1909.08123v2 [quant-ph] 11 Nov 2019

arXiv

On sets of commuting and anticommuting Paulis

Rahul Sarkar*'and Ewout van den Berg?

November 12, 2019

Abstract

In this work we study the structure and cardinality of maximal sets of commuting and anticommuting
Paulis in the setting of the abelian Pauli group. We provide necessary and sufficient conditions for
anticommuting sets to be maximal, and present an efficient algorithm for generating anticommuting sets
of maximum size. As a theoretical tool, we introduce commutativity maps, and study properties of maps
associated with elements in the cosets with respect to anticommuting minimal generating sets. We also
derive expressions for the number of distinct sets of commuting and anticommuting abelian Paulis of a
given size.

1 Introduction

In this work we study properties of sets of Pauli operators such that the elements either all pairwise
commute or all pairwise anticommute. Sets of mutually commuting Paulis arise in the theory of quantum
error correction, for instance in stabilizer theory [I]. Anticommuting Paulis arise in the mapping of
Majorana operators to qubits in fermionic quantum computation [2], as well as in the design of space-
time codes for wireless communication [3].

An n-Pauli operator P is formed as the Kronecker product @} ;T of n terms T;, where each
term 7} is either the two-by-two identity matrix o;, or one of the three Pauli matrices 0., oy, and o..
Pauli operators have the property that any two operators, P and @, either commute (PQ = QP) or
anticommute (PQ = —QP). Pauli operators can be represented as strings {i, z,y, 2}" and commutativity
between two operators is conveniently determined by counting the number of positions in which the
corresponding string elements differ and neither element is i. If the total count is even, the operators
commute, otherwise they anticommute. Given two Pauli operators P and @, and arbitrary non-zero
coefficients o, 5 € C, it is easily verified that the commutativity of aP and BQ is the same as that of
P and Q. In Section 2] we define the notion of the abelian Pauli group, thereby allowing us to ignore
such coefficients, which may arise when multiplying Pauli operators. We then study sets of mutually
commuting Paulis in Section B] and sets of mutually anticommuting Paulis in Section @l We study the
number of distinct maximally commuting and anticommuting sets in Section Bl We conclude the paper
with a discussion in Section

2  Group structure

In this subsection we define the abelian Pauli group, which forms the foundation for the remainder of the
paper. We can define the elements of the n-Pauli group P, as all possible products of n-Pauli operators.
It is easily checked that P, is a non-abelian group of order 4"*!. The set K = {I,—1I,il,—il} is a
normal abelian subgroup of P, and we define the abelian n-Pauli group as the quotient group P, /K.
The associated canonical quotient map will be denoted by 7, i.e., w : Pn — Pn/K, which is surjective and
is given by m(g) = ¢gK. We will sometimes denote w(g) by the equivalence class [g], under the quotient
map. Pn/K is an abelian group of order 4", and the order of each element of the group, other than
1,is 2. Given H C P,/K and P € P,,/K we define multiplication of the element P with the set H as
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PxH={PQ:Q € H}. For two sets H1,Ho C Pp/K we define Hy x Ho = {P1P>: P1 € H1, P> € Ha}.
Multiplications with empty sets give empty sets. We frequently need to take the product of all elements
in a set H, and write [[ H := HQeH Q). We define the product of the empty set to be the identity element
I. We denote subsets by C and proper subsets by C.

2.1 Generators

Let H be a subset of Pn/K. A set G C H is a generating set of H whenever any element in H can be
expressed as a product of the elements in G. For any G C P, /K, we denote by (G) the generated set of
G; that is, all elements that can be generated by products of the elements in G, and thus any subset is
a generating set of a possibly larger subset of P, /K. The set G is called a minimal generating set, if no
proper subset of G generates (G). We say that the elements in minimal generating sets are independent.

We begin by proving some elementary properties of generating sets of P, /K, in particular minimal
generating sets, which are used subsequently in this paper. The first lemma shows that generated sets
always form a subgroup of P, /K, and also characterizes the sizes of minimal generating sets in relation
to the sizes of the sets generated by them.

Lemma 2.1. The abelian Pauli group Pn/K satisfies the following properties.
(a) If G C Pn/K is non-empty, then (G) is a subgroup of Pn/K.

(b) If S is a subgroup of Pn/K, then |S| = 2°, for some 0 < £ < 2n. G is a generating set of S iff
(G) = S. For minimal generating sets G it holds that I € G iff S = {I}. If S # {I} then a minimal
generating set G of S always exists, and satisfies |G| = £, and [[H # I for all non-empty H C G.

(c) If G C Pn/K is a minimal generating set, then |G| < 2n. Moreover if |G| > 2, and G' C G, then
Pe(G\G) implies P & (G').

Proof. (a) Take any P € G and notice that P? = I, and so I € (G). Now if P,Q € (G), then both can be
expressed as products of elements in G, and hence PQ can also be expressed as products of elements in
G. This shows that (G) is a subgroup of P, /K, as the other group axioms hold automatically.

(b) The order of P, /K is 4". Hence Lagrange’s theorem [4] implies that if S is a subgroup of P, /K
then the order of S must divide 4", and so |S| = 2, for some 0 < £ < 2n. If (G) = S, then G is clearly
a generating set for S. For the converse, let G be a generating set for S. By definition of generating
sets we have G C S, and as S is a subgroup it follows that (G) C S. Since G generates S we also have
S C (G), and hence (G) = S. If S = {I} then the minimal generating set is G = {I}. Given a minimal
generating set G # {I} it holds that (G) = (G \ {I}), since any other element can be used to generate
I. We now show that for a generating set G of S # {I}, we must have that [[H # I for all non-empty
subsets 1 C G. The condition holds when H has size one because I ¢ H. Otherwise, suppose [[H = I,
then for any P € H it holds that P = [[(H \ {P}) and therefore (G) = (G \ {P}), which contradicts
minimality of G.

The minimal generating set of S # {I} always exists; we start with generator set G = {Q} for any
Q € S\ {I}, and repeatedly update it with an element P € (S \ (G)) until G generates S. So it only
remains to show that |G| = ¢, which is now equivalent to showing that [(G)| = 2!9! because (G) = S.
But this is immediate from the fact that (G) = {[[H : H C G} if we can show that non-empty distinct
subsets H1, H2 C G give rise to distinct elements [[ Hi, and [[ Hz2. Suppose for the sake of contradiction
that [[H1 = [[H2. This would imply that I = ([TH1)([TH2) = [T1((H1 U Hz) \ (H1 NHz)), which
contradicts the fact that no subset of G multiplies to I.

(c) Suppose that G is a minimal generating set, and |G| > 2n + 1. Then by (b), [(G)| > 22" > 4™,
This is a contradiction as P,/K is a generating set for itself, and its order is 4™. 1If |G| > 2, then
(G\ {I}) = (G), and as G is a minimal generating set we must have I ¢ G. Now for the sake of
contradiction assume that for G’ C G there exist a P € G\ G’ such that P € (G'). Then P can be
expressed as a product of elements in G’, and thus (G) = (G\ {P}), which contradicts that G is a minimal
generating set. O

The next lemma characterizes what happens when we take the product of all the elements of a
generated set. This lemma is used often in this paper; for instance, it will immediately imply that a
maximally commuting subgroup, defined later, multiplies to I.

Lemma 2.2. Let G C P,/K be a generating set. Then

1 otherwise.



Thus if S is a subgroup of Pn/K, and |S| # 2, then [[S=1.

Proof. If G = {Q}, and Q # I, then (G) = {I,Q} as Q® = I, and the statement is true. If G = {I}, then
(G) = {I} and the statement is also true. For the general case, let G’ = {P;}_; be a minimal generating
set of (G) with cardinality ¢ > 2. By Lemmal[Z1] (b), I ¢ G’, and therefore P; # I for all 7 € [¢]. Denote
G = Uf:l{Pi}, then (Gs) = {I, P1, P2, Pi P>}, where P; P, is distinct from I, Pi, P>, and the product is
therefore I. By induction, suppose the result holds for some 2 < k < ¢, then by the fact that (Gx) is an
abelian subgroup, and |G| is even, we have

[1(Ges1) = TT4Gn) - TT Pesr + (@) = P TT1Gn) = P = 1.

If |S| = 1, then § = {I} implying [[S = I. By Lemma 2I{(b), |S| is a power of 2, so assume that
|S| > 4. As S is a generating set for itself, the result above implies that [[S = 1. O

2.2 Commutativity

Each element of P, /K is an equivalence class containing exactly four Pauli operators. In a slight deviation
to standard terminology, we say that two elements P, Q € Pn/K commute (anticommute) whenever any
chosen representative of P commutes (anticommutes) with any chosen representative of Q. It is easily
verified that this is a well defined notion, that does not depend on the choice of the representatives.
Throughout the remainder of the paper we exclusively use the terms ‘commute’ or ‘anticommute’ to
refer to this notion, rather than that of the group operation on P, /K. With this convention, we say that
a subset H C P, /K is commuting (anticommuting), if no two distinct elements P, Q € H anticommute
(commute). Given any P € P,/K, we say that P commutes with 7 if it commutes with all elements in
H, and likewise for anticommutes.
Given P,Q € P, /K we define the commutativity function comm(P, Q) such that

1 if P and Q commute,

—1 otherwise.

comm(P,Q) = {

For any set H C P,/K and element P € P,/K, we define the commutativity map of P with respect to
H as Qpy : H — {1, —1}, such that Qpx(Q) = comm(P, Q) for all Q € H. It is clear that if |H| = k,
then there are a maximum of 2% distinct commutativity maps. We will say that the commutativity map
is all commuting (all anticommuting), if P commutes (anticommutes) with all elements in #.

We now provide an important lemma that states that, given a minimal generating set G, each com-
mutativity map with respect to G is equally likely. This key fact is used in several results proved later.

Lemma 2.3. Let G C P, /K be a minimal generating set with G # {I} and |G| = k. Then each of the
2% possible commutativity maps with respect to G is generated by 4”/2k distinct elements P € Pn /K.

Proof. Let G’ be a minimal generating set for Prn/K such that G C G’, which exists by the proof of
Lemma 2I)b). Given any distinct elements P,Q € P, /K, then the commutativity maps with respect
to G’ must differ, otherwise PQ commutes with all elements in G’, and therefore with (G') = P,,/K.
But that would mean that PQ = I, and therefore that P = Q. It follows that Qp g/ # Qg g/ whenever
P # @Q, and shows that there are 4" distinct maps €, g-. We can iteratively remove elements from G’ to
arrive at G. Each time we remove an element we collapse maps that differ only in the commutativity with
the removed element, which means that the number of different maps is halved, but their occurrence is
doubled. The result then follows directly. O

2.3 Decomposition
We can decompose any set S C P, /K, with n > 2, as
§=(0i®Ci)U (02 ®Ca) U (0y ®Cy) U (0= ®Cz), (2)

with possibly empty sets C¢ C Pp—1/K for £ € {i,z,y,2}. In the above we use the convention that
00 ®C ={o¢® P : P € C}, where we define o, ® P to be the equivalence class [0, ® A] € P,,/K for
any chosen representative A € P, the notion being well defined and independent of the choice of the
representative A. In many cases we are not concerned with the exact labels of the sets and instead work
with the decomposition

S=(0:®Ci) U (00 ®@Cu) U (00 @Cy) U (0w @ Cu), (3)

where (u,v,w) is an arbitrary permutation of (z,y, z) that satisfies the condition that C, = ( implies
Cy, = 0, and C, = 0 implies C,, = 0.



3 Sets of commuting Paulis

In this section we study the structure and cardinality of maximally commuting sets of Paulis. One of
the basic properties of these sets is that they from subgroups, which stated in the following lemma.

Lemma 3.1. If S C P,/K is mazimally commuting, then S is a subgroup of Pn/K.

Proof. Since I commutes with all elements in P, /K, it follows that I € S by maximality. If P,Q € C
are distinct elements, then PQ commutes with all elements in S, and therefore by maximality PQ € C.
Hence S is a subgroup of P,/K. O

From this result it immediately follows using Lemma 2I(b), that |S| is a power of two. From
Lemma[22] it further follows that [[S = I whenever £ > 2. The next lemma elaborates on the structure
of maximally commuting subsets of abelian Paulis.

Lemma 3.2. (Commuting structure lemma) Let S C P, /K be mazimally commuting with n > 2 and
decomposition of the form @B). Then I € C;, and the following are true:

(a) For £ € {i,u,v,w} the elements within C; commute with each other, as well as with all elements in
Ci. The elements between any pair of sets Cu, Cy, and C,, anticommudte.

(b) If C, = Cw = 0, then C; = Cu, and C; is a mazimally commuting set.

(c) If Cu,Cy # 0, the sets Ci, Cu, Cv, and Cy salisfy the following properties:

for any P € C; we have P+ C; = C; xC; = Ci,

for any P € C,, we have P *Cy = Cy x Cy = Cy,

for any P € C; and any @ € C,, we have P+ Cy, = Q *xC; = Ci x Cyy = Cy,

for any P € C, and any Q € C,, we have P xCy = Q % Cy = Cy % Cyp = Cup,

ICi| = |Cu| = |Cu| = |Cw|, and the sets are non-empty and disjoint

sets Ci, (C; UCy), (CiUC), and (C; UCw) are subgroups of Pn—1/K.

S v o v o~

Proof. 1If I ¢ C; we can add it, so for maximally commuting sets we have I € C;.

(a) This follows directly from commutativity of the elements in S.

(b) If C, and C, are empty, we can add any element of C; to C, and vice versa, and for maximal
sets they must therefore be equal. The set C; must also be maximally commuting, otherwise there exists
an R € (Pn-1/K) \ C; that commutes with C; and could therefore be added to both C; and C,, which
contradicts maximality of S.

(¢) Now assume that C, and C, are non-empty.

1. Given any P,Q € C;, PQ commutes with all elements in the sets C;, Cu, Cv, and C,, and by
maximality must therefore be an element of C;. For a fixed P, the products PQ differ for all
Q € Ci, and P x C; must therefore coincide with C;.

2. Given any P,Q € C,, it can be verified that PQ) commutes with the elements in all the sets. By
maximality we must therefore have that PQ € C; and P*C, C C;. Again for a fixed P, the products
PQ differ for all Q € Cy, and so |P * Cy| = |Cu| < |Ci].

3. Given P € C; and @ € C,, PQ commutes with all elements in C; and C,, and anticommutes with
all elements in C, and C,,. By maximality we must therefore have that PQ € C,. Using arguments
similar to the proof of properties 1-2, we thus conclude that P «C, = Cu, Q xC; C C,, and
|Q * Ci| = |Ci] < [Cul-

4. Given P € C, and @ € C,, it can be verified that PQ anticommutes with all elements in C, and
C,, and commutes with all elements in C; and C,,. It again follows from maximality that PQ € Cy,
and thus P % Cy C Cuw, @ % Cy C Cu, |P *Cy| = |Cy], and |Q * Cy| = |Cul.

5. From the cardinality relations in the proof of properties 2-3 it follows that |C;| = |C.|. Since the
choice of u, v, and w was arbitrary it follows that |C,| = |Cy| = |Cw|. Given that the cardinality
of all four sets are equal it follows that the C and < relations in items 2—4 can be replaced with
equality. As C; contains I, we conclude that all the four subsets are non-empty. We know from (a)
that all elements in C,, commute with C; and anticommute with C,, and it must therefore hold that
C;NCy = 0. A similar argument applies to C, N C,, and all other pairs of sets.

6. Property 2 shows that C; is closed under the group operation of P, —1/K, while properties 2-4 show
that C; UCy, C; UC,, and C; UC,, are also closed under the same group operation. 0



For the cardinality of maximally commuting sets in P, /K we have the following result:

Theorem 3.3. A commuting set S C Pn/K is mazimally commuting iff |S| = 2".

Proof. Let G be a minimal generator set for S. Suppose by contradiction that k := |G| > n, then it
follows from Lemma [Z3] and the fact that elements commute with themselves, that each commutativity
map with G is generated by 4" /2% < 2" elements. For all Q € (G), the commutativity map with respect
to G is the all-commuting map, but this gives a contradiction, since [(G)| = 2¥ > 2". Similarly, suppose
that |G| < n. In this case it follows from Lemma 23] that there must exist a P € (P,/K) \ (G) that
commutes with all elements in G, and therefore with all elements in (G). It follows that P could be added
to S, thus contradicting maximality. |

A slight strengthening of the commuting structure lemma is now possible.

Corollary 3.4. Let S C P,/K be a mazimally commuting set with n > 2 and decomposition Bl with
Cw # 0. Then |Ci| = |Cu] = |Co] = |Cw| = 2"72. In addition, (C; UCy), (Ci UC,), and (C; U Cy) are
mazimally commuting subgroups of Prn—1/K.

Proof. By Theorem [B3] |S| = 2". Since each of the four sets C have equal size by Lemma [B2(c), it
follows that each must have size 2" /4 = 2”72, The set H := C; U C is commuting for any £ € {u, v, w}.
From property 5 of Lemma B2lc) we know that C; N C; = (), and it therefore follows that |H| = 2",
which is maximal by Theorem [3.3] |

The next two lemmas provide a converse to Lemma [3.21

Lemma 3.5. Let S C Py_1/K be mazimally commuting. Then the set ' = (0, @ S) U (00 ®S) is a
mazimally commuting subgroup of Pn/K, for all £ € {x,y,z}.

Proof. Without loss of generality, assume that £ = z. Next, for the sake of contradiction, suppose that S’
is not maximally commuting. As S is maximally commuting, there exists no element of the form o; ® R,
or o, ® R, with R ¢ S, such that 8’ U (0; ® R) is still commuting. So there must exist an element of the
form o; ® R, j € {y, 2}, and R € P,,—1/K, such that S’ U {o; ® R} is mutually commuting. But then R
must commute and anticommute simultaneously with each element in S, which is a contradiction. O

Lemma 3.6. Suppose we have four subsets Ci, Cz, Cy, and C. of Pn—1/K, that satisfy the property in
Lemma[3ZA(a), and also satisfy |Ci| = |Cz| = |Cy| = |C2| = 2"72. Then the set S = (0; ® C;) U (00 ®
Ce) U (00 @ Cy) U (0w ®C.) is a mazimally commauting subgroup of Pn /K, for all permutations (u,v,w)
of (z,y,2). In particular this implies that C;, C», Cy, and C. also satisfy properties 1-6 of LemmalZ2(c).

Proof. 1t is easily checked that S C P, /K is a commuting set. We also have that |S| = 2", and hence
by Theorem B3] it is a maximally commuting subgroup. Hence the sets C;, Cx, Cy, and C. satisfy all the
properties 1-6 of Lemma B.2)(c). O

4 Sets of anticommuting Paulis

In this section we study the structure of sets of maximally anticommuting abelian Paulis. After clarifying
the basic structure in Section -]l we consider possible sizes of these sets and properties of sets that attain
the maximum size in Sections and We provide an efficient algorithm for creating various types
of maximally anticommuting sets in Section .41

4.1 Structure of maximally anticommuting sets

We start with a number of basic facts on sets of anticommuting abelian Paulis.
Theorem 4.1. Let G ={Pi,..., Pc} be a set of anticommuting Paulis, then
(a) if k is even, then Q =[] G anticommutes with G, and G U {Q} is mazimally anticommuting,

(b) G is mazimal implies that k is odd,

(c) T1G = I implies that G is mazimal and k is odd,

(d) for any proper non-empty subset H C G it holds that [T H # I,

(e) TIG # I implies that G is a minimal generating set for a subgroup of order 2F,

(f) TIG = I implies that G is a generating set for a subgroup of order 2871,



Proof. (@) To determine commutativity we can take any Pauli operator represented by the equivalence
classes, which we shall indicate by a bar. For any i € [k] it takes k pairwise matrix swaps to convert P;Q
to QP;. Each swap with a term other than P; leads to a multiplication by —1 due to anticommutativity.
Given that only one of the k swaps is with P; itself, it follows from k — 1 is odd, that P;,Q = —QPF;, and
therefore that P; and Q anticommute. The result that () anticommutes with all G follows by observing
that both ¢ and the operator representation was arbitrary. Now, suppose there exists a P € (Pn/K\ (G))
that anticommutes with G, then any corresponding operator P anticommutes with all even k terms that
comprise @, and therefore commutes with Q. It follows that GU{Q} cannot be extended, and is therefore
maximally anticommuting.

@) Tt follows from (a), that if k is even we can add @Q to G, which means that G is not maximal.

(@) If G = {I} then the result is clear, and we therefore assume that k > 2. Suppose k is even, then
we have from (a) that [[G anticommutes with every element in G, the product could therefore not have
been I, and it follows that k& must be odd. Define G' = {Py,..., Px_1}, then P, = Q = [[G’. Applying
(a) to G’ then shows that G = G’ U{Q} is maximally anticommuting.

{d) Suppose that [[H = I. Then from the previous result it follows that H is maximal. Consequently,
G \ H cannot anticommute with #, thereby contradicting the fact that G is anticommuting.

fa) For sake of contradiction suppose that G is not a minimal generating set (note that I ¢ G since
it is anticommuting). Then there exists ¢ € [k], such that (G) = (G \ {F;}). But this implies that
P; =[] H for some H C G\ {Pi}, and thus Pi([[#H) =I. If X C G\ {P;} is a proper subset, then we
get a contradiction by (dl), while if H = G\ {P;} we also get a contradiction because that would imply
[1G = I. Finally |(S)| = 2" by Lemma BI(b).

() If G = {I} the statement is true. Otherwise I ¢ G, and |G| > 2. In this case I # P1 = [[(G\{P1}),
and so (G) = (G\ {P1}), and by @), G \ {P1} is a minimal generating set for the subgroup (G \ {P1}) of
order 2571, O

The above result also shows that if G # {I} is an anticommuting set with [[G = I, then we can
create a minimum generating set by removing any single element. Next we prove an important structure
theorem for any maximally anticommuting subset of P, /K.

Theorem 4.2. (Anticommuting structure theorem) Let G C Pn/K be mazimally anticommuting with
decomposition B)). Then the following statements are true.
(i) The elements within each of the sets anticommute, and elements in C; anticommute with C¢ for
£ € {u,v,w}. Elements between Cy, Cy, and C, commute.

(i1) Decomposition @) has exactly one of the following forms:

Non-empty sets  Properties

(a) C; C; is mazimally anticommuting and |G| < 2n.

(b) Ci, Cu |C;| is odd and |Cu| is even, C;UCy is mazimally anticom-
muting, |G| < 2n.

(¢) Ci, Cu, Co  |Ci| is odd and |Cy| and |Cy| are even.

(d) Cu, Cu, Cow |Ci| is odd for all £ € {u,v,w}.

(e) all ICul, |Cul, and |Cw| are either all odd (even), and |C;| is
even (odd).

(iii) The sets Ci, C¢ are disjoint and |C; U Cy| is odd for all £ € {u,v,w}. The sets Ca, Cy» are disjoint
whenever [Ca| > 1 or |Cy| > 1, for every distinct a,b € {u,v, w}.

Proof. (i) The commutativity relations are easily verified.

(i) The decomposition has exactly one of the given forms (a)—(e). By contradiction, if only C, is
non-empty we can add o, ® o;. Likewise, if only C, and C, are non-empty, then one of the sets, say ¢,
has even size. It follows that we can add o, ® P with P = []C,.

In cases (a) and (b) note that we can omit the first element of all Paulis without affecting the
commutativity. It follows that C; UC, is a set of maximally anticommuting (n — 1)-Paulis, and we must
therefore have that |G| <2(n—1)+1 < 2n.

In cases (b) and (c), suppose that |C;| is even. Then P = [[C; anticommutes with C; and commutes
with the other sets, and we can therefore add o, ® P to G. It follows that |C;| must be odd. For (c), we
show that |C,| must be even. Since |G| is odd, it follows that |C,| is also even. Suppose by contradiction
that |Cy| is odd. Then P = [](C; U Cy) anticommutes with C;, Cy, and C,. It follows that we can add
o; ® P.

In case (d), suppose that, without loss of generality, |C.| is even. Then P = []C, anticommutes with
Cuy, but commutes with both C, and C,, since C, and C,, commute with all matrices in C,. It follows



that we can add o, ® P, which contradicts maximality. Since the choice of C, was arbitrary it follows
that all sets must have odd cardinality.

In case (e), suppose that |C;| 4+ |Cy| is even. Then we can form P = [[(C; UCy ), which anticommutes
with C; and C, and either commutes or anticommutes with both C, and C,. If it commutes with both
we can add o, ® P, otherwise we can add o; ® P. It follows that |C;| + |C¢| is odd for all £ € {u,v,w}.
If |C;| is even, then |Cyl, |Cy|, and |Cy| are all odd, and vice versa.

(i4i) First suppose that P € C;NC, # 0, for ¢ € {u,v,w}. Then o; ® P and o, ® P are both in
G but commute, which is a contradiction. Now suppose, without loss of generality, that |C,| > 1, and
Q € CunNCy # 0. Then there exists R € C, different from @Q, which anticommutes with Q. But then
0w ® R commutes with o, ® @, which is again a contradiction. The fact that |C; U C¢| is odd follows
directly from the decompositions in (ii). O

The following observation now follows, which is the most important result of this section.

Corollary 4.3. An anticommuting subset G C Py /K is mazimally anticommuting iff [[G = I.

Proof. The “if” part was already proved in Theorem [LIl@). For the other direction, assume that G C
Pr/K is maximally anticommuting. Without loss of generality, choose any term index of the underlying
Pauli operators and permute the term order such that the selected index is the first one. It suffices to
show that the product of all the elements in G can be written as o; ® P, since the result then holds
for all terms due to the fact that the selected index was arbitrary. To complete the proof, consider the
decomposition in [B). Theorem A2)ii) guarantees that only one of the cases (a)-(e) can occur, and in
each case the product of the first term is o;, as desired. O

Another interesting corollary is the following;:

Corollary 4.4. Let G C P, /K be mazimally anticommuting, and suppose |G| = 2m + 1 > 3. Define
Hum = G, and for 0 < k < m, recursively define Hrx—1 = (Hr \ Ji) U (J1Tk), for any T C Hy with
|Jx| = 3. Then Hi is mazimally anticommuting for all 0 < k < m, and Ho = {I}.

Proof. We proceed by induction. H,, is maximally anticommuting by definition. Now assume that Hy,
is maximally anticommuting for some positive & < m. Then by Corollary 43] we have [[ Hr = I, and so
by construction [[ Hr—1 = [[ Hr = I. Moreover Hj_1 is anticommuting, and using Corollary again,
we conclude that H;—; is maximally anticommuting. This completes the induction step. Note that the
final set satisfies Ho = {[[ Hn} = {I}. O

4.2 Size of maximally anticommuting sets

For 1-Paulis we find that {o;} and {04, 0y, 0.} are maximally anticommuting sets. We can hierarchically
generate sets of higher-dimensional anticommuting matrices from existing sets. For example, given a set
G, of maximally anticommuting n-Paulis, we can

1. Set gn+1 = (Uac®gn)u(0'y®1)u(0'z®l).
2. Set Gont1 = (0. 9T RGp)U(0y @G, @)U (0. QTR I).

3. Given an odd number of maximal sets S; of equal cardinality, then taking Kronecker products of
corresponding elements in these sets gives a maximally anticommuting set, since the new elements
anticommute and multiply to I.

Repeated application of the first construction with the initial set G1 = {04, 0y,0:}, gives a set G, with
|Gn| = 2n 4+ 1. The following results clarify possible sizes of maximally anticommuting sets, and show
that the above G,, attains the maximum size for sets of anticommuting elements in P, /K.

Lemma 4.5. If G C P, /K is anticommuting, then |G| < 2n + 1.

Proof. We note that this lemma is well-known; it follows for example from Proposition 9 in [5], and is
also proved in [6]. Here we give an elegant and simpler proof of this fact. For the sake of contradiction,
suppose |G| > 2n + 1. If [[G # I, then G is a minimal generating set, while if [[G = I, we can exclude
any element P € G and then G\ {P} is a minimal generating set by Theorem AIl@). In either case
we have a minimal generating set of cardinality at least 2n + 1. By Lemma 2Ikb), the set generates a
subgroup of P, /K of order at least 22" > 4" which is a contradiction. O

Corollary 4.6. For every odd integer £ up to and including 2n + 1, there exists a mazimally anticom-
muting subset of Pn/K of cardinality .



Proof. We know from the example at the beginning of this section that maximally anticommuting subsets
of size 2n+1 exist in P, /K, so take any such set G. The result then follows by applying the construction
in Corollary 41 O

4.3 Anticommuting sets of maximum size

In the next theorem, we clarify the structure of maximally anticommuting subsets of P,/K that attain
the maximum size.

Theorem 4.7. Given a mazimally anticommuting set G C Pn /K of size 2n+ 1, with decomposition (2]).
Then

(a) TI(C; UCe) =1 for t € {x,y, z}.

(b) Ci UCy is a mazimally anticommuting set for £ € {x,y,z}.

(c) Sets C, Cy, and C. are non-empty.

(d) TICi =T11C. =T11Cy =T1C=. Moreover, [[Co =1[Cy =T1[C. =1 iff C; = 0.
(e) TICeTICm =1 for all £,m € {i,x,y,2}.

Proof. (a) Let (u,v,w) be an arbitrary permutation of (z,y,z). By Theorem [2(i), the set T =C; UCy
is anticommuting in P,_1/K and we therefore have |7| < 2n — 1. If this holds with equality we have
an anticommuting set of maximum size, which implies [[7 = I. Otherwise we have |C,| + |Cw| > 3.
Suppose that [[7 # I, then T forms a minimal generator for a subgroup of P,,—1/K. Since G generates
P,/K, it follows that we can find D C (C, U Cy) with |D| = 3, such that G’ := T U ((C, U Cw) \ D)
generates Pn_1/K. Because |D| = 3, it follows that |D N C| > 2 for exactly one £ € {v,w}, and we can
therefore find distinct elements P, @ € (D N C,). Both elements are generated by G’ and have the same
commutativity map with the elements in G’. From Lemma we know that each commutativity map
with respect to G’ occurs exactly once, which give a contradiction. It must therefore hold that [[7T = I,
and the result follows by noting that the choice of u was arbitrary.

(b) This follows from (a) because C; UC; is an anticommuting set by Theorem [£.2(1).

(c) Consider the decomposition ([B]). Then from Theorem H2|(ii) we have that C, and C, must be
non-empty, otherwise |G| < 2n. By maximality of G it follows from Corollary that [[G = I. Now
suppose C,, = 0, then [[(C; UCy) - [[Co = I. Using the fact [[(C; UCy) = I for (a), we conclude that
[IC» = I, which means that C, is maximally anticommuting. From maximality of C; U C,, we must
therefore have that C; = 0. However, Theorem [L2(ii) shows that maximally anticommuting sets cannot
have C; = C,, = . This contradiction shows that C,, cannot be empty, and consequently all three sets
Cs, Cy, and C. are non-empty.

(d) If C; # 0, then combining with (c) we have that all four sets C;i,Cs,Cy,C. are non-empty. The
result then again follows from (a) because it implies that [JC; = []C, for £ € {x,y,2}. If C; = 0, the
result is true from (a) by substituting C; = (). Conversely, if [[C, = I for any ¢ € {z,y, z}, then C; is
maximally anticommuting, and because C; UC; is also maximally anticommuting by (b), Theorem F2]iii)
then implies that C; = 0.

(e) This follows from (d). O

4.4 Extending an anticommuting set to its maximum size

Given an anticommuting set S C P, /K, an interesting question is whether it can be extended to the
maximum possible size of 2n + 1. By definition this cannot be done if S is maximally anticommuting,
or when [S| = 2n + 1, in which case there is nothing to do. So the interesting case is when [[S # I. We
show that this is possible in the following lemma.

Lemma 4.8. Let S C P, /K be an anticommuting set that is not mazimally anticommuting. Then S
can be extended to a maximally anticommuting set of cardinality 2n + 1.

Proof. As S is not maximally anticommuting, S # {I} and |S| < 2n + 1. We note that the lemma is
proved if we can show that if |S| < 2n, then S can be extended to an anticommuting set of cardinality
|S| + 1 that is not maximally anticommuting. Repeating this process we can extend S to a set of
cardinality 2n, after which the construction in Theorem [LTl@) gives the desired result.

If |S] is odd, there exists an element P ¢ S, such that SU{P} is anticommuting, and because |[SU{P}|
is even, by Theorem [L] (B) S U {P} is not maximally anticommuting. Now assume that |S| is even, and



|S] < 2n. Pick an element Q ¢ (S), and partition S = C U A (one of the sets possibly empty), such that
@ commutes with all elements in C, and @ anticommutes with all elements in A. Choosing R as

Q(TA) if|C] is odd,
R=<Q([IC) if|C|iseven, C # 0, (4)
Q if ¢ =0,

we find that R anticommutes with all elements in S, and so § U {R} is anticommuting. Moreover
R(J]S) # I, because otherwise we would have @ € (S). This implies that S U {R} is not maximally
anticommuting, which finishes the proof. |

Lemma L8 raises some interesting questions:

(1) Given an anticommuting set S C Pn /K that is not mazimally anticommauting, in how many distinct
ways can we extend it to a bigger size?

(2) Is there an efficient algorithm to perform the extension?

In order to answer the above questions, we need to develop a better understanding of the cosets of
(S). The first question is answered in Section 522l For the second question, it turns out that there exists
an efficient randomized algorithm to extend S to a bigger anticommuting set. We start by characterizing
a simple function that is important in the proof of the following theorem.

Lemma 4.9. Let S be a set with [S|=m > 1, and let v: S — {1, -1} be any arbitrary map. Define a
map Fy : 25 xS — {1, -1} by

o(@) (=) ifreT,

@) (=) e g T, ©)

Fu(T,z) = {

and also define
Fv) = <Z<1+v<x>>/2> =3 L. (6)
zeS zeS
If m is even, then for every map q : S — {1, —1}, there exists a unique subset U C S (possibly empty),
such that Fy(U,-) = q. If m is odd, then we have the following cases:
(a) If ¢ : S — {1,—1} is a map such that f(q) = f(v) mod 2, then there exist exactly two subsets
V, S\ V €25 (possibly with one empty), such that F,(V,-) = F,(S\V,") = q.

(b) If ¢ : S — {1, —1} is a map such that f(q) Z f(v) mod 2, then there does not erxist any subset V
of § such that F,(V,-) = q.

Proof. We need a fact that for arbitrary subsets A, B C S, the function in (B satisfies
Fu(B,-)=F,((AUB)\ (AN B),-), where w = F,(A, ). (7)
This is true because

_1)IAI+IB] i
Fu(B.z) = v(x)( l)A o Tfarze(Aﬁl’j')l_l(JS\(AL,IB))7 (8)
v(x)(—1)A+IBI ifxe (A\B)U(B\A),
from the definitions, and moreover |A|+ |B| = | A\ B|+ B\ A|+2]ANB| = |(AUB)\ (ANB)|+2|ANB].
We first assume that m is even. Let S = S1 U Sz, such that v(z) =1 for all € S, and v(z) = —1
for all z € Sa. If we define T C S by

= (9)

— {31 if |8y is odd,

Ss if |S1] is even,

then Fy(T,z) =1 for all z € S. For any map ¢ : S — {1,—1}, let S = 71 U T2, such that ¢(z) = 1 for
all x € T1, and g(z) = —1 for all z € 7T2. Then if we define R C S by

(10)

R Ti if |71] is odd,
7 if |71] is even,



we have that Fp, (7,.)(R,:) = ¢, and then (@) implies that ¢ = F,(U,-), where Y = (T UR) \ (T NR).
Uniqueness of U follows because there are exactly 2" subsets of S, and 2™ distinct maps r : S — {1, —1}.

We now assume that m is odd, and prove the two subcases. Suppose ¢ : S — {1,—1} is a map such
that f(q) = f(v) mod 2, as stated in the lemma. If we define the sets

T={zeS:v(x)=1}, R={z€S:q(x)=1} and V= (TUR)\ (T NR), (11)

then it follows that ¢ = Fp, (7..)(R,-) = Fu(V,-). It is also easily checked that because m is odd, we
have Fy,(V,-) = F,(S\V,-). The fact that W C S, W ¢ {V, S\ V} implies g # F,(W, -), follows because
there are exactly 2™~ ! distinct maps r : S — {1, —1} with f(r) = f(v) mod 2. Since this exhausts all
possible subsets of S, it also means that there does not exist any subset W C S with r = F, (W, -), for
every map 7 : S — {1, —1} such that f(r) Z f(v) mod 2. This finishes the proof. |

Given an anticommuting minimal generating set G, we can now prove the following theorem that
completely characterizes the commutativity maps on the cosets of (G).

Theorem 4.10. Let G be an anticommuting minimal generating set with |G| = m. If G = {I}, all
elements of Pn/K commute with 1. Otherwise the commutativity maps with respect to G of the elements
in the cosets of (G), have the following structure:

(a) If m is even, then in every coset of (G), for every commutativity map q : G — {1, —1} there exists
ezactly one element P, such that Qp,g = q.

(b) If m is odd and T is a coset of (G), then for allQ1,Q2 € T, f(Qq,,6) = f(Qq,,¢) mod 2, using the
notation in [@). Moreover if P € T, then for every commutativity map q : S — {1, —1} such that
flq@) = f(Qp,g) mod 2, there exist exactly two elements Q1,Q2 € T with Q2 = Q1([]19), such that
Q0,,6 = Q0,,¢ = q; while for every commutativity map q : G — {1, —1} such that f(q) Z f(Qp,g)
mod 2, Qg,g #q foral Q € T.

(c) If m is odd, the cosets of (G) can be grouped into two disjoint sets Fo and Fi, with |Fo| = |F1| =
22n=m=L " such that for all To € Fo and all Py € To it holds that f(Qp,,g) =0 mod 2, while for all
Ti € F1 and all Py € Ty it holds that f(2p,,g) =1 mod 2.

Proof. The case G = {I} is obvious.

(a), (b) If T is a coset of (G), then choosing any element P € T, we have T = P * (G). Because G is a
minimal generating set, this induces a bijection h : 29 — T, defined by h(i) = P([JU). Given any
element Q € T, we have Q = P(][U) for some U C G. Moreover, the commutativity map Q¢.g,
can be expressed in terms of the commutativity map Qp g as

Qpg(z) (-1 ifzeu,

Qg@)(-DH  ifzgu, (12)

Qq,g(r) = {

for all x € G. The results then follow by applying Lemma [£9] with v(z) = Qpg(z). For all
commutativity maps ¢ that satisfy f(q) = f(2p,g) mod 2, we can find the corresponding sets
using the constructions in Lemma [£.9] and additionally for the odd case, by noting that for any

RCg, PAIRIIT9) = PTG\ R))-
(¢) Lemma 23] guarantees that P,/K = £ U O, with |€] = |O] = 4" /2, where

E={yePn/K: f(Q,0)=0 mod 2}

and
O={yePn/K: f(Qyg)=1 mod 2}.

As the cardinality of each coset is 2™, we get that |[Fo| = |Fi| = (47/2)/2™ = 2*"~™~ ! The
desired result then follows by using (b). O

We now have all the necessary ingredients for an efficient randomized algorithm to create a mini-
mal generating set G that is anticommuting and has a maximum cardinality of 2n. The algorithm is
summarized in Algorithms [[land 2]l We initialize the set 7" with a given initial anticommuting minimal
generating set G. As long as the size of T is less than 2n we add feasible elements to it. Once this size
has been reached, we can use Theorem LI[@) to get a maximally anticommuting set of size 2n + 1.

We now explain a single step of the process of adding one feasible element to 7 — the general case
then follows by iterating this step. We first draw an element U from P,/K uniformly at random, and
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Algorithm 1 Extend anticommuting minimal generating set to cardinality 2n

1:
2
3
4
5:
6
7
8
9

procedure EXTEND_GENERATING_SET(G) > G is an anticommuting minimal generating set

Set T« G, P+« []G, and k < |G|
while £ < 2n do
U <« Sample uniformly from P, /K
V + ANTICOMMUTING_ELEMENT_COSET(T, U)

if ((k even and V # P) or (k odd and V # 0)) then > Acceptance criteria

T+ TU{V}, P+ PV
k+—k+1
return 7

Algorithm 2 Find anticommuting Pauli in coset

1:
2
3
4:
5:
6
7
8
9

procedure ANTICOMMUTING_ELEMENT_COSET(T, P)

Set C+~{z €T :Qpr(x)=1} > Find elements in 7 that commute with P
if |7| odd and |C| odd then

U+0 > Anticommuting element does not exist in coset
else if (|7 even and |C| even) or (|7] odd and |C| < ||T]/2]) then

U<« P(IIC)
else

U« P(IIT\C)
return U

determine the coset S of (T) such that U € S. We then use the results from Theorem FI0 to efficiently
find a feasible element in S that can be added to 7, such that the new set is still anticommuting and a
minimal generating set.

When the size of the current set 7 is odd, such a feasible element can be generated only if the
number of elements in 7 that commute with U is even. In this case Theorem [.10] guarantees that there
are exactly two feasible elements in S, S # (7T) to choose from, and so we choose the element that is
cheaper to compute. When the current size of T is even, we can always find exactly one element in S
that anticommutes with all elements in 7 by Theorem However, in order for it to be a feasible
element we must have that S # (7). This restriction exists to prevent the set from becoming maximal
prematurely: if S = (7), then the only element in S that anticommutes with 7 is [] 7. If we succeed in
finding a new element we add it to 7, otherwise we simply redraw a new random element from P, /K and
repeat the process until a feasible element is found. The complexity of determining set C in Algorithm [is
O(n|T]), and matches the worst-case complexity to evaluate the subsequent products []C and [[(7\C).
The computational complexity of Algorithm [I]is therefore O(n|7|). Randomly sampling an element from
Prn/K takes O(n) time, and the element is accepted with probability at least 1/2. Therefore, if 2n — |G|
is O(n), then the expected runtime of Algorithm Mlis O(n?).

5 Number of unique sets

In this section we consider the number of unique sets that are maximally commuting or anticommuting,
for which we derive explicit expressions.

5.1 Commuting sets
The first lemma gives the number of ways a commuting minimal generating set can be extended to a
larger commuting minimal generating set.

Lemma 5.1. Let G C P,/K be a commuting minimal generating set, possibly empty, with |G| = m.
Consider the extension to a larger commuting minimal generating set G' C P, /K, such that G C G', and
|G'| = m' with m' < n. If G = {I}, no extensions are possible. When m' =1 and m = 0, there are, 4"

distinct ways to perform the extension. Otherwise there are ( Zi;l (4™ /2% — 2k)) /(m' —m)! distinct
extensions.

11



Proof. 1f G = {I}, then it cannot be extended to a minimal generating set because of Lemma[ZTI|b). For
the case m’ = 1, m = 0, every singleton set is a commuting minimal generating set, and so there are 4"
ways to extend G.

For the rest of the proof we assume that m’ > 1, G # {I}, and fix any arbitrary ordering of the
elements in G. By Lemma 2(b), we then also have that I ¢ G. First consider the case m’ = k + 1, and
m = k. Lemma 23] implies that the cardinality of the set H = {P € P,/K : comm(P,Q) =1, VQ € G}
is 4™ /2%, and clearly (G) C H with [(G)| = 2*. Thus the number of distinct ways to extend G to G’ is
4™ /2% — 2% because we can choose any element of H \ (G).

Returning now to the case of a general m’, we can first order the elements in G’ such that the first m
elements are always those of G in the fixed order. If we count all the possible orderings of the remaining
elements in G’, it follows from the previous paragraph and by noting that if G = (, then there are 4™ — 1
ways to extend G by one element without including I, that the number of ways to extend G to G’ is given

!

by H?;71(4"/2k —2%). Since there are exactly (m’ —m)! permutations of the newly added elements, the

m

number of distinct extensions of G to G’ is given by ( km:,:nl (4™ 2k — Qk)) /(m' —m)!. O

The next lemma counts the number of commuting minimal generating sets that generate the same
commuting subgroup.

Lemma 5.2. Let S C P, /K, be a subgroup such that all elements commute. By Lemma [2Z1(b) and
Theorem[T3, |S| = 2™, for 0 < m < n. Then the number Ny, of distinct commuting minimal generating
sets G such that (G) = S is given by

Ny, = i' 1:[ (2" —2M). (13)
k=0

Proof. The case S = {I} is obvious, so assume that |S| > 2. By Lemma 2Ib), if G is a minimal

generating set of S, then I ¢ G, and so the first element of G can be chosen in (2™ — 1) ways. Now

suppose the first k& < m elements of G have already been chosen. These k elements form a minimal

generating set that generates a subgroup of S of order 2. Thus the (k + 1)st element can be chosen in

(2™ — 2k) ways. Iterating (l)ver 0 < k <m —1, the number of ways to form the minimal generating set G
m—

using this process is [[}" 7, (2™ — 27). Since we do not want to count the permutations of the elements
in G, the number of distinct commuting minimal generating sets G is ( maem— 25)) /ml. O

We can now easily count the number of commuting subgroups of a fixed order.

Lemma 5.3. The number Ny, of distinct commuting subgroups of Pn/K of order 2™, for 0 < m < mn, is

B m—1 (4n/2k _ 2k)
Nm - kl;[) w (14)

Proof. If m =0, S = {I} is the only commuting subgroup of order 1, and so the statement is true. Now
assume that m > 0, and so by Lemma [2b), if G is a minimal generating set of a commuting subgroup
S of order 2™, then I ¢ G. By Lemma [5] the number of distinct ways to form a commuting minimal
generating set of cardinality m is ( km;Ol (47 /2% — 2¥)) /ml, where we note that the formula is correct
even when m = 1. These generate all possible commuting subgroups of P, /K of order 2™, but as each
such subgroup is generated exactly by ( ;n;()l (2™ — 2'“)) /m! distinct commuting minimal generating
sets by Lemma [5.2] we have that

( ?:701(4”/2]6 _ 2k)) /TTL' B m—1 (4n/2k _ 2k)

o= (I @m —2k)) /m! L (2™ —2F)

(15)

O

We therefore have the following result (see also [7] and references therein):

Corollary 5.4. The number of distinct mazimally commuting subgroups of Pn/K is Hz;é(l + 27“’“).
Proof. The proof follows from Lemma [5:3] by setting m = n in (I4). O

12



5.2 Anticommuting sets

We now return to the question of how many ways it is possible to extend a minimal generating set of
anticommuting abelian Paulis, which was originally raised in Section @4l The following theorem specifies
in how many ways this can be achieved so that the larger set is still a minimal generating set.

Theorem 5.5. Let G C P, /K be an anticommuting minimal generating set, possibly empty, and |G| = m.
Consider the extension of G to a larger anticommuting minimal generating set G' C P, /K, such that
GCg, with|G'| =m' and m' < 2n. If G = {I}, then it cannot be extended. When m' =1 and m = 0,

there are 4™ distinct ways to perform the extension. Otherwise there are (Hzl:,;nl s(k)) /(m' —m)! distinct

ways to extend the set, where
4n /2% if k is odd
s(k)—{ / if k is odd, (16)

4m /28 — 1 if k is even.

Proof. If G = {I}, then it is maximally anticommuting and cannot be extended. For the case m' =
1, m = 0, every singleton set is an anticommuting minimal generating set, and so there are 4" ways to
extend G.

For the rest of the proof we assume m’ > 1, and G # {I}. Fix any arbitrary ordering of the elements
in G. We first consider the case when m’ = k4 1 and m = k. There are exactly 4" /2" cosets of (S).
When k is odd, half of the cosets contain exactly 2 elements that anticommute with all the elements
in G, and the other half contain none, by Theorem [LI0(b) and (c). Moreover none of these elements
are in (G): it follows from equation (@) that for any element P € G we have f(Zp) = 1 mod 2, and
so Theorem [LI0(b) applies. This gives exactly 4"/2k distinct ways to extend G. If k is even, then by
Theorem [I0(a) each coset contains exactly one element that anticommutes with all the elements in
G, and so there are exactly 4™ /2" — 1 distinct ways to extend G (counting every element in each coset,
except []G), because if we include [[G € (G), then G U {[] G} is not a minimal generating set.

We now return to the case of a general m’. If G = (), then there are 4™ — 1 ways to initialize G,
since we have to exclude I. It follows from the previous paragraph that adding the (k + 1)-th element
for k > 0, can be done in s(k) distinct ways, with s(k) defined as in ([I6). Since there are exactly
(m’ — m)! permutations of the new elements, the number of distinct extensions of G to G’ is given by

(T s(k)) /m = )t O

As a result of the previous theorem, we can now immediately count the number of maximally anti-
commuting sets. This is carried out in the next corollary.

Corollary 5.6. If Ny, is the number of mazimally anticommuting subsets of Pn/K of cardinality m,
then using s(k) as defined in (IG)

Ny = o o9 m odds andm < 2n 41, am)

0 otherwise.

Proof. By Theorem ETI[H) and Lemma [5] the assertion is clearly true when m is even, or when m >
2n 4+ 1. The statement is also true for m = 1, as {I} is the only such set. Now let G C P, /K be a
maximally anticommuting set with |G| = m, m odd, and 3 < m < 2n+1. Then there are m distinct ways
to remove an element from G to obtain a minimal generating set. Noting that I ¢ G when m > 3, the

statement then follows as there are ( Z:OZ s(k)) /(m — 1)! distinct anticommuting minimal generating
sets set of cardinality m — 1, by Theorem O

6 Discussion

An interesting class of commuting and anticommuting Paulis is one in which all Paulis are formed
exclusively by Kronecker products of the three Pauli matrices 0., oy, and o,. Obviously, this restriction
limits the maximum possible size of commuting sets; at the very least, the I element is no longer present.
The size of anticommuting sets is also affected, and whereas the maximum size of 2n+ 1 can be attained
for n-Paulis for n =1 and n = 4:

Mi=]z y 2], My =

8 8 8 &8
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IS IR IR S I
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< 8 v
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it is easy to show that this is not the case for n = 2 and n = 3. Indeed, it follows from Theorem [L7] that
any anticommuting set G of maximum size consisting of only o4, oy, and 0. terms, must satisfy |C¢| > 3
for all £ € {z,y,z}, since otherwise these sets could not multiply to I. For the set to be maximal, we
therefore require k£ > 9, but this exceeds the maximum possible size of 2n + 1 for these values of n.

An alternative formulation of commutativity and anticommutativity is to ask for sets of vectors in
GF(3)™ such that the Hamming distance between every pair of vectors is even or odd, respectively. The
question of how large such sets can be is studied in [8,[9]. They show that the asymptotic size is ©(2") for
commuting sets, and ©(n) for anticommuting sets, but also provide more specific bounds. For instance,
[8l Corollary 2.10] shows that for n > 1, any commuting subset Gxy, C Pn/K satisfies

271/
1-(=3)"+(3)"
Numerical values for the maximum possible sizes of restricted anticommuting sets with n € [8] are given

in [10]. For n = 8 this shows that it is again possible to attain the maximum size of 2n + 1, and indeed
we have

|gxyz| S

r r r T T x x Yy y 2 2 2 zZ zZ zZ Z
r r r T T Yy zZz x Y Z T Yy 2 zZ Z zZ Z
r r r r r Yy z Yy Z2 x Z x Y yvyvy vy
Meg= |® 2 2 % Y T 2 2y T T 2 Yy 2 2 2 2
87 r r T Yy xr z x x Y £ Z x 2 Y Z zZ Z
r Yy z T Yy x Yy y zZ x x Yy xr Yy Tr Yy z
xT Yy z Yy z Yy z zZz x Yy 2y z zZ T Y
Lz ¥y 2z z 2z x x Yy 2z zZ x 2 T Y z T |

The values of n for which these restricted anticommuting sets can attain the maximum size remains an
open question.
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