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LOZENGE TILINGS OF THE EQUILATERAL TRIANGLE

RICHARD J. MATHAR

Abstract. We consider incomplete tilings of the equilateral triangle of edge
length n that is subdivided into n

2 regular equilateral smaller unit triangles.
Pairs of the unit triangles that share a side may be converted into lozenges,
leaving some subset of the unit triangles untouched. We count numerically
these coverings by lozenges and unit triangles for edge lengths n ≤ 6: the total
and the detailed refinement as a function of the number of lozenges.

1. Lozenge Tilings

1.1. Basic Geometry. An equilateral triangle of integer side length n may be
divided into n2 equilateral triangles of unit side length by regular subdivision of
each side into n sections and drawing lines through these parallel to all three sides.
This creates a graph with [2, A000217]

(1) (n+ 1) + n+ (n− 1) + · · ·+ 1 = Tn+1 =
(n+ 1)(n+ 2)

2

vertices (corners of the unit triangles) and [2, A045943]

(2) Mn = 3Tn = 3
n(n+ 1)

2

edges (edges of the unit triangles). The vertices have coordinates (i, j) with i ≥ 0,
j ≥ 0, i + j ≤ n in a system with two axes with a pointing difference of 60◦.
Commensurate with Euler’s Formula [4], the number of faces plus the number of
vertices equals the number of edges plus 1:

(3) n2 + Tn+1 = Mn + 1.

The number of edges on the perimeter of the big triangle is three times the number
of segments, 3n, so the number of edges internal to the big triangle is

(4) Mn − 3n = Mn−1.

The number of vertices inside the big triangle is the number of vertices which
are not on one of the sides of the big triangle; so subtracting 3n, the number of
vertices on the big triangle’s sides, from (1) yields

(5) Tn+1 − 3n = Tn−2

for the number of internal vertices.
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1.2. Lozenge Sets. In conjunction with this work, a lozenge is created by remov-
ing one of the inner edges; this merges the two unit adjacent triangles that have
that edge in common. A lozenge tiling with l non-overlapping lozenges is created
by removing l of the inner edges under the constraint that no pair of removed edges
must be two edges of the same triangle—which would create tilings with pieces that
are larger than the lozenge. So the constraint means that once an inner edge has
been removed (to become the short diagonal of a unit lozenge), none of the 4 edges
of that lozenge must be removed.

If l is the number of lozenges, n2− 2l is the number of free triangles. An obvious
upper bound for l is the “capacity”

(6) l ≤ n2/2 ≡ c(n)

because each lozenge covers 2 triangles.

Definition 1. Ln,l is the number of tilings of the equilateral triangle with edges of
length n with l non-overlapping lozenges and n2 − 2l unit triangles.

Algorithm 1. A simple strategy to count the tilings Ln,l is to generate the set of
Mn−1 inner edges, to scan all 2Mn−1 subsets of removing them, and to count all the
subsets that meet the criterion that no pair of removed edges is part of the same
triangle. If the constraint were absent, the number of subsets follows from the usual
combinatorial selection, so with (4) this constitutes an upper bound

(7) Ln,l ≤

(

Mn−1

l

)

.

The lozenges have three different orientations with axes differing by angles of
120◦. We classify them according to the removed edge being horizontal, falling left-
to-right or rising left-to-right. If one takes a set of lozenges of a common orientation
and shoves them in closest packing into a corner of the big triangle, one sees that
a tiling with

(8) l = (n− 2) + (n− 1) + · · · 1 = Tn−2

lozenges (and n isolated unit triangles) is achievable.

2. Example for Side length of 3

The lozenge tilings generated from a big triangle with side length n = 3 are
illustrated in Figures 1–4, sorted by the number of lozenges from l = 0 up to l = 3.
Some of the diagrams have multiplicities larger than one if rotations by multiples of
120◦ or flips across one of the three lines of symmetry of the big triangle generate
further diagrams of the same shape. (The isosceles triangle has a symmetry group of
order 6, where the 3 flips along a diagonal have order 2 and the rotations by 120◦ or
240◦ have order 3. The multiplicity if 6 divided by the order of the symmetry group
once the lozenges are inserted.) The configurations generated by these symmetry
operations of the triangle are considered distinct here.
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Figure 1. The configuration with 0 lozenges, side length 3 (mul-
tiplicity 1). L3,0 = 1. There are n2 = 9 unit triangles, Tn = 6
point up and Tn−1 = 3 point down.

Figure 2. The two configurations with 1 lozenge, side length 3. It
either covers a corner of the big triangle (multiplicity 3) or shares
one edge with the middle part of an edge of the big triangle (mul-
tiplicity 6). L3,1 = 3+ 6 = 9
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Figure 3. Configurations with 2 lozenges, side length 3. They
may cover 2/3 of an edge of the big triangle (multiplicity 6). They
may cover two different corners of the big triangle (multiplicity 3).
One may cover a corner of the big triangle and the other the middle
part of the opposite edge (multiplicity 6). They may share an edge
and cover middle parts of two edges of the big triangle (multiplicity
6). They may touch in the middle and cover middle parts of two
edges of the big triangle (multiplicity 3). L3,2 = 6+3+6+6+3 =
24.
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Figure 4. The configurations with 3 lozenges, side length 3 [7,
Fig. 9.57]. They may cover 2/3 of an edge of the big triangle and
one corner (multiplicity 6). They may cover the three corners of
the big triangle (multiplicity 1). They may cover 1/3 of two edges
of the big triangle and have the same orientation (multiplicity 3).
They may cover 2/3 of one edge of the big triangle and the middle
of another (multiplicity 6). They may touch in the middle and
cover middle parts of all edges of the big triangle (multiplicity 2,
two circulations, [3, Fig 3]). L3,3 = 6 + 1 + 3 + 6 + 2 = 18.
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3. Special Cases

3.1. No Lozenge. The count of

(9) Ln,0 = 1

for every l = 0 means that for each side length n there is one way of not merging
any triangles into lozenges.

3.2. One Lozenge. The appearance of the triangular matchstick numbers

Ln,1 = Mn−1,(10)
∑

n≥0

Ln,1x
n =

3x2

(1− x)3
,(11)

is immediately plausible: recall that deleting one of the internal edges creates a
lozenge by merging the two triangles that share that edge, so (10) just restates (4).

3.3. Two Lozenges. Two lozenges are created by deleting two internal edges,
which can be selected in

(

Mn−1

2

)

ways according to (7). Some of these pairs of
deleted edges do not represent lozenge tilings because they are spatially correlated
as considered in Section 1.2.

Definition 2. A V subgraph is a pair of internal edges (in the full graph without
lozenges) that share one common vertex, where the two edge directions differ by an
angle of 60◦.

Definition 3. The center of a V graph is the vertex with degree 2.

Each V subgraph reduces the number of lozenge tilings by one. There are two
distinct sets of V ’s:

• If the common vertex of a pair of edges is an internal vertex, 6 distinct
V ’s exist which can be created by rotating one of them by multiples of 60
degrees. There are Tn−2 internal vertices, so there are 6Tn−2 V ’s of that
type.

• If the common vertex of a pair of edges is a vertex on a side of the big
triangle, one V exists with its edges reaching into the interior of the big
triangle. The exception are the 3 vertices at the corners of the big triangle,
where no V exists because no internal edges meet there. So the eligible
number of vertices for these V ’s is not 3n but only 3(n− 1).

The total number of V subgraphs is 6Tn−2 + 3(n− 1) = 3(n− 1)2, which must be
interpreted as 0 if n < 1. This reduces the number of configurations with 2 lozenges
to [2, A326367]

(12) Ln,2 =

(

Mn−1

2

)

− 3(n− 1)2 =
3

8
(n− 1)(n− 2)(3n2 + 3n− 4), n ≥ 1.

The ordinary generating function is

∑

n≥0

Ln,2x
n = 3x3 (2 + x)(4 − x)

(1 − x)5
.(13)
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3.4. Three Lozenges. Three lozenges are created by deleting three internal edges,
which can be selected in V 3,a =

(

Mn−1

3

)

ways according to (7). Some of these triples
of deleted edges do not represent lozenge tilings because they are spatially correlated
as defined in Section 1.2. The types of correlations are:

• The three edges are a subgraph with two components. One component is
a V as defined above (2 edges, 3 vertices) and the other component an
internal edge (2 vertices) which does not have a vertex in common with the
V : Set (b) in Figure 5.

• A unit triangle (3 edges, 3 vertices, connected) where all three edges are
internal edges: set (c) in Figure 5. There are 3 unit triangles at the corners
of the big triangle which have only 1 internal edge and n− 2 unit triangles
at each side of the big triangle which have only 2 internal edges. So 3 +
3(n− 2) = 3(n− 1) triangles are not in that class, and V 3,c = n2− 3(n− 1)
unit triangles are in that class.

• Zigzag subgraphs (3 edges, 4 vertices, connected) constructed by an overlay
of two V ’s such that they share an edge but have distinct centers: set (d)
in Figure 5. For each shared internal edge, there are generally two zigzag
subgraphs, but if the internal edge has one vertex on the side of the big
triangle, only one zigzag subgraph emerges, and if both vertices are on sides
of the big triangle, no zigzag subgraph emerges. The classification of the
Mn−1 internal edges of (4) according to these three vertex types is:

– 3 (at the corners of the big triangle) have two vertices at the big
triangle’s sides.

– 6(n− 1)− 6 = 6n− 12 have one vertex at the big triangle’s sides. This
is 2 for each of the 3(n− 1) V with a center at the big triangle’s side
derived in Section 3.3, reduced by the overcount for the edges of the
previous bullet.

– Mn−3 have only internal vertices. This is obtained from (2) by deleting
all 3n vertices on the big triangle and edges that connect to them.

(14) Mn−1 = 3 + (6n− 12) +Mn−3.

So the number of zigzag subgraphs is

(15) V 3,d = 0× 3 + 1× (6n− 12) + 2×Mn−3 = 3(n− 1)(n− 2).

• Fork subgraphs (3 edges, 4 vertices, connected), containing an internal edge
and two copies rotated around one of its vertices by 60 and again 60 degrees:
set (e) in Figure 5. It could be regarded as an overlay of two V ’s, such that
they share an edge and have the same center. This center must be an
internal vertex. At each internal vertex 6 fork subgraphs exist (by rotation
of one fork subgraph by multiples of 60◦ around the center), so according
to (5) there are V 3,e = 6Tn−2 fork subgraphs.

According to the first bullet there are 3(n−1)2 V ’s and for each of them Mn−1−2
remaining edges (after 2 have been used for the V ) eligible for the disconnected edge.
The first bullet proposes a set of

(16) V 3,b = 3(n− 1)2(Mn−1 − 2) =
3

2
(n− 1)2(3n2 − 3n− 4)

graphs as correction to
(

Mn−1

3

)

. However, this term does not recognize that the
additional edge may have common vertices with the V , so it includes some of the
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(a)

(b)

(c)
(d) (e)

1

3

2
2

Figure 5. Poset diagram of the deleted edges for l = 3 deleted
unit edges in general, and specializations where two of them are
correlated in a V graph, and where three of them are correlated in
a triangle, a zigzag or a fork subgraph.

correlated types of the other bullets. The term is actually too large, because some of
the other correlated types can be constructed in more than one way as a V plus an
edge, and the term counts them more than once although they exist only once in the
full graph. The following procedure handles them with the principle of inclusion-
exclusion [5]. In fact these are the correlated types that can be constructed in more
than one way from two V ’s:

• Fork subgraphs are counted twice by (16), depending on which of the two
V ’s is marked. (16) must be reduced by the number of fork subgraphs,
V 3,e.

• Zigzag subgraphs are counted twice by (16), depending on which of the two
V ’s is marked. (16) must be reduced by the number of zigzag subgraphs,
V 3,d.

• Unit triangles are counted thrice by (16), depending on which pair of sides
is considered the V . (16) must be reduced by two times the number of
internal triangles, 2V 3,c.

Alternatively, in the formal setting of sets in the inclusion-exclusion principle con-
sider the simple graphs on one hand and the graphs with a marked vertex of the
center of the V . Add an overbar to the symbols for marked graphs, and a prime
to the label if a set does not include graphs of “higher correlated” type, i.e., not
graphs of lower rank in the poset diagram:

• Simple graphs: we wish to enumerate the graphs of type (b), (c), (d) ane
(e) counting each graph with at least one 60◦ angle exactly once. The 4
non-intersecting sets of graphs are

– The set V3,b′ containing a V and a separate edge,
– The set V3,c containing a triangle,
– The set V3,d containing a zigzag graph,
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– The set V3,e containing a fork graph.
We wish to compute the cardinality

(17)

|V3,b′∪V3,c∪V3,d∪V3,e| = |V3,b′ |+|V3,c|+|V3,d|+|V3,e| = |V3,b′ |+V 3,c+V 3,d+V 3,e

• Marked graphs: If the V center is marked, each graph of type (c) splits into
3 marked graphs and each graph of type (d) or (e) into 2 marked graphs:
|V̄3,c| = 3|V3,c| = 3V 3,c and so on. Now consider the 3 non-intersecting
sets of graphs of type (c) to (e), plus the super-set V3,b of marked graphs
with a V and a (not necessarily separated) edge. Then

(18) |V̄3,b| = |V̄3,b′ ∪ V̄
3,c ∪ V̄

3,d ∪ V̄
3,e| = V 3,b = |V̄3b′ |+ 3V 3,c + 2V 3,d + 2V 3,e

Eliminating |V3,b′ | = |V̄3,b′ | from the previous two equations gives

(19) |V3,b′ ∪ V
3,c ∪ V

3,d ∪V
3,e| = V 3,b − 2V 3,c − V 3,d − V 3,e.

Considering this correction to (16) we conclude [1][2, A326368]

(20) Ln,3 = V 3,a −
[

V 3,b − 2V 3,c − V 3,d − V 3,e
]

=
1

16
(n− 2)(9n5 − 9n4 − 81n3 + 81n2 + 160n− 192), n ≥ 2,

with generating function

(21)
∑

n≥0

Ln,3x
n = x3 18 + 308x+ 154x2 − 87x3 + 10x4 + 2x5

(1 − x)7
.

3.5. Four Lozenges.

Conjecture 1. [1][2, A326369]

(22)

Ln,4 =

(

Mn−1

4

)

−

[

3(n− 1)2
(

Mn−1 − 2

2

)

−
3

2
(n− 2)(11n3 − 22n2 − 23n+ 54)

]

=
3

128
(n− 2)(n− 3)(9n6+9n5− 135n4− 81n3+670n2+104n− 1216), n ≥ 3.

3.6. Five or Six Lozenges.

Conjecture 2.

(23) Ln,5 =

(

Mn−1

5

)

−

[

3(n− 1)2
(

Mn−1 − 2

3

)

−
1

4
(4704− 3102n+ 1845n3 − 2031n2 + 60n4 − 315n5 + 63n6)

]

=
3

1280
(n−3)(n+3)(27n8−135n7−387n6+2835n5−168n4−18732n3+19568n2+36992n−56320), n ≥ 3.
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Conjecture 3.

(24) Ln,6 =

(

Mn−1

6

)

−

[

3(n− 1)2
(

Mn−1 − 2

4

)

−
1

16
(−131088+61472n−41206n3+69420n2−90n6−918n7+153n8−10851n4+9828n5)

]

=
1

5120
(81n12−486n11−2835n10+21870n9+26775n8−384786n7+131751n6+3275730n5

− 3798716n4 − 13254088n3 + 22481984n219678080n− 42024960), n ≥ 4.

The common shape of Ln,l is that Mn−1 is a polynomial of degree 2, and that
(

Mn−1

l

)

, the upper bound (7), is a polynomial of degree 2l. The first-order correc-

tions of the leading term 3(n − 1)2
(

Mn−1−2
l−2

)

, counting uncorrelated V subgraphs,

are of lesser degree 2l−2, because at larger n the spatial correlations of the (deleted)
internal edges play a lesser role. Conjectures for polynomials ensue assuming that
the second-order corrections are of degree 2l− 4, once a sufficiently large set of Ln,l

for small n is known.

4. Summary

Table 1 summarizes the numerical results which were calculated by the program
listed in the Appendix.

Row sums
∑

l≥0 Ln,l are 1, 4, 52, 2158, 286242, 121479420,. . . Following the

conjectured (8), the maximum l for nonzero entries is Tn−2.
The values Ln,Tn−2

= 1, 3, 18, 187, 3135, 81462, 3198404, 186498819, 15952438877,
1983341709785 ,. . . of these configurations with the maximum number of lozenges
have already been computed by Santos [6, Table 1][7, Table 9.2].

Appendix A. JAVA Program

A.1. Algorithm. The ancillary directory contains a Java program that generates
Table 1. The main function in LozeTil2.java uses an edge-growing recursive
algorithm which computes a lozenge statistics Ln,l refined by the set of lozenges
that have one of their 4 sides on one of the three sides of the big triangle.
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n\l 0 1 2 3 4 5 6 7
1 1
2 1 3
3 1 9 24 18
4 1 18 126 434 762 630 187
5 1 30 387 2814 12699 36894 69242 81936
6 1 45 915 11127 90270 515970 2139120 6523428
7 1 63 1845 33365 417435 3836439 26841853 146208393
8 1 84 3339 83568 1478160 19662060 204334715 1701554868
9 1 108 5586 184254 4354497 78536358 1124301411 13119112488
10 1 135 8802 369254 11203269 261985815 4914087052 75970268748
11 1 165 13230 686952 25970895 762098799 18070041680 355864850838
12 1 198 19140 1203930 55414395 1990014156 58055896449 1414611219018
13 1 234 26829 2009018 110505120 4761037260 167316709165 4931688363498
14 1 273 36621 3217749 208300257 10594451901 440911546295 15439933756251
15 1 315 48867 4977219 374375664 22178743326 1077784772922 44182928710470

n\l 8 9 10 11
5 57672 21432 3135
6 14683401 24256853 28975770 24383838
7 628823088 2153224090 5892984618 12892017948
8 11554013295 64766667704 302315092020 1181998895448
9 127156871457 1038068322606 7212713283360 42993319234518
10 987147811836 10940096605816 104581114754595 869988063985737
11 5938169156829 85230974965513 1064629166358066 11681266282861098
12 29375579984238 527873999198830 8307168403048731 115585010198220444
13 124419130905960 2728420121843584 52640100670770348 902231390539173210
14 464317587238419 12178604171344167 282021772415608164 5822744874311864316
15 1559497806005040 48137813623437500 1315457502665712336 32139701729335767774

Table 1. Number Ln,l of lozenge tilings for sides n ≥ 1 with l ≥ 0
lozenges [2, A273464].
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