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Abstract: Some preliminary results are reported on the equivalence of any 

n-queens problem with the roots of a Boolean valued quadratic form via a 

generic dimensional reduction scheme. It is then proven that the solutions set 

is encoded in the entries of a special matrix. Further examination reveals a 

direct association with pointwise Boolean fractal operators applied on certain 

integer sequences associated with this matrix suggesting the presence of an 

underlying special geometry of the solutions set.  
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1. Introduction 

Recently, two major problems in complexity theory were linked 

via a set of mappings, indicating a deeper unity that deserves 

further examination. In [1], a surprisingly simple association 

between the 2D Ising model and staisfiability (SAT) problems was 

proven while, in [2] the N-Queens problem was also linked to 

certain instances of the SAT problem with a rather pessimistic 

conclusion for general A.I. Lately, two new studies appeared on 

the possibility of a direct quantum implementation of the same 

problem either as a standard quantum gates circuit [3], or as an 

Ising spin type of machine [4], these later evolutions pointing 

towards  possible tests of the acclaimed quantum supremacy.  

From the point of view of computer science and abstract 

mathematics, the particular problem belongs to the general class of 

constraint satisfaction problems [5] while in terms of set theory it 

is known to be a generalization of exact cover problems which 

include pentomino tilings and Sudoku solvers [6]. Knuth, was able 



to accelerate search strategies for such problems with his “X” 

algorithm in [7]. A variety of classical algorithms have been tried 

which are reviewed in [8] while some greedy algorithms [9] are 

capable of true O(N
a
) with a of the order of 2 or 3 at the cost of 

locating only partial solutions. Several open questions exist for this 

problem including the absence of any analytical partition function 

for counting all solutions and even asymptotic expressions are 

lacking. 

In the present work, we analyze the N-Queens problem from a 

different perspective introducing a different approach based on a 

kind of dimensional reduction to the complete dictionary of binary 

words of N
2
 length as the equivalent 

2

2Ν
 search space and a 

special type of connectivity matrix which was termed, the 

“Interaction Kernel”, a term which we shall keep here for 

convenience. The particular technique had been previously 

introduced in the context of Cellular Automata (CA) and their 

global maps [10] for arbitrary lattice dimensionality while in the 

present application we only need to deal with the 2D case of a 

standard chessboard.  

Natural extensions of the problem in higher dimensions do exist 

[11] but they will not be dealt with in the present report although 

the same strategy is expected to work at the cost of higher 

complexity kernels. We also notice that one can define “modular” 

N-queen problems with toroidal boundary conditions with the sole 

difference being that the x-shaped parts of any neighborhood 

become periodic trajectories always covering the chessboard in a 

transitive manner. For the rest of the paper, we restrict attention to 

the case of fixed boundaries.   

In the next section, the exact method of construction of the 

relevant kernel matrix is given together with some linear algebraic 

properties while in section 3, a set of equivalent conditions to be 

satisfied by any solution is presented. In section 4 we redefine the 

problem via an additional transformation of these conditions which 

makes contact with some well known arithmetic fractals and the 



solutions set is restricted to a special set of paths in a special 

function defined on an N-dimensional hypercube. 

2. The kernel method for dimensional reduction 

While previous attempts for solving the n-queens using 

backtracking or similar techniques retained the 2D character of the 

chessboard array we can bypass this difficulty based on very 

general arguments already laid out in [10]. The essential difference 

from the CA case lies in the topology of the neighborhood for 

which reason we will have to use a different kind of mapping after 

reduction. We perform the reduction via a reshaping of the original 

N x N chessboard matrix into a N
2
 length vector formed by a 

sequence of the original matrix rows. We may denote such an 

operation over any n x m matrix M as vec{M} = [M11,…,M1n, 

M21,…,M2n,…,MN1,…,Mnm]. In array languages like Matlab, 

Octave or Scilab, this option is given via a “reshape” command.  

We then need to establish an auxiliary connectivity matrix into 

which the topology of any neighborhood of possible interactions 

between individual entries of the original chessboard matrix will 

be preserved. In the case of standard CAs this comes in the form of 

so called, Von Neumann and Moore types of nearest neighbor 

areas [12]. In the case of the N-queen problem there are certain 

types of constraints regarding rows and columns containing 

exactly one pawn and diagonals that are allowed to contain at most 

one or none.   

To each queen we assign an open neighborhood restricted only by 

the board’s boundaries or the queen’s neighborhood range via a 

multiplexing scheme using an appropriate auxiliary traceless, 

symmetric Boolean matrix K. This will stand for the “Interaction 

Kernel” where all accessible positions around each queen’s central 

position corresponding to its the diagonal are marked with ones the 

rest of the positions being marked with zeros and ignored. Since 

any such neighborhood in the original 2D array is formed as a 

superposition of “crosses” and x-shaped rays, it is straightforward 

to form sequentially all logical rows of K with the relevant 

accessible positions by moving each central position and 



reshaping. The resulting matrix is symmetric and has an almost 

circulant structure as shown in figure 1 for an ordinary 8 x 8 

chessboard. In figure 2, we show a representative of the eigenvalue 

spectrum of the Boolean kernel with all eigenvalues real.  

Construction of the kernel can be simplified using tensor product 

algebra via the two main constituents given as ×+ += KKK where 

the “+” and “x” indices represent the superposition of the two 

constituents of each queen’s shooting range being composed 

independently from rows and columns as well as diagonals and 

anti-diagonals respectively. We then examine the structure of each 

of the sub-kernels separately. To this aim we shall also need to 

introduce the Boolean complement of an identity matrix as 

LLL I1I −= where the index L denotes an L x L block and 1denotes 

an all ones block. 

For the case of row-column kernel it is possible to factorize and 

also use the Kronecker sum rule as 

  LLLLLL IIIIIIK ⊕=⊗+⊗=+     

 (1) 

The case of the second diagonal part of the kernel is much less 

trivial and requires a special expansion of the diagonal structure of 

any [ ]L1 block in the form 
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In (2) we use a decimating set of k matrices with a double pair of 

unique diagonals and anti-diagonals making a set of discrete 

parallelograms of the form 
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where Ji is the i x i unit anti-diagonal. This makes possible the full 

decomposition of the second part of the kernel as 

  ∑
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We notice that none of the kernel’s rows cannot belong to any 

solution set by construction since all positions of any 

neighborhood have been filled apart from the central one thus 

having a bit summand much higher than any S vector. In figure 

3(a), we also present the row-wise or column-wise bit summands 

while in 3(b) we present the evolution of upper and lower bounds 

of the same with the board size. In the next section we analyze the 

action of the kernel and extract the most important property of the 

kernel rows and its direct link with possible solution vectors. 

3. Decoding the solution set from the Boolean kernel   

We first examine the action of the kernel on any flattened 

configuration vector representing an arbitrary checkerboard.  For 

any L x L board, there will in general exist 
2

2L
possible Boolean 

configuration vectors for any queens arrangement with LN ≤<2 . 

These can be subdivided into exactly L distinct binomial sets PN, 

N=2,…,L, of pattern permutations with cardinality ( ) 







=

N

L
PN

2

#

each. Given an integer encoding ν of each such vector via the 

polynomial representation in a lexicographically ordered 

dictionary over any exponential interval, one can also associate N 

with Ns =)(2 ν where we identify s2 as the binary digit-sum function 

[15] of which direct evaluation is possible as [ ]( )∑
−

=

−
1

0

2

2mod2
L

i

iν . A 

direct serial search over each PN would require ( )NP#  steps for an 

exhaustive examination of each pattern. Any faster method must 

reduce the total search space. 



Assume then, a particular instance of a configuration vector NPS ∈ν
�

with exactly N 1s and an ordered set of integer bit pointers serially 

marking any particular instance of combinations inside PN as

],...,[ 1 Ν= ppp  with a standard C convention (counting from zero) 

such that the corresponding integer index would be of the form 

∑
=

=
N

j

pi

1

2ν . Assume also a subset NN P⊂Σ such that 
NS

Σ∈ν
�

 

represents a valid N-queens configuration. Then the vector 

NS
Σ∈⋅ ν

�
K will immediately map to zero all positions 

corresponding to the rows K{pi} with the rest containing arbitrary 

overlaps with irrelevant positions. To extract an indicator we use 

an orthogonal complement leading to a quadratic as  

0=⋅⋅Τ SS
��

K         (4) 

The above while true for all valid configurations is a crude binary 

classifier that cannot be used to totally discriminate the particular 

subset. To make a perfect classifier one can instead use a mapping 

of the form 

0)(,21:, ==→=∀ QTrQKji
j

ijij   (5) 

It is evident that the new kernel Q will project the exact solution 

set for all PN to a power of 2. The reasoning is simply that the 

polynomial representation of each neighborhood acts as a kind of 

restricted Gödel code for all the possible classes of any bit pattern 

in any S vector thus making a 1-1 mapping of any neighborhood to 

some unique integer with a perfect power of 2 only for a valid 

configuration.  

Methods like the above still have a total complexity equal to that 

of a single matrix-vector product, generally between O(N
2
)  and 

O(N
3
) multiplied with the associated binomial coefficient for each 

set PN. The latter can be constructed efficiently with backtracking 

methods based on the fact that all bit patterns of each set admit a 

lexicographic Gray code [16], [17]. Our purpose in what follows is 

different than reducing the complexity. It is possible to show that 



at least the highest order solution set PL can be located via the sole 

examination of the Boolean kernel contents.  

The critical observation from (4) starts with the recognition that at 

least for any valid subset ΣN those rows of K that project to zero 

must have complementary bits with the corresponding 

configuration vector NS
Σ∈ν

�
. As a matter of fact, for every non-

empty position of any such vector, the corresponding counters 

vector p gives the equivalent K rows such that the total subset of 

rows must have a common minimal subset of zero positions 

reflecting the exact structure of the common configuration vector 

buried in other noisy bits from adjacent neighborhoods. Isolating 

this particular subset reveals the structure of a special rank one 

dyadic matrix as T
SS inside the kernel. We may formalize this 

equivalence using the following property. 

Assume a state vector 
NS

Σ∈ν
�

and the associated p-vector marking 

the positions of 1s or valid queen’s positions and using iK
�

 to 

denote a particular kernel row as a vector, the following should 

hold  

∏
∈

Σ∈ =
L
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iKS N

�
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ν

      (6) 

where we interpret the product as a pointwise one between row 

elements. An example of the dyadic structure is given in figure 

4(a,b), with the known fundamental solutions of both the 6 x 6, 

N=6 problem with a p-vector as [4, 7, 17, 20, 30, 33] and the 7 x 7, 

N=7 problem with a p-vector as [2, 11, 15, 28, 33, 38, 48]. 

Property (6) can be verified directly by explicitly constructing each 

kernel. A simple Matlab code for a kernel constructor is given in 

appendix A. 

Apart from the fundamental there are more solutions out of 

symmetry operations. Since by construction, the kernel must be 

compatible with all possible solutions there must a unique maximal 

closure of all such hidden dyadic submatrices. In general the 

maximal closure of all dyadics will contain every possible 



superposition. This can always be thought as a matrix summand in 

which case it could be separated into several simpler problems 

where one is asked to recognize the presence of a unique dyadic 

submatrix inside the main kernel matrix. We thus arrive at a 

different formulation of the original problem of equal complexity, 

the problem now being that of isolating the maximal closure for all 

rank one submatrices of dyadic form from the main kernel matrix.  

In the next section we treat this in connection with some other well 

known combinatorial problems and further analyze the underlying 

structure.  

4. Subgraph isomorphism and Boolean fractals 

The general case of identifying an arbitrary submatrix inside 

another, also appears in the literature as having a direct 

correspondence with the well known, subgraph isomorphism 

problem [18], [19] which is provably NP-complete. Certain special 

classes of this problem have already been proven to admit 

polynomial time solutions [20], [21] while the matrix 

representation of generic graphs has been used in a recently 

introduced Ordered Matrix Matching (OMM) method for security 

applications [22]. In the language of general signal and image 

processing, such algorithms can also be interpreted as special cases 

of “matched filters” [23] that generalize correlation based methods 

for detecting sub-patterns in signals. 

While (6) does not specify a unique method for isolating the 

particular subset of the column {i} indices from PN, it does offer 

the possibility for an alternative representation of the original 

problem as follows. We first consider a map from the original 

kernel rows/columns to a set of characteristic integer sequences of 

the form 

∑
=
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Naturally, the ones complement corresponds to 1}{2}{
2

−−= i

L

i σσ

. In figure 4 we show the log plot of such a sequence for the case 

of a 7 x 7 board. Unfortunately, no specific alternative for the 



expression of these sequences is known to the author apart from 

(7) and their significance is further discussed in the last section. 

It is now possible to provide a compressed representation of (6) 

after introducing a pointwise or “bitwise” logical AND operator 

over two integers as ( )µν ,∨  replacing the pointwise products with 

the logical formula 

( )( )12 ,...., pppS L
σσσσ ∨∨∨=     (8) 

where σS denotes the original binary configuration vector also 

encoded via a polynomial representation as in (7). This last 

formula together with the original property in (6) suggests the 

existence of a generic function in L variables acting as a 

“potential” for this class of problems. Moreover, there is a certain 

connection of (8) with a class of Boolean fractal matrices that 

deserves further attention. 

It is a kind of ‘folklore theorem’ that all matrices coming from 

pointwise logical operations with two or more arguments have an 

arithmetic fractal structure. This structure becomes evident when 

viewed over a hierarchy of exponential intervals of integers.  

Justification comes from the fact that any binary word dictionary 

can be decomposed to a set of periodic functions with 

exponentially increasing period.  The same exact structure appears 

in the well known Rademacher basis used in the construction of 

the Walsh functions [25] inside the unit interval. It is possible to 

write an explicit recursive relation for any order for the basic 

logical matrices as 
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where m an appropriate exponent matrix which is in fact the 2 x 2 

representation of the associated two bits logical operation.  Hence, 

for (8) we have  
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The same can easily be given for the corresponding digit-sums 

directly derivable from (9) as 
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Given the above definitions it is also possible to redefine the 

original problem in a hierarchy of N-dimensional hypercubes hN of 

successive (∨) products in which case any N-queens problem 

becomes that of locating the unique paths associated with

( ) Nhs N =2 at the Nth dimension when sampled at the particular 

coordinates given by the characteristic kernel sequences.  

5. Discussion and conclusions 

In the present, a preliminary examination of certain underlying 

properties of the n-queens problem is suggested via the introduction 

of an equivalent effectively one dimensional representation, based 

on certain topology encoding matrices or “kernels” for the original 

queen neighborhoods. An important property of these kernel rows 

permits a direct association with any configuration vector describing 

a valid solution for the original checkerboard. After further 

simplification, it is shown that any kernel can be associated with a 

unique integer sequence and any valid configuration vector is 

identical with a composition of certain pointwise (bitwise) logical 

operators acting on these sequences. 

The particular sequences obtain via the explicit kernel construction 

do not appear to be part of any list of known ones, either in the 

OEIS database or elsewhere at least to the author’s knowledge. 

Moreover, since all pointwise logical operators reveal a specific 

arithmetic fractal structure the identity between their functional 

composition over these sequences and the solution vectors may be 

revealing for the existence of an underlying geometry characterizing 

the total solutions set.  



The study of any structure in these sequences for higher order 

problems requires special algorithms with unbounded integers 

which could be reported in future work. The fact that all kernel 

matrices form a hierarchy suggests that their study could be 

facilitated with a special method of the inductive combinatorial 

hierarchies originally introduced in [25]. Lastly, it should be 

mentioned that the “holistic” approach offered by the kernel method 

may be well suited for certain machine learning and convolution 

network applications for the location of the dyadic substructures 

associated with the solutions set. 
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Appendix: Matlab code for the kernel constructor 

function [K, Kc, Kd, newdim] = kernel(dim, arith, report) 

% The overll interaction kernel is constructed via the two composites 

% Kc for the ‘cross’ like parts of any queen’s neighborhood and  

% Kd for the diagonals with dim is the dimension of the original board. 

% If the 2
nd

 arg arith is present, the equivalent integer sequence is  

% given in the output instead of the matrix.  

if nargin<3, report=0; end 

if nargin<2, arith=0; end 

clc, close all 

Kc = []; Kd = Kc; newdim = dim^2; 

v = 0:dim-1;m1=v; % pointer masks for diagonals 

for i=1:dim-1,m1 = [m1; v-i];end 

m2 = dim - abs(m1); 

m3 = fliplr(m1); 

m4 = fliplr(m2); 

for i=1:dim 

    for j=1:dim 

        wc = zeros(dim, dim); wd = wc; 

        wc(i, :) = 1; wc(:, j) = 1; 

        wd = diag( ones( m2(i, j), 1 ), m1(i, j) ); 

        wd = wd + fliplr( diag( ones( m4(i, j), 1), m3(i, j) ) ); 

        wc(i, j) = 0; wd(i, j) = 0;     

        Kc = [Kc; reshape( wc', 1, newdim )]; 

        Kd = [Kd; reshape( wd', 1, newdim )]; 



        K = Kc + Kd; 

       % imagesc(1-w), title(['i = ',num2str(i),' j = ',num2str(j)]), colormap gray;pause 

    end 

end 

if arith, K = K*( 2.^( 0:newdim-1 ) )'; end 

figure(1), spy(K), title('Band structure of kernel matrix') 

[a b] = eig(K); 

figure(2), bar( diag(b) ), title 'Eigenvalue Spectrum for kernel' 

figure(3), imagesc( abs(a) ), title 'Eigenvectors for kernel'     

end 

end 
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Fig. 1 The Interaction Kernel for an 8 x 8 chessboard. 



 

Fig 2 The eigenvalue spectrum for the kernel of figure 1. 

 

 

Fig. 3 (a) Bit summands of each row of a 16 x 16 board kernel, (b) 

evolution of lower and upper bounds for bit summands with board size.  

 



Fig. 4 The dyadic submatrices of the kernel’s complement for (a) the 6 x 

6 problem and, (b) the 7 x 7 problem.  

 

Fig. 5 The characteristic integer sequence for the 7 x 7 chessboard 

kernel. 

 

 

 

 


