)/98, by Stirling’s formula we have

<D - U> < 0-057(D~v)
v

and thus
D—v
0.057(1 4 1
#{n <z :plin,p™ e <2n>} < r w < ﬁe—(D—v)/s,
n pv 2 pv

and the claimed inequality follows. O
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Proposition 1. For large x, let 0 satisfy 0 < 6 < 1. Forany 1 < n < x, write n = A,B,, where
Pt(A,) < 2% < P7(B,). Fixt € N. Then

#{n <xz: ALY <2n>} <y pe1/(30000)
n

Proof. We may assume that iggi < § < 1/(300¢), else the statement is trivial. Hence, by Lemmal[I]
2n 2n T
Y4 ) v
o<t (S| X #{acewiat (T X 5
psz? | v 100£glogp v 1ooeglogp
Z 1-1/(3logp) Z e/ 11—
< + g~ 100z
<:1,‘ < log = pU
P v\m
2—1/(3logp)

= To0¢ +x Z

p<x6
1—-L .
<L x o 150 + ge 36

1
< ;e 30045,

Next, we prove analogous bounds for integers with a given smallest prime factor.

PI‘OpOSlthIl 2. The number of integer n < x for which (n, (27:’)) = 1 and n has a prime factor smaller than
nd is O(@ e~ 1/(39)),

Proof. Fix p and consider those n with smallest prime factor p and such that p { (2:) We argue as in the
¢ = 1 case of Lemma/[Il except that for fixed bo,...,bp we bound the number of possible b; such that
ZjDzl P b; has no prime factor less than p with a sieve (e.g., [7, Theorem 2.2]), obtaining

4b < 2.
log p

It follows that
2n x~ 3logp,
#{n x : n has smallest prime factor p, p { < > } L —.
n plogp
6

Summing over p < x° completes the proof. U

3. EXPONENTIAL SUM ESTIMATES

We gather together in this section various estimates for exponential sum which we will need for the proof
of Theorem! 11

The first lemma is the "Weyl-van der Corput inequality’ (see Theorems 2.2, 2.8 in [5]]). It is far from the
best result of its kind, but has a relatively short proof and suffices for our purposes.
Lemma 3.1. Let j > 2 be an integer; let I be an interval and suppose that f € C7(I) and that

A<D ()] < al
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where A > 0, o« > 1. Then
a

S e(f(n) < [1)(@2N) 52 + 1|37 a37 4 1] 772273,
nel

where J = 2172,
We apply this lemma to bound a certain class of exponential sums.

Lemma 3.2. Let N € N, and

(3.1) flu)=ou+ ) 5—

where a € R, 1 < r1 < 1o, and for some A € [1, N1/2] we have

(3.2) 1Bry| = N™A,  |Br/Bry| < NTTTI2 (1) < < ).
Then _
. N N_1/2J A—l/4
(g D ) € N (N a7,
where
|Bry |
log L
(3.3) j=3+ M

log N

Proof. We apply Lemma[3.1] Firstly, we may assume that N is sufficiently large and that

log log N
(3.4) 108 10g [V

9

log 2

for otherwise the conclusion is trivial. Also note that j > 3. Denoting by () the rising factorial r(r+
1)---(r+j—1), and using (3.2), we have for N < u < 2N the relation

, )]
O = 1y Y

r=ry
(4) r2 ¢ (5) /,.(9)
_ 71 Py (r ey )| Br ) Bry |
- (_1)] uritis <1 + O( Z Nr—T1
r=r1
(4) T2 j
_ (v Bry (r/r1)
o ( 1) writy <1 - O( Z N(r=r1)/2
r=ry

= (1+ 0, (N712)) (—1)1%.

For large enough N it follows that

A< () <al. \= ng)‘@“l’ — oriti+2
~ |f ('LL)| Sy 9 - 2(2N)T1+j7 a = .
Inserting this bound into Lemma[3.1] we have

(3.5) NEE:I ) <y NTT2 4 N™37 + N7H52 \"27,
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where J = 2772, We note that from (3.2)) and the definition of j,

2 |ﬁT1| j 3 |ﬁT1|
N er X N S N er

A G (A () \r—3/2
27‘1+]‘+1N3<A<T1 m <7"1N /
When j = 3, therefore, the right side of (3.3) is
<<T’2 )\1/6 + N—1/4 + N_3/4)\_1/4 < N—1/4 + A_1/4.
Now assume that j > 4 so that J > 4. Then the right side of (3.3)) is

and hence that

_3/2 _ 1 _ 7 3\ L _ 1
Ly, NTT72 4+ N727 + N™1J (N )2J Lpy N747.
Combining the two cases, j = 3 and j > 3, this concludes the proof. g

We now apply Lemma[3.2] to bound analogous sums over primes.

Lemma 3.3. Assume f satisfies (3.1), where the coefficients satisfy .2) for some A € [1, N'/6]. Then

1
.. N(log NYY(N ™52 + A~1/10
Icr(ﬂj\%(mpze;e(f(p)) <, N(log N) ( 327 + )7

where 7§ is given by (3.3).

Proof. Our technique is standard. Throughout, constants implied by O— and <- may depend on 71, 2. We
begin by applying Vaughan’s identity (see, e.g. [2, Ch. 24]) to the exponential sum in question, obtaining

Y elf(p) = O(N'?) = Sy + S5 + S5,

pel
where
Si= > Aa) > uld) D e(f(abe)),
a<N1/3 b<NL/3 abcel
Sa= 30 3 log(bee( f (be)).
b<N1/3 beel
Ss= > hb) Y Ae)el(f(be)),
b>N1/3 beel
c>N1/3
where
W)= > u(d)
d|b
d>N1/3

Both S; and S5 are “Type I”” sums and we may apply Lemma[3.2]directly. For S, we fix a and b and apply
Lemmal[3.2lwith N replaced by N/ab and f3, replaced by 3, /(ab)". We check that

/ (r—r1)/2
By B (ab)_(“”) < N .
! Bry ab

1

A< NYS < (NJab)/?,

Thus, for any a, b we have

> elflabe)) < %((N/ab)_l/” + A7)

abcel
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and hence that

(3.6) Sy < N(log? N)(N 57 + A1),

Bounding the inner sum over ¢ in Sy is exactly analogous, where we use partial summation to remove the
logarithm factor. Since N/b > N 2/3we obtain a stronger bound

(3.7) Sy < N(log2 N) (N~ 327 + A-1/4),

For S3, we break up the range b € (N'/3,2N?%/3] into O(log N) dyadic intervals of the form (B,2B]
where N'/3 < B < 2N?/3. Then we use Cauchy-Schwarz, followed by the trivial bound |h(b)| < 7(b) to
get

S5 < (log Nymax| 3" h(6) 3 Ale)e(f (b))

B<b<2B beel
/ /
e 02)"( 5[ acntra])”
B<b<2B B<b<2B bcel

2\ 1/2
5/2 1/2( ‘ ‘ )
< (log N) mng Z Z A(e)e(f(be)) .
B<b<2B  beel
Next, we expand the square and then interchange the order of summation:

(3.8) 3 ‘ZA(C)e(f(bc))f: S Ae)Ale) S e(fber) - flbez)),

B<b<2B  beel N corea<2l beJ

where

J={B<n<2B:bcy €l beyel}
is a subinterval of (B,2B]. Let R be a large constant, depending on 71,75. The terms above with |¢; —
ca] < % contribute at most O(N?%(log N)2/(AY5B)) to the right side of (3.8). Now suppose that

le1 — ca| > Write

BAl/o

F(ber) = f(bea) = ab(er — ca) + wa, B = 57(__5)

We apply Lemma[3.2 with 3, replaced by /3., N replaced by B and A replaced by

o ANTEL
BBy,
Since
) = 16,1 2
we see that K
? « N=0=m)/20-07m) o pelr=r) /2 gy~ (r=r)/2,
1

so that the hypotheses (3.2) hold. Also, A’ > A*/® if R is large enough, and therefore

Ze(f(bcl) — f(bea)) < B(B—1/2j + A—l/5)'
beJ
Summing over all pairs ¢;, co we see that the expression in (3.8) is

2 )
< %(log N)AHNTYEZ) o g=1/5)),
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and we conclude that
(3.9) Sy < N(log N) (N~ 57 + A~1/10),
Combining (3.6), (3.7) and (3.9)), this completes the proof. O

4. DETECTING FRACTIONAL PARTS

In this section we apply harmonic analysis to detect the simultaneous fractional parts of ratios of primes.
Denote by {z} the fractional part of x.
We begin with a result of Selberg.
Lemma 4.1. For any K € N and any non-empty interval I C R/Z, there is a trigonometric polynomial
S;g () = Zln\ <K ane(nx) which majorizes the indicator function of I and a trigonometric polynomial
S (x) = Z‘ n|<K bne(nx) which minorizes the indicator function of I, and which satisfy the following:
e max(|ayl, |bn]) < 4/(In| + 1) for all n.
o fol Sk.1(z)* dv = length(I) £ ﬁ
Proof. For details and explicit construction of Sli( ;» see Chapter 1 in [10]], especially formulas (16)—(22).
0

Definition. A subset R of R” is said to be t-simple if, for any 1 < j < k and any choice of z; € R (i # j),
the 1-dimensional projection {z; : (21,...,2;) € R} consists of at most ¢ disjoint intervals.

Proposition 3. Fix e, p suchthat 0 < p < € and let k € Nwith k < 1/e. Suppose that 1 < m < x'/2, and
My, ..., My are integers such that

(1) M; > x* forall i;
(i) /28 < My - Mym < 2z,
i) for all i, M; & Uecy je iy (z070)5, 41/5],
Let R be any t—simple subset of
{(x1, .. xp) : My <a; <2M; (1 <i<k)yz <mxy- -z <22}
and let Q denote the set of all k-tuples q = (q1, - - - , qx) of primes such that q € R. Foreach1 < j < k, let

s; = béng‘ZJ —1. Then, for some & > 0, which depends only on €,p and k, we have (writingn = q1 - - - qxm)

@n  #{acQ:vig] <2:>} ~ o]l (1 rny <s,j>> Q]+ O (t:”;_f) ,

j=1 h=0
, 2 1+0 tat=¢
(42) #{qu:vJ,qﬂ(:)}:ﬁ19\+ok,e<””m )

Proof. The number of q such that g;|m for some i is O((k log x)z1~¢/m), hence we may ignore these. For
eachl <j<kandl < s <sj,leto)s € {0, 1}, and denote by ¥ the vector of the numbers 0js. Itis
possible that s; = 0 for some 7, in which case terms o ; do not appear. For each X let

Qy, = {qEQ:{quiﬂ%}erj’sa +U]’8) (1<j<k71<3<3j)}-
4j

2 2

Our main task is to prove that

(1+0(e) ta' ¢
(4.3) |Q2|:m|9|+0k@< m )
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Foreach q € Q, let n = mq - - - qx. Since s + 1 < 1/e, (iii) implies that {n/q83+2} < 1/2. Therefore,

(2:) is divisible by qf if and only if for at least £ values of s € {1,2,...,s;} we have {n/ qs+1} > 1/2.

Likewise, g; 1 (2”) if and only if {n/ qs+1} < 1/2 for every 1 < s < s;. Hence, the left side of @.1)) is the

sum of Qy; over all ¥ such that ) 0; s > ¢ for all j, and the left side of @2) equals Qy. for the single 2
with 0 ¢ = 0 for all j, s. Thus, @.I) and @.2) follow from @.3).
Fix . We apply Lemma.]to the intervals [0,1/2] and [1/2,1] and with

K = |ke™?|.
Define
w(jJE,K( )= Sli{ [0, 1/2]( ) = Z C(:;:,ne(nx)v
In|<K
wa( ) = Sfi< 172, 1]( T) = Z cfne(nx).
In|<K
Then
k S
@4 D T, xma-an/a)™) < ZHH@ZJ% (ma1 -~ qr/a; ™).
qeQ j=1s=1 qeQ j=1s=1

Denote by A the vector (A, : 1 < j < k,1 < s < s;), where each component is bounded by K in absolute
value. Focusing on the lower bound (the upper bound analysis is identical), we then have

s CEEP (| CRME D Wy

qeQ A 7,8

Using Lemma4.1] we find that the main term (\; ; = 0 for every 7, s) equals

2] sits _ LT O(E)
\Q! </ Uy, i ( > :m(lJrO(l/K)) 1+ +k:281+ +Sk\Q;
By Lemmald.1] Zn |c£,| < log K and therefore we have
12l
(4.6) Qx| > (1+O(5))W+E,
where

E log K))Ok/e)
< (O(log K)) max

aq -
S e(m Sttt )|
qeQ 4
Fixing A # 0, let h = min{j < k : A\ # 0 for some s} and define » = min{s : A\, s # 0}. Fixing
qi (i # h), the t-simplicity of R implies that the variable g;, ranges over primes in at most ¢ subintervals 1
(possibly ¢ = 0) of (M}, 2M}]. We have

Sh
q - P
Z)\js s+1 = QQh“‘Z/\h,s% = f(Qh)'

S=r
for some real number o (depending on m and the g; for i # h) and P = (¢ - - - gqgm)/qp. By (i) and (iii),

>M1---Mkm T

4.7 P> > > aP2 kM
S M, o, =~ " h
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We also have |\, 5| < K < M, 2/ 10 for large x. Therefore, for each interval I we may apply Lemma 3.3]
with

N=M, ri=r, By =P\, A =2"Fgp,
The condition /3, > N A follows from {.7)), and the lower bound M}, > 2 implies that A < M, so that
(3.2) holds. We also have that

log(KP) - log =
log My, log My,
Therefore, applying Lemma[3.3] we get

j<3+ <341/

__1
Z e(f(qn)) <r Mp(log Mh)4 <Mh 327 4 x—ﬂ/4> < M.
q}LEI

Summing over all ¢; (i # h), we find that £ <, . tz'~¢. Combined with @8], this completes the proof of
0

5. PROOF OF THEOREM [1]

Throughout this section, we will assume that k is a large integer, and that ¢, § are functions of k that tend
to 0 as k — oo; precisely, we take

(5.1) §=e2kB3 o=k,

Suppose that x is a large integer. We think of k being fixed and © — oo. In this section only, we adopt the
following notation for functions f(k, z). The notation f(k,z) = o(g(k,x)) means that

Vk>1: lim I (k, x) =
z—o0 g(k,x)
The notation f(k,x) = 0(g(k, x)) means that
Flak)

lim limsu
k—00 x_mop g(x, k)
For example, 1/k = o(1) and eF2'~1/k = o(x).
5.1. Sampling large prime factors. Take a large integer x, and select a random integer n € (z,2z]
with uniform probability. Following Donnelly and Grimmett [3]], we select at random a k-tuple q(n) =

(g1, - .., qx) of divisors of n at random, in a size-biased fashion, together with random variables X1 (n), ..., Xi(n).
If n has fewer than k distinct prime factors, set q(n) = (1,...,1) and X;(n) = -+ = Xi(n) = 0.
Otherwise, choose ¢i|n at random with probability %, where A is the von Mangoldt function. For
2 <1< k,once q,...,q;—1 are chosen, select ¢;|(n/q - - - g;—1) with probability %. Then set
Xi(n) = 10% for 1 < i < k. We observe the relation

gn/(q1qi—1)

(5.2) g = n=X1 () (1=Xio1 ()X (n) (1<i<h).

The following is essentially Theorem 1 of [3]], although we have stated the result with a slight modifica-
tion. For completeness, a proof is given in the Appendix.

Lemma 5.1. Fix k € N. As x — oo, the random vector (X1(n),..., Xp(n)) converges weakly to the
uniform distribution (that is, Lebesgue measure) on [0, 1]¥.
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We denote P, E, for the probability, respectively expectation, with respect to these random n, q(n) and
(X1(n),...,Xx(n)), and use P and E for the uniform probability measure on [0, 1]*. For the latter, we
work with independent, uniform-|0, 1] random variables Uy, . . . , Uy.

Definition. With z fixed, let V() denote the set of k-tuples y = (y1,...,yx) € [1,2]* such that
(a) y; = «° for all 4;
b) 2170 <yroye <2
(c) foralliandall 1 <s < 1/e+1,y; & [¢0-/s 4g1/5).

Lemma 5.2. The set Y (z) is (1/ + 2)-simple.

Proof. Fix j and let y; be arbitrary for 7 # j. Items (a) and (b) force y; into a single interval, from which
are cut at most 1/e + 1 intervals by (c). ]

Lemma 5.3. We have P,(q(n) & Vi(x) or some q; not prime) = o(1).

Proof. First, note that P, (n has fewer than & prime factors) = o(1). Now assume that n has at least k
distinct prime factors. By (5.2)) and Lemma[5.1]

/

P, (some ¢; < z°) < P,(some ¢; < nf)

P((1—Uh) (1 = Ui—1)U; < e for some i) + o(1)
P(U; ¢ [e/* . 1 — &'/ for some i)+ o(1)
2ke'/* +0(1) = o(1),

NN N

upon recalling (3.1)).
From (3.2)), we have
G = i 0= Xa) (=X ().

Hence,

logn

(1= (=X () (1= Xe(n) € [1 = 8,1 = %)

e < ) <o) = (52

By Lemma 5.1} as & — oo, the variable 1 — (1 — Xy(n))--- (1 — Xg(n)) converges in distribution to
1—(1—-U1)---(1 —Ug). Now Elog(l — U;) = —1 for each 4, and it follows from the Law of Large
Numbers that

(5.3) P((1—U1)--- (1= Uy) € [e e %%])) =1 -3(1).

Recalling the definition of ¢ from (3.I)), we conclude that

_ _52 _
]P’x(ql---qk ¢ [zt O gl ]) =o(1).
The probability that (c) fails is at most the probability that n has a prime power factor in one of the
intervals [3:(1_52)/ s dxt/ %], which is easily bounded by Mertens’ theorem by

2

Z Z $<<%:€:6(1).

s<l/e+l g(1-e2)/s cqgdal/s

Finally, if every ¢; > «° and some ¢; is not prime, then n is divisible by a prime power p® > x° with
a > 2. The number of such n € (z,2x] is O(x'~%/2). This completes the proof. O
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5.2. Completing the proof. From now on, the variables ¢; will denote primes. Let n and q(n) be the
random quantities described above. Our main task is to show that

(5.4) P, <nf( (2:>> = ¢ +0(1).

Theorem [ follows immediately upon fixing k, letting x — oo, and then letting k — co.
We first show, using Proposition [[land Lemma [5.3] that it suffice to consider large prime factors of n and

q(n) € Yi(z). Let
B, = H pa,

p?|n
P>y

where y is the smallest power of two that is > 220, Applying Proposition Il followed by an application of

Lemma[3.3] we see that
<2:>> —5(1) + P, <Bf; (27:‘) and q(n) € yk(x)> .

55 P, <nf ( (27:‘)) = 5(1) + P, (Bﬁ

If g(n) € Vi(z), then by (b), q1 -+ qx = 2179 1t follows that Bnlq1 -+ - g, that is, qq - - - gi contains all of
the large prime factors of n. On the other hand, Proposition [Tl implies that the probability that some prime
factor ¢ < y of n satisfies ¢* { (277) iso(1). Thus

P (8] (%") and ) € 9u(@)) =P (at) € o) nf| (%) 1< < 1)) ot

Combined with (3.3)), this gives

(5.6) P, (#( (2:» =o(1)+ Y B <q(n) —qA qu‘ <2:> (1<j< k:)) .

q€YVi(x)

Write n = mgqy - - - q. Direct computation gives

P, <q(n) = quﬁ‘ <2”> 1<j< k:)> ! S (log g1) - - - (log g)

n T lognlog(n/q)---logn/(q1 - qp-1)

x<mqi-qEp <2z
2 .
a5l (%) (1<i<k)

It is convenient to place each ¢; into a dyadic interval. For each ¢, let M; be the unique power of two such
that M; < ¢; < 2M;. By conditions (b) and (c) in the definition of Yy (z),

(logg1) - - - (log g) (14 0(1) (log My)--- (log My)
lognlog(n/q1)---logn/(q1 - qp—1) log log(Mil) e log(m)
We insert this last estimate into (3.6]), obtaining

2n\\  _ (log M) - - - (log My,)
P, <nf‘<n>> =0o(1)+ (1 +0(1))%1: log 2 log (M%S ... log (%)

(5.8) X > > 1,

qcER
| (3r) (1<i<k)

(5.7

x 2x
m<
2Far, -y, IS,

where we have written n = ¢y - - - ¢zm and

R=RM,m)={(z1,...,2) € Vi(x): M; <z <2M; (1 <i<k),x <mz---my <2z}



DIVISIBILITY OF THE CENTRAL BINOMIAL COEFFICIENT (2:) 13

Now fix M and m. By Lemma[5.2] Vi (z) is (1/€ + 2)-simple and thus R is also (1/¢ + 2)-simple. We
may then apply Proposition 8to R. Condition (iii) in that Proposition holds with p = 2 on account of (c).

Lets; = ng‘;g]\f[jj — 1 for each j, and define

/—1 b
=1-2"

> ()

h=0

By Proposition Bl we get that

k
S 1=+ 0E)[[Fsi) Y L+ Op(a'9),
j=1

) qcER qER
afl(3r) (1<i<k)

for some & > 0. The final error term is negligible since the number of M is O((log z)*). Now sum over all
m and M, and rewrite the final result in terms of q using (3.7) again. By (3.8]) we conclude that

r (w] ()=o) + 14 06) ¥ Palatn —a 1f[ F(s)

qEYVk(x)

e

(5.9) =9(1) + (1 + 0(€) e lg(mey, ) | [ F(

J=1
where (consistent with the earlier definition) by (c) we have

log x .
- 1 (1<i<h).
= | 1<i<h)

Using Lemma[3.3] again, followed by Lemma[3.1] we arrive at

ol (2n b k
P(n ‘<n>> =0(1) +Em1;[1F(sj) =9(1) +EHF(gj),

J=1

where g; is defined in (LI). Finally, by the Law of Large Numbers, cf. (5.3) we have g; > €’ /2 forall j > k
with probability 1 — (1) and this completes the proof of (5.4)) upon recalling that

j=1

6. PROOF OF THEOREM [3]

The proof is similar to that of Theorem [Il but the details are simpler. In particular, we do not need the
work from Section 3.1l As before, the symbols ¢ and ¢; denote primes.
For fixed k € Nand € > 0 let

2

Nie(z) = #{n =q1- - q € (z,22] : <n, < n>> =1,Vi, ¢ > 2% and ¢; & U g(1=e%)/s 4x1/5]}.
" s<l/e+1

Lemma 6.1. For any fixed k > 2 and € > 0 we have

wk,a(xn:@{(lw(e)) / / h(un---h(uk)dul---duk+0k<e2>+o<1>},

e<ur <...<up<l
w4 up=1
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as & — oo, where h(v) = v~ 121 11/v],

Proof. Consider n € N, o(x), and write n = ¢ - - - g with ¢ < --- < g Let

T:{$E<y1<---<yk<$::ﬂ<y1' <20,Vi:y & U ((15/843:1/5]}

s<1/e+1

sothatq = (¢1,...,qx) € T. For each i, let M; be the unique power of two such that M; < ¢; < 2M;, and
forafixed M = (My,... M) let T(M) ={y €T : M; <y; <2M; (1 <i<k)}.
With M fixed, define s; = Llé‘;gx |. Then the hypotheses of Proposition Blhold with p = £3. The set T~

is (1/e + 2)—simple and hence by Proposition Bl with m = 1, we get that

Y 1=(1+0(@)2 et N 14 0y (2170,

qeT (M) qeT (M)

(0101 () =1

The prime number theorem implies that

1+o(1
QE;M L= log M:j. -(lo)g M, Vol(T(M)).
Now for q € 7(M), we have s; = Usgg ;J — 1 for each j. Thus, after summing over all M we obtain
IL"sjjJ
S s eson 15

qeT

(a1a1.(3)) =1
= Ope (a2 + (1 + O(e))

- /Mh(ul) e hug) du,

where

L{:{egulg---gukglzm—l— ctup =1,Vi,u; & U (1—¢%) /sl/s]}
s<1/e+1

Since g() is bounded, the integral over the region where (1 — ¢®)/s < w; < 1/s for some i and some
s < 1/e + 1 contributes Oy, (?) to the integral. This completes the proof. O

Proof of Theorem 3| from Lemmal6.1] Let N}, be the set of n € (x, 2x] with k distinct prime factors and with
(n, (27?)) = 1. Fix ¢ > 0. Clearly

N ~

log x
Now let k£ > 2. Then one of the following is true for any n € Nj:
(1) n € Ny (x);
(2) n has a prime factor smaller than x°;
(3) n is divisible by the square of some prime larger than z°; or
(4) n has a prime factor in Us<1/€+1(x(1_53)/3, 4a:1/9).
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Lemmal6.Tgives the size of N; - (z). By Proposition 2} the number of n satisfying (2) is O(e~/3%)z/log x).

The number of n satisfying (3) is evidently < z'~¢/2. Fixing s, the number of n € N}, with all prime fac-
tors > 2° and with a prime factor in [ = (w(l_sg)/s,élxl/s] is zero for s = 1, and when s > 2 it is at

D SR S (R DS D g

€q1 - Qr_1logx

nel q@:;’i’}}l 1€l ga,...,qp €(2% 7] @ Qk-1708
cqi=
q1qr—1<27

1—e

r  (log2/e)F~1e3
log x € )
After summing the above over s < 1/e + 1, we conclude that

log 2 { o / / (1/ur) -+ g(1/ug) du + O ( ~1/69) 4 e(log 2/e) 1 + 0(1)) }

eSUL,. U]
up+-Fup=1

<

INk| =

The function g() is bounded above by 2, thus upon letting £ — 0 we find that

x
(6.1) ]Nk\wm // h(uy) - h(ug) da (x — o)
0<uy,...,up <1
ur+-Fup=1

for each fixed k. On the other hand, if n has more than K prime factors, then n has a prime factor < VK ,
and by Proposition 2] there are O (e~ g /log x) such integers. That is, for any fixed K,

K _ X

Summing (6.1)) and then letting K — oo, Theorem [3 follows. O

7. NUMERICAL ESTIMATES OF THE DENSITY

It is convenient here to go back to the Variables Y; given in (I.3). Moreover, in order for the product in
the definition to be nonzero, we need Y; < 775 +1 for all ¢. In particular, this shows that
(71) C[ < p(g_‘_ 1) — e—(l-l-o(l))élogé

as { — oo, where p is the Dickman function. We have

00 1 — ol-11/y] 25—1 (U/yJ—l) if0 <y < A
72 —E ), — h=0 " S 7
(7.2) c |_| 9(y;),  9(y) {0 ify > o

We estimate ¢, using Laplace transforms. By Theorem 3.2 of [9], we have that
1 o -1
(7.3) F(s):= / st (E H g(ty;) > dt = - S €xp (/ &6_82 dz) (Rs > 0).
0 0 z

Theorem 3.2 of [9]] is only stated for real s > 0, but the proof gives the result in the full half-plane $s > 0.
The left side of (Z.3)) is an entire function of s € C, since

EHgtyj (€ +1)
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decays faster than exponentially in ¢; however the right side is only well defined for Rs > 0. We massage
the right side using the standard function

o] e—t
(7.4) Ei(z2) = / ——dt.

Since g(z) = 0 for z > é% we may decompose

00 o A _
0 z 0 z é + 1

We next use the fact that g(z) is a step-function with jumps at the points 1/k, where k is an integer satisfying
k > £ + 1. Using the Pascal relation, adn in the notation of Stieltjes integration, we have

(1) =0 () o () =22 () 2 (62D (57)
()

Thus, applying (Stieltjes) integration by parts we find that

/0(1/(é+1))+(g(z) B 1)e—sz dz — B < > /1/(“1 Ei(sz)dg(z)

S B > e L)

k>
Here we used that lim,_,o+ g(y) = 1 and lim, ;o F1(sz)(g(2) — 1) = 0. Inserting this into (Z3) and
inverting, we conclude the following:
Proposition 4. For any o > 0, we have

=g [ Cen{ - 3 2 (5 ) m (3) fas

o—1i00 E>0+1

Computing ¢, was accomplished with the Python scripts mpmath, which have a built-in function for
numerically inverting the Laplace transform, and which can can be computed to arbitrary precision .

from mpmath import =

mp.dps=100 # digit accuracy of internal computations

def F(s,1):
x=mpf ("0.0")
for k in range (1+1,200) :x=x+2x* (1-k) *binomial (k—-2,1-1)+mp.el (s/k)
return (mp.exp (-x)/s)

c = lambda 1 : mp.invertlaplace(lambda z: F(z,1l),mpf(1.0))

TABLE 1. Python code to compute ¢y

'We are not completely confident in these numerical values. They are the result of comparing the mpmath numbers with different
precision, and the displayed digits are those that are stable when increasing the working precision.
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We get
c1 =0.11424743 . ..
co = 0.003227778 . ..
c3 = 0.000031511777490. . .
s = 1.33012994669 . .. x 1077
c5 = 2.83248121476 ... x 10710
e = 3.40390904801 ... x 10713,
When ¢ = 1, this is in fairly good aggreement with accumulated numerical data, e.g. [11, Sequence
A014847].

8. PROOF OF THEOREM
We use Proposition 4 and invert using the saddle-point method, as in §IIL.5 of [13]. By the shape of the

binomial distribution, g(z) transitions from being close to 1 to being very small in the vicinity of z = 2—14.
Recall the definition (Z.4) of E(z) and define
s 1— e—t
(8.1) Ein(s) := v+ logs + Ei(s) = / dt,
0
which is an entire function of s. By Theorem 5.10, §II1.5], we have
o0 .
(8.2) p(s) = / p(t)e s dt = 7~ Fins),
0
To bound the integral in Proposition [4] we define
o0 o0
k—2 wu k—2 wu
— 1-k _ 1-k
83) J(w,u):= 3 2 (e - 1) (El(w) o (7) ) — Ei(w)- Y 2 (e - 1>E1 <?> .
k=0(+1 k=(+1

In this notation, plus (8.I)), Proposition 4] implies that

o+100
cy ! / ¢’ exp {7 — Ein(s/u) + J(s/u,u) } ds

- 2miu —ioco
(8.4) 1 o+i00
= — e exp {7 — Ein(w) + J(w,u) } dw,
2m 0—100

where u > 1 is an arbitrary parameter, to be chosen later to make .J(s/u, u) small when s ~ o.
Comparing (8.4) with (8.2), we will see that the optimal choise of u is very close to the optimal value
needed to compute p(u) by inverting p, namely

(8.5) o ==& = —&(u),
where & = £(u) satisfies e§ = 1 + u&. We note that

loglog u Lo ((log logu)2> .

8.6 =1 1 +
(8.6) &(u) = log(ulogu) log o«

We record estimates for p(s) on vertical segments from Lemma 5.12, Ch. III].
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Lemma 8.1. Letu > 2 and § = £(u). For w = —& + i1, we have

2

0] exp{—Ein(—&)—%}) iflr<n
pw) = ey Bin@) = { exp {—Ein(—é’) - #}) ifir|>n
% 1+O(1+u5>) if 7| > 1+ u€.

|w]

We also use a standard bound for the binomial distribution which follows quickly, for example, from
Hoeffding’s inequality applied to Bernouilli random variables X; with P(X; = 0) =P(X; =1) = 1/2.

k(k—2 (k — 20)?
1-k 7
2 <€_1><<exp{ oY }

Lemma 8.3. Let Ay be the random variable with

P(Ay = k) = ag:= 2" k(

Lemma 8.2. We have

€_1> (k>0+1).

Then, for £ > 4 we have

(a) EAy =20+ 1;
(b) E|A, — 2018 < B2 forall B >0

1 1
(c) EAg_lz—g-l-O(e— ;

L, 11
(d) EA;? 4€2+8€3+O<€4>

(e) EAe*/4t < 0/ PO yniformly for 0 < z < 04/3.
Remark. The random variables are well-defined since Y, P(A; = k) = g(07) — g(1/¢) = 1.

Proof. Identity (a) follows from

EAy=1+E(A—1) =1+ (k—Dage=1+20Y app1=20+1
k k
The estimate (b) follows from Lemma 8.2}

ElA, — 207 < Y |k —20|Pem 5 (k7207 < B/,
k>{

We prove (c¢) and (d) in a manner similar to that of the proof of (a). First, for £ > 4 we have

11 2 1
E:k—2_(k—2)(k—3)+0<ﬁ>

EAZlZO(ei?»)jLZk:(kiz_ k—2)2(k—3)>ak’£
—0<513> Z Tk t=1 = e 2) Za“ ?

:m”(%):%”(%)'

and thus
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Similarly,
EA;? = k;lau <(k7 - 2)1(1<; — - E S0=p +O (%))
~o(@) *arme —2) 2t R 2
- see=ge=s 07 )

11
:@+8e3+0<e4>

Finally we prove part (¢) using Lemmal[8.2] Let kg = L% — 1002/ 3J and k; = 4¢. We have

20
z/Ag z/ko (2€ k Z — 26) E
EAe < /le + /¢ Z exp{ o +€Zexp o +k
k=ko+1 k>10¢
20 0
< 02D |y Z G Z o—k/8+2/k
k=ko+1 k=Fk1
< 0e*/20)
as required. O

We use the previous two lemmas to estimate J(w, u), as defined in (8.3).

Proposition 5. Suppose that u = 20+ O(log ¢) and § = &(u). Then, on the vertical line Rw = —& we have
the crude bound

¢ llogt
8.7) J(w,u) € 7 < et
w| " |w|

Furthermore, if |w| < ('/* then we have the asymptotic

(8.8) J(w,u) = e {w

_ 2/—3/2
y 1+ 0wl )].

Proof. Using integration by parts, we see that

P (,u];u> ) /1u/k e_zwz .

W _ e—wu/k(k/u) 1 /1 oWz i

w w

8.9 '
ef + ef/k (kJu) N (k/u) max (€, efu/k)

|w| lw|
< (e5 + ef“/k)(l + k/u)
|wl '
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Apply B.3), followed by an application of Lemmal[8.3](a) and (¢). We have

J(w,u) < — i 21F <k_2) (e + /M) (1 + k/u)

] k=0+1 ¢-1
1
= mE(l + Ag/u) (e + 65“/‘4‘)
IE‘:AE(G5 + eﬁu/Al)
ulwl
lef 4 Lefu/(20)
fw| 7

and (8.7) follows from the bounds on w.
Now suppose that [w| < ¢*/%. By 8.8), (8.9) and Lemma[8.2] the terms in the definition 83) of .J (w, )
corresponding to |k — 2¢| > 100(£log £)'/? have total sum
o2 1
(8.10) < Tl > (1+ k/w)ars < 75
|k—2€|>100(£log £)1/2

When |k — 20| < 100(¢1log ¢)*/2, the fraction u/k = 1 + O(4/ 10756). Hence

u

=1 —wv

wu k e
Ei(w) — E (—):—W/ d
) =B (7r) =™ | g d

=e " /Z_l (1= (w+ L)v+ O(Jw|*v?)) dv
0

— v [1 - % +(w+1) (1 - %)2 +0 (\wF'k ;3u|3>] .

By Lemmal[8.3] (b),

Elk —u]® < Elk — 20 + (20 — ul® < £3/2
and thus the big-O term above is < |w|?¢~%/2. Reintroducing the summands |k — 2¢| > 100(¢log ¢)'/2,
which are negligible by (8.10), we find using Lemma[8.3](c) and (d) that

1 —w
J(w,u) =0 <W> —e

2
1—uBA; 4+ (w+ 1)E (1 - %) - O(!w[2€_3/2)]
L

2

=0 <€1%> —e [1 — 5+ w+1) <(1 - %)2 + g%) + O(ywy2e—3/2)]

_ owl|u—w—1 2,-3/2
=ec [ 57 14+ O(jw|“=>%)] .

Here we used repeatedly the bounds |w| > 1 and |u — 2¢| < log £. This completes the proof of 8.8). [

We now complete the proof of Theorem 2. Begin with the w-integral on the right side of (8.4) and define

(8.11) u=20+1-¢&(20), o = u&(u).
Since 41 .
1oy + 1
é“(u)_u(é’—l)—l—l <<u
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and £(20) < log ¢, it follows that
log ¢
£(26) =€) + 0 (227

u=20+1—-¢&u )+O<IO§€>.

Plugging this into (8.8)), we see that when w = —¢ + 47 and | 7| < ¢'/*, we have the bound

and hence that

_ 1 3 21
8.12) J(—€ +iru) =e ¥ <—+0(| |2e—3/2)> < |rlog e+ 8t Tl os b sy

20 01/2
We now insert the estimates (8.12)), (8.7) and the bounds from Lemma[8.]into the right side of (8.4). Let
log u

T1 = 100 U ) T2 =T, T3 = 1+ ’LLé(U)

Write w = —§ + i1, £ = &(u).
Our fist task is to show that the part of the integral with |7| > 7 is negligible. When 7y < |7| < 7o,
Lemmal[8.Iland (8.12) imply that

eﬁ/—Ein(w)—l—J(w,u) < e Ein(—&)—72u/(27%)+O(|7|log ¢)
< e Ein(—£)—1000 logu.

When 75 < |7] < 73, LemmaB.1] (87) and B.12) together imply

e'y—Ein(w)—i—J(w,u) <e _Ein(_f)_ﬂzig +0(£3/*log ¢)

<e — Ein(— f)——Q’

ro ()

We find that the portion of the w-integral in .4) corresponding to |7| > 7 is

—ué{—Ein(—-¢§) 00 | LiTu
<t __ "4 e‘“ﬁ/ < (1 +0 (mogé)) dr
T T T

and when |7| > 73, Lemma[8.1land (8.7) give

e'y—Ein(w)—l—J(w,u) . i
w

/500
3

B ¢ —ué—Ein(—¢) o o~ ué—Ein(—€)

/500 /500

upon appealing to the easy bound — Ein(—¢) > £~ 1ef > /.
Finally, we consider |7| < 7. By Lemma[B.1land (87) it follows that

—&+iT 2

i. i1 euwe'y—Ein(w)—l—J(w,u) dw = K(’LL) +0 e—uS—Ein(_g) log* ¢ ’

210 ) _e_in l
where

1 —&+iT1 )
K(u) = — "y EmW) gy
20 ) _eir

Extending the limits to —¢ + i0co produces a small error term by Lemma[8.1] and it follows from (8.2)) that

uw—Ein(w e—f—Ein(—f)
p(u)—K(u)<</ |evw—Ein( )]dw<<w

|7|>71
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Gathering these estimates together, we deduce that
2
c=plu)+0 <%e_“€_mn(_£)> .

By Theorem 5.13 of Ch. III], we have

(8.13) (u) = (1 +0 <1>> < 3 )1/2 uEBin(=) 5, 1
' PRI = u) ) \orlu(e = 1)+ 1) u

and thus
log? ¢
Finally, we estimate the error made by replacing u by
log log(2¢)
*=20+1—1log(2llog(20)) — —————=
u' =20+ - log(2flog(20) — <5 2%
in (819). By (86,
log log £)?
log” ¢

Hence, using (8.13), (8.6)), the bound ¢’ (u) < 1/u and the bounds

) ] . eS(w)
Bin(~(u) ~ Bin(~€(u)) < g
w€(u) — w*E(u?) < Ju — u*|logu,
we see that
plu) ~ p(u”)  (u — o0).
Combining this with (8.14)), this completes the proof of Theorem 21

9. NUMERICAL COMPUTATION OF ¢

The terms with k& = 1 and & = 2 in (L4) contribute 1, respectively, > oo, 2!"™log (%)

0.507833922868438392189041 . . .. Define

o~ ué—Ein(—¢)

[€(u”) = &(u)] < Ju—u],

so that ¢ = f(1) + 1.507833922868438392189041 . ... Extend the definition of h to (0, 00) by defining
h(u) = 1/u for u > 1. In this way, h(u) = 1/u for u > 1/2, and thus h is C°° near ¢t = 1. As in previous

sections, define the Laplace transform

Fle)= /OOO fyetat=e! —1-J%/2. J= /OOO h(u)e™ " du.
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: _ o —lol— 1
Us.1ng that h(u) =wu 207" for oy < u <
quickly derive

/OO h(u)e *" du = i gl—m /1/m ¢ du + /00 ¢ du
0 1 u 1 u

m—1 /(m+1)

m > 1, and recalling the definition (Z.4) of F1(z), we

1
m’

= Z 21 B (s/m).
m=2

Again, we use the Python package mpmath to numerically invert the Laplace transform F'(s), and this gives
c= f(1) =1.526453....

APPENDIX A. PROOF OF LEMMA [3.1]
Recall that for random q = q(n) = (¢1, . .., qx) we defined
A(gi)

(A.1) X;(n) = T p——t
q1-qi—1

It suffices to show that for any real numbers 0 < a; < b; < 1 (1 < i < k),

k
(A2) Po(a; < Xi(n) <b (1<i<k) = [[i—a) (2 — o).
i=1
Below, constants implied by O— an < — may depend on & and the a;, b;. From (3.2), if X; < b; for all ¢
then

(A3) _ " )b,

q1-qi-1
Hence, writing ¢ = (1 — by)--- (1 — bg) min; a;, we have ¢; > n€ for all ¢ under the assumption that
a; < X;(n) < b; for every i. If some g; is not prime, then n is divisible by a prime power p* > xc/? /log x
with @ > 2 and the number of such n € (x,2x] is O(x'~¢/?). Thus, we may assume that the g; are all prime.
We calculate, using (A1),

. 1
Pr(ai < Xi(n) <bi (1<i < k) =~ > Yoo X)) Xp(n)
T<n<2w qi|n qi|n
a1<X1(n)<by a1 <X, (n)<b1

On the right side, the variables ¢; are no longer random, but we still define X;(n) by (A). Since logz <
log n < log(2x), the above expression is bounded below by

1 1
(I1+0(1/logx)) Z gq Z Oo‘c)iiqu7

1
a1 log(2x)<log q1<b1 logx a ay, log(—22 ) g q1-qk—1

)<log g1, <by, log(

a1 ap—1 a1 k-1

and bounded above by the same expression with “z” and “2z” interchanged in the logarithms.

For each fixed ¢y, . . ., ¢;—1, Mertens’ estimate gives
log q; 1
Z 7g gcl = bi — a; + O s
, , log —% log
a; log(ql“fui1 )+0(1)<log q;<b; log(m)—l—O(l) q1qi—1

and the desired result (A.2) follows.
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