DIVISIBILITY OF THE CENTRAL BINOMIAL COEFFICIENT $\binom{2 n}{n}$

KEVIN FORD AND SERGEI KONYAGIN

Abstract

We show that for every fixed $\ell \in \mathbb{N}$, the set of n with $n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.$ has a positive asymptotic density c_{ℓ}, and we give an asymptotic formula for c_{ℓ} as $\ell \rightarrow \infty$. We also show that $\#\left\{n \leqslant x,\left(n,\binom{2 n}{n}\right)=1\right\} \sim c x / \log x$ for some constant c. We use results about the anatomy of integers and tools from Fourier analysis. One novelty is a method to capture the effect of large prime factors of integers in general sequences.

1. Introduction

That $(n+1) \left\lvert\,\binom{ 2 n}{n}\right.$ for every positive integer n is a consequence of the integrality of the Catalan numbers. In [12], Pomerance raised the question of how frequently $n+k \left\lvert\,\binom{ 2 n}{n}\right.$, where k is a fixed integer. Pomerance showed with a simple argument that when k is positive, almost all n have the property $n+k \left\lvert\,\binom{ 2 n}{n}\right.$, and the exceptional set up to x is $O\left(x^{1-a_{k}}\right)$ for some $a_{k}>0$. When $k \leqslant 0$, he proved that the set of such n is governed by the set of such n corresponding to $k=0$; more precisely,

$$
\#\left\{n \leqslant x:(n+k) \left\lvert\,\binom{ 2 n}{n}\right.\right\}=\#\left\{n \leqslant x: n \left\lvert\,\binom{ 2 n}{n}\right.\right\}+O\left(x^{1-a_{k}}\right) .
$$

Pomerance conjectured that $\left.n \left\lvert\, \begin{array}{c}2 n \\ n\end{array}\right.\right)$ on a set of positive lower density, and showed that it has upper density at most $1-\log 2$; this is an easy consequence of the fact that if n has a prime factor larger than $\sqrt{2 n}$, then $n \nmid\binom{2 n}{n}$. The upper asymptotic density was later improved by Sanna [13] to $\leqslant 1-\log 2-0.0551$.

Divisibility of $\binom{2 n}{n}$ by higher powers of n has also been considered by several people; see the On-line Encyclopedia of Integer Sequences [11], sequences A014847, A121943, A282163, A282672. A283073, and A283074.

Our main result is the following.
Theorem 1. Fix $\ell \in \mathbb{N}$. The set of n with $n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.$ has a positive asymptotic density c_{ℓ}. The density may be computed as follows: Let U_{1}, U_{2}, \ldots be independent uniform- $[0,1]$ random variables, and let

$$
\begin{equation*}
g_{1}=\left\lfloor\frac{1}{U_{1}}\right\rfloor-1, g_{2}=\left\lfloor\frac{1}{\left(1-U_{1}\right) U_{2}}\right\rfloor-1, \ldots, g_{j}=\left\lfloor\frac{1}{\left(1-U_{1}\right) \cdots\left(1-U_{j-1}\right) U_{j}}\right\rfloor-1, \ldots \tag{1.1}
\end{equation*}
$$

Then

$$
c_{\ell}=\mathbb{E} \prod_{j=1}^{\infty}\left(1-2^{-g_{j}} \sum_{h=0}^{\ell-1}\binom{g_{j}}{h}\right)
$$

Numerically, $c_{1} \approx 0.114247$, which matches the accumulated data, e.g. [11, Sequence A014847]. See Section 7 for details of the calculation.

[^0]Theorem 2. We have

$$
c_{\ell} \sim \rho\left(2 \ell+1-\log (2 \ell \log (2 \ell))-\frac{\log \log (2 \ell)}{\log 2 \ell}\right)
$$

as $\ell \rightarrow \infty$, where ρ is the Dickman function.
The Dickman function ρ is the unique continuous solution of the differential-delay equation

$$
\begin{equation*}
\rho(u)=1 \quad(u \leqslant 1), \quad-u \rho^{\prime}(u)=\rho(u-1) \quad(u>1) \tag{1.2}
\end{equation*}
$$

Roughly, $\rho(u)$ decays like $1 / \Gamma(u)$, and in fact ρ is strictly decreasing for $u>1$ and

$$
\begin{equation*}
\rho(u)=e^{-u(\log u+\log \log u+O(1))} \tag{1.3}
\end{equation*}
$$

Given Theorem 1, a rought heuristic for the values given in Theorem 2 is that the factor

$$
1-2^{1-g_{j}} \sum_{h=0}^{\ell-1}\binom{g_{j}-1}{h}
$$

is close to 1 when g_{j} is substantially larger than 2ℓ and is close to 0 when g_{j} is substantilly smaller than 2ℓ. Thus, c_{ℓ} should be close to the probability that $g_{j} \geqslant 2 \ell$ for all j, which equals $\rho(2 \ell)$.

In [13], Sanna considered the set \mathcal{B} of positive integers n such n and $\binom{2 n}{n}$ are coprime and showed that $\#(\mathcal{B} \cap[1, x]) \ll x / \sqrt{\log x}$ for all $x>1$. On the other hand, \mathcal{B} contains all odd primes, and thus $\#(\mathcal{B} \cap[1, x]) \gg x / \log x$ for all $x \geqslant 2$. We sharpen these results be proving an asymptotic formula for $\#(\mathcal{B} \cap[1, x])$.
Theorem 3. We have $\#\left\{n \leqslant x:\left(n,\binom{2 n}{n}\right)=1\right\} \sim c x / \log x$, where

$$
\begin{equation*}
c=\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\substack{u_{i} \geqslant 0 \forall i \\ u_{1}+\cdots+u_{k}=1}} \cdots \int_{\substack{ \\ }} h\left(u_{1}\right) \cdots h\left(u_{k}\right) d u_{1} \cdots d u_{k}, \quad h(x)=x^{-1} 2^{1-\lfloor 1 / x\rfloor} \tag{1.4}
\end{equation*}
$$

As h is bounded, the series for c converges rapidly. Numerically, $c=1.526453 \ldots$ (See section (9).
1.1. Heuristics. For most n, the divisibility condition $n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.$ is essentially determined by the largest prime factors of n. By Kummer's criterion (1852), if p is prime, then $p^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.$ if and only the addition of n and n in base- p has at least ℓ carries. This is equivalent to $\left\{n / p^{s}\right\}>\frac{1}{2}$ for at least ℓ values of $s \in \mathbb{N}$. If p is large, then this means (essentially) that the base- p expansion of n has at least ℓ digits which are $\geqslant \frac{p-1}{2}$ (if a digit equals $\frac{p-1}{2}$, then it may or may not induce a carry). Supposing that $p \| n$, the final base- p digit is zero, and the leading digit is $<p / 2$ with high probability. There are $k=\left\lfloor\frac{\log n}{\log p}\right\rfloor-1$ remaining base- p digits, and if these are randomly distributed (over all $n \leqslant x$ divisible by p and not by p^{2}) then we expect that $p^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.$ occurs with probability close to

$$
1-2^{1-k} \sum_{h=0}^{\ell-1}\binom{k-1}{h}
$$

Donelly and Grimmett [3] (see also [14]) proved that the largest prime factors of a random integer have, asyptotically, the Poisson-Dirichlet distribution. A realization of this distribution is given in terms of independent uniform- $[0,1]$ random variables U_{1}, U_{2}, \ldots Let $\left(X_{1}, X_{2}, \ldots\right)$ be the infinite dimensional vector formed from the decreasing rearrangement of the numbers

$$
\begin{equation*}
Y_{1}=U_{1}, Y_{2}=\left(1-U_{1}\right) U_{2}, Y_{3}=\left(1-U_{1}\right)\left(1-U_{2}\right) U_{3}, \ldots \tag{1.5}
\end{equation*}
$$

Then $\left(X_{1}, X_{2}, \ldots\right)$ has the Poisson-Dirichlet distribution. Let $p_{j}(n)$ denote the j-th largest prime factor of n. The paper [3] gives a simple, transparent proof that $\left(X_{1}, \ldots, X_{k}\right)$ and

$$
\left(\frac{\log p_{1}(n)}{\log n}, \ldots, \frac{\log p_{k}(n)}{\log n}\right)
$$

have identical distributions (asymptotically as $x \rightarrow \infty$, where n is drawn at random from $[1, x]$). For a discussion of other realizations of the Poisson-Dirichlet distribution, see Section 1 of [14]. Combining this with our heuristic above about divisibility of $\binom{2 n}{n}$ by p^{ℓ}, we arrive at Theorem 1

The heuristic for Theorem 3 is simpler. If n has k prime factors p_{1}, \ldots, p_{k}, with $p_{i}=x^{u_{i}}$, then we expect $\left(n,\binom{2 n}{n}\right)=1$ with probability $\prod_{i=1}^{k} 2^{1-\left\lfloor 1 / u_{i}\right\rfloor}$. Summing over all p_{1}, \ldots, p_{k} with the prime number theorem yields the result in Theorem 3.

We will make both of these heuristics precise utilizing harmonic analysis to detect the simultaneous divisibility of $\binom{2 n}{n}$ by large prime factors of n. Section 3 contains the relevant estmates. In Section 2, we show that the small prime factors of n divide $\binom{2 n}{n}$ with very high probability, and can safely be ignored. We prove a result about simultaneous fraction parts of quotients of primes in Section 4 that will be needed for Theorems 1 and 3. The proof of Theorem 1 occupies Section 5 and we prove Theorem 3 in Section 6 , Sections 7 and 8 are devoted to the study of the constants c_{ℓ}, culminating in the proof of Theorem 2 Finally, we desribe how to compute c accurately in Section 9 .

2. SMALL PRIME FACTORS

In this section, we will see that only the largest prime factors of n matter for Theorems 1 and 3
Lemma 2.1. Let p be prime, $v \in \mathbb{N}, \ell \in \mathbb{N}$ and $p^{\ell v} \leqslant x^{1 / 100}$. Then

$$
\#\left\{n \leqslant x: p^{v} \mid n, p^{\ell v} \nmid\binom{2 n}{n}\right\} \ll \frac{x^{1-\frac{1}{3 \log p}}}{p^{v}} e^{v / 3}
$$

Proof. Suppose that $n \leqslant x$ and $p^{v} \mid n$. Write n in base- p as $n=\left(b_{D} b_{D-1} \cdots b_{0}\right)_{p}$, where $D=\left\lfloor\frac{\log x}{\log p}\right\rfloor$, so that $b_{0}=\cdots=b_{v-1}=0$. Also observe that the hypotheses imply that $D \geqslant 100 v$ and hence that

$$
\ell v \leqslant \frac{\log x}{100 \log p} \leqslant \frac{D+1}{100}<\frac{D}{99} \leqslant \frac{D-v}{98} .
$$

The number of choices for b_{D} is at most x / p^{D}. By Kummer's criterion, if $p^{\ell v} \nmid\binom{2 n}{n}$, then at most $\ell v-1$ of the digits b_{v}, \ldots, b_{D-1} are $\geqslant \frac{p}{2}$. Hence, the number of choices for $\left(b_{v}, \ldots, b_{D-1}\right)$ is at most

$$
\sum_{j=0}^{\ell v-1}\binom{D-v}{j}\left(\frac{p-1}{2}\right)^{j}\left(\frac{p+1}{2}\right)^{D-v-j} \ll\left(\frac{p+1}{2}\right)^{D-v}\binom{D-v}{\ell v}
$$

if $p \geqslant 3$, and $O\left(\binom{D-v}{\ell v}\right)$ when $p=2$. Recalling that $\ell v \leqslant(D-v) / 98$, by Stirling's formula we have

$$
\binom{D-v}{\ell v} \ll e^{0.057(D-v)}
$$

and thus

$$
\#\left\{n \leqslant x: p^{v} \mid n, p^{\ell v} \nmid\binom{2 n}{n}\right\} \ll \frac{x}{p^{v}}\left(\frac{e^{0.057}\left(1+\frac{1}{3}\right)}{2}\right)^{D-v} \ll \frac{x}{p^{v}} e^{-(D-v) / 3},
$$

and the claimed inequality follows.

Proposition 1. For large x, let δ satisfy $0<\delta \leqslant 1$. For any $1 \leqslant n \leqslant x$, write $n=A_{n} B_{n}$, where $P^{+}\left(A_{n}\right) \leqslant x^{\delta}<P^{-}\left(B_{n}\right)$. Fix $\ell \in \mathbb{N}$. Then

$$
\#\left\{n \leqslant x: A_{n}^{\ell} \nmid\binom{2 n}{n}\right\} \ll_{\ell} x \mathrm{e}^{-1 /(300 \ell \delta)}
$$

Proof. We may assume that $\frac{\log 2}{\log x}<\delta \leqslant 1 /(300 \ell)$, else the statement is trivial. Hence, by Lemman,

$$
\begin{aligned}
\#\left\{n \leqslant x: A_{n}^{\ell} \nmid\binom{2 n}{n}\right\} & \leqslant \sum_{p \leqslant x^{\delta}}\left[\sum_{v \leqslant \frac{\log x}{100 \ell \log p}} \#\left\{n \leqslant x: p^{v} \mid n, p^{\ell v} \nmid\binom{2 n}{n}\right\}+\sum_{v>\frac{\log x}{100 \ell \log p}} \frac{x}{p^{v}}\right] \\
& \ll \sum_{p \leqslant x^{\delta}}\left[x^{1-1 /(3 \log p)} \sum_{v \leqslant \frac{\log x}{100 \log p}} \frac{e^{v / 3}}{p^{v}}+x^{1-\frac{1}{100 \ell}}\right] \\
& \ll x^{1+\delta-\frac{1}{100 \ell}}+x \sum_{p \leqslant x^{\delta}} \frac{x^{-1 /(3 \log p)}}{p} \\
& \ll x^{1-\frac{1}{150 \ell}}+x e^{-\frac{1}{3 \delta}} \\
& \ll x e^{-\frac{1}{300 \ell \delta}} .
\end{aligned}
$$

Next, we prove analogous bounds for integers with a given smallest prime factor.
Proposition 2. The number of integer $n \leqslant x$ for which $\left(n,\binom{2 n}{n}\right)=1$ and n has a prime factor smaller than n^{δ} is $O\left(\frac{x}{\log x} e^{-1 /(3 \delta)}\right)$.

Proof. Fix p and consider those n with smallest prime factor p and such that $p \nmid\binom{2 n}{n}$. We argue as in the $\ell=1$ case of Lemma 1, except that for fixed b_{2}, \ldots, b_{D} we bound the number of possible b_{1} such that $\sum_{j=1}^{D} p^{j} b_{j}$ has no prime factor less than p with a sieve (e.g., [7], Theorem 2.2]), obtaining

$$
\# b_{1} \ll \frac{p}{\log p}
$$

It follows that

$$
\#\left\{n \leqslant x: n \text { has smallest prime factor } p, p \nmid\binom{2 n}{n}\right\} \ll \frac{x^{1-\frac{1}{3 \log p}}}{p \log p} .
$$

Summing over $p \leqslant x^{\delta}$ completes the proof.

3. EXPONENTIAL SUM ESTIMATES

We gather together in this section various estimates for exponential sum which we will need for the proof of Theorem 1 .

The first lemma is the 'Weyl-van der Corput inequality' (see Theorems 2.2, 2.8 in [5]). It is far from the best result of its kind, but has a relatively short proof and suffices for our purposes.
Lemma 3.1. Let $j \geqslant 2$ be an integer, let I be an interval and suppose that $f \in C^{j}(I)$ and that

$$
\lambda \leqslant\left|f^{(j)}(x)\right| \leqslant \alpha \lambda
$$

where $\lambda>0, \alpha \geqslant 1$. Then

$$
\sum_{n \in I} e(f(n)) \ll|I|\left(\alpha^{2} \lambda\right)^{\frac{1}{4 J-2}}+|I|^{1-\frac{1}{2 J}} \alpha^{\frac{1}{2 J}}+|I|^{1-\frac{2}{J}+\frac{1}{J^{2}}} \lambda^{-\frac{1}{2 J}}
$$

where $J=2^{j-2}$.
We apply this lemma to bound a certain class of exponential sums.
Lemma 3.2. Let $N \in \mathbb{N}$, and

$$
\begin{equation*}
f(u)=\alpha u+\sum_{r=r_{1}}^{r_{2}} \frac{\beta_{r}}{u^{r}} \tag{3.1}
\end{equation*}
$$

where $\alpha \in \mathbb{R}, 1 \leqslant r_{1} \leqslant r_{2}$, and for some $A \in\left[1, N^{1 / 2}\right]$ we have

$$
\begin{equation*}
\left|\beta_{r_{1}}\right| \geqslant N^{r_{1}} A, \quad\left|\beta_{r} / \beta_{r_{1}}\right| \leqslant N^{\left(r-r_{1}\right) / 2}\left(r_{1} \leqslant r \leqslant r_{2}\right) \tag{3.2}
\end{equation*}
$$

Then

$$
\max _{I \subset(N, 2 N]} \sum_{n \in I} e(f(n))<_{r_{2}} N\left(N^{-1 / 2^{j}}+A^{-1 / 4}\right)
$$

where

$$
\begin{equation*}
j=3+\left\lfloor\frac{\log \left(\frac{\left|\beta_{r_{1}}\right|}{A N^{r_{1}}}\right)}{\log N}\right\rfloor . \tag{3.3}
\end{equation*}
$$

Proof. We apply Lemma 3.1. Firstly, we may assume that N is sufficiently large and that

$$
\begin{equation*}
j \leqslant \frac{\log \log N}{\log 2} \tag{3.4}
\end{equation*}
$$

for otherwise the conclusion is trivial. Also note that $j \geqslant 3$. Denoting by $r^{(j)}$ the rising factorial $r(r+$ 1) $\cdots(r+j-1)$, and using (3.2), we have for $N<u \leqslant 2 N$ the relation

$$
\begin{aligned}
f^{(j)}(u) & =(-1)^{j} \sum_{r=r_{1}}^{r_{2}} \frac{r^{(j)} \beta_{r}}{u^{r+j}} \\
& =(-1)^{j} \frac{r_{1}^{(j)} \beta_{r_{1}}}{u^{r_{1}+j}}\left(1+O\left(\sum_{r=r_{1}}^{r_{2}} \frac{\left(r^{(j)} / r_{1}^{(j)}\right)\left|\beta_{r} / \beta_{r_{1}}\right|}{N^{r-r_{1}}}\right)\right) \\
& =(-1)^{j} \frac{r_{1}^{(j)} \beta_{r_{1}}}{u^{r_{1}+j}}\left(1+O\left(\sum_{r=r_{1}}^{r_{2}} \frac{\left(r / r_{1}\right)^{j}}{N^{\left(r-r_{1}\right) / 2}}\right)\right) \\
& =\left(1+O_{r_{2}}\left(N^{-1 / 2}\right)\right)(-1)^{j} \frac{r_{1}^{(j)} \beta_{r_{1}}}{u^{r_{1}+j}}
\end{aligned}
$$

For large enough N it follows that

$$
\lambda \leqslant\left|f^{(j)}(u)\right| \leqslant \alpha \lambda, \quad \lambda=\frac{r_{1}^{(j)}\left|\beta_{r_{1}}\right|}{2(2 N)^{r_{1}+j}}, \quad \alpha=2^{r_{1}+j+2}
$$

Inserting this bound into Lemma3.1, we have

$$
\begin{equation*}
\frac{1}{N} \sum_{n \in I} e(f(n)) \ll_{r_{2}} \lambda^{\frac{1}{4 J-2}}+N^{-\frac{1}{2 J}}+N^{-\frac{2}{J}+\frac{1}{J^{2}}} \lambda^{-\frac{1}{2 J}} \tag{3.5}
\end{equation*}
$$

where $J=2^{j-2}$. We note that from (3.2) and the definition of j,

$$
N^{2} \frac{\left|\beta_{r_{1}}\right|}{A N^{r_{1}}} \leqslant N^{j} \leqslant N^{3} \frac{\left|\beta_{r_{1}}\right|}{A N^{r_{1}}}
$$

and hence that

$$
\frac{A}{2^{r_{1}+j+1} N^{3}} \leqslant \lambda \leqslant r_{1}^{(j)}\left(\frac{A}{N^{2}}\right) \leqslant r_{1}^{(j)} N^{-3 / 2}
$$

When $j=3$, therefore, the right side of (3.5) is

$$
\ll r_{2} \lambda^{1 / 6}+N^{-1 / 4}+N^{-3 / 4} \lambda^{-1 / 4} \ll N^{-1 / 4}+A^{-1 / 4}
$$

Now assume that $j \geqslant 4$ so that $J \geqslant 4$. Then the right side of (3.5) is

$$
<_{r_{2}} N^{-\frac{3 / 2}{4 J-2}}+N^{-\frac{1}{2 J}}+N^{-\frac{7}{4 J}}\left(N^{3}\right)^{\frac{1}{2 J}}<_{r_{2}} N^{-\frac{1}{4 J}}
$$

Combining the two cases, $j=3$ and $j>3$, this concludes the proof.
We now apply Lemma 3.2 to bound analogous sums over primes.
Lemma 3.3. Assume f satisfies (3.1), where the coefficients satisfy (3.2) for some $A \in\left[1, N^{1 / 6}\right]$. Then

$$
\max _{I \subset(N, 2 N]} \sum_{p \in I} e(f(p)) \ll_{r_{2}} N(\log N)^{4}\left(N^{-\frac{1}{3 \cdot 2 j}}+A^{-1 / 10}\right)
$$

where j is given by (3.3).
Proof. Our technique is standard. Throughout, constants implied by $O-$ and $\ll-$ may depend on r_{1}, r_{2}. We begin by applying Vaughan's identity (see, e.g. [2, Ch. 24]) to the exponential sum in question, obtaining

$$
\sum_{p \in I} e(f(p))=O\left(N^{1 / 2}\right)-S_{1}+S_{2}+S_{3}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{a \leqslant N^{1 / 3}} \Lambda(a) \sum_{b \leqslant N^{1 / 3}} \mu(b) \sum_{a b c \in I} e(f(a b c)), \\
& S_{2}=\sum_{b \leqslant N^{1 / 3}} \sum_{b c \in I} \log (b c) e(f(b c)) \\
& S_{3}=\sum_{b>N^{1 / 3}} h(b) \sum_{\substack{b c \in I \\
c>N^{1 / 3}}} \Lambda(c) e(f(b c)),
\end{aligned}
$$

where

$$
h(b)=\sum_{\substack{d \mid b \\ d>N^{1 / 3}}} \mu(d)
$$

Both S_{1} and S_{2} are "Type I" sums and we may apply Lemma 3.2 directly. For S_{1}, we fix a and b and apply Lemma 3.2 with N replaced by $N / a b$ and β_{r} replaced by $\beta_{r} /(a b)^{r}$. We check that

$$
A \leqslant N^{1 / 6} \leqslant(N / a b)^{1 / 2}, \quad\left|\frac{\beta_{r}^{\prime}}{\beta_{r_{1}}^{\prime}}\right|=\left|\frac{\beta_{r}}{\beta_{r_{1}}}\right|(a b)^{-\left(r-r_{1}\right)} \leqslant\left(\frac{N}{a b}\right)^{\left(r-r_{1}\right) / 2}
$$

Thus, for any a, b we have

$$
\sum_{a b c \in I} e(f(a b c)) \ll \frac{N}{a b}\left((N / a b)^{-1 / 2^{j}}+A^{-1 / 4}\right)
$$

and hence that

$$
\begin{equation*}
S_{1} \ll N\left(\log ^{2} N\right)\left(N^{-\frac{1}{3 \cdot 2^{j}}}+A^{-1 / 4}\right) \tag{3.6}
\end{equation*}
$$

Bounding the inner sum over c in S_{2} is exactly analogous, where we use partial summation to remove the logarithm factor. Since $N / b \geqslant N^{2 / 3}$, we obtain a stronger bound

$$
\begin{equation*}
S_{2} \ll N\left(\log ^{2} N\right)\left(N^{-\frac{2}{3 \cdot 2 j}}+A^{-1 / 4}\right) \tag{3.7}
\end{equation*}
$$

For S_{3}, we break up the range $b \in\left(N^{1 / 3}, 2 N^{2 / 3}\right]$ into $O(\log N)$ dyadic intervals of the form $(B, 2 B]$ where $N^{1 / 3} \leqslant B \leqslant 2 N^{2 / 3}$. Then we use Cauchy-Schwarz, followed by the trivial bound $|h(b)| \leqslant \tau(b)$ to get

$$
\begin{aligned}
S_{3} & \ll(\log N) \max _{B}\left|\sum_{B<b \leqslant 2 B} h(b) \sum_{b c \in I} \Lambda(c) e(f(b c))\right| \\
& \leqslant(\log N) \max _{B}\left(\sum_{B<b \leqslant 2 B} h(b)^{2}\right)^{1 / 2}\left(\sum_{B<b \leqslant 2 B}\left|\sum_{b c \in I} \Lambda(c) e(f(b c))\right|^{2}\right)^{1 / 2} \\
& \ll(\log N)^{5 / 2} \max _{B} B^{1 / 2}\left(\sum_{B<b \leqslant 2 B}\left|\sum_{b c \in I} \Lambda(c) e(f(b c))\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Next, we expand the square and then interchange the order of summation:

$$
\begin{equation*}
\sum_{B<b \leqslant 2 B}\left|\sum_{b c \in I} \Lambda(c) e(f(b c))\right|^{2}=\sum_{\frac{N}{2 B}<c_{1}, c_{2} \leqslant \frac{2 N}{B}} \Lambda\left(c_{1}\right) \Lambda\left(c_{2}\right) \sum_{b \in J} e\left(f\left(b c_{1}\right)-f\left(b c_{2}\right)\right), \tag{3.8}
\end{equation*}
$$

where

$$
J=\left\{B<n \leqslant 2 B: b c_{1} \in I, b c_{2} \in I\right\}
$$

is a subinterval of $(B, 2 B]$. Let R be a large constant, depending on r_{1}, r_{2}. The terms above with $\mid c_{1}-$ $c_{2} \left\lvert\, \leqslant \frac{R N}{B A^{1 / 5}}\right.$ contribute at most $O\left(N^{2}(\log N)^{2} /\left(A^{1 / 5} B\right)\right)$ to the right side of (3.8). Now suppose that $\left|c_{1}-c_{2}\right|>\frac{R N}{B A^{1 / 5}}$. Write

$$
f\left(b c_{1}\right)-f\left(b c_{2}\right)=\alpha b\left(c_{1}-c_{2}\right)+\sum_{r=r_{1}}^{r_{2}} \frac{\beta_{r}^{\prime}}{b^{r}}, \quad \beta_{r}^{\prime}=\beta_{r}\left(\frac{1}{c_{1}^{r}}-\frac{1}{c_{2}^{r}}\right) .
$$

We apply Lemma 3.2 with β_{r} replaced by β_{r}^{\prime}, N replaced by B and A replaced by

$$
A^{\prime}=\frac{A N^{r_{1}} \beta_{r_{1}}^{\prime}}{B^{r_{1}} \beta_{r_{1}}}
$$

Since

$$
\left|\beta_{r}^{\prime}\right| \asymp\left|\beta_{r}\right| \frac{\left|c_{1}-c_{2}\right|}{c_{1}^{r+1}},
$$

we see that

$$
\left|\frac{\beta_{r}^{\prime}}{\beta_{r_{1}}^{\prime}}\right| \ll N^{-\left(r-r_{1}\right) / 2} c_{1}^{-\left(r-r_{1}\right)} \ll B^{-\left(r-r_{1}\right) / 2}(N / B)^{-\left(r-r_{1}\right) / 2},
$$

so that the hypotheses (3.2) hold. Also, $A^{\prime} \geqslant A^{4 / 5}$ if R is large enough, and therefore

$$
\sum_{b \in J} e\left(f\left(b c_{1}\right)-f\left(b c_{2}\right)\right) \ll B\left(B^{-1 / 2^{j}}+A^{-1 / 5}\right) .
$$

Summing over all pairs c_{1}, c_{2} we see that the expression in (3.8) is

$$
\ll \frac{N^{2}}{B}(\log N)^{2}\left(N^{-1 /\left(3 \cdot 2^{j}\right)}+A^{-1 / 5}\right),
$$

and we conclude that

$$
\begin{equation*}
S_{3} \ll N(\log N)^{4}\left(N^{-\frac{1}{3 \cdot 2 j}}+A^{-1 / 10}\right) \tag{3.9}
\end{equation*}
$$

Combining (3.6), (3.7) and (3.9), this completes the proof.

4. DETECTING FRACTIONAL PARTS

In this section we apply harmonic analysis to detect the simultaneous fractional parts of ratios of primes. Denote by $\{x\}$ the fractional part of x.

We begin with a result of Selberg.
Lemma 4.1. For any $K \in \mathbb{N}$ and any non-empty interval $I \subset \mathbb{R} / \mathbb{Z}$, there is a trigonometric polynomial $S_{K, I}^{+}(x)=\sum_{|n| \leqslant K} a_{n} e(n x)$ which majorizes the indicator function of I and a trigonometric polynomial $S_{K, I}^{-}(x)=\sum_{|n| \leqslant K} b_{n} e(n x)$ which minorizes the indicator function of I, and which satisfy the following:

- $\max \left(\left|a_{n}\right|,\left|b_{n}\right|\right) \leqslant 4 /(|n|+1)$ for all n.
- $\int_{0}^{1} S_{K, I}(x)^{ \pm} d x=$ length $(I) \pm \frac{1}{K+1}$.

Proof. For details and explicit construction of $S_{K, I}^{ \pm}$, see Chapter 1 in [10], especially formulas (16)-(22).

Definition. A subset \mathcal{R} of \mathbb{R}^{k} is said to be t-simple if, for any $1 \leqslant j \leqslant k$ and any choice of $z_{i} \in \mathbb{R}(i \neq j)$, the 1 -dimensional projection $\left\{z_{j}:\left(z_{1}, \ldots, z_{k}\right) \in \mathcal{R}\right\}$ consists of at most t disjoint intervals.

Proposition 3. Fix ε, ρ such that $0<\rho<\varepsilon$ and let $k \in \mathbb{N}$ with $k<1 / \varepsilon$. Suppose that $1 \leqslant m \leqslant x^{1 / 2}$, and M_{1}, \ldots, M_{k} are integers such that
(i) $M_{i} \geqslant x^{\varepsilon}$ for all i;
(ii) $x / 2^{k}<M_{1} \cdots M_{k} m \leqslant 2 x$;
(iii) for all $i, M_{i} \notin \bigcup_{s \leqslant 1 / \varepsilon+1}\left(x^{(1-\rho) / s}, 4 x^{1 / s}\right]$.

Let \mathcal{R} be any t-simple subset of

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): M_{i}<x_{i} \leqslant 2 M_{i}(1 \leqslant i \leqslant k), x<m x_{1} \cdots x_{k} \leqslant 2 x\right\}
$$

and let \mathcal{Q} denote the set of all k-tuples $\mathbf{q}=\left(q_{1}, \ldots, q_{k}\right)$ of primes such that $\mathbf{q} \in \mathcal{R}$. For each $1 \leqslant j \leqslant k$, let $s_{j}=\left\lfloor\frac{\log x}{\log M_{j}}\right\rfloor-1$. Then, for some $\xi>0$, which depends only on ε, ρ and k, we have (writing $n=q_{1} \cdots q_{k} m$)

$$
\begin{align*}
& \#\left\{\mathbf{q} \in \mathcal{Q}: \forall j, q_{j}^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right\}=(1+O(\varepsilon)) \prod_{j=1}^{k}\left(1-2^{-s_{j}} \sum_{h=0}^{\ell-1}\binom{s_{j}}{h}\right)|\mathcal{Q}|+O_{k, \varepsilon}\left(\frac{t x^{1-\xi}}{m}\right), \tag{4.1}\\
& \#\left\{\mathbf{q} \in \mathcal{Q}: \forall j, q_{j} \nmid\binom{2 n}{n}\right\}=\frac{1+O(\varepsilon)}{2^{s_{1}+\cdots+s_{k}}}|\mathcal{Q}|+O_{k, \varepsilon}\left(\frac{t x^{1-\xi}}{m}\right) . \tag{4.2}
\end{align*}
$$

Proof. The number of \mathbf{q} such that $q_{i} \mid m$ for some i is $O\left((k \log x) x^{1-\varepsilon} / m\right)$, hence we may ignore these. For each $1 \leqslant j \leqslant k$ and $1 \leqslant s \leqslant s_{j}$, let $\sigma_{j, s} \in\{0,1\}$, and denote by Σ the vector of the numbers $\sigma_{j, s}$. It is possible that $s_{j}=0$ for some j, in which case terms $\sigma_{j, s}$ do not appear. For each Σ let

$$
\mathcal{Q}_{\Sigma}:=\left\{\mathbf{q} \in \mathcal{Q}:\left\{\frac{m q_{1} \cdots q_{k}}{q_{j}^{s+1}}\right\} \in\left[\frac{\sigma_{j, s}}{2}, \frac{1+\sigma_{j, s}}{2}\right)\left(1 \leqslant j \leqslant k, 1 \leqslant s \leqslant s_{j}\right)\right\}
$$

Our main task is to prove that

$$
\begin{equation*}
\left|Q_{\Sigma}\right|=\frac{(1+O(\varepsilon)}{2^{s_{1}+\cdots+s_{k}}}|\mathcal{Q}|+O_{k, \varepsilon}\left(\frac{t x^{1-\xi}}{m}\right) \tag{4.3}
\end{equation*}
$$

For each $\mathbf{q} \in \mathcal{Q}$, let $n=m q_{1} \cdots q_{k}$. Since $s_{k}+1 \leqslant 1 / \varepsilon$, (iii) implies that $\left\{n / q_{j}^{s_{j}+2}\right\}<1 / 2$. Therefore, $\binom{2 n}{n}$ is divisible by q_{j}^{ℓ} if and only if for at least ℓ values of $s \in\left\{1,2, \ldots, s_{j}\right\}$ we have $\left\{n / q_{j}^{s+1}\right\}>1 / 2$. Likewise, $q_{j} \nmid\binom{2 n}{n}$ if and only if $\left\{n / q_{j}^{s+1}\right\}<1 / 2$ for every $1 \leqslant s \leqslant s_{j}$. Hence, the left side of (4.1) is the sum of \mathcal{Q}_{Σ} over all Σ such that $\sum_{s} \sigma_{j, s} \geqslant \ell$ for all j, and the left side of (4.2) equals \mathcal{Q}_{Σ} for the single Σ with $\sigma_{j, s}=0$ for all j, s. Thus, (4.1) and (4.2) follow from (4.3).

Fix Σ. We apply Lemma 4.1]to the intervals $[0,1 / 2]$ and $[1 / 2,1]$ and with

$$
K=\left\lfloor k \varepsilon^{-2}\right\rfloor .
$$

Define

$$
\begin{aligned}
& \psi_{0, K}^{ \pm}(x)=S_{K,[0,1 / 2]}^{ \pm}(x)=\sum_{|n| \leqslant K} c_{0, n}^{ \pm} e(n x), \\
& \psi_{1, K}^{ \pm}(x)=S_{K,[1 / 2,1]}^{ \pm}(x)=\sum_{|n| \leqslant K} c_{1, n}^{ \pm} e(n x) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{\mathbf{q} \in \mathcal{Q}} \prod_{j=1}^{k} \prod_{s=1}^{s_{j}} \psi_{\sigma_{j, s}, K}^{-}\left(m q_{1} \cdots q_{k} / q_{j}^{s+1}\right) \leqslant\left|\mathcal{Q}_{\Sigma}\right| \leqslant \sum_{\mathbf{q} \in \mathcal{Q}} \prod_{j=1}^{k} \prod_{s=1}^{s_{j}} \psi_{\sigma_{j, s}, K}^{+}\left(m q_{1} \cdots q_{k} / q_{j}^{s+1}\right) . \tag{4.4}
\end{equation*}
$$

Denote by $\boldsymbol{\lambda}$ the vector $\left(\lambda_{j, s}: 1 \leqslant j \leqslant k, 1 \leqslant s \leqslant s_{j}\right)$, where each component is bounded by K in absolute value. Focusing on the lower bound (the upper bound analysis is identical), we then have

$$
\begin{equation*}
\left|\mathcal{Q}_{\Sigma}\right| \geqslant \sum_{\mathbf{q} \in \mathcal{Q}} \sum_{\lambda}\left(\prod_{j, s} c_{\sigma_{j, s}, \lambda_{j, s}}^{-}\right) e\left(m \sum_{j, s} \lambda_{j, s} \frac{q_{1} \cdots q_{k}}{q_{j}^{s+1}}\right) . \tag{4.5}
\end{equation*}
$$

Using Lemma 4.1 we find that the main term ($\lambda_{j, s}=0$ for every j, s) equals

$$
|\mathcal{Q}| \prod_{j, s}\left(\int_{0}^{1} \psi_{\sigma_{j, s}, K}^{-}(u) d u\right)=\frac{|\mathcal{Q}|}{2^{s_{1}+\cdots+s_{k}}}(1+O(1 / K))^{s_{1}+\cdots+s_{k}}=\frac{1+O(\varepsilon)}{2^{s_{1}+\cdots+s_{k}}}|\mathcal{Q}| .
$$

By Lemma4.1, $\sum_{n}\left|c_{\sigma, n}^{ \pm}\right| \ll \log K$ and therefore we have

$$
\begin{equation*}
\left|\mathcal{Q}_{\Sigma}\right| \geqslant(1+O(\varepsilon)) \frac{|\mathcal{Q}|}{2^{s_{1}+\cdots+s_{k}}}+E, \tag{4.6}
\end{equation*}
$$

where

$$
E \ll(O(\log K))^{O(k / \varepsilon)} \max _{\boldsymbol{\lambda} \neq \mathbf{0}}\left|\sum_{\mathbf{q} \in \mathcal{Q}} e\left(m \sum_{j, s} \lambda_{j, s} \frac{q_{1} \cdots q_{k}}{q_{j}^{s+1}}\right)\right| .
$$

Fixing $\boldsymbol{\lambda} \neq \mathbf{0}$, let $h=\min \left\{j \leqslant k: \lambda_{j, s} \neq 0\right.$ for some $\left.s\right\}$ and define $r=\min \left\{s: \lambda_{h, s} \neq 0\right\}$. Fixing $q_{i}(i \neq h)$, the t-simplicity of \mathcal{R} implies that the variable q_{h} ranges over primes in at most t subintervals I (possibly $t=0$) of ($\left.M_{h}, 2 M_{h}\right]$. We have

$$
\sum_{j, s} \lambda_{j, s} \frac{q_{1} \cdots q_{k} m}{q_{j}^{s+1}}=\alpha q_{h}+\sum_{s=r}^{s_{h}} \lambda_{h, s} \frac{P}{q_{h}^{s}}=: f\left(q_{h}\right) .
$$

for some real number α (depending on m and the q_{i} for $\left.i \neq h\right)$ and $P=\left(q_{1} \cdots q_{k} m\right) / q_{h}$. By (ii) and (iii),

$$
\begin{equation*}
P \geqslant \frac{M_{1} \cdots M_{k} m}{M_{h}} \geqslant \frac{x}{2^{k} M_{h}} \geqslant x^{\rho} 2^{-k} M_{h}^{s_{h}} . \tag{4.7}
\end{equation*}
$$

We also have $\left|\lambda_{h, s}\right| \leqslant K \ll M_{h}^{1 / 10}$ for large x. Therefore, for each interval I we may apply Lemma3.3 with

$$
N=M_{h}, \quad r_{1}=r, \quad \beta_{r_{1}}=P \lambda_{h, r}, \quad A=2^{-k} x^{\rho} .
$$

The condition $\beta_{r_{1}} \geqslant N^{r_{1}} A$ follows from (4.7), and the lower bound $M_{h} \geqslant x^{\varepsilon}$ implies that $A \leqslant M_{h}$, so that (3.2) holds. We also have that

$$
j \leqslant 3+\frac{\log (K P)}{\log M_{h}} \leqslant 3+\frac{\log x}{\log M_{h}} \leqslant 3+1 / \varepsilon .
$$

Therefore, applying Lemma 3.3, we get

$$
\sum_{q_{h} \in I} e\left(f\left(q_{h}\right)\right)<_{k} M_{h}\left(\log M_{h}\right)^{4}\left(M_{h}^{-\frac{1}{3 \cdot 2 J}}+x^{-\rho / 4}\right) \ll x^{-\xi} M_{h} .
$$

Summing over all $q_{i}(i \neq h)$, we find that $E<_{k, \varepsilon} t x^{1-\xi}$. Combined with (4.6), this completes the proof of (4.3).

5. Proof of Theorem 1

Throughout this section, we will assume that k is a large integer, and that ε, δ are functions of k that tend to 0 as $k \rightarrow \infty$; precisely, we take

$$
\begin{equation*}
\delta=e^{-2 k / 3}, \quad \varepsilon=k^{-2 k} . \tag{5.1}
\end{equation*}
$$

Suppose that x is a large integer. We think of k being fixed and $x \rightarrow \infty$. In this section only, we adopt the following notation for functions $f(k, x)$. The notation $f(k, x)=o(g(k, x))$ means that

$$
\forall k \geqslant 1: \lim _{x \rightarrow \infty} \frac{f(k, x)}{g(k, x)}=0 .
$$

The notation $f(k, x)=\bar{o}(g(k, x))$ means that

$$
\lim _{k \rightarrow \infty} \limsup _{x \rightarrow \infty} \frac{f(x, k)}{g(x, k)}=0
$$

For example, $1 / k=\bar{o}(1)$ and $e^{k} x^{1-1 / k}=o(x)$.
5.1. Sampling large prime factors. Take a large integer x, and select a random integer $n \in(x, 2 x]$ with uniform probability. Following Donnelly and Grimmett [3], we select at random a k-tuple $\mathbf{q}(n)=$ $\left(q_{1}, \ldots, q_{k}\right)$ of divisors of n at random, in a size-biased fashion, together with random variables $X_{1}(n), \ldots, X_{k}(n)$. If n has fewer than k distinct prime factors, set $\mathbf{q}(n)=(1, \ldots, 1)$ and $X_{1}(n)=\cdots=X_{k}(n)=0$. Otherwise, choose $q_{1} \mid n$ at random with probability $\frac{\Lambda\left(q_{1}\right)}{\log n}$, where Λ is the von Mangoldt function. For $2 \leqslant i \leqslant k$, once q_{1}, \ldots, q_{i-1} are chosen, select $q_{i} \mid\left(n / q_{1} \cdots q_{i-1}\right)$ with probability $\frac{\Lambda\left(q_{i}\right)}{\log n /\left(q_{1} \cdots q_{i-1}\right)}$. Then set $X_{i}(n)=\frac{\Lambda\left(q_{i}\right)}{\log n /\left(q_{1} \cdots q_{i-1}\right)}$ for $1 \leqslant i \leqslant k$. We observe the relation

$$
\begin{equation*}
q_{i}=n^{\left(1-X_{1}(n)\right) \cdots\left(1-X_{i-1}(n)\right) X_{i}(n)} \quad(1 \leqslant i \leqslant k) . \tag{5.2}
\end{equation*}
$$

The following is essentially Theorem 1 of [3], although we have stated the result with a slight modification. For completeness, a proof is given in the Appendix.

Lemma 5.1. Fix $k \in \mathbb{N}$. As $x \rightarrow \infty$, the random vector $\left(X_{1}(n), \ldots, X_{k}(n)\right)$ converges weakly to the uniform distribution (that is, Lebesgue measure) on $[0,1]^{k}$.

We denote $\mathbb{P}_{x}, \mathbb{E}_{x}$ for the probability, respectively expectation, with respect to these random $n, \mathbf{q}(n)$ and $\left(X_{1}(n), \ldots, X_{k}(n)\right)$, and use \mathbb{P} and \mathbb{E} for the uniform probability measure on $[0,1]^{k}$. For the latter, we work with independent, uniform- $[0,1]$ random variables U_{1}, \ldots, U_{k}.

Definition. With x fixed, let $\mathcal{Y}_{k}(x)$ denote the set of k-tuples $\mathbf{y}=\left(y_{1}, \ldots, y_{k}\right) \in[1, x]^{k}$ such that
(a) $y_{i} \geqslant x^{\varepsilon}$ for all i;
(b) $x^{1-\delta} \leqslant y_{1} \cdots y_{k} \leqslant x^{1-\delta^{2}}$;
(c) for all i and all $1 \leqslant s \leqslant 1 / \varepsilon+1, y_{i} \notin\left[x^{\left(1-\varepsilon^{2}\right) / s}, 4 x^{1 / s}\right]$.

Lemma 5.2. The set $\mathcal{Y}_{k}(x)$ is $(1 / \varepsilon+2)$-simple.
Proof. Fix j and let y_{i} be arbitrary for $i \neq j$. Items (a) and (b) force y_{j} into a single interval, from which are cut at most $1 / \varepsilon+1$ intervals by (c).

Lemma 5.3. We have $\mathbb{P}_{x}\left(\mathbf{q}(n) \notin \mathcal{Y}_{k}(x)\right.$ or some q_{i} not prime $)=\bar{o}(1)$.
Proof. First, note that \mathbb{P}_{x} (n has fewer than k prime factors $)=o(1)$. Now assume that n has at least k distinct prime factors. By (5.2) and Lemma 5.1,

$$
\begin{aligned}
\mathbb{P}_{x}\left(\text { some } q_{i}<x^{\varepsilon}\right) & \leqslant \mathbb{P}_{x}\left(\text { some } q_{i} \leqslant n^{\varepsilon}\right) \\
& \leqslant \mathbb{P}\left(\left(1-U_{1}\right) \cdots\left(1-U_{i-1}\right) U_{i} \leqslant \varepsilon \text { for some } i\right)+o(1) \\
& \leqslant \mathbb{P}\left(U_{i} \notin\left[\varepsilon^{1 / k}, 1-\varepsilon^{1 / k}\right] \text { for some } i\right)+o(1) \\
& \leqslant 2 k \varepsilon^{1 / k}+o(1)=\bar{o}(1)
\end{aligned}
$$

upon recalling (5.1).
From (5.2), we have

$$
q_{1} \cdots q_{k}=n^{1-\left(1-X_{1}(n)\right) \cdots\left(1-X_{k}(n)\right)}
$$

Hence,

$$
\mathbb{P}_{x}\left(x^{1-\delta} \leqslant q_{1}(n) \cdots q_{k}(n) \leqslant x^{1-\delta^{2}}\right)=\mathbb{P}_{x}\left(\frac{\log n}{\log x}\left(1-\left(1-X_{1}(n)\right) \cdots\left(1-X_{k}(n)\right)\right) \in\left[1-\delta, 1-\delta^{2}\right]\right)
$$

By Lemma 5.1, as $k \rightarrow \infty$, the variable $1-\left(1-X_{1}(n)\right) \cdots\left(1-X_{k}(n)\right)$ converges in distribution to $1-\left(1-U_{1}\right) \cdots\left(1-U_{k}\right)$. Now $\mathbb{E} \log \left(1-U_{i}\right)=-1$ for each i, and it follows from the Law of Large Numbers that

$$
\begin{equation*}
\mathbb{P}\left(\left(1-U_{1}\right) \cdots\left(1-U_{k}\right) \in\left[e^{-1.1 k}, e^{-0.9 k}\right]\right)=1-\bar{o}(1) \tag{5.3}
\end{equation*}
$$

Recalling the definition of δ from (5.1), we conclude that

$$
\mathbb{P}_{x}\left(q_{1} \cdots q_{k} \notin\left[x^{1-\delta}, x^{1-\delta^{2}}\right]\right)=\bar{o}(1)
$$

The probability that (c) fails is at most the probability that n has a prime power factor in one of the intervals $\left[x^{\left(1-\varepsilon^{2}\right) / s}, 4 x^{1 / s}\right]$, which is easily bounded by Mertens' theorem by

$$
\sum_{s \leqslant 1 / \varepsilon+1} \sum_{x^{\left(1-\varepsilon^{2}\right) / s}<q \leqslant 4 x^{1 / s}} \frac{1}{q} \ll \frac{\varepsilon^{2}}{\varepsilon}=\varepsilon=\bar{o}(1)
$$

Finally, if every $q_{i} \geqslant x^{\varepsilon}$ and some q_{i} is not prime, then n is divisible by a prime power $p^{a}>x^{\varepsilon}$ with $a \geqslant 2$. The number of such $n \in(x, 2 x]$ is $O\left(x^{1-\varepsilon / 2}\right)$. This completes the proof.
5.2. Completing the proof. From now on, the variables q_{i} will denote primes. Let n and $\mathbf{q}(n)$ be the random quantities described above. Our main task is to show that

$$
\begin{equation*}
\mathbb{P}_{x}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=c_{\ell}+\bar{o}(1) \tag{5.4}
\end{equation*}
$$

Theorem 1 follows immediately upon fixing k, letting $x \rightarrow \infty$, and then letting $k \rightarrow \infty$.
We first show, using Proposition 1 and Lemma 5.3 that it suffice to consider large prime factors of n and $\mathbf{q}(n) \in \mathcal{Y}_{k}(x)$. Let

$$
B_{n}=\prod_{\substack{p^{a} \| n \\ p>y}} p^{a}
$$

where y is the smallest power of two that is $>x^{2 \delta}$. Applying Proposition 11, followed by an application of Lemma5.3, we see that

$$
\begin{equation*}
\mathbb{P}_{x}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=\bar{o}(1)+\mathbb{P}_{x}\left(B_{n}^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=\bar{o}(1)+\mathbb{P}_{x}\left(B_{n}^{\ell} \left\lvert\,\binom{ 2 n}{n}\right. \text { and } \mathbf{q}(n) \in \mathcal{Y}_{k}(x)\right) \tag{5.5}
\end{equation*}
$$

If $\mathbf{q}(n) \in \mathcal{Y}_{k}(x)$, then by $(b), q_{1} \cdots q_{k} \geqslant x^{1-\delta}$. It follows that $B_{n} \mid q_{1} \cdots q_{k}$, that is, $q_{1} \cdots q_{k}$ contains all of the large prime factors of n. On the other hand, Proposition 1 implies that the probability that some prime factor $q<y$ of n satisfies $q^{\ell} \nmid\binom{2 n}{n}$ is $\bar{o}(1)$. Thus

$$
\mathbb{P}_{x}\left(B_{n}^{\ell} \left\lvert\,\binom{ 2 n}{n}\right. \text { and } \mathbf{q}(n) \in \mathcal{Y}_{k}(x)\right)=\mathbb{P}_{x}\left(\mathbf{q}(n) \in \mathcal{Y}_{k}(x) \wedge q_{j}^{\ell} \left\lvert\,\binom{ 2 n}{n}(1 \leqslant j \leqslant k)\right.\right)+\bar{o}(1)
$$

Combined with (5.5), this gives

$$
\begin{equation*}
\mathbb{P}_{x}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=\bar{o}(1)+\sum_{\mathbf{q} \in \mathcal{Y}_{k}(x)} \mathbb{P}_{x}\left(\mathbf{q}(n)=\mathbf{q} \wedge q_{j}^{\ell} \left\lvert\,\binom{ 2 n}{n}(1 \leqslant j \leqslant k)\right.\right) \tag{5.6}
\end{equation*}
$$

Write $n=m q_{1} \cdots q_{k}$. Direct computation gives

$$
\mathbb{P}_{x}\left(\mathbf{q}(n)=\mathbf{q} \wedge q_{j}^{\ell} \left\lvert\,\binom{ 2 n}{n}(1 \leqslant j \leqslant k)\right.\right)=\frac{1}{x} \sum_{\substack{x<m q_{1} \cdots q_{k} \leqslant 2 x \\
q_{j}^{\ell} \left\lvert\,\left(\begin{array}{c}
2 n \\
n
\end{array}\right)(1 \leqslant j \leqslant k)\right.}} \frac{\left(\log q_{1}\right) \cdots\left(\log q_{k}\right)}{\log n \log \left(n / q_{1}\right) \cdots \log n /\left(q_{1} \cdots q_{k-1}\right)}
$$

It is convenient to place each q_{i} into a dyadic interval. For each i, let M_{i} be the unique power of two such that $M_{i}<q_{i} \leqslant 2 M_{i}$. By conditions (b) and (c) in the definition of $\mathcal{Y}_{k}(x)$,

$$
\begin{equation*}
\frac{\left(\log q_{1}\right) \cdots\left(\log q_{k}\right)}{\log n \log \left(n / q_{1}\right) \cdots \log n /\left(q_{1} \cdots q_{k-1}\right)}=(1+o(1)) \frac{\left(\log M_{1}\right) \cdots\left(\log M_{k}\right)}{\log x \log \left(\frac{x}{M_{1}}\right) \cdots \log \left(\frac{x}{M_{1} \cdots M_{k-1}}\right)} \tag{5.7}
\end{equation*}
$$

We insert this last estimate into (5.6), obtaining

$$
\begin{align*}
\mathbb{P}_{x}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=\bar{o}(1)+(1+o(1)) & \sum_{\mathbf{M}} \frac{\left(\log M_{1}\right) \cdots\left(\log M_{k}\right)}{\log x \log \left(\frac{x}{M_{1}}\right) \cdots \log \left(\frac{x}{M_{1} \cdots M_{k-1}}\right)} \\
\times \sum_{\frac{x}{2^{k} M_{1} \cdots M_{k}}}<m \leqslant \frac{2 x}{M_{1} \cdots M_{k}} & \sum_{\substack{\mathbf{q} \in \mathcal{R} \\
q_{j}^{\ell} \left\lvert\,\left(\begin{array}{c}
2 n \\
n
\end{array}\right)(1 \leqslant j \leqslant k)\right.}} 1, \tag{5.8}
\end{align*}
$$

where we have written $n=q_{1} \cdots q_{k} m$ and

$$
\mathcal{R}=\mathcal{R}(\mathbf{M}, m)=\left\{\left(z_{1}, \ldots, z_{k}\right) \in \mathcal{Y}_{k}(x): M_{i}<z_{i} \leqslant 2 M_{i}(1 \leqslant i \leqslant k), x<m z_{1} \cdots m_{k} \leqslant 2 x\right\}
$$

Now fix \mathbf{M} and m. By Lemma 5.2, $\mathcal{Y}_{k}(x)$ is $(1 / \varepsilon+2)$-simple and thus \mathcal{R} is also $(1 / \varepsilon+2)$-simple. We may then apply Proposition 3 to \mathcal{R}. Condition (iii) in that Proposition holds with $\rho=\varepsilon^{2}$ on account of (c). Let $s_{j}=\left\lfloor\frac{\log x}{\log M_{j}}\right\rfloor-1$ for each j, and define

$$
F(b)=1-2^{-b} \sum_{h=0}^{\ell-1}\binom{b}{h}
$$

By Proposition 3, we get that

$$
\sum_{\substack{\mathbf{q} \in \mathcal{R} \\(n \\ n \\ n}}^{(1 \leqslant j \leqslant k)} \mathbf{1}=(1+O(\varepsilon)) \prod_{j=1}^{k} F\left(s_{j}\right) \sum_{\mathbf{q} \in \mathcal{R}} 1+O_{k, \varepsilon}\left(x^{1-\xi}\right),
$$

for some $\xi>0$. The final error term is negligible since the number of \mathbf{M} is $O\left((\log x)^{k}\right)$. Now sum over all m and \mathbf{M}, and rewrite the final result in terms of q using (5.7) again. By (5.8) we conclude that

$$
\begin{align*}
\mathbb{P}_{x}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right) & =\bar{o}(1)+(1+O(\varepsilon)) \sum_{\mathbf{q} \in \mathcal{Y}_{k}(x)} \mathbb{P}_{x}(\mathbf{q}(n)=\mathbf{q}) \prod_{j=1}^{k} F\left(s_{j}\right) \\
& =\bar{o}(1)+(1+O(\varepsilon)) \mathbb{E}_{x} \mathbf{1}_{\mathbf{q}(n) \in \mathcal{Y}_{k}(x)} \prod_{j=1}^{k} F\left(s_{j}\right) \tag{5.9}
\end{align*}
$$

where (consistent with the earlier definition) by (c) we have

$$
s_{j}=\left\lfloor\frac{\log x}{\log q_{j}}\right\rfloor-1 \quad(1 \leqslant j \leqslant k)
$$

Using Lemma5.3 again, followed by Lemma5.1, we arrive at

$$
\mathbb{P}\left(n^{\ell} \left\lvert\,\binom{ 2 n}{n}\right.\right)=\bar{o}(1)+\mathbb{E}_{x} \prod_{j=1}^{k} F\left(s_{j}\right)=\bar{o}(1)+\mathbb{E} \prod_{j=1}^{k} F\left(g_{j}\right)
$$

where g_{j} is defined in (1.1). Finally, by the Law of Large Numbers, cf. (5.3) we have $g_{j} \geqslant e^{j / 2}$ for all $j \geqslant k$ with probability $1-\bar{o}(1)$ and this completes the proof of (5.4) upon recalling that

$$
c_{\ell}=\mathbb{E} \prod_{j=1}^{\infty} F\left(g_{j}\right)
$$

6. PROOF OF THEOREM 3

The proof is similar to that of Theorem 1 but the details are simpler. In particular, we do not need the work from Section 5.1. As before, the symbols q and q_{i} denote primes.

For fixed $k \in \mathbb{N}$ and $\varepsilon>0$ let
$\mathcal{N}_{k, \varepsilon}(x)=\#\left\{n=q_{1} \cdots q_{k} \in(x, 2 x]:\left(n,\binom{2 n}{n}\right)=1, \forall i, q_{i} \geqslant x^{\varepsilon}\right.$ and $\left.q_{i} \notin \bigcup_{s \leqslant 1 / \varepsilon+1}\left(x^{\left(1-\varepsilon^{3}\right) / s}, 4 x^{1 / s}\right]\right\}$.
Lemma 6.1. For any fixed $k \geqslant 2$ and $\varepsilon>0$ we have

$$
\left|\mathcal{N}_{k, \varepsilon}(x)\right|=\frac{x}{\log x}\left\{(1+O(\varepsilon)) \int_{\substack{\varepsilon \leqslant u_{1} \leqslant \cdots \leqslant u_{k} \leqslant 1 \\ u_{1}+\cdots+u_{k}=1}} \ldots \int_{\substack{ \\ }} h\left(u_{1}\right) \cdots h\left(u_{k}\right) d u_{1} \cdots d u_{k}+O_{k}\left(\varepsilon^{2}\right)+o(1)\right\}
$$

as $x \rightarrow \infty$, where $h(v)=v^{-1} 2^{1-\lfloor 1 / v\rfloor}$.
Proof. Consider $n \in \mathcal{N}_{k, \varepsilon}(x)$, and write $n=q_{1} \cdots q_{k}$ with $q_{1}<\cdots<q_{k}$. Let

$$
\mathcal{T}=\left\{x^{\varepsilon} \leqslant y_{1}<\cdots<y_{k} \leqslant x: x<y_{1} \cdots y_{k} \leqslant 2 x, \forall i: y_{i} \notin \bigcup_{s \leqslant 1 / \varepsilon+1}\left(x^{\left(1-\varepsilon^{3}\right) / s}, 4 x^{1 / s}\right]\right\}
$$

so that $\mathbf{q}=\left(q_{1}, \ldots, q_{k}\right) \in \mathcal{T}$. For each i, let M_{i} be the unique power of two such that $M_{i}<q_{i} \leqslant 2 M_{i}$, and for a fixed $\mathbf{M}=\left(M_{1}, \ldots, M_{k}\right)$ let $T(\mathbf{M})=\left\{\mathbf{y} \in \mathcal{T}: M_{i}<y_{i} \leqslant 2 M_{i}(1 \leqslant i \leqslant k)\right\}$.

With \mathbf{M} fixed, define $s_{j}=\left\lfloor\frac{\log x}{\log M_{j}}\right\rfloor$. Then the hypotheses of Proposition 3 hold with $\rho=\varepsilon^{3}$. The set \mathcal{T} is $(1 / \varepsilon+2)$-simple and hence by Proposition 3 with $m=1$, we get that

$$
\sum_{\substack{\left.\mathbf{q} \in \mathcal{T}(\mathbf{M}) \\\left(q_{1} \cdots q_{k},{ }_{2}^{2 n}\right) \\ n\\\right)}} 1=(1+O(\varepsilon)) 2^{-\left(s_{1}+\cdots+s_{k}\right)} \sum_{\mathbf{q} \in \mathcal{T}(\mathbf{M})} 1+O_{k, \varepsilon}\left(x^{1-\xi}\right),
$$

The prime number theorem implies that

$$
\sum_{\mathbf{q} \in \mathcal{T}(\mathbf{M})} 1=\frac{1+o(1)}{\log M_{1} \cdots \log M_{k}} \operatorname{Vol}(\mathcal{T}(\mathbf{M}))
$$

Now for $\mathbf{q} \in \mathcal{T}(\mathbf{M})$, we have $s_{j}=\left\lfloor\frac{\log x}{\log q_{j}}\right\rfloor-1$ for each j. Thus, after summing over all \mathbf{M} we obtain

$$
\begin{aligned}
\sum_{\substack{\mathbf{q} \in \mathcal{T} \\
\left(q_{1} \cdots q_{k},{ }_{2}^{2 n} n \\
n\\
\right)}} 1 & =O_{k, \varepsilon}\left(x^{1-\xi / 2}\right)+(1+O(\varepsilon)) \int_{\mathcal{T}} \prod_{j=1}^{k} \frac{2^{1-\left\lfloor\frac{\log x}{\left.\log y_{j}\right\rfloor}\right.}}{\log y_{j}} d \mathbf{y} \\
& =O_{k, \varepsilon}\left(x^{1-\xi / 2}\right)+(1+O(\varepsilon)) \frac{x}{\log x} \int_{\mathcal{U}} h\left(u_{1}\right) \cdots h\left(u_{k}\right) d \mathbf{u},
\end{aligned}
$$

where

$$
\left.\mathcal{U}=\left\{\varepsilon \leqslant u_{1} \leqslant \cdots \leqslant u_{k} \leqslant 1: u_{1}+\cdots+u_{k}=1, \forall i, u_{i} \notin \bigcup_{s \leqslant 1 / \varepsilon+1}\left(1-\varepsilon^{3}\right) / s, 1 / s\right]\right\} .
$$

Since $g()$ is bounded, the integral over the region where $\left(1-\varepsilon^{3}\right) / s \leqslant u_{i} \leqslant 1 / s$ for some i and some $s \leqslant 1 / \varepsilon+1$ contributes $O_{k}\left(\varepsilon^{2}\right)$ to the integral. This completes the proof.

Proof of Theorem 3 from Lemma 6.1] Let \mathcal{N}_{k} be the set of $n \in(x, 2 x]$ with k distinct prime factors and with $\left(n,\binom{2 n}{n}\right)=1$. Fix $\varepsilon>0$. Clearly

$$
\mathcal{N}_{1} \sim \frac{x}{\log x}
$$

Now let $k \geqslant 2$. Then one of the following is true for any $n \in \mathcal{N}_{k}$:
(1) $n \in \mathcal{N}_{k, \varepsilon}(x)$;
(2) n has a prime factor smaller than x^{ε};
(3) n is divisible by the square of some prime larger than x^{ε}; or
(4) n has a prime factor in $\bigcup_{s \leqslant 1 / \varepsilon+1}\left(x^{\left(1-\varepsilon^{3}\right) / s}, 4 x^{1 / s}\right]$.

Lemma6.1]gives the size of $\mathcal{N}_{k, \varepsilon}(x)$. By Proposition2 the number of n satisfying (2) is $O\left(e^{-1 /(3 \varepsilon)} x / \log x\right)$. The number of n satisfying (3) is evidently $\ll x^{1-\varepsilon / 2}$. Fixing s, the number of $n \in \mathcal{N}_{k}$, with all prime factors $\geqslant x^{\varepsilon}$ and with a prime factor in $I=\left(x^{\left(1-\varepsilon^{3}\right) / s}, 4 x^{1 / s}\right]$ is zero for $s=1$, and when $s \geqslant 2$ it is at most

$$
\begin{aligned}
\sum_{\substack { q_{1} \in I \\
\begin{subarray}{c}{q_{2}, \cdots, q_{k-1} \\
\forall i: q_{x} \geqslant x^{\varepsilon} \\
q_{1} \cdots q_{k-1} \leqslant 2 x^{1-\varepsilon}{ q _ { 1 } \in I \\
\begin{subarray} { c } { q _ { 2 } , \cdots , q _ { k - 1 } \\
\forall i : q _ { x } \geqslant x ^ { \varepsilon } \\
q _ { 1 } \cdots q _ { k - 1 } \leqslant 2 x ^ { 1 - \varepsilon } } }\end{subarray}} \pi\left(\frac{x}{q_{1} \cdots q_{k-1}}\right) & \ll \sum_{q_{1} \in I} \sum_{q_{2}, \ldots, q_{k} \in\left(x^{\varepsilon}, x\right]} \frac{x}{\varepsilon q_{1} \cdots q_{k-1} \log x} \\
& \ll \frac{x}{\log x} \frac{(\log 2 / \varepsilon)^{k-1} \varepsilon^{3}}{\varepsilon} .
\end{aligned}
$$

After summing the above over $s \leqslant 1 / \varepsilon+1$, we conclude that

$$
\left|\mathcal{N}_{k}\right|=\frac{x}{\log x}\left\{\frac{1}{k!} \int_{\substack{\varepsilon \leqslant u_{1}, \ldots, u_{k} \leqslant 1 \\ u_{1}+\cdots+u_{k}=1}} \cdots \int_{\substack{ \\ }} g\left(1 / u_{1}\right) \cdots g\left(1 / u_{k}\right) d \mathbf{u}+O\left(e^{-1 /(3 \varepsilon)}+\varepsilon(\log 2 / \varepsilon)^{k-1}+o(1)\right)\right\}
$$

The function $g()$ is bounded above by 2 , thus upon letting $\varepsilon \rightarrow 0$ we find that

$$
\begin{equation*}
\left|\mathcal{N}_{k}\right| \sim \frac{x}{k!\log x} \int_{\substack{0 \leqslant u_{1} \ldots, u_{k} \leqslant 1 \\ u_{1}+\cdots+u_{k}=1}} \cdots \int_{1} h\left(u_{1}\right) \cdots h\left(u_{k}\right) d \mathbf{u} \quad(x \rightarrow \infty) \tag{6.1}
\end{equation*}
$$

for each fixed k. On the other hand, if n has more than K prime factors, then n has a prime factor $<x^{1 / K}$, and by Proposition there are $O\left(e^{-K / 3} x / \log x\right)$ such integers. That is, for any fixed K,

$$
\#\{\mathcal{B} \cap[1, x]\}=\sum_{k=1}^{K} \mathcal{N}_{k}+O\left(e^{-K / 3} \frac{x}{\log x}\right) .
$$

Summing (6.1) and then letting $K \rightarrow \infty$, Theorem 3 follows.

7. NUMERICAL ESTIMATES OF THE DENSITY

It is convenient here to go back to the variables Y_{i} given in (1.5). Moreover, in order for the product in the definition to be nonzero, we need $Y_{i} \leqslant \frac{1}{\ell+1}$ for all i. In particular, this shows that

$$
\begin{equation*}
c_{\ell} \leqslant \rho(\ell+1)=e^{-(1+o(1)) \ell \log \ell} \tag{7.1}
\end{equation*}
$$

as $\ell \rightarrow \infty$, where ρ is the Dickman function. We have

$$
c_{\ell}=\mathbb{E} \prod_{j=1}^{\infty} g\left(y_{j}\right), \quad g(y)= \begin{cases}1-2^{1-\lfloor 1 / y\rfloor} \sum_{h=0}^{\ell-1}\binom{\lfloor 1 / y\rfloor-1}{h} & \text { if } 0<y \leqslant \frac{1}{\ell+1} \tag{7.2}\\ 0 & \text { if } y>\frac{1}{\ell+1} .\end{cases}
$$

We estimate c_{ℓ} using Laplace transforms. By Theorem 3.2 of [9], we have that

$$
\begin{equation*}
F(s):=\int_{0}^{\infty} e^{-s t}\left(\mathbb{E} \prod_{j=1}^{\infty} g\left(t y_{j}\right)\right) d t=\frac{1}{s} \exp \left(\int_{0}^{\infty} \frac{g(z)-1}{z} e^{-s z} d z\right) \quad(\Re s>0) . \tag{7.3}
\end{equation*}
$$

Theorem 3.2 of [9] is only stated for real $s>0$, but the proof gives the result in the full half-plane $\Re s>0$. The left side of (7.3) is an entire function of $s \in \mathbb{C}$, since

$$
\mathbb{E} \prod_{j=1}^{\infty} g\left(t y_{j}\right) \leqslant \rho(t(\ell+1))
$$

decays faster than exponentially in t; however the right side is only well defined for $\Re s>0$. We massage the right side using the standard function

$$
\begin{equation*}
E_{1}(z)=\int_{z}^{\infty} \frac{e^{-t}}{t} d t \tag{7.4}
\end{equation*}
$$

Since $g(z)=0$ for $z>\frac{1}{\ell+1}$ we may decompose

$$
\int_{0}^{\infty} \frac{g(z)-1}{z} e^{-s z} d z=\int_{0}^{\frac{1}{\ell+1}} \frac{g(z)-1}{z} e^{-s z} d z-E_{1}\left(\frac{s}{\ell+1}\right) .
$$

We next use the fact that $g(z)$ is a step-function with jumps at the points $1 / k$, where k is an integer satisfying $k \geqslant \ell+1$. Using the Pascal relation, adn in the notation of Stieltjes integration, we have

$$
\begin{aligned}
d g\left(\frac{1}{k}\right)=g\left(\frac{1}{k-1}\right)-g\left(\frac{1}{k}\right) & =-2^{2-k} \sum_{h=0}^{\ell-1}\binom{k-2}{h}+2^{1-k} \sum_{h=0}^{\ell-1}\left(\binom{k-2}{h-1}+\binom{k-2}{h}\right) \\
& =-2^{1-k}\binom{k-2}{\ell-1} .
\end{aligned}
$$

Thus, applying (Stieltjes) integration by parts we find that

$$
\begin{aligned}
\int_{0}^{(1 /(\ell+1))^{+}}(g(z)-1) \frac{e^{-s z}}{z} d z & =E_{1}\left(\frac{s}{\ell+1}\right)+\int_{0}^{(1 /(\ell+1))^{+}} E_{1}(s z) d g(z) \\
& =E_{1}\left(\frac{s}{\ell+1}\right)-\sum_{k \geqslant \ell+1} 2^{1-k}\binom{k-2}{\ell-1} E_{1}\left(\frac{s}{k}\right)
\end{aligned}
$$

Here we used that $\lim _{y \rightarrow 0^{+}} g(y)=1$ and $\lim _{z \rightarrow 0} E_{1}(s z)(g(z)-1)=0$. Inserting this into (7.3) and inverting, we conclude the following:
Proposition 4. For any $\sigma>0$, we have

$$
c_{\ell}=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{e^{s}}{s} \exp \left\{-\sum_{k \geqslant \ell+1} 2^{1-k}\binom{k-2}{\ell-1} E_{1}\left(\frac{s}{k}\right)\right\} d s
$$

Computing c_{ℓ} was accomplished with the Python scripts mpmath, which have a built-in function for numerically inverting the Laplace transform, and which can can be computed to arbitrary precision ${ }^{11}$.

```
from mpmath import *
mp.dps=100 # digit accuracy of internal computations
def F(S,l):
    x=mpf('0.0')
    for k in range(l+1, 200):x=x+2**(1-k)*binomial (k-2,l-1)*mp.el(s/k)
    return(mp.exp (-x)/s)
c = lambda l : mp.invertlaplace(lambda z: F(z,l),mpf(1.0))
```

Table 1. Python code to compute c_{ℓ}

[^1]We get

$$
\begin{aligned}
& c_{1}=0.11424743 \ldots \\
& c_{2}=0.003227778 \ldots \\
& c_{3}=0.000031511777490 \ldots \\
& c_{4}=1.33012994669 \ldots \times 10^{-7} \\
& c_{5}=2.83248121476 \ldots \times 10^{-10} \\
& c_{6}=3.40390904801 \ldots \times 10^{-13} .
\end{aligned}
$$

When $\ell=1$, this is in fairly good aggreement with accumulated numerical data, e.g. [11, Sequence A014847].

8. PROOF OF TheOrem 2

We use Proposition 4 and invert using the saddle-point method, as in \S III. 5 of [15]. By the shape of the binomial distribution, $g(z)$ transitions from being close to 1 to being very small in the vicinity of $z=\frac{1}{2 \ell}$. Recall the definition (7.4) of $E_{1}(z)$ and define

$$
\begin{equation*}
\operatorname{Ein}(s):=\gamma+\log s+E_{1}(s)=\int_{0}^{s} \frac{1-e^{-t}}{t} d t \tag{8.1}
\end{equation*}
$$

which is an entire function of s. By [15, Theorem 5.10, §III.5], we have

$$
\begin{equation*}
\hat{\rho}(s):=\int_{0}^{\infty} \rho(t) e^{-t s} d t=e^{\gamma-\operatorname{Ein}(s)} \tag{8.2}
\end{equation*}
$$

To bound the integral in Proposition 4 we define

$$
\begin{equation*}
J(w, u):=\sum_{k=\ell+1}^{\infty} 2^{1-k}\binom{k-2}{\ell-1}\left(E_{1}(w)-E_{1}\left(\frac{w u}{k}\right)\right)=E_{1}(w)-\sum_{k=\ell+1}^{\infty} 2^{1-k}\binom{k-2}{\ell-1} E_{1}\left(\frac{w u}{k}\right) . \tag{8.3}
\end{equation*}
$$

In this notation, plus (8.1), Proposition 4 implies that

$$
\begin{align*}
c_{\ell} & =\frac{1}{2 \pi i u} \int_{\sigma-i \infty}^{\sigma+i \infty} e^{s} \exp \{\gamma-\operatorname{Ein}(s / u)+J(s / u, u)\} d s \\
& =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} e^{u w} \exp \{\gamma-\operatorname{Ein}(w)+J(w, u)\} d w, \tag{8.4}
\end{align*}
$$

where $u \geqslant 1$ is an arbitrary parameter, to be chosen later to make $J(s / u, u)$ small when $s \approx \sigma$.
Comparing (8.4) with (8.2), we will see that the optimal choise of u is very close to the optimal value needed to compute $\rho(u)$ by inverting $\hat{\rho}$, namely

$$
\begin{equation*}
\sigma=-\xi_{0}:=-\xi(u), \tag{8.5}
\end{equation*}
$$

where $\xi=\xi(u)$ satisfies $e^{\xi}=1+u \xi$. We note that

$$
\begin{equation*}
\xi(u)=\log (u \log u)+\frac{\log \log u}{\log u}+O\left(\frac{(\log \log u)^{2}}{\log ^{2} u}\right) . \tag{8.6}
\end{equation*}
$$

We record estimates for $\hat{\rho}(s)$ on vertical segments from [15], Lemma 5.12, Ch. III].

Lemma 8.1. Let $u \geqslant 2$ and $\xi=\xi(u)$. For $w=-\xi+i \tau$, we have

$$
\hat{\rho}(w)=e^{\gamma-\operatorname{Ein}(w)}= \begin{cases}O\left(\exp \left\{-\operatorname{Ein}(-\xi)-\frac{\tau^{2} u}{2 \pi^{2}}\right\}\right) & \text { if }|\tau| \leqslant \pi \\ O\left(\exp \left\{-\operatorname{Ein}(-\xi)-\frac{u}{\pi^{2}+\xi^{2}}\right\}\right) & \text { if }|\tau|>\pi \\ \frac{1}{w}\left(1+O\left(\frac{1+u \xi}{|w|}\right)\right) & \text { if }|\tau|>1+u \xi\end{cases}
$$

We also use a standard bound for the binomial distribution which follows quickly, for example, from Hoeffding's inequality applied to Bernouilli random variables X_{i} with $\mathbb{P}\left(X_{i}=0\right)=\mathbb{P}\left(X_{i}=1\right)=1 / 2$.

Lemma 8.2. We have

$$
2^{1-k}\binom{k-2}{\ell-1} \ll \exp \left\{-\frac{(k-2 \ell)^{2}}{2 k}\right\} .
$$

Lemma 8.3. Let A_{ℓ} be the random variable with

$$
\mathbb{P}\left(A_{\ell}=k\right)=a_{k, \ell}:=2^{1-k}\binom{k-2}{\ell-1} \quad(k \geqslant \ell+1) .
$$

Then, for $\ell \geqslant 4$ we have
(a) $\mathbb{E} A_{\ell}=2 \ell+1$;
(b) $\mathbb{E}\left|A_{\ell}-2 \ell\right|^{B}<_{B} \ell^{B / 2}$ for all $B \geqslant 0$;
(c) $\mathbb{E} A_{\ell}^{-1}=\frac{1}{2 \ell}+O\left(\frac{1}{\ell^{3}}\right)$;
(d) $\mathbb{E} A_{\ell}^{-2}=\frac{1}{4 \ell^{2}}+\frac{1}{8 \ell^{3}}+O\left(\frac{1}{\ell^{4}}\right)$.
(e) $\mathbb{E} A_{l} e^{z / A_{\ell}} \ll \ell e^{z /(2 \ell)}$ uniformly for $0 \leqslant z \leqslant \ell^{4 / 3}$.

Remark. The random variables are well-defined since $\sum_{k} \mathbb{P}\left(A_{\ell}=k\right)=g\left(0^{+}\right)-g(1 / \ell)=1$.
Proof. Identity (a) follows from

$$
\mathbb{E} A_{\ell}=1+\mathbb{E}\left(A_{\ell}-1\right)=1+\sum_{k}(k-1) a_{k, \ell}=1+2 \ell \sum_{k} a_{k, \ell+1}=2 \ell+1 .
$$

The estimate (b) follows from Lemma 8.2 ,

$$
\mathbb{E}\left|A_{\ell}-2 \ell\right|^{B} \lll \sum_{k>\ell}|k-2 \ell|^{B} e^{-\frac{1}{2 k}(k-2 \ell)^{2}} \ll \ell^{B / 2} .
$$

We prove (c) and (d) in a manner similar to that of the proof of (a). First, for $k \geqslant 4$ we have

$$
\frac{1}{k}=\frac{1}{k-2}-\frac{2}{(k-2)(k-3)}+O\left(\frac{1}{k^{3}}\right)
$$

and thus

$$
\begin{aligned}
\mathbb{E} A_{\ell}^{-1} & =O\left(\frac{1}{\ell^{3}}\right)+\sum_{k}\left(\frac{1}{k-2}-\frac{2}{(k-2)(k-3)}\right) a_{k, \ell} \\
& =O\left(\frac{1}{\ell^{3}}\right)+\frac{1}{2(\ell-1)} \sum_{k} a_{k, \ell-1}-\frac{2}{4(\ell-1)(\ell-2)} \sum_{k} a_{k, \ell-2} \\
& =\frac{\ell-3}{2(\ell-1)(\ell-2)}+O\left(\frac{1}{\ell^{3}}\right)=\frac{1}{2 \ell}+O\left(\frac{1}{\ell^{3}}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbb{E} A_{\ell}^{-2} & =\sum_{k \geqslant \ell+1} a_{k, \ell}\left(\frac{1}{(k-2)(k-3)}-\frac{5}{(k-2)(k-3)(k-4)}+O\left(\frac{1}{k^{4}}\right)\right) \\
& =O\left(\frac{1}{\ell^{4}}\right)+\frac{1}{4(\ell-1)(\ell-2)} \sum_{k} a_{k, \ell-2}-\frac{5}{8(\ell-1)(\ell-2)(\ell-3)} \sum_{k} a_{k, \ell-3} \\
& =\frac{2 \ell-11}{8(\ell-1)(\ell-2)(\ell-3)}+O\left(\frac{1}{\ell^{4}}\right) \\
& =\frac{1}{4 \ell^{2}}+\frac{1}{8 \ell^{3}}+O\left(\frac{1}{\ell^{4}}\right)
\end{aligned}
$$

Finally we prove part (e) using Lemma 8.2. Let $k_{0}=\left\lfloor 2 \ell-10 \ell^{2 / 3}\right\rfloor$ and $k_{1}=4 \ell$. We have

$$
\begin{aligned}
\mathbb{E} A_{\ell} e^{z / A_{\ell}} & \ll \ell e^{z / k_{0}}+\ell \sum_{k=k_{0}+1}^{2 \ell} \exp \left\{-\frac{(2 \ell-k)^{2}}{2 k}+\frac{z}{k}\right\}+\ell \sum_{k>10 \ell} \exp \left\{-\frac{(k-2 \ell)^{2}}{2 k}+\frac{z}{k}\right\} \\
& \ll \ell e^{z /(2 \ell)}+\ell \sum_{k=k_{0}+1}^{2 \ell} e^{-\ell^{1 / 3}}+\ell \sum_{k=k_{1}}^{\infty} e^{-k / 8+z / k_{1}} \\
& \ll \ell e^{z /(2 \ell)},
\end{aligned}
$$

as required.
We use the previous two lemmas to estimate $J(w, u)$, as defined in 8.3).
Proposition 5. Suppose that $u=2 \ell+O(\log \ell)$ and $\xi=\xi(u)$. Then, on the vertical line $\Re w=-\xi$ we have the crude bound

$$
\begin{equation*}
J(w, u) \ll \frac{e^{\xi}}{|w|} \ll \frac{\ell \log \ell}{|w|} \tag{8.7}
\end{equation*}
$$

Furthermore, if $|w| \leqslant \ell^{1 / 4}$ then we have the asymptotic

$$
\begin{equation*}
J(w, u)=e^{-w}\left[\frac{u-w-1}{2 \ell}-1+O\left(|w|^{2} \ell^{-3 / 2}\right)\right] \tag{8.8}
\end{equation*}
$$

Proof. Using integration by parts, we see that

$$
\begin{align*}
E_{1}(w)-E_{1}\left(\frac{w u}{k}\right) & =\int_{1}^{u / k} \frac{e^{-w z}}{z} d z \\
& =\frac{e^{-w}-e^{-w u / k}(k / u)}{w}-\frac{1}{w} \int_{\frac{u}{k}}^{1} \frac{e^{-w z}}{z^{2}} d z \tag{8.9}\\
& \ll \frac{e^{\xi}+e^{\xi u / k}(k / u)}{|w|}+\frac{(k / u) \max \left(e^{\xi}, e^{\xi u / k}\right)}{|w|} \\
& \ll \frac{\left(e^{\xi}+e^{\xi u / k}\right)(1+k / u)}{|w|}
\end{align*}
$$

Apply (8.3), followed by an application of Lemma8.3 (a) and (e). We have

$$
\begin{aligned}
J(w, u) & \ll \frac{1}{|w|} \sum_{k=\ell+1}^{\infty} 2^{1-k}\binom{k-2}{\ell-1}\left(e^{\xi}+e^{\xi u / k}\right)(1+k / u) \\
& =\frac{1}{|w|} \mathbb{E}\left(1+A_{\ell} / u\right)\left(e^{\xi}+e^{\xi u / A_{\ell}}\right) \\
& \ll \frac{\mathbb{E} A_{\ell}\left(e^{\xi}+e^{\xi u / A_{\ell}}\right)}{u|w|} \\
& \ll \frac{\ell e^{\xi}+\ell e^{\xi u /(2 \ell)}}{\ell|w|},
\end{aligned}
$$

and (8.7) follows from the bounds on u.
Now suppose that $|w| \leqslant \ell^{1 / 4}$. By (8.6), (8.9) and Lemma8.2) the terms in the definition (8.3) of $J(w, u)$ corresponding to $|k-2 \ell|>100(\ell \log \ell)^{1 / 2}$ have total sum

$$
\begin{equation*}
\ll \frac{e^{2 \xi}}{|w|} \sum_{|k-2 \ell|>100(\ell \log \ell)^{1 / 2}}(1+k / u) a_{k, \ell} \ll \frac{1}{\ell^{100}} . \tag{8.10}
\end{equation*}
$$

When $|k-2 \ell|<100(\ell \log \ell)^{1 / 2}$, the fraction $u / k=1+O\left(\sqrt{\frac{\log \ell}{\ell}}\right)$. Hence

$$
\begin{aligned}
E_{1}(w)-E_{1}\left(\frac{w u}{k}\right) & =e^{-w} \int_{0}^{\frac{u}{k}-1} \frac{e^{-w v}}{1+v} d v \\
& =e^{-w} \int_{0}^{\frac{u}{k}-1}\left(1-(w+1) v+O\left(|w|^{2} v^{2}\right)\right) d v \\
& =-e^{-w}\left[1-\frac{u}{k}+(w+1)\left(1-\frac{u}{k}\right)^{2}+O\left(|w|^{2} \frac{|k-u|^{3}}{\ell^{3}}\right)\right] .
\end{aligned}
$$

By Lemma 8.3 (b),

$$
\mathbb{E}|k-u|^{3} \ll \mathbb{E}|k-2 \ell|^{3}+|2 \ell-u|^{3} \ll \ell^{3 / 2}
$$

and thus the big- O term above is $\ll|w|^{2} \ell^{-3 / 2}$. Reintroducing the summands $|k-2 \ell| \geqslant 100(\ell \log \ell)^{1 / 2}$, which are negligible by 8.10), we find using Lemma8.3 (c) and (d) that

$$
\begin{aligned}
J(w, u) & =O\left(\frac{1}{\ell^{100}}\right)-e^{-w}\left[1-u \mathbb{E} A_{\ell}^{-1}+(w+1) \mathbb{E}\left(1-\frac{u}{A_{\ell}}\right)^{2}+O\left(|w|^{2} \ell^{-3 / 2}\right)\right] \\
& =O\left(\frac{1}{\ell^{100}}\right)-e^{-w}\left[1-\frac{u}{2 \ell}+(w+1)\left(\left(1-\frac{u}{2 \ell}\right)^{2}+\frac{u^{2}}{8 \ell^{3}}\right)+O\left(|w|^{2} \ell^{-3 / 2}\right)\right] \\
& =e^{w}\left[\frac{u-w-1}{2 \ell}-1+O\left(|w|^{2} \ell^{-3 / 2}\right)\right] .
\end{aligned}
$$

Here we used repeatedly the bounds $|w| \geqslant 1$ and $|u-2 \ell| \ll \log \ell$. This completes the proof of (8.8).
We now complete the proof of Theorem 2. Begin with the w-integral on the right side of (8.4) and define

$$
\begin{equation*}
u=2 \ell+1-\xi(2 \ell), \quad \sigma=u \xi(u) \tag{8.11}
\end{equation*}
$$

Since

$$
\xi^{\prime}(u)=\frac{\xi+1}{u(\xi-1)+1} \ll \frac{1}{u}
$$

and $\xi(2 \ell) \ll \log \ell$, it follows that

$$
\xi(2 \ell)=\xi(u)+O\left(\frac{\log \ell}{\ell}\right)
$$

and hence that

$$
u=2 \ell+1-\xi(u)+O\left(\frac{\log \ell}{\ell}\right)
$$

Plugging this into (8.8), we see that when $w=-\xi+i \tau$ and $|\tau|<\ell^{1 / 4}$, we have the bound

$$
\begin{equation*}
J(-\xi+i \tau, u)=e^{-w}\left(\frac{-i \tau}{2 \ell}+O\left(|w|^{2} \ell^{-3 / 2}\right)\right) \ll|\tau| \log \ell+\frac{\log ^{3} \ell+|\tau|^{2} \log \ell}{\ell^{1 / 2}} \quad\left(|\tau|<\ell^{1 / 4}\right) \tag{8.12}
\end{equation*}
$$

We now insert the estimates (8.12), (8.7) and the bounds from Lemma 8.1 into the right side of (8.4). Let

$$
\tau_{1}=100 \sqrt{\frac{\log u}{u}}, \quad \tau_{2}=\pi, \quad \tau_{3}=1+u \xi(u)
$$

Write $w=-\xi+i \tau, \xi=\xi(u)$.
Our fist task is to show that the part of the integral with $|\tau|>\tau_{1}$ is negligible. When $\tau_{1} \leqslant|\tau| \leqslant \tau_{2}$, Lemma 8.1 and 8.12) imply that

$$
\begin{aligned}
e^{\gamma-\operatorname{Ein}(w)+J(w, u)} & \ll e^{-\operatorname{Ein}(-\xi)-\tau^{2} u /\left(2 \pi^{2}\right)+O(|\tau| \log \ell)} \\
& \ll e^{-\operatorname{Ein}(-\xi)-1000 \log u}
\end{aligned}
$$

When $\tau_{2} \leqslant|\tau| \leqslant \tau_{3}$, Lemma 8.1 (8.7) and 8.12) together imply

$$
\begin{aligned}
e^{\gamma-\operatorname{Ein}(w)+J(w, u)} & \ll e^{-\operatorname{Ein}(-\xi)-\frac{u}{\pi^{2}+\xi^{2}}+O\left(\ell^{3 / 4} \log \ell\right)} \\
& \ll e^{-\operatorname{Ein}(-\xi)-\frac{u}{2 \xi^{2}}}
\end{aligned}
$$

and when $|\tau|>\tau_{3}$, Lemma 8.1 and 8.7) give

$$
e^{\gamma-\operatorname{Ein}(w)+J(w, u)}=\frac{1}{w}\left(1+O\left(\frac{\ell \log \ell}{|w|}\right)\right)
$$

We find that the portion of the w-integral in 8.4 corresponding to $|\tau| \geqslant \tau_{1}$ is

$$
\begin{aligned}
& \ll \frac{e^{-u \xi-\operatorname{Ein}(-\xi)}}{\ell^{500}}+e^{-u \xi} \int_{\tau_{3}}^{\infty}\left|\frac{e^{i \tau u}}{\tau}\left(1+O\left(\frac{\ell \log \ell}{\tau}\right)\right) d \tau\right| \\
& \ll \frac{e^{-u \xi-\operatorname{Ein}(-\xi)}}{\ell^{500}}+e^{-u \xi} \ll \frac{e^{-u \xi-\operatorname{Ein}(-\xi)}}{\ell^{500}}
\end{aligned}
$$

upon appealing to the easy bound $-\operatorname{Ein}(-\xi) \gg \xi^{-1} e^{\xi} \gg \ell$.
Finally, we consider $|\tau| \leqslant \tau_{1}$. By Lemma 8.1 and 8.7) it follows that

$$
\frac{1}{2 \pi i} \int_{-\xi-i \tau_{1}}^{-\xi+i \tau_{1}} e^{u w} e^{\gamma-\operatorname{Ein}(w)+J(w, u)} d w=K(u)+O\left(e^{-u \xi-\operatorname{Ein}(-\xi)} \frac{\log ^{2} \ell}{\ell}\right)
$$

where

$$
K(u)=\frac{1}{2 \pi i} \int_{-\xi-i \tau_{1}}^{-\xi+i \tau_{1}} e^{u w} e^{\gamma-\operatorname{Ein}(w)} d w
$$

Extending the limits to $-\xi \pm i \infty$ produces a small error term by Lemma 8.1 and it follows from 8.2) that

$$
\rho(u)-K(u) \ll \int_{|\tau|>\tau_{1}}\left|e^{u w-\operatorname{Ein}(w)}\right| d w \ll \frac{e^{-\xi-\operatorname{Ein}(-\xi)}}{\ell^{100}} .
$$

Gathering these estimates together, we deduce that

$$
c_{l}=\rho(u)+O\left(\frac{\log ^{2} \ell}{\ell} e^{-u \xi-\operatorname{Ein}(-\xi)}\right)
$$

By Theorem 5.13 of [15, Ch. III], we have

$$
\begin{equation*}
\rho(u)=\left(1+O\left(\frac{1}{u}\right)\right)\left(\frac{\xi}{2 \pi(u(\xi-1)+1)}\right)^{1 / 2} e^{\gamma-u \xi-\operatorname{Ein}(-\xi)} \gg \frac{1}{u^{1 / 2}} e^{-u \xi-\operatorname{Ein}(-\xi)} \tag{8.13}
\end{equation*}
$$

and thus

$$
\begin{equation*}
c_{l}=\rho(u)\left(1+O\left(\frac{\log ^{2} \ell}{\ell^{1 / 2}}\right)\right) \tag{8.14}
\end{equation*}
$$

Finally, we estimate the error made by replacing u by

$$
u^{*}=2 \ell+1-\log (2 \ell \log (2 \ell))-\frac{\log \log (2 \ell)}{\log 2 \ell}
$$

in (8.14). By (8.6),

$$
\left|u-u^{*}\right| \ll \frac{(\log \log \ell)^{2}}{\log ^{2} \ell}
$$

Hence, using (8.13), 8.6), the bound $\xi^{\prime}(u) \ll 1 / u$ and the bounds

$$
\begin{aligned}
\operatorname{Ein}(-\xi(u))-\operatorname{Ein}\left(-\xi\left(u^{*}\right)\right) & \ll \frac{e^{\xi(u)}}{\xi(u)}\left|\xi\left(u^{*}\right)-\xi(u)\right| \ll\left|u-u^{*}\right| \\
u \xi(u)-u^{*} \xi\left(u^{*}\right) & \ll\left|u-u^{*}\right| \log u
\end{aligned}
$$

we see that

$$
\rho(u) \sim \rho\left(u^{*}\right) \quad(u \rightarrow \infty)
$$

Combining this with 8.14 , this completes the proof of Theorem 2.

9. NUMERICAL COMPUTATION OF c

The terms with $k=1$ and $k=2$ in (1.4) contribute 1 , respectively, $\sum_{m=2}^{\infty} 2^{1-m} \log \left(\frac{m}{m-1}\right)=$ $0.507833922868438392189041 \ldots$ Define

$$
f(t)=\sum_{k=3}^{\infty} \frac{1}{k!} \int_{\substack{u_{i} \geqslant 0 \forall i \\ u_{1}+\cdots+u_{k}=t}} \cdots \int_{\substack{ \\ }} h\left(u_{1}\right) \cdots h\left(u_{k}\right) d u_{1} \cdots d u_{k}
$$

so that $c=f(1)+1.507833922868438392189041 \ldots$ Extend the definition of h to $(0, \infty)$ by defining $h(u)=1 / u$ for $u \geqslant 1$. In this way, $h(u)=1 / u$ for $u>1 / 2$, and thus h is C^{∞} near $t=1$. As in previous sections, define the Laplace transform

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=e^{J}-1-J^{2} / 2 . \quad J=\int_{0}^{\infty} h(u) e^{-s u} d u
$$

Using that $h(u)=u^{-1} 2^{1-m}$ for $\frac{1}{m+1}<u \leqslant \frac{1}{m}, m \geqslant 1$, and recalling the definition (7.4) of $E_{1}(z)$, we quickly derive

$$
\begin{aligned}
\int_{0}^{\infty} h(u) e^{-s u} d u & =\sum_{m=1}^{\infty} 2^{1-m} \int_{1 /(m+1)}^{1 / m} \frac{e^{-s u}}{u} d u+\int_{1}^{\infty} \frac{e^{-s u}}{u} d u \\
& =\sum_{m=2}^{\infty} 2^{1-m} E_{1}(s / m)
\end{aligned}
$$

Again, we use the Python package mpmath to numerically invert the Laplace transform $F(s)$, and this gives $c=f(1)=1.526453 \ldots$

Appendix A. Proof of Lemma 5.1

Recall that for random $\mathbf{q}=\mathbf{q}(n)=\left(q_{1}, \ldots, q_{k}\right)$ we defined

$$
\begin{equation*}
X_{i}(n)=\frac{\Lambda\left(q_{i}\right)}{\log \left(\frac{n}{q_{1} \cdots q_{i-1}}\right)} \tag{A.1}
\end{equation*}
$$

It suffices to show that for any real numbers $0<a_{i}<b_{i}<1(1 \leqslant i \leqslant k)$,

$$
\begin{equation*}
\mathbb{P}_{x}\left(a_{i} \leqslant X_{i}(n) \leqslant b_{i}(1 \leqslant i \leqslant k)\right) \rightarrow \prod_{i=1}^{k}\left(b_{i}-a_{i}\right) \quad(x \rightarrow \infty) \tag{A.2}
\end{equation*}
$$

Below, constants implied by $O-$ an $\ll-$ may depend on k and the a_{i}, b_{i}. From (5.2), if $X_{i} \leqslant b_{i}$ for all i then

$$
\begin{equation*}
\frac{n}{q_{1} \cdots q_{i-1}} \geqslant n^{\left(1-b_{1}\right) \cdots\left(1-b_{i-1}\right)} \tag{A.3}
\end{equation*}
$$

Hence, writing $c=\left(1-b_{1}\right) \cdots\left(1-b_{k}\right) \min _{i} a_{i}$, we have $q_{i}>n^{c}$ for all i under the assumption that $a_{i} \leqslant X_{i}(n) \leqslant b_{i}$ for every i. If some q_{i} is not prime, then n is divisible by a prime power $p^{a}>x^{c / 2} / \log x$ with $a \geqslant 2$ and the number of such $n \in(x, 2 x]$ is $O\left(x^{1-c / 2}\right)$. Thus, we may assume that the q_{i} are all prime. We calculate, using (A.1),

$$
\mathbb{P}_{x}\left(a_{i} \leqslant X_{i}(n) \leqslant b_{i}(1 \leqslant i \leqslant k)\right)=\frac{1}{x} \sum_{\substack{x<n \leqslant 2 x}} \sum_{\substack{q_{1} \mid n \\ a_{1} \leqslant X_{1}(n) \leqslant b_{1}}} X_{1}(n) \cdots \sum_{\substack{q_{k} \mid n \\ a_{1} \leqslant X_{k}(n) \leqslant b_{1}}} X_{k}(n)
$$

On the right side, the variables q_{i} are no longer random, but we still define $X_{i}(n)$ by A.1). Since $\log x \leqslant$ $\log n \leqslant \log (2 x)$, the above expression is bounded below by

$$
(1+O(1 / \log x)) \sum_{a_{1} \log (2 x) \leqslant \log q_{1} \leqslant b_{1} \log x} \frac{\log q_{1}}{q_{1}} \cdots \sum_{a_{k} \log \left(\frac{2 x}{q_{1} \cdots q_{k-1}}\right) \leqslant \log q_{k} \leqslant b_{k} \log \left(\frac{x}{q_{1} \cdots q_{k-1}}\right)} \frac{\log q_{k}}{\log \frac{x}{q_{1} \cdots q_{k-1}}}
$$

and bounded above by the same expression with " x " and " $2 x$ " interchanged in the logarithms.
For each fixed q_{1}, \ldots, q_{i-1}, Mertens' estimate gives

$$
a_{i} \log \left(\frac{x}{q_{1} \cdots q_{i-1}}\right)+O(1) \leqslant \log q_{i} \leqslant b_{i} \log \left(\frac{x}{q_{1} \cdots q_{i-1}}\right)+O(1) \quad \frac{\log q_{i}}{\log \frac{x}{q_{1} \cdots q_{i-1}}}=b_{i}-a_{i}+O\left(\frac{1}{\log x}\right)
$$

and the desired result A.2) follows.

REFERENCES

[1] P. Billingsly, On the distribution of large prime divisors, Collection of articles dedicated to the memory of Alfréd Rényi, I. Period. Math. Hungar. 2 (1972), 283-289.
[2] H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000.
[3] P. Donnelly and G. Grimmett, On the asymptotic distribution of large prime factors, J. London Math. Soc. (2) 47 (1993), 395-404.
[4] P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of $\binom{2 n}{n}$, Collection of articles in honor of Derrick Henry Lehmer on the occasion of his seventieth birthday, Math. Comp. 29 (1975) 83-92.
[5] S. W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note, vol. 126, Cambridge University Press, 1991.
[6] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic Mathematics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
[7] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[8] R. R. Hall, G. Tenenbaum, Divisors, Cambridge Tracts in mathematics vol. 90, 1988.
[9] K. Handa, The two-parameter Poisson-Dirichlet process, Bernoulli 15 (2009), 1082-1116.
[10] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics vol. 84, Amer. Math. Soc., 1994.
[11] N. A. Sloane, The on-line encyclopedia of integer sequences. http://oeis.org
[12] C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly 122 (2015), 636-644.
[13] C. Sanna, Central binomial coefficients divisible by or coprime to their indices. Int. J. Number Theory 14 (2018), no. 4, 1135-1141.
[14] G. Tenenbaum, A rate estimate in Billingsley's theorem for the size distribution of large prime factors, Quart. J. Math. Oxford 51 (2000), no. 3, 385-403.
[15] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd ed., Amer. Math Soc.
Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail address: ford126@illinois.edu
Steklov Mathematical Institute, 8 Gubkin Street, Moscow, 119991, Russia
E-mail address: konyagin23@gmail.com

[^0]: Date: September 10, 2019.
 The first author was supported in part by National Science Foundation Grant DMS-1802139.
 The authors are grateful to the Institute of Mathematics of the Bulgarian Academy of Sciences, which hosted their visit in June, 2018, and where the seeds of this paper were sown. The first author thanks the Institute of Mathematics at the University of Oxford for providing stimulating working conditions during a visit in March-June, 2019.

[^1]: ${ }^{1}$ We are not completely confident in these numerical values. They are the result of comparing the mpmath numbers with different precision, and the displayed digits are those that are stable when increasing the working precision.

