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Abstract

A Ducci sequence is a sequence of integer n-tuples obtained by iterating the map

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|) .

Such a sequence is eventually periodic and we denote by P (n) the maximal period of such
sequences for given n. We prove lower bounds for P (n) by counting certain partitions.

1. Introduction

Let n be a positive integer. A Ducci sequence is a sequence of integer n-tuples obtained
by iterating the map

D : Zn → Z
n;

defined as follows:

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).

There is a long literature on Ducci sequences, see for example [BLM07, BM08, Bre19,
CM37, CST05, Cla18, Ehr90, Lud81, MST06, SB18] and the references therein.

Ducci sequences are eventually periodic, and for each n the largest period is denoted
by P (n); it is the period of the sequence starting with (0, 0, . . . , 0, 1). The sequence

P (1), P (2), . . . is entry A038553 in the Online Encyclopedia of Integer Sequences [OEIS].
Since P (2k) = 1 and P (2km) = 2kP (m) if m is not a power of 2, by [Ehr90, Theorem 4],

we restrict our attention to odd n.

The following upper bounds on P (n) are known. Denote by t = ord(Z/nZ)∗(2) the
multiplicative order of 2 modulo n. If there exists an integerM for which 2M ≡ −1 mod n,

then we say n is ‘with −1’ . The first of the following upper bounds is proved in [Lud81],
the second in [Ehr90] and the third in [Bre19].

http://arxiv.org/abs/1909.04462v1
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It is convenient to introduce the following quantities

B1(n) = 2t − 1 and B2(n) = n(2t/2 − 1). (1.1)

Theorem A Let n be an odd integer, and t the multiplicative order of 2 modulo n. Then,

1. P (n) divides B1(n).

2. Suppose n is with −1, then P (n) divides B2(n).

3. Suppose that n = pk with p ≡ 5 mod 8 prime and 2 is a primitive root modulo pk.

If the equation x2 − py2 = −4 has no solutions in odd integers x, y ∈ Z, then P (n)
divides 1

3
B2(n).

As for lower bounds, the first of the following results is found again in [Ehr90], and
the remaining ones in [GS95].

Theorem B Let n be an odd integer. Then

1. n divides P (n).

2. P (n) = n if and only if n = 2r − 1 for some positive integer r.

3. If n is with −1, then P (n) > n(n− 2).

4. If n is with −1, then P (n) = n(n − 2) if and only if n = 2r + 1 for some positive
integer r.

The goal of the present paper is to prove new asymptotic lower bounds for P (n) in
terms of t and n. Our starting point is the fact from [BLM07] that P (n) is the lowest

common multiple of multiplicative orders of elements ζ + 1, where ζ is a primitive nth

root of unity in the finite field F2t .

Since our results require that at least t >
√
2n holds, in Section 4 we also give a short

survey of known results about the size of t.

2. Multiplicative orders and partitions

Let 1 6 a < n be an integer prime to n.
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Consider the set of representatives, chosen in the interval [1, n], of the coset a〈2〉 ⊆
(Z/nZ)∗ of the multiplicative group 〈2〉 generated by 2 in the residues ring modulo n.

That is,

Sa,n := {j ∈ Z>0 : 1 6 j 6 n, gcd(j, n) = 1,

∃ej ∈ Z>0, j ≡ a2ej mod n}

Its cardinality is #Sa,n = t.

Next, we consider the set of partitions of numbers 6 t − 1 into distinct parts from

Sa,n:
Pa,n := {(uj)j∈Sa,n

∈ {0, 1}t |
∑

j∈Sa,n

ujj 6 t− 1}. (2.1)

Our main result is

Theorem 2.1 Suppose n is odd and a is relatively prime to n. Then P (n) > #Pa,n.

Proof. It follows from [BLM07, Theorem 3.9] that P (n) is the lowest common
multiple of the multiplicative orders of ζ + 1, where ζ ranges over all nth roots of unity

1 6= ζ ∈ F2t .

Let ζ ∈ F2t be a primitive nth root of unity. The idea is to show that every partition

in Pa,n leads to a distinct power of ζ + 1. For this we follow the strategy of [ASV10].

Let u = (uj)j∈Sa,n
∈ Pa,n, and set

Qu =
∑

j∈Sa,n

uj2
ej ,

where j ≡ a2ej mod n. We also choose an integer b for which ab ≡ 1 mod n. Now

(ζ + 1)Qu =
∏

j∈Sa,n

(ζ + 1)uj2
ej

=
∏

j∈Sa,n

(ζ2
ej

+ 1)uj

=
∏

j∈Sa,n

(ζbj + 1)uj =
∏

j∈Sa,n

(ϑj + 1)uj ,

where ϑ = ζb ∈ F2t is another primitive nth root of unity.

Let
v = (vj)j∈Sa,n

∈ Pa,n
be another partition distinct from u, we must show that v gives rise to a distinct power

of ζ + 1. Suppose (ζ + 1)Qu = (ζ + 1)Qv , so

∏

j∈Sa,n

(ϑj + 1)uj =
∏

j∈Sa,n

(ϑj + 1)vj .
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Denote by f(X) ∈ F2[X ] the minimal polynomial of ϑ; it has degree t. Then f(X)
must divide U(X)− V (X), where

U(X) =
∏

j∈Sa,n

(Xj + 1)uj and V (X) =
∏

j∈Sa,n

(Xj + 1)vj .

Since these polynomials have degree 6 t−1 < deg f it follows that U(X) = V (X). After

removing common factors from both polynomials (corresponding to uj = vj), we obtain
the identity

∏

h∈H

(Xh + 1)uh =
∏

k∈K

(Xk + 1)vk , (2.2)

where H and K are disjoint subsets of Sa,n. But now we find that the term of smallest
positive degree is xe where e is the smallest element of H ∪K, but this only appears on

one side of the identity (2.2). This contradiction concludes the proof. �

Remark 2.2 Some parts of the proof of Theorem 2.1 can be shortened by appealing

to [Pop14, Lemma 1], however for completeness and since [Pop14] may not be easily
accessible, we present a full self-contained proof.

3. Counting partitions

Now we construct lower bounds for the cardinality of Pa,n for n of prescribed arithmetic

structure. As we have mentioned, these bounds are only useful if t is not too small,
specifically t >

√
2n.

Suppose first that t = ϕ(n), that is, 2 is a primitive root modulo n. In this case,
n = pk must be a power of an odd prime p.

When n = p, we find that Pa,n contains the set of partitions of n − 2 into distinct
parts, and the standard asymptotic for that gives (see e.g. [And76, Theorem 6.4])

Corollary 3.1 Suppose n = p is an odd prime and 2 is a primitive root modulo p. Then,

as n→ ∞,

P (n) > exp

[(

π√
3
+ o(1)

)√
n

]

.

The case of Corollary 3.1 is already contained in [Pop12, Theorem 1]; in particular,

the completely explicit lower bound (for 2 a primitive root modulo n = p)

P (n) >
(

80(n− 2)
)−

√
2
exp

(

π

√

n− 2

3

)
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follows from [Pop12, Corollary 4], see also [Pop14] for some related results.

Next, suppose that n = pk and 2 is a primitive root modulo n. For this it suffices that

2 is a primitive root modulo p and p is not a Wieferich prime, that is, 2p−1 6≡ 1 mod p2.

We have t = pk−1(p−1) and Pa,n contains the set of partitions of t−1 into distinct parts

which are not divisible by p. An asymptotic formula for the number of such partitions
appears in [Hag64, Corollary 7.2], and we obtain

Corollary 3.2 Fix an odd non-Wieferich prime p and suppose that 2 is a primitive root

modulo p. Let n = pk, then as k → ∞, we have

P (n) > exp

[(

π√
3

√

p− 1

p
+ o(1)

)√
n

]

.

If t < ϕ(n), then, inspired by [GS98], we estimate the cardinality of Pa,n as follows.

Let 2 6 N < t be an integer, and denote by Sa,n(N) = Sa,n ∩ [1, N ]. Each subset
J ⊆ Sa,n(N) of cardinality #J = J 6 t/N produces a valid partition u ∈ Pa,n, where
uj = 1 if j ∈ J and uj = 0 otherwise. Thus we obtain

#Pa,n >
∑

J6t/N

(

#Sa,n(N)
J

)

.

It remains to estimate #Sa,n(N) and choose suitable a and N .

It is well known that,

#{j : 1 6 j 6 N, gcd(j, n) = 1} = Nϕ(n)/n +O(no(1)),

see, for example, [Shp18, Lemma 2.1].

Now among the cosets of 〈2〉 ⊆ (Z/nZ)∗, at least one must have at least the average
number of representatives in [1, N ], so there exists an integer a, prime to n, for which

#Sa,n(N) >
t

ϕ(n)
·#{j : 1 6 j 6 N, gcd(j, n) = 1}

=
t

ϕ(n)

(

Nϕ(n)/n +O(no(1))
)

= (1 + o(1))
tN

n

as n→ ∞, provided N > nε for some fixed ε > 0.

Now we choose N =
⌊√

2n
⌋

. Since t > n1/2+ε, we have

#Sa,n(N) >
tN

n
+O(no(1)) = (2 + o(1))

t

N
.
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Thus by the Stirling formula

#Pa,n >
∑

J6t/N

(

#Sa,n(N)

J

)

>

(

#Sa,n(N)

⌊t/N⌋

)

> exp

(

(2 log 2 + o(1))
t

N

)

.

Thus we have proved

Corollary 3.3 Suppose n is odd and t is the multiplicative order of 2 modulo n. Then

P (n) > exp

[

(log 4 + o(1))
t√
2n

]

.

In particular, if n = pk then it is easy to show that t > c(p)pk, where c(p) > 0 depends

only on p, hence Corollary 3.3 gives a version of Corollary 3.2 in the form

P (n) > exp
(

c(p)
√
n
)

.

We remark that the condition t >
√
2n of Corollary 3.3 corresponds to the limits of

our method. Indeed, there are about ϕ(n)/t distinct cosets Sa,n and since ϕ(n) = n1+o(1)

each of them is expected to contain very few elements from the interval [1, t] which are

the only suitable elements which can be used in the construction of the set Pa,n given
by (2.1).

Since
log 4√

2
≈ 0.98025 and

π√
3
≈ 1.8138,

in the case of t ≈ n we recover a result similar to Corollaries 3.1 and 3.2, but with a
smaller constant in the exponent.

Our lower bounds are quite small compared to the upper bounds P (n) 6 B1(n) ∼ 2t

and P (n) 6 B2(n) ∼ n2t/2, see (1.1), which follow from Theorem A. On the other hand,

they are typically much stronger than linear and quadratic in n lower bounds which one
can extract from Theorem B.

4. Lower bounds on multiplicative orders

Since the quality of our bounds depends rather dramatically on the multiplicative order

of 2 modulo n, here we give a short outline of known results.
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First we observe that the applicability of Corollary 3.1 for infinitely many prime n = p
is equivalent to Artin’s conjecture, see [Mor12] for an exhaustive survey. On the other

hand, we are not aware of any conditional (and certainly unconditional) results or well-
established conjectures towards a version of Artin’s conjecture for non-Wieferich primes

which appear Corollary 3.2. It is natural to expect that there are infinitely many such
primes but known results are scarce [Sil88].

Primes p and integers n for which t is large, in particular exceeds
√
p, have been

studied in many different contexts, but most commonly in the theory of pseudorandom
number generators . These results originate from the work of Erdős and Murty [EM99]

and are conveniently summarised in [KP05]. For example, for any function ψ(n) → 0 as
n→ ∞ we have t > n1/2+ψ(n) for almost all (in a sense of relative density) primes p = n

(see [EM99, Theorem 1]) and odd integers n (see [KP05, Theorem 11]). Furthermore,
for a positive proportion of primes p = n (see [KP05, Lemma 19])) and odd integers n

(see [KP05, Theorem 21]) we have t > n0.677.

5. Numerical results

It is interesting to compare the lower bound of Theorem 2.1 with actual values of P (n).

Table 5.1 shows numerical values of P (n) and #Pa,n for odd n 6 101 and a representative
a for each coset (Z/nZ)∗/〈2〉. Unsurprisingly, the largest value of #Pa,n is achieved for

a = 1 in these small cases, due to the presence of small powers of two in Sa,n. However,
when n = 109, we find that

#P1,109 = 99 < 178 = #P3,109 = max
gcd(a,109)=1

#Pa,109.

These values were computed using Sage.
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n P (n) t a #Pa,n

3 3 2 1 2
5 15 4 1 5
7 7 3 1 3
- - - 3 1
9 63 6 1 7

11 341 10 1 33
13 819 12 1 55
15 15 4 1 4
- - - 7 1

17 255 8 1 8
- - - 3 5

19 9709 18 1 207
21 63 6 1 6
- - - 5 2

23 2047 11 1 28
- - - 5 4

25 25575 20 1 190
27 13797 18 1 79
29 475107 28 1 1261
31 31 5 1 5
- - - 3 2
- - - 5 1
- - - 7 1
- - - 11 1
- - - 15 1

33 1023 10 1 10
- - - 5 3

35 4095 12 1 16
- - - 3 4

37 3233097 36 1 4310
39 4095 12 1 22
- - - 7 2

41 41943 20 1 70
- - - 3 25

43 5461 14 1 17
- - - 3 10
- - - 7 4

45 4095 12 1 12
- - - 7 3

47 8388607 23 1 241
- - - 5 14

49 2097151 21 1 53
- - - 3 27

51 255 8 1 8
- - - 5 3
- - - 11 1
- - - 19 1

53 3556769739 52 1 35680
55 1048575 20 1 66
- - - 3 8

57 29127 18 1 33
- - - 5 8

59 31675383749 58 1 72503
61 65498251203 60 1 91103
63 63 6 1 6
- - - 5 2
- - - 11 1
- - - 13 1
- - - 23 1
- - - 31 1

n P (n) t a #Pa,n

65 4095 12 1 12
- - - 3 4
- - - 7 3
- - - 11 2

67 575525617597 66 1 176945
69 4194303 22 1 31
- - - 5 17

71 34359738367 35 1 1427
- - - 7 35

73 511 9 1 9
- - - 3 3
- - - 5 3
- - - 9 1
- - - 11 1
- - - 13 1
- - - 17 1
- - - 25 1

75 1048575 20 1 24
- - - 7 6

77 1073741823 30 1 100
- - - 3 70

79 549755813887 39 1 1028
- - - 3 106

81 10871635887 54 1 6159
83 182518930210733 82 1 911361
85 255 8 1 8
- - - 3 3
- - - 7 2
- - - 9 1
- - - 13 1
- - - 21 1
- - - 29 1
- - - 37 1

87 268435455 28 1 154
- - - 5 9

89 2047 11 1 11
- - - 3 6
- - - 5 3
- - - 9 2
- - - 11 1
- - - 13 1
- - - 19 1
- - - 33 1

91 4095 12 1 12
- - - 3 8
- - - 9 2
- - - 11 2
- - - 17 1
- - - 19 1

93 1023 10 1 10
- - - 5 2
- - - 7 2
- - - 11 1
- - - 17 1
- - - 23 1

95 22906492245 36 1 905
- - - 7 17

97 1627389855 48 1 2216
- - - 5 283

99 3243933 30 1 49
- - - 5 32

101 37905296863701641 100 1 4827382

Table 5.1: Values of P (n) and #Pa,n for odd n 6 101.
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