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Abstract.  The article deals with a lexicographic order in various sequences. Consider 

the axiomatic of lexicographic series, based on the properties of the natural numbers. El-

ements of the set are ordered first the code length; further in each sign range, sorting is 

performed according to the given order on the alphabet. The sequence of the Dyck words, 

Dyck series, is analyzed as an example of such lexicographical series. The basis of this 

series is the dynamics of the Dyck words. We solve the direct and inverse problem of 

identification of elements of the Dyck series. The polynomial equation on the Dyck tri-

angle is investigated. We give a recursive equation for Dyck polynomials. A matrix of 

polynomial coefficients is constructed to solve some problems. In conclusion, the reader 

is offered a software service for identification of the Dyck words with index up to 10
10

.  

Key Words: Dyck words, lexicographic order, lexicographic series, Dyck path, Dyck dy-

namics, Dyck triangle, Dyck polynomials, polynomial coefficient matrix.   

1 Introduction  

1.1. Dyck words.  In discrete mathematics, the balanced parentheses, Dyck words, 

are sufficiently known and play an important role [St11]. We present a Dyck word 

as a system of interrelated elements from an alphabet with two characters. Usually 

this is a string of left (open) and right (closed) parentheses that are balanced. The 

system of related parentheses is characterized by the dynamics of Dyck words, 

Dyck dynamics.  

For the Dyck word, first, the number of left and right parentheses is the same 

(the first rule of dynamics). And secondly, in every initial subword, the number of 

right parentheses never exceeds the number of left ones (the second rule). Any 

open parenthesis has a matching closed one and they must be correctly nested. 

For any Dyck word of length 2n, Dyck 2n-word (there are n left parentheses 

and n right ones), the second rule of dynamics is equivalent to the known condition 

for the position ri of the i-th right parenthesis [Ka09]:  2i ≤ ri ≤ n + i, 1 ≤ i ≤ n. A 

group of consecutive Dyck words is also a Dyck word. There are no restrictions to 

the length of the bracket sequences, so we can talk about the infinity of the set of 

the Dyck words.  

Example 1.1.  Let’s show some variants of balanced brackets and unbalanced ones. 

Balanced brackets:  (()),  ()(),  ((()())). 

Unbalanced brackets:  )(()),  ()((),  ((()(())). 

mailto:ergenns@gmail.com
https://arxiv.org/abs/1002.2625
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The number of Dyck 2n-words is the nth Catalan number (see OEIS A000108): 

(1.1)     cn =  (
  
 

)⧸(n +1)  =  
     

        
 ,   n ≥ 0. 

The first Catalan numbers for n = 0, 1, 2, … are 1, 1, 2, 5, 14, 42, 132, 429, …  

1.2. Series in mathematics. Brockhaus and Efron give this definition of a series: 

“A series is a sequence of elements composed according to some law. For a given 

series, there is a law by which you can make as many elements of this series”. Ac-

cording to Brockhaus and Efron, the elements of the series can be numbers, func-

tions and actions. Let's expand this list to include balanced brackets. 

Consider as an example the natural numbers, the most famous, the most cited 

and the simplest numerical sequence: 

[0,] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 … 

A natural series can start with 0 or 1; zero can be a natural number or not. It is log-

ical to call 0 a runaway zero. The law (or consecution function) by which the series 

is constructed is very simple: the next element is 1 more than the current one.  

There is still no agreement on zero among mathematicians. Some definitions 

begin the natural numbers with 0 (non-negative integers), whereas others start with 

1 (positive integers). Let's try to clarify the situation with this zero; I will give my 

possibly controversial views on this matter. 

In almost all infinite sequences, the element index is a natural number. And ei-

ther we use a runaway zero or not, depending on there is an element with the index 

0 in the sequence or not. We can say that the natural series indexes such sequences. 

The natural series accompanies sequences, is attached to them.  

Obviously, the natural series indexes itself (the self-indexing series): every el-

ement is its own index. And if we include 0 in the natural series, then this element 

should automatically be assigned a zero index. Let's write some sequence with di-

rect indexing of elements; any element has a unique (non-repeating) index:  

[a0,] a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 … 

An element with index 0 can be or not (again there is a runaway element). In this 

regard, let us formulate a logical statement.  

Proposition 1.1.  If we identify a natural series with a family of element indices of 

some sequence (which is logical) and if in this sequence the initial element has a 

zero index, then we should consider 0 as a natural number. 

For many sequences, elements are indexed from 0.  In numeric series, the initial 

element can be zero or not.  For example,  in the Fibonacci sequence,  the initial 

https://oeis.org/A000108
https://en.wikipedia.org/wiki/Brockhaus_and_Efron_Encyclopedic_Dictionary
https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/Fibonacci_number
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element is 0.  For Catalan numbers and Motzkin numbers the zero elements is 1.   

It is necessary to note such paradox:  many mathematicians admit elements with 

zero indices in sequences, they explain and justify the presence of such (often vir-

tual) elements, but at the same time they do not consider 0 a natural number.  

2 Lexicographic series 

In non-numeric sequences, the lexicographic order (ranking of elements) is always 

welcome. This order involves strict rules for the construction of elements (objects), 

as well as some structural principles of the series. Let's build a sequence of non-

numeric objects, which will be observed all the characteristic features of the natu-

ral numbers. We will call such a sequence a lexicographic series or a lex-series. 

2.1. Axiomatic of lex-series. What are the formal features of the natural numbers? 

As you know, integers are not repeated in the natural series. In this regard, we for-

mulate the first axiom of a lex-series.  

Axiom 2.1.  In a lexicographic series, all objects are unique. 

Some sequences do not satisfy Axiom 2.1, for example, c0 = c1 = 1.  

Next the natural numbers are arranged (sorted) in order of increasing the code 

length. The list begins with single-digit integers, followed by double-digit integers, 

etc. Of course, we can add leading zeros to any integer. This will not change the 

integer value, but will break the sorting. But this is not usually done, and there is 

no need. Let’s formulate the following axiom of a lex-series.  

Axiom 2.2.  In a lexicographic series, objects are sorted in ascending order of 

code length. 

According to Axiom 2.2, lex-series objects are divided into ranges, which contain 

elements with the same code length. Thus, a lex-series is cut into such ranges. 

The natural numbers within each range are also sorted. In the decimal notation, 

each digit of the alphabet has its own unique weight. The alphabet of the natural 

numbers is totally ordered as follows:  

(2.1)     0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9. 

Obviously, as the weight of a natural number n, wt (n), we can consider its index 

(that is, its value). For example, wt (0) = 0, wt (1) = 1, wt (99) = 99, and so on. 

In accordance with (2.1), integers are sorted within each range. By the way, for 

Dyck words we have a simple alphabet  Adyck = { '(', ')' }; there are only two possi-

ble ordering options:  '('  <  ')'  or  '('  >  ')'.  Both orders can be found in the litera-

ture (for example, see [Sa18] and here).  Let's formalize the corresponding follow-

ing axiom of a lex-series. 

https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Motzkin_number
https://en.wikipedia.org/wiki/Lexicographical_order
https://sahandsaba.com/interview-question-generating-all-balanced-parentheses.html
https://oeis.org/wiki/Combinatorial_interpretations_of_Catalan_numbers
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Axiom 2.3.  In each range of a lexicographic series, objects are sorted according 

to the given totally order on the alphabet. 

The sorting algorithm within the range is simple. When analyzing two elements of 

the same length, the code signs are compared sequentially in pairs, moving from 

left to right. And the first mismatch in any pair (this is inevitable, since all objects 

are unique) allows you to correlate the weights of the compared elements.  

Example 2.4.  Let the totally order ' < ' be given on the alphabet A of the lex-series L and 

let  a = a1a2…ak  and  b = b1b2…bk  be elements from the k-range of  L. We have  a < b  

if and only if  ai < bi for the first i where  ai ≠ bi.                   □ 

So, in a lex-series we have a double sorting of objects. External sorting orders 

elements along the code length, distributes them to ranges. Internal sorting arrang-

es the elements within the range. Any range has minimum and maximum elements. 

For example,  in the natural series,  the minimum element of the k-range is 1 and  

k–1 zeros (10…0),  the maximum is k nines (99…9).  In a lex-series, objects are 

placed in accordance with their weights; it is convenient and logical to consider the 

object index as its weight.  

Let's analyze the smallest digit 0. Zero is not written at the beginning of inte-

gers.  The exception is the number 0 itself, if zero is included in the natural series.  

We are ready to formulate the last axiom of a lex-series about prohibition of 

placement and replication of the symbol with the minimum weight at the beginning 

of the code, but one circumstance prevents.   

The digits into integers are free and practically unrestricted in use.  Any sign 

(except zero) can be repeated at the beginning of the code. At the same time, in the 

alphabet of Dyck words (here only two signs), both left and right parentheses are 

not free, but connected. In the Dyck 2n-word, signs can be divided into n pairs; 

each parenthesis corresponds to some opposite parenthesis.  

In the alphabet of the natural numbers there are no associated characters, and in 

the alphabet of Dyck words there are no free characters. But there is an alphabet  

Amotzkin = { 0, '(', ')' } of Motzkin words, in which there are connected parentheses 

(similar to Dyck words) and free 0 (an analogue of zero in the natural numbers). In 

the Motzkin word, we can put zero anywhere in the code, and even repeat many 

times at the beginning of the word.  Usually zero has minimal weight in the 

Motzkin word alphabet, and this is logical. In this regard, we formulate the last ax-

iom of a lex-series. 

Axiom 2.5.  In a lexicographic series, an element with two or more signs in the 

code cannot begin with a free character that has the least weight in the alphabet. 

Obviously, it is impossible to build the lex-series from Motzkin words. But if we 

remove leading zeros in Motzkin words and then get rid of duplicates, then we can 

build the lex-series from such truncated words.   
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Note 2.6.  The Dyck 2n-word is often written as a numeric string of 2n binary digits (for 

example, see [KA09]). In OEIS A063171, the left parenthesis is replaced by 1, the right 

one is 0. In another sequence (see OEIS A014486), these binary numbers are represented 

in decimal notation. Seems this way of encoding the Dyck word is illogical.  

The sequence of the Dyck words and the sequence of the Motzkin words are very 

close, since any Dyck word is also a Motzkin word. There are tasks, which included both 

the Dyck words and Motzkin words. In the alphabet of Motzkin word we have zero; in 

digitizing the codes we have to keep the sign 0 in the numeric string. In the Motzkin 

word, there is no need to encode the sign 0 with another digit.  

In this regard an interesting way of digitizing, when the Dyck 2n-word is a string 

of n 1’s and n 2’s (for example, see Glenn Tesler). 

2.2. Dyck series. For Dyck words of equal length, let's establish a lexicographical 

order based on the inequality '(' < ')'.  The number of Dyck 2k-words is equal to  

ck. For example, Dyck 6-words form a chain of five elements:  

 ((())),  (()()),  (())(),  ()(()), ()()().  

In such lexicographic series, or Dyck series, 2k-range (k pairs of parentheses) starts 

with the single-block word  '((…())…)'  and ends on the word  '()()…()',  in which 

k blocks. Let's show the beginning of the Dyck series 

(2.2)   (),  (()),  ()(),  ((())),  …,  ()()(),  (((()))),  …   

First we specify a single Dyck word with one pair of parentheses (2-range), fol-

lowed by two elements with two pairs of parentheses (4-range), etc. In the se-

quence OEIS A000108, the initial Catalan number is 1 and has an index of 0. And 

the question arises: what should we do with an empty word of length 0? Whether 

to include an additional 0-range with a single element (empty word) at the begin-

ning of the Dyck series?  

There is no empty word in our Dyck series, and this is almost always the case 

when listing balanced parentheses (see [La03], page 35). Moreover, you can find a 

shortened sequence of Catalan numbers without an initial element, for example, as 

here. And this is understandable; we are usually interested in real bracket sets con-

taining at least one pair of parentheses. In the future, if possible, we will do with-

out an empty word and, accordingly, without the Catalan number with index 0.  

For Dyck series, we need to solve the following classical problems: 

 For a given Dyck word find the next (preceding) element of the series. 

 Generation in lexicographical order of all Dyck words of a given length. 

 For a given Dyck word calculate its index in the lex-series. 

 Reconstruction Dyck word by its index in the lex-series. 

https://arxiv.org/pdf/1002.2625.pdf
http://oeis.org/A063171
http://oeis.org/A014486
https://www.math.utah.edu/mathcircle/tessler-catalan-notes.pdf
http://oeis.org/A000108
http://www.ams.org/books/stml/023/stml023-endmatter.pdf
http://mathworld.wolfram.com/CatalanNumber.html
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The first two tasks are not difficult and well described in the literature. We refer to 

the website [Sa18], where there are appropriate algorithms and program codes. In 

this article, we look at the last two listed tasks.  

Recall, all elements of the Dyck series are unique, so each Dyck word occupies 

a fixed place, i.e. has a specific index. Each natural number corresponds to a single 

Dyck word. In other words, there is a one-to-one correspondence between Dyck 

words and the natural numbers. In order to implement this correspondence, we just 

need to solve two identification problems from the above list.  

The index of an arbitrary Dyck word can be given in two ways: (a) an absolute 

index in the Dyck series or (b) a relative index – an ordinal number in a given se-

ries range. The relation between the absolute index I and the relative index Irel of a 

given Dyck word of semilength n is obvious: 

(2.3)   Iabs = Irel + c1 + c2 +… + cn–1,  In  [1, cn]. 

Recall that the Dyck series begins with the Dyck word  '( )'.  

Indexing of the Dyck word and the inverse problem (restoration of the bracket 

set by a given index) are solved with the involvement of Dyck dynamics. In addi-

tion, we refer to this resource where the correct algorithms are given without ex-

planation and without theoretical calculations, in our opinion. 

3 Dyck dynamics  

3.1. Dyck paths.  Dyck words are often associated with Dyck paths on an integer 

lattice in the positive quadrant. A Dyck word corresponds to a continuous polyline 

composed of diagonal steps up (1, 1) and down (1, –1), issuing from the origin and 

ending on the x-axis without crossing the x-axis. The left parenthesis is an up-step; 

the right one is a down-step. The figure shows the path for Dyck word ((()(()()))). 

The x-axis is the position of 

the parentheses, and y-axis is 

unbalance of the parentheses 

(the number of left parenthe-

ses over right ones).  Each 

left parenthesis increases the 

height of the polyline, right 

parentheses reduce the un-

balance. The polyline reach-

es a height of 4,  the maxi-

mum height of 6 corresponds to the initial Dyck word (((((()))))).  A triangle with 

the constructed top (red dotted line) is called a supporting triangle.  Each polyline 

of length 12 does not extend beyond the supporting triangle. 

https://sahandsaba.com/interview-question-generating-all-balanced-parentheses.html
http://e-maxx.ru/algo/bracket_sequences
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Grid nodes marked with transparent points are unreachable (forbidden) for bro-

ken lines. For reachable node, the sum of the coordinates is even. Obviously, the 

separation of reachable and forbidden nodes is preserved when the supporting tri-

angle is expanded. The number of Dyck paths of length 2n, Dyck 2n-path, is cn; 

this is the number of Dyck 2n-paths that can be drawn from (0, 0) to (2n, 0) in the 

supporting triangle of height n. In this regard, node (12, 0) has a red label c6 = 132. 

On the x-axis, five other nodes are similarly marked. 

Let's mark the other nodes of the supporting triangle. The label of the reachable 

node is equal to the number of paths from the origin to this node (label 0 corre-

sponds to each forbidden node). A single ray of ascending links leads to each node 

of the central diagonal. We marked the diagonal nodes (including the origin) with 

1. Specified marks are obvious. With increasing the number of parentheses we get 

the Catalan numbers on the x-axis and we have a chain of 1’s diagonally. To un-

derstand the internal nodes of the supporting triangle, it is necessary to analyze the 

mutual links in the broken lines, i.e. the Dyck dynamics. 

3.2. Dynamics equation.  Let's look at a fragment of Dyck path in the next figure. 

Here we have a down-step that follows the ascending diagonal links. In this case, 

the last node would have label 1 (as diagonal 

nodes) if this node was on the x-axis. But this is 

not the case; to the last node from below you can 

draw an ascending link (shown in green) from 

the neighboring node with the label, for exam-

ple, k. Then the label of the last node is 1+k, be-

cause all paths ending in both child nodes can be 

drawn to this node. 

This situation is typical for all internal points: each node can be connect both an 

ascending and descending link from the child nodes with a smaller abscissa. The 

label of the inner node is equal to the sum of the labels of the child nodes. Labels 

below the x-axis and above the central diagonal are 0, so the rule is valid for the 

entire coordinate grid. Thus, for an arbitrary node, its label, dynamics, is deter-

mined by the following dynamics equation:  

(3.1)  d i, j  =  d i-1, j-1 + d i-1, j+1,  d 0,0  =  1,   j > 0.  

Using (3.1) it is easy to calculate the dynamics of all reachable nodes. In the future, 

we need the difference dynamics equation, i.e. calculation of dynamics for the top 

point, the second summand, in the equation (3.1):  

(3.2)  d i, j  =  d i+1, j-1 – d i, j-2,   j > 1. 

Let's call the equation (3.2) the dynamics of the top point or the top-dynamics.  
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3.3. Dyck triangle.  At any i-th position of Dyck word, the unbalance cannot ex-

ceed i, so the set of reachable nodes forms a triangular matrix, which is known as 

Dyck triangle [MO10]. We will distinguish the Dyck triangle (infinite matrix) and 

the supporting triangle, the initial fragment of the matrix, an isosceles triangle of 

height n, where n is the number of pairs of parentheses in a given Dyck word.  

The figure below shows a fragment of Dyck triangle; we have identified the 

supporting triangle for n = 6. In the triangle, the outer ascending diagonal (labels 

1’s) and the outer descending diagonal (labels 1, 6, 20, 48, etc.) contain the same 

number of nodes. For the point a = (i,  j), there is the symmetric point b = (2n–i,  j) 

with its own label. Such a pair we call a mirror and denote  a ~ b.   

Self-symmetric nodes (n, j) are located along the height. In the figure, these are 

four central nodes labeled 1, 5, 9, and 5.  Can be show that the sum of the label 

squares of the self-symmetric nodes is c6.  Check, 1
2
 + 5

2
 + 9

2
 + 5

2
 = 132.  

The Dyck 2n-path starts at the origin and ends at (2n, 0). If you invert this path, 

starting at (2n, 0), and recalculate the inverse dynamics đ i, j, then the points  (i, j) 

and (2n-i, j) exchange labels, i.e.  đ i, j = d 2n-i, j  and  đ 2n-i, j = d i, j.   

Proposition 3.1.  In the supporting triangle of height n, the number of Dyck 2n-

paths passing through the point (i, j) is d i, j × đ i, j . 

Proof. The label d i, j  is the number of paths leading from the origin to (i, j), while 

the inverse label đ i, j  is the number of paths from the endpoint (2n, 0)  to  (i, j). 

Hence, the number of Dyck 2n-paths passing through the point (i, j) is equal to the 

product of both labels. This concludes the proof.               □  

Obviously, self-symmetric nodes have the same forward and reverse labels, that is,  

d n, j = đ n, j. In this regard, the following statement is obvious. 

Corollary 3.2.  In the n-th column of the Dyck triangle, the sum of the label 

squares is cn. 

https://www.researchgate.net/publication/264961734_Dyck_and_Motzkin_Triangles_with_Multiplicities
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4 Identification of Dyck words  

4.1. Computing the index of the Dyck word.  We believe that a certain Dyck 

word is given, and accordingly we know in what range of the series we will look 

for a relative index. After calculating the relative index we use (2.3) to find the ab-

solute index of the Dyck word. Calculate the relative index can be a direct search 

of codes from the beginning of the range or reverse search from the range end (the 

direction of the search is determined by the initial characters of the Dyck word). 

This is the easiest way if the length of the code is less than about 20 pairs of paren-

theses. But when doubling the number of parentheses, this method is unrealistic. 

The Dyck triangle contains complete information on the relative positions of 

the elements in the Dyck series. Using Dyck dynamics, you can calculate the rela-

tive index in one code scan from left to right. Let's first describe the algorithm for 

calculating the relative index of Dyck word.  

Algorithm 4.1. The Dyck word begins with the left parenthesis, so let's take the initial 

working index = 1 and here's why. When analyzing parentheses, the working index usu-

ally grows, but if the first element of the range is specified (all left brackets are grouped 

at the beginning of the code), the index does not change until the algorithm end. Here we 

draw two important conclusions: (a) a left parenthesis of the code does not change the 

working index and (b) final right parentheses also do not affect the working index.  

Therefore,  any left parenthesis should be ignored by the algorithm,  and the code   

index depends only on the right parentheses followed by at least one left parenthesis. 

Each encountered right parenthesis (provided that not all left parentheses are searched) 

means that the working index should be increased, i.e. it is necessary to make a jump on 

the Dyck series, skipping some elements with smaller indices. It remains to determine the 

magnitude of the jump.  

The algorithm ends after viewing all the left parentheses of the code. Therefore, to 

determine the code index, it is enough to fix all the right parentheses preceding the left 

ones, calculate and sum the jumps along the Dyck series.         □ 

Example 4.2.  In section 3.1 we considered the Dyck word 

( ( ( ) ( ( ) ( ) ) ) ) . 

The two right parentheses (highlighted in red) precede the left ones; and these two right 

parentheses define the relative index of 

Dyck word. In Dyck triangle, the figure 

shows the corresponding polyline with-

out the last down-steps (the Dyck path 

is shown in red). In the supporting tri-

angle we marked the central 6
th

 column 

(labels 1, 5, 9, and 5). Near the 6
th
 col-

umn we are interested in two mirrors 

(4, 4) ~ (8, 4) and (5, 5) ~ (7, 5) (circled 

in blue).  
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Previously, the working index Iw of the given Dyck word is assumed to be 1. In Dyck 

path, the first three links are up-steps, and the working index does not change at this 

area, i.e. Iw = 1. But at (3, 3) the path changes direction, and here the working index 

should be increased,  because any path with the 4th up-step (green arrow) from   

(3, 3) to (4, 4) corresponds to Dyck word with a smaller relative index. The number 

of such paths is  đ 4,4 = d 8,4 = 20. There are so many paths with four up-steps at the 

beginning, and so many Dyck words start with four left parentheses. In short, we 

need to skip 20 elements of the Dyck series with four left parentheses at the begin-

ning of the code. As a result, it is necessary to perform a jump on the series; the 

working index becomes equal to  Iw = 1 + 20 = 21.  

The next two links in path are up-steps, so the working index doesn't change. 

The second break we have at (6, 4), and again it is necessary to perform a jump in 

the Dyck series. The new green up-step indicates the mirror (7, 5) ~ (5, 5). The 

analysis shows that it is necessary to skip one more element of the Dyck series, 

since đ 7,5 = d 5,5 = 1. The working index becomes Iw = 21+1 = 22.  

After passing the last up-step, we come to point (8, 4) on the outer diagonal of 

the supporting triangle. To fix such output is simple: at any point of such diagonal, 

the sum of coordinates is 2n (in our case 12). Final down-steps do not change the 

working index; calculation completed.  

Thus, the given Dyck word has a relative index of 22 in the 12-range of the se-

ries. To obtain an absolute index, you must add the elements of the preceding five 

ranges. The result is  Iabs = 22 + (1+2+5+14+42) = 86.          □ 

4.2. Restoration of the Dyck word by its index.  In the previous section, looking 

through the Dyck word, we analyzed the corresponding path and summarized the 

labels of selected points in the Dyck triangle in order to obtain the total leap, a rela-

tive index in the range of the Dyck series. Now we have the opposite situation: it is 

necessary to build the Dyck path on the given index. This index should be split into 

components of the total leap.  

Let us be given an absolute index Iabs  > 0.  To obtain a relative index we need 

to subtract the initial Catalan numbers consistently:  Iabs – 1 – 2 – 5 – 14 – ... and so 

on until we get a negative number or zero. When subtracting an integer, we skip 

Dyck words with smaller indices, we move through the series, and we perform a 

kind of jumps. Obviously, the last positive value is the relative index Irel , and the 

index of the last subtracted Catalan number is the semilength n of the search Dyck 

word. As a result,  Irel  [1, cn]. If the relative index accepts boundary values, then 

everything is simple.  In case  Irel = 1,  we at once get the initial Dyck word of the 

2n-range  ‘((… ())…)’. If Irel = cn, then we get n consecutive blocks of ‘( )’. 

In General, using the relative index, we need to gradually move from the origin, 

building step by step the desired Dyck path. At any step, it may be necessary to 

further reduce the value Irel (additional jumps in the series are performed). This is 
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due to the appearance of right parentheses in the constructed Dyck word. The pro-

cedure ends when  Irel  is zeroed.  

Algorithm 4.3.  We are given a positive index  Irel ≤ cn. You need to build the suitable 

Dyck word of the semilength n. Any Dyck word starts with the left parenthesis, so we 

start the lattice path with an up-step from (0, 0) to (1, 1). The first step we entered on the 

outer diagonal of the supporting triangle; maybe the next steps will follow this diagonal if 

the given index is small.  

In General, we will have to make jumps on the 2n-range.  If the initial word is speci-

fied  (Irel = 1),  there will be no jumps. Let's introduce an additional working variable 

whose value is equal to the required leap,  Jump = Irel –1. The value of Jump should be 

decomposed into components (step-by-step movements over the 2n-range). Let us ask 

ourselves: where to move from point (1, 1)? Step up to (2. 2) or step down to (2, 0)? We 

get the answer if we compare Jump and the inverse dynamics of point (2, 2).  According 

to the top-dynamics (3.2), the number of Dyck paths that begin with two left parentheses 

is  đ 2,2 = d 2n-2,2  = cn – cn–1.  

Three cases are possible: 

 Jump < đ 2,2 . In this case, we cannot perform a corresponding leap to skip all 

words with two left parentheses at the beginning of the code. So we continue 

Dyck path by an up-step from (1, 1) to (2, 2) without changing Jump. (Perhaps 

then the value Jump is enough for the leap to skip the words with three parenthe-

ses, as  đ 3,3 = d 2n-3,3  = cn – 2cn–1.); 

 Jump > đ 2,2 . Now the leap is possible and it must be made. We make a down-step 

down from (1, 1) to (2, 0), moving to the inner diagonal. At the same time reduce 

the working variable:  Jump = Jump – đ 2,2 ;  

 Jump = đ 2,2 . In this case, the resource Jump is exhausted, all necessary jumps are 

performed. We have to put the remaining up-steps and then down-steps for Dyck 

path. 

Thus, the procedure is repeated step by step until  Jump > 0.           □ 

Example 4.4.  Let’s build the Dyck word with Iabs  = 1329. Calculate the relative index 

Irel = 1329 – 1 – 2 – 5 – 14 – 42 – 132 – 429 = 704. 

The last thing we subtracted c7, so we will look for the Dyck word in the 16-range. The 

initial leap is  Jump = 704 – 1 = 703. Below is a fragment of the supporting triangle; for 

convenience,  reverse labels (inverse dynamics) are placed in the points.  The Dyck   
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16-path is drawn in red, and the inverse labels of the points that affected the shape of the 

path are circled in blue.  

The first fracture occurred in (2, 2), we made a leap to 572 in the 16-range. As a re-

sult, the working value of the leap decreased  Jump = 703 – 572 = 131. The second frac-

ture was formed in (5, 3), and the next two down-steps give a total shift of 75 + 48 = 123. 

Now the working value of the leap equal  Jump = 132 – 123 = 8. Next we have a shift of 

5 at (9.3) and then three shifts of 1 at (11, 3), (12, 2), (13, 1).  

As a result, the resource Jump is exhausted (zeroed), the polyline goes to the outer 

descending diagonal, and the last down-step completes the reconstruction of the Dyck 

path. If we sum up the inverse labels of the marked points (in the blue ring), we get the 

initial leap of 703. The required Dyck word has the form  (()(())(()()))().       □ 

5 Dyck polynomials 

5.1. Polynomial matrix.  The considered algorithms work with Dyck triangle 

nodes. Node labels are often huge. Here is the 100
th

 Catalan number (57 decimal 

digits):  

c100 = 896 519 947 090 131 496 687 170 070 074 100 632 420 837 521 538 745 909 320. 

To work with such numbers, information processing acceleration methods are of-

ten associated with task logic and data structures.  

Recall that in the Dyck triangle, the x-axis is the parenthesis positions, and the 

y-axis is the unbalance of the parentheses. For any triangle node the ordinate can-

not exceed the abscissa. The node (i, j), i + j = 2n, is placed on the n-th isoline, a 

descending diagonal with an upper point (n, n) and a lower point (2n, 0). In the 

figure, the 7
th

 isoline is highlighted in yellow. The start and end labels of the n-th 

isoline are obvious: 

dn,n = 1,  dn+1,n-1 = n,  d2n,0 = d2n-1,1 = cn,  d2n-2,2 = cn – cn–1,  d2n-3,3  = cn – 2cn–1,  

d 2n-4,4  = cn – 2cn–1 – (cn–1 – cn–2)  = cn – 3cn–1 + cn–2. 
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The points of the n-th diagonal can be calculated on the basis of the difference   

dynamics equation, let's repeat it:  

(5.1) d i, j  =  d i+1, j-1 – d i, j-2,   j > 1. 

Let's use the (5.1) and write the initial lower points of the n-th diagonal: 

di,0 = cn ,  n = i/2 (i is even only); 

di,1 = cn ,  n = (i+1)/2 (i is odd only); 

di,2 = cn – cn–1,  n = (i+2)/2 (i is even again); 

di,3 = cn – 2cn–1,  n = (i+3)/2 (i is odd again); 

di,4 = cn – 3cn–1+ cn–2,   n = (i+4)/2 (i is even again); 

di,5 = cn – 4cn–1+ 3cn–2,   n = (i+5)/2 (i is odd again). 

For the other points we need to look for rules for constructing such polynomials.  

In the given equalities, on the right we sum up the Catalan numbers, which are 

indexed by the variable n. The coefficients for the Catalan numbers are determined 

by the unbalance j (the line number in Dyck triangle). In these equalities, the vari-

able i can take certain values (even or odd). Obviously, these equalities can be 

written as a generalized polynomial    

(5.2) d i, j = pj (n),   n = (i + j)/2. 

In the difference equation of dynamics (5.1) the points d i, j and d i+1, j-1 are located 

on the common n-th isoline, and d i, j-2 is located on the adjacent (n–1)-th isoline. 

Obviously (5.1) and (5.2) are equivalent to the recursion formula 

(5.3) pj (n) = pj-1 (n) – pj-2 (n–1),   j > 1. 

The resulting recursion is easy to check, calculate the next 6th polynomial: 

di,6  = p6 (n) = p5 (n) – p4 (n–1) = (cn – 4cn–1+ 3cn–2) – (cn-1 – 3cn–2+ cn–3) 

       =  cn – 5cn–1+ 6cn–2 – cn–3 ,  n = (i+6)/2, where i is only even. 

Let's call the polynomials pj (n) Dyck polynomials and recursion (5.3) a poly-

nomial equation or dynamics of Dyck polynomials. Note that earlier we understood 

by n a fixed value, the Dyck word semilength. In (5.3) n is a parameter of polyno-

mials; this variable is not explicitly represented in the Dyck triangle, n = (i + j)/2. 

Accordingly, the variable i is not explicitly represented in polynomials, i = 2n – j. 

The coefficients of the Dyck polynomials can be packed into a matrix, the 

polynomial matrix, which takes an almost triangular shape. In the figure below, the 

x-axis shows the unbalance j; along the y-axis, starting with some conditional n, the 

indices of the Catalan numbers follow in descending order. The j-th column con-

tains the coefficients of the j-th polynomial. For example, let us repeat the 6
th

 poly-

nomial:  p6 (n) = cn – 5cn–1+ 6cn–2 – cn–3 . 



14 
 

 Let's build the polynomial matrix. The bottom line is 1’s, the remaining lines 

are initially zeroed. Then the coefficients are calculated line by line according to 

the formula: 

(5.4) aj,n-k =  aj-1,n-k – aj-2,n-k+1,   j > 1, k > 0. 

Equality (5.4) follows directly from (5.3). The construction of the polynomial ma-

trix begins with the point  a2,n-1 = a1,n-1 – a0,n = 0 – 1 = –1.  

It is easy to see, on the outer quasi-diagonal, the initial elements of the lines 

(the upper points of even columns) are an alternating series of units: 

a2k,n-k = (–1)
k
,  k > 0.  

For explanations, the figure highlights three points associated with equality (5.4): 

a12,n-3 = a11,n-3 – a10,n-2 = –56 – 28 = –84.  

Example 5.1. Let's calculate the dynamics of some nodes of Dyck triangle. The coeffi-

cients for the polynomials will be chosen from the polynomial matrix (and initial Catalan 

numbers can be found in OEIS A000108).  

1) Check the node label (15, 7). Recall, the dynamics of d15,7 indicates the number of 

initial fragments of the Dyck words with unbalance of 7 in position 15. Point (15, 7) is on 

the isoline  n = (15+7)/2 = 11. From the coefficients of the 7
th

 column of the matrix, we 

make the polynomial  d15,7 = p7(11) = c11 – 6c10 + 10c9 – 4c8  = 58786 – 6×16796 + 

10×4862 – 4×1430 = 910. 

2) Calculate the dynamics for (32, 10). The coordinates give us the 21
st
 isoline; for 

the calculation we choose the 10
th

 column of the matrix: d32,10 = p10(21) = c21 – 9c20 + 

28c19 – 35c18 + 15 c17  – c16 = 64 512 240. 
3) Make a polynomial for (132, 10). The node is on 71

st
 isoline, but we still choose 

the 10
th

 column:  d132,10 = p10(71) = c71 – 9c70 + 28c69 – 35c68 + 15 c67 – c66. For reference: 

с66 = 5 632 681 584 560 312 734 993 915 705 849 145 100, 

с67 =   22 033 725 021 956 517 463 358 552 614 056 949 950, 

с68 =   86 218 923 998 960 285 726 185 640 663 701 108 500, 

с69 = 337 485 502 510 215 975 556 783 793 455 058 624 700, 

с70 = 1 321 422 108 420 282 270 489 942 177 190 229 544 600, 

https://oeis.org/A000108
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с71 = 5 175 569 924 646 105 559 418 940 193 995 065 716 350. 

Answer:  d132,10 = 39 575 872 930 789 889 398 293 766 300 107 613 200.         □ 

5.2. Dyck wedge. The Dyck triangle is bounded above by the diagonal (nodes la-

beled 1’s) and below by the x-axis (the Catalan numbers). The dynamics of an arbi-

trary node can be calculated using (3.1) moving from the origin. This procedure 

can be lengthy and laborious if the node is far from the origin. Dyck polynomials 

allow calculations with fewer operations if the abscissa of a given node is signifi-

cantly greater than its ordinate; however, in this case we have to deal with more 

"long" numbers.  

In the Dyck triangle, let's fix the point  x = (ix, jx). We assume that x is inside 

the triangle, in other words,  ix > jx > 0 (otherwise the dynamics dx is obvious). The 

point x is located on the isoline nx = (ix+jx)/2; the isoline "cuts off" the isosceles 

supporting triangle with the boundary points (0, 0), (nx, nx), (2nx, 0) and the base 

2nx. Consider three groups of points, three segments that are related (or not) to x. 

Well, the dynamics dx can be calculated moving from the origin. Nodes that are 

used in such calculations we will include in the first main segment. The point x is 

also included in the main segment and has a maximum abscissa there.  

Dynamics calculation can be performed from (2nx, 0), rising along the isoline 

up to x in accordance with (5.1). Nodes that are used in such case we will include 

in the second difference segment. The point x is included in the difference segment 

and has a maximum ordinate there. Thus, the main and difference segments have a 

common node-joint x. 

In the Dyck triangle, many nodes are often not used in the calculation of dx, and 

these nodes form the third dead segment. The third segment is sometimes compa-

rable to the other segments. Let’s do a further analysis on a specific example.  

Example 5.2. The figure below shows the node (15.9) with a dynamics of 350. The sup-

porting triangle (colored nodes) is bounded by 12
th

 isoline with extreme nodes (12, 12) 

and (24, 0). The main segment (blue nodes) is a rotated trapezoid with a base that coin-

cides with the ascending diagonal of the supporting triangle. The difference segment 
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(dark nodes) is a triangle. The side of the main segment and the difference segment diag-

onal form the 12
th

 isoline.  

The third segment ("rusty" nodes) is embedded between the main and difference 

segments.  These are the nodes that are not used to calculate d15,9;  this is the dead zone 

for (15, 9). The third segment resembles a wedge that corrodes (dissects) the supporting 

triangle; let's call it Dyck wedge.                □ 

In general, for x = (ix, jx), the Dyck wedge is placed between the ix-th column and 

the diagonal that connects x and (ix – jx, 0). The wedge top is placed at (ix –1, jx –3), 

so the wedge exists if jx > 2. If you rise diagonally from (2nx, 0), the difference 

segment gradually expands; the wedge appears starting at (2nx –3, 3).  At (nx, nx) 

the main segment degenerates into an outer diagonal of the supporting triangle. In 

this case, the Dyck wedge and the difference segment reach maximum sizes. 

6 Online software service  

The reader is offered a small software service that works online. This section de-

scribes two programs for identification of balanced parentheses in the Dyck series. 

Direct and inverse identification of series elements is solved; the first program cal-

culates the index of the given Dyck word, the second program restores the bal-

anced brackets for the given index.  

Data processing is performed using the modified Dyck triangle. To do this, in a 

normal Dyck triangle, unreachable nodes are removed; as a result, we work in a 

packed triangular array in which the isoline number is plotted along the x-axis (see 

details here). Huge numbers have to be processed, so almost all modules work with 

"long arithmetic". Programs run on the client side (browser). This means that only 

HTML, CSS, and JS components are used.  

For the given Dyck word, the index in the series is calculated in this program 

(direct identification problem). First, the correctness of the bracket set is checked, 

and then the program displays the range number and both indexes – absolute and 

relative.  

Reconstruction of the Dyck word is performed by its absolute index (inverse 

identification problem). The program displays two indexes (absolute and relative), 

the range number, and a set of parentheses. 
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