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Abstract

A combinatorial structure, F , with counting sequence {an}n≥0 and ordinary generating
function GF =

∑

n≥0
anx

n, is positive algebraic if GF satisfies a polynomial equation

GF =
∑

N

k=0
pk(x)G

k

F and pk(x) is a polynomial in x with non-negative integer coefficients.
We show that every such family is associated with a normed n-magma. An n-magma with
n = (n1, . . . , nk) is a pair M and F where M is a set of combinatorial structures and
F is a tuple of ni-ary maps fi : Mni → M. A norm is a super-additive size map
‖·‖ : M→ N.

If the normed n-magma is free then we show there exists a recursive, norm preserv-
ing, universal bijection between all positive algebraic families Fi with the same counting
sequence. A free n-magma is defined using a universal mapping principle. We state a the-
orem which provides a combinatorial method of proving if a particular n-magma is free.
We illustrate this by defining several n-magmas: eleven (1, 1)-magmas (the Fibonacci
families), seventeen (1, 2)-magmas (nine Motzkin and eight Schröder families) and seven
(3)-magmas (the Fuss-Catalan families). We prove they are all free and hence obtain a
universal bijection for each n. We also show how the n-magma structure manifests as an
embedded bijection.
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1 Definitions and general results

We generalise the Catalan results of Brak [8] to arbitrary positive algebraic combinatorial
families. A combinatorial structure, F , with counting sequence {an}n≥0 and ordinary gen-
erating function GF (x) =

∑

n≥0 anx
n is positive algebraic if GF (x) satisfies a polynomial

equation
N
∑

k=0

pk(x)G
k
F = GF (1)

and pk(x) =
∑mk

i=0 b
(k)
i xi is a degree mk polynomial in x with non-negative integer coefficients

(ie. all b
(k)
i ≥ 0). This case contains a large number of well known combinatorial families such

as Fibonacci, Catalan, Motzkin, Schröder and Fuss-Catalan.

We show that positive algebraic families are associated with particular normed n-magmas
(a norm is a super-additive size map). An n-magma with n = (n1, . . . , nk) is a pair (M,F)

whereM is a set and F is a tuple of ni-ary maps fi : Mni →M. To each monomial b
(k)
i xiGk

F

in (1) we associate b
(k)
i unique k-ary maps. These are the maps that constitute the ni-ary

maps of the n-magma. These maps have to be carefully defined for each combinatorial family
to ensure they satisfy certain required properties.

1.1 Magma definitions

In this section we generalise a number of definitions from [8].

A magma is an algebraic structure defined in [7] as a pair (M, ⋆) whereM is a non-empty
countable set called the base set and ⋆ is a product map

⋆ :M×M→M.

If (N , •) is a magma, then a magma morphism θ fromM to N is a map θ :M→N such
that for all m,m′ ∈M,

θ(m ⋆m′) = θ(m) • θ(m′).

We generalise these definitions to allow for arbitrary n-ary maps.

Definition 1 (n-magma). Let M be a non-empty countable set called the base set. An
n-magma defined on M, where n = (n1, . . . , nk) with n1 ≤ · · · ≤ nk, is a (k + 1)-tuple
(M, f1, . . ., fk) where

fi :M
ni →M

is an ni-ary map, for each i = 1, . . . , k. If (M, f1, . . ., fk) and (N , g1, . . ., gk) are two
n-magmas, then an n-magma morphism fromM to N is a map θ :M→N such that for
all i ∈ {1, . . . , k} and all m1, . . . ,mni

∈M,

θ(fi(m1, . . . ,mni
)) = gi(θ(m1), . . . , θ(mni

)).
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In this definition, we adopt the convention that we write the maps in the same order for
all distinct n-magmas for the same n. Hence if (M, f1, . . ., fk) and (N , g1, . . ., gk) are two
n-magmas, then fi and gi have the same arity, for each i = 1, . . . , k. We also require that if
we have more than one map with the same arity, then the order in which we write the maps is
significant and thus permuting the maps defines a different n-magma. For example, the two
(n1, n1)-magmas (M, f1, f2) and (M′, f ′

1, f
′
2) are equal if and only ifM′ =M, f ′

1 = f1 and
f ′
2 = f2. This distinction is important later when we prove that the Cartesian (1, 1)-magma
is free.

We are interested in when an n-magma is free. To this end we start with the universal
mapping definition of free, but will later give a theorem – Theorem 1 – enabling us to give a
combinatorial, rather than a universal mapping, proof of when an n-magma is free.

Definition 2 (Free n-magma Universal Mapping Principle). Let n = (n1, . . . , nk) and let
(M, f1, . . ., fk) be an n-magma. Then (M, f1, . . ., fk) is free if the following is true: There
exists a set Y and a map i : Y →M such that for all n-magmas (N , f ′

1, . . ., f
′
k) and for all

maps ϕ : Y → N , there exists a unique (up to isomorphism) n-magma morphism θ :M→N
such that ϕ = θ ◦ i, that is, the diagram

M N

Y

θ

i
ϕ

commutes. The image of the set Y inM, X = Img(Y ), will be called the set of generators
of M.

We now define a size function on the base set of the n-magma. We will call the function
a norm as we will require it to be “super-additive” (defined below) with respect to each of
the n-magma maps. The norm is used in two essential ways. Firstly, it partitions the base
set M into sets of elements which have the same size. The size of the sets in this partition
defines the counting sequence. Secondly, the super-additivity of the norm map is used, along
with unique factorisation, to give a combinatorial characterisation of free n-magmas. Let
N = {1, 2, 3, . . . } denote the set of positive integers.

Definition 3 (Norm). Let (M, f1, . . ., fk) be an n-magma, where n = (n1, . . . , nk). A
norm is a map ‖·‖ :M→ N that satisfies the super-additive conditions:

1. All unary maps fi :M→M must satisfy

‖fi(m)‖ > ‖m‖ .

2. All maps fi :M
ni →M, ni > 1, must satisfy

‖fi(m1, . . . ,mni
)‖ ≥

ni
∑

j=1

‖mj‖ .

If (M, f1, . . ., fk) has a norm, then it will be called a normed n-magma.
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Note, it is important that there are no elements in M of size zero, ie. we use the set N in
the norm definition and not the set N0 = {0} ∪ N. Furthermore, any norm defined on an
n-magma is not necessarily unique. The non-uniqueness is significant as for example there
exist Motzkin and Schröder families given by the same (1, 2)-magma. Both families have the
same base set, as well as the same unary and binary maps, however they have different norm
maps.

We now consider the problem of factorisation in n-magmas and discuss how it is related to
the existence of a norm. We show that the existence of a norm guarantees that recursive
factorisation of any n-magma element will terminate. We begin by defining reducible and
irreducible elements.

Definition 4 (Reducible, irreducible elements). Let (M, f1, . . ., fk) be an n-magma, where
n = (n1, . . . , nk). The image of the maps fi inM, is called the set of reducible elements.
Letting M+

i = Img(fi) for each i = 1, . . . , k, we can define the set of reducible elements as

M+ =
⋃k

i=1M
+
i . The elements of the set M0 =M\M+ are called irreducible elements

and the set M0 is called the set of irreducibles.

A unique factorisation n-magma describes when every element of the base set can be written
uniquely in terms of the irreducible elements and the n-magma maps.

Definition 5 (Unique factorisation). Let (M, f1, . . ., fk) be an n-magma, where n = (n1, . . . , nk).
If

(i) every map fi :M
ni →M is injective, and

(ii) M+
i ∩M

+
j = ∅ for all i, j ∈ {1, . . . , k} such that i 6= j,

then we will call (M, f1, . . ., fk) a unique factorisation n-magma.

Note that (ii) requires that the images of the maps forms a partition of the set of reducible
elementsM+.

We will be interested only in unique factorisation n-magmas since this property holds for all
combinatorial structures we consider.

Thus in the remainder of this paper we assume all n-magma are unique factorisation n-magmas.

1.2 General n-magma theorems

In this section we present a number of general results about n-magmas. These results will
prove useful in later sections and allow us to describe certain properties which n-magmas may
possess. Propositions 1, 2 and 3, along with Theorem 1, are generalisations of results stated
and proven in [8].

Proposition 1. Let (M, f1, . . ., fk) be a normed (n1, . . . , nk)-magma with non-empty base
set M, and let the set of elements with minimal norm be Mmin ⊂ M. Then Mmin is non-
empty and all elements of Mmin are irreducible.
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Proof. Clearly we have thatMmin is non-empty sinceM is non-empty andMmin is taken to
be the subset ofM whose elements have minimal norm.

To prove that all elements of Mmin are irreducible, proceed by contradiction. Assume that
there exists some m ∈ Mmin such that m is reducible. Therefore m ∈ Img(fi) for some
i ∈ {1, . . . , k}, so there exists m1, . . . ,mni

such that m = fi(m1, . . . ,mni
). If ni = 1 (that

is, fi is a unary map) then m = fi(m1), and so ‖m‖ > ‖m1‖. This contradicts the fact that
m ∈ Mmin. If ni > 1, then ‖m‖ ≥

∑ni

j=1 ‖mj‖, and since Img(‖·‖) ⊆ N, we must have that
‖m‖ > ‖mj‖ for each j ∈ {1, . . . , ni}. This again contradicts the fact that m ∈ Mmin. Thus
we conclude that every element ofMmin is irreducible.

Now let n = (n1, . . . , nk) and consider an arbitrary unique factorisation n-magma
(M, f1, . . ., fk). We have that for all reducible elements m ∈ M+, there exists a unique
i ∈ {1, . . . , k} and unique m1, . . . ,mni

∈ M such that

m = fi(m1, . . . ,mni
).

We can recursively define a function π as

π(m) =

{

[π(m1), . . . , π(mni
)] , if m ∈ M+ with m = fi(m1, . . . ,mni

),

m, if m ∈ M0.
(2)

The bracketed expression [π(m1), . . . , π(mni
)] is considered an ni-tuple. The square paren-

theses are used to avoid possible ambiguity arising from the use of round parentheses later.

We are interested in when the recursion (2) terminates. This motivates the following definition.

Definition 6 (Finite decomposition n-magma). Let (M, f1, . . ., fk) be an n-magma. If, for
all elements m ∈ M, the recursive function (2) terminates then (M, f1, . . ., fk) will be called
a finite decomposition n-magma. If (M, f1, . . ., fk) is a finite decomposition n-magma,
then π(m) will be called the decomposition of m.

If the unique factorisation n-magma has a norm, then the recursive function (2) will always
terminate, as given by the following proposition.

Proposition 2. Let (M, f1, . . ., fk) be a unique factorisation n-magma. Then it is a normed
n-magma if and only if it is a finite decomposition n-magma.

Proof. Forward: Since (M, f1, . . ., fk) is normed, there exists a function ‖·‖ : M → N

which satisfies Definition 3. Now taking any m ∈ M, either m ∈ M0 and so the recursion
terminates immediately or there exists a unique i ∈ {1, . . . , k} and unique m1, . . . ,mni

∈ M
such that m = fi(m1, . . . ,mni

). In this case, ‖m‖ ≥
∑ni

j=1 ‖mj‖, and so ‖m‖ > ‖mj‖ for each
j ∈ {1, . . . , ni} because ‖·‖ takes values in N. This recursive procedure continues until a factor
is in M0 at which point it terminates from (2), or until a factor has minimal norm. In this
case Proposition 1 states that this factor must be inM0 and thus the recursion terminates.
This must occur in a finite number of steps since Img(‖·‖) ⊆ N and, since N is a well ordered
set, any subset of N has a least element. Thus (M, f1, . . ., fk) is a finite decomposition
n-magma.
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Reverse: Since (M, f1, . . ., fk) is a finite decomposition n-magma, the recursion (2) must
terminate for all m ∈ M. We can define a norm ‖·‖ :M→ N on (M, f1, . . ., fk) as follows.
For each m ∈ M0, define ‖m‖ = 1. For each m ∈ M+, we know that m = fi(m1, . . . ,mni

) for
unique i ∈ {1, . . . , k} and unique m1, . . . ,mni

∈ M. Defining ‖m‖ =
∑ni

j=1 ‖mj‖ for such m,
we have that ‖·‖ is well-defined since π(m) terminates and thus contains a finite number of
occurrences of elements ofM0 (for which we have already defined the value of ‖·‖). Further,
we have that ‖·‖ is a norm since it satisfies the conditions of Definition 3.

Note that the above proposition holds even if an n-magma is not a unique factorisation
n-magma. We chose to prove it only for the case of a unique factorisation n-magma as this
is the only result we require. Making this assumption also simplifies the proof considerably.

We now prove the following result, which gives us a combinatorial way to characterise when
an n-magma is free.

Theorem 1. Let n = (n1, . . . , nk). If (M, f1, . . ., fk) is a unique factorisation normed
n-magma with non-empty finite set of irreducibles, then (M, f1, . . ., fk) is a free n-magma
generated by the irreducible elements.

Proof. Let (M, f1, . . ., fk) be a unique factorisation normed n-magma with non-empty finite
set of irreducibles, M0. Take any set Y such that |Y | =

∣

∣M0
∣

∣. Let (N , f ′
1, . . ., f

′
k) be an

arbitrary n-magma and let ϕ : Y → N be any map. We are required to show that there exists
a map i : Y →M0 such that there exists a unique n-magma morphism θ :M→N with the
property that ϕ = θ ◦ i. We take i : Y →M0 to be any bijection from Y toM0 ⊂M (such
a bijection exists since ϕ was chosen so that |Y | =

∣

∣M0
∣

∣). We define θ :M→N as follows:

(i) For all m ∈ M0, we have m = i(y) for some y ∈ Y . For such m, define

θ(m) = ϕ(y). (3)

(ii) For all m ∈ M+, where M+ = M\M0, we recursively define the image under θ as
follows: if m = fi(m1, . . . ,mni

), then define

θ(m) = f ′
i(θ(m1), . . . , θ(mni

)). (4)

From (4), we have that θ is an n-magma morphism, while (3) ensures that ϕ = θ ◦ i. We have
that θ is unique (given the choice of the maps i and ϕ). This is because the value of θ on
the set of irreduciblesM0 along with the recursive definition of θ for all other elements ofM
uniquely specifies the value of θ for all elements of M. This also ensures that θ is the only
map which satisfies both (4) and ϕ = θ ◦ i.

Theorem 1 shows that the following is sufficient to show that a set M along with k maps
f1, . . . , fk, where fi :M

ni →M for each i ∈ {1, . . . , k}, is a free (n1, . . . , nk)-magma:

(i) Show that all maps fi are injective.

(ii) Show that the images of the maps are disjoint, that is, for all i, j ∈ {1, . . . , k} such that
i 6= j, we have Img(fi) ∩ Img(fj) = ∅.
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(iii) Show that there exists a map ‖·‖ :M→ N which satisfies Definition 3.

(iv) Determine the set of generators (usually by first determining the range of the maps
M+ =

⋃k
i=1M

+
i and then taking its complement,M0 =M\M+).

Note, any norm will suffice to prove a particular n-magma is free (using Theorem 1).

The next result is well-known for free structures. It states that there exists an isomorphism
between any pair of n-magmas for the same n. Moreover, it states that this isomorphism is
unique up to the choice of bijection between the generators. We will use this result later to
define universal bijections between our combinatorial families.

Proposition 3. Let Y be a set and let (M, f1, . . ., fk) and (N , f ′
1, . . ., f

′
k) be free n-magmas

satisfying free n-magma universal mapping diagrams as follows:

M M′

Y

θ

i
f

N N ′

Y

φ

j
g

(5)

Then there exists a unique n-magma isomorphism Γ : M → N such that Γ ◦ i = j and
Γ−1 ◦ j = i.

We repeat the standard proof since it is a constructive proof and hence provides the basis for
the universal bijection algorithm stated later.

Proof. Since (M, f1, . . ., fk) is a free n-magma, the left diagram of (5) commutes for all
i : Y →M and all f : Y →M′. TakingM′ = N and f = j gives

j = θ ◦ i. (6)

Similarly, since (N , f ′
1, . . ., f

′
k) is a free n-magma, the right diagram of (5) commutes for all

j : Y → N and all g : Y → N ′. Taking N ′ =M and j = i gives

i = φ ◦ j. (7)

Together, (6) and (7) give j = θ ◦φ◦j and i = φ◦θ ◦ i. Therefore θ ◦φ = idM and φ◦θ = idN ,
and thus Γ = θ and Γ−1 = φ are isomorphisms.

Suppose that (M, f1, . . ., fk) and (N , f ′
1, . . ., f

′
k) are free n-magmas with one generator, for

the same n. Since |Y | = 1, we have that i and j are unique. From this it follows that the
n-magma isomorphism Γ :M→N from Proposition 3 is unique.

Proposition 3 proves to be very useful since all of the the combinatorial families considered in
the appendix are free n-magmas generated by a single element for some n. Suppose that we
have two combinatorial families which are both free n-magmas generated by a single element
for the same n. Then this unique isomorphism gives us a one-to-one map between the objects
of the two families. This map preserves the recursive structure of the objects. We will also
show that this unique isomorphism preserves the norm of the objects it maps. Thus we have
a size-preserving recursive bijection between the two combinatorial families. This will be used
to define the universal bijections.
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2 Combinatorial structures

We apply the above results to several well known combinatorial structures counted by Fi-
bonacci, Motzkin, Schröder and Fuss-Catalan numbers.

We begin by defining these combinatorial families which we will generalise to those counted by
the “p-analogue” of the sequences. This was done in [8] for the Catalan numbers by defining
the p-Catalan numbers, where p ∈ N = {1, 2, 3, . . .}, by C0(p) = p and

Cn(p) = pn+1 1

n+ 1

(

2n

n

)

, n ≥ 1. (8)

A natural interpretation of these p-analogue sequences (in most instances) is as a variation of
the combinatorial family where we allow some part of the object to be coloured in any of p
colours. In particular, we will see that it is the part which corresponds to the generator of the
family. The p-analogue sequences arise naturally when using certain set constructions which
give the original sequences. The well known cases correspond to p = 1.

Definition 7. Let p ∈ N, and define the following sequences:

(i) Define the p-Fibonacci numbers Fn(p) by the recurrence relation

Fn(p) = Fn−1(p) + Fn−2(p), n ≥ 2, (9)

with F0(p) = 0 and F1(p) = p.

(ii) Define the p-Motzkin numbers Mn(p) by the recurrence relation

Mn(p) = Mn−1(p) +

n−2
∑

k=0

Mk(p)Mn−k−2(p), n ≥ 2, (10)

with M0(p) = M1(p) = p.

(iii) Define the (little) p-Schröder numbers Sn(p) by the recurrence relation

Sn(p) = Sn−1(p) +
n−1
∑

k=0

Sk(p)Sn−k−1(p), n ≥ 1, (11)

with S0(p) = p.

(iv) Define the order 3 p-Fuss-Catalan numbers (from here onwards, p-Fuss-Catalan
numbers) Tn(p) by the recurrence relation

Tn(p) =

n−1
∑

i=0

n−1−i
∑

j=0

Ti(p)Tj(p)Tn−1−i−j(p), n ≥ 1, (12)

with T0(p) = p.

11



We will refer to the order 3 Fuss-Catalan numbers simply as the Fuss-Catalan numbers. We
do not consider any other order of Fuss-Catalan number, although one could easily extend
these ideas to higher orders in an obvious way. See [2] for further discussion of the general
Fuss-Catalan numbers.

For each of these four p-sequences we state propositions giving the algebraic equation satisfied
by their generating functions and an expression for the counting sequences. The former is
derived in the standard way from the above defining recurrence relations and the latter are
derived using the Lagrange inversion formula. Since these are standard computations we do
not provide any details.

Proposition 4. The generating function F (x) =
∑

n≥0 Fn(p)x
n for the p-Fibonacci numbers

satisfies the algebraic equation

F (x) = px+ xF (x) + x2F (x).

and

Fn(p) = p

⌊n−1

2
⌋

∑

k=0

(

n− k − 1

k

)

.

Proposition 5. The generating function M(x) =
∑

n≥0Mn(p)x
n for the p-Motzkin numbers

satisfies the algebraic equation

M(x) = p+ xM(x) + x2M(x)2.

and

Mn(p) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck(p),

where Ck(p) is the kth p-Catalan number (8).

Proposition 6. The generating function S(x) =
∑

n≥0 Sn(p)x
n for the p-Schröder numbers

satisfies the algebraic equation

S(x) = p+ xS(x) + xS(x)2.

and

Sn(p) =

n
∑

k=0

(

2n− k

k

)

Cn−k(p),

where Ck(p) is the kth p-Catalan number (8).

Proposition 7. The generating function T (x) =
∑

n≥0 Tn(p)x
n for the p-Fuss-Catalan num-

bers satisfies the algebraic equation

T (x) = p+ xT (x)3.

and

Tn(p) =
1

3n+ 1

(

3n+ 1

n

)

p2n+1.
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3 Fibonacci normed (1,1)-magmas

In this section, we discuss (1,1)-magmas and show if an appropriate norm is defined they are
related to combinatorial families which are enumerated by the Fibonacci numbers. We first
define the Cartesian (1,1)-magma and show its relationship with the p-Fibonacci numbers.
We then define a universal bijection between any two Fibonacci normed (1,1)-magmas.

3.1 Cartesian (1,1)-magma

We define arguably the simplest (1,1)-magma, which we call the Cartesian (1,1)-magma.

Definition 8 (Cartesian (1,1)-magma). Let X be a non-empty finite set. Define the sequence
Wn(X) of sets of words in the alphabet {u1, u2} ∪X as follows:

W1(X) = X, (13a)

W2(X) = {u1w : w ∈ W1(X)}, (13b)

Wn(X) = {u1w : w ∈ Wn−1(X)} ∪ {u2w : w ∈ Wn−2(X)}, n ≥ 3, (13c)

where uiw is the concatenation of the symbol ui with the word w, for i = 1, 2.

Let WX =
⋃

i≥1Wi(X) and define two unary maps,

µ1 :WX →WX ,

µ2 :WX →WX ,

as follows:

µ1(w) = u1w,

µ2(w) = u2w.

The triple (WX , µ1, µ2) will be called the Cartesian (1,1)-magma generated by X.

IfX = {ǫ}, the sequence of setsWn(X) defining the base setWX of the Cartesian (1,1)-magma
begins as follows:

W1(X) = {ǫ},

W2(X) = {u1ǫ},

W3(X) = {u1u1ǫ, u2ǫ},

W4(X) = {u1u1u1ǫ, u1u2ǫ, u2u1ǫ},

W5(X) = {u1u1u1u1ǫ, u1u1u2ǫ, u1u2u1ǫ, u2u1u1ǫ, u2u2ǫ},

...

Having defined the Cartesian (1,1)-magma, it is possible to prove that it is free directly from
Definition 2 without introducing any norm. However we will take the shorter route by showing
there exists a norm, hence along with the other conditions required by Theorem 1, we will
prove it is free.
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Theorem 2. The Cartesian (1,1)-magma of Definition 8 is a free (1,1)-magma.

We will show that (WX , µ1, µ2) is a unique factorisation normed (1,1)-magma with set of
irreducibles equal to X. Then, by Theorem 1, we will have that (WX , µ1, µ2) is a free
(1,1)-magma generated by X.

Proof. Suppose that w1, w2 ∈ WX are such that µ1(w1) = µ1(w2). We have µ1(w1) = u1w1

and µ1(w2) = u1w2 and hence u1w1 = u1w2 thus have w1 = w2. Similarly we have that µ2

is injective since µ2(w1) = µ2(w2) for w1, w2 ∈ WX implies u2w1 = u2w2 and hence w1 = w2.
Thus we have that both µ1 and µ2 are injective. To show Img(µ1)∩ Img(µ2) = ∅, proceed by
contradiction. Suppose that

Img(µ1) ∩ Img(µ2) 6= ∅

and take w ∈ Img(µ1) ∩ Img(µ2). Since w ∈ Img(µ1), we have w = µ1(w1) = u1w1 for
some w1 ∈ WX . Similarly, since w ∈ Img(µ2), we must have w = µ2(w2) = u2w2 for some
w2 ∈ WX . Therefore u1w1 = u2w2 and hence u1 = u2, thus giving a contradiction.

Thus the maps µ1 and µ2 are injective and Img(µ1) ∩ Img(µ2) = ∅, so (WX , µ1, µ2) is a
unique factorisation (1,1)-magma.

The set of irreducibles is X since this is the complement of Img(µ1) ∪ Img(µ2).

Take w ∈ WX , supposing that w ∈ Wn(X) and hence that ‖w‖ = n. We have from (13c) that
µ1(w) ∈ Wn+1(X) and µ2(w) ∈ Wn+2(X). Therefore ‖µ1(w)‖ = n+ 1 and ‖µ2(w)‖ = n+ 2.
Thus ‖µ1(w)‖ > ‖w‖ and ‖µ2(w)‖ > ‖w‖ and so by Definition 3, ‖·‖ is a norm. Therefore
(WX , µ1, µ2) is a normed (1,1)-magma.

Proposition 8. Let (WX , µ1, µ2) be the Cartesian (1,1)-magma generated by the set X,
where |X| = p, and define the map ‖·‖F :WX → N by ‖m‖F = n when m ∈ Wn(X). If

Nn = {m ∈ WX : ‖m‖F = n}, n ≥ 1,

then
|Nn| = Fn(p), n ≥ 1,

where Fn(p) is the nth p-Fibonacci number of Definition 7.

Proof. First, note that Nn = Wn(X) since ‖m‖F = n if and only if m ∈ Wn(X). Now, we
have W1(X) = X so |N1| = |W1(X)| = |X| = p, and W2(X) = {u1w : w ∈ W1(X)} so

|N2| = |W2(X)| = |{u1w : w ∈ W1(X)}| = |W1(X)| = p.

For n ≥ 3, (13c) gives

|Nn| = |{u1w : w ∈ Wn−1(X)}| + |{u2w : w ∈ Wn−2(X)}|

= |Wn−1(X)| + |Wn−2(X)|

= |Nn−1|+ |Nn−2|

This is exactly the p-Fibonacci recurrence (9).
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Corollary 1. Let (Wǫ, µ1, µ2) be the Cartesian (1,1)-magma generated by the single element
ǫ. If Nn and ‖·‖F :Wǫ → N are as defined in Proposition 8, then

|Nn| = Fn, n ≥ 1,

where Fn is the nth Fibonacci number.

Take the Cartesian (1,1)-magma generated by {ǫ}, (Wǫ, µ1, µ2) and note that the norm
‖·‖F :Wǫ → N from above could equivalently be defined by requiring that

‖ǫ‖F = 1, (14a)

‖µ1(w)‖F = ‖w‖F + 1, (14b)

‖µ2(w)‖F = ‖w‖F + 2, (14c)

for all w ∈ Wǫ.

This motivates the following definition. We seek to characterise when a (1,1)-magma is
associated with the Fibonacci numbers. As we have noted, we can define many norms on
the same (1,1)-magma. Defining a norm ‖·‖F which satisfies (14) gives us the Fibonacci
numbers. Thus we define a Fibonacci normed (1,1)-magma to be a free (1,1)-magma with
a single generator along with a particular norm function which satisfies (14) for the relevant
(1,1)-magma generator and unary maps.

Definition 9 (Fibonacci normed (1,1)-magma). Let (M, f1, f2) be a unique factorisation
normed (1,1)-magma with only one irreducible element, ǫ. Let ‖·‖F : M → N be a norm
satisfying

‖ǫ‖F = 1, (15a)

‖f1(m)‖F = ‖m‖F + 1, (15b)

‖f2(m)‖F = ‖m‖F + 2, (15c)

for all m ∈ M. Then (M, f1, f2) with the norm ‖·‖F is called a Fibonacci normed
(1,1)-magma.

In the remainder of this section, we reference a number of combinatorial structures which are
counted by the Fibonacci numbers. Further details of these are provided in Appendix 7.1.
We take the convention that the two unary maps are called f and g. We make it clear that
we are using the maps specific to a certain family by placing a subscript on each of the maps.
This subscript contains the number assigned to that family in the appendix. We choose to call
the unique generator in each family ǫ, and make it clear which family it comes from via the
subscript. We name the maps in such a way that our (1,1)-magma is (M, f , g), and hence

‖f(m)‖ = ‖m‖+ 1, ‖g(m)‖ = ‖m‖+ 2, (16)

for all m ∈ M.

We have seen that any Fibonacci normed (1,1)-magma is such that the number of elements
of the base set with norm n is given by the nth Fibonacci number. We now present a simple

15



example of a Fibonacci normed (1,1)-magma, taking the family of Fibonacci tilings F1. This
family arises by considering the number of ways to tile a 1× n board using 1× 1 squares and
1× 2 dominoes. The number of ways to tile such a board is given by Fn. We can define the
Fibonacci tiling (1,1)-magma (F1, f1, g1) as follows:

• Take the base set F1 to be the set of all tilings of a 1×n board using 1× 1 squares and
1× 2 dominoes, for all n ∈ N0. Note that we consider the trivial empty tiling to be the
only way to tile a 1× 0 board (i.e. an empty board).

• Define one unary map to take a tiling of a 1× n board and add a single 1× 1 square to
the right to give a tiling of a 1× (n + 1) board. Call this map f1. Schematically:

f1

(

t

)

= t

• Define the other unary map to take a tiling of a 1×n board and add a 1× 2 domino to
the right to give a tiling of a 1× (n + 2) board. Call this map g1. Schematically:

g1

(

t

)

= t

• The only generator is the trivial empty tiling of an empty board: ǫ1 = ∅. This is the
only element in the base set which is not in the image of one of the two maps.

It is simple to see that (F1, f1, g1) is a unique factorisation (1,1)-magma. This is because we
can form any tiling of a 1 × n board by applying a unique sequence of compositions of the
two maps to the generator. Take for example the following tiling:

We see that this can be constructed as follows:

f1 (g1 (f1 (ǫ))) = f1 (g1 (f1 (∅))) = f1

(

g1

( ))

= f1

( )

=

We define the norm ‖·‖F of a tiling of a 1× n board to be n+ 1. Thus we see that the norm
satisfies (15) of Definition 9. That is,

‖ǫ1‖F = 1,

‖f1(t)‖F = ‖t‖F + 1,

‖g1(t)‖F = ‖t‖F + 2,

for all t ∈ F1.

Therefore the (1,1)-magma (F1, f1, g1) along with the norm just defined is indeed a Fibonacci
normed (1,1)-magma.

Some Fibonacci families are such that there is no natural interpretation of the generator ǫ.
This is usually the case when there are Fn+2 objects with traditional size parameter n. This
is because the generator then corresponds to an object with traditional size parameter equal
to -1. In such cases, we define the (1,1)-magma (M, f , g) by the following procedure. We
simply take ǫ to be an arbitrary symbol denoting the generator and define the two maps f

and g as follows:
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(i) Define f(ǫ).

(ii) Define g(ǫ).

(iii) For all m ∈ M\{ǫ}, define f(m).

(iv) For all m ∈ M\{ǫ}, define g(m).

This process completely specifies the two maps and the base set, so we have a well-defined free
(1,1)-magma. For examples of when this procedure is required, see the following Fibonacci
families in Appendix 7.1:

• F9: Binary sequences with no consecutive 1’s,

• F11: Subsets with no consecutive integers.

3.2 Free (1,1)-magma isomorphisms and a universal bijection

We have seen that any Fibonacci normed (1,1)-magma is such that the number of elements
of the base set with norm n is given by the nth Fibonacci number. Using the result of
Proposition 3, there exists a unique (1,1)-magma isomorphism between any two Fibonacci
normed (1,1)-magmas. As we will see, this isomorphism preserves the norms of the objects
in the case that both (1,1)-magmas are Fibonacci normed (1,1)-magmas. Thus this gives a
size-preserving bijection between the two Fibonacci families. We therefore make explicit just
how this isomorphism is defined so that we are able to make use of it for specific families.

Definition 10 (Universal bijection). Let (M, f , g) and (N , f ′, g′) be free (1,1)-magmas
with generating sets XM and XN respectively, with |XM| = |XN |. Let σ : XM → XN be any
bijection, and define the map Υ :M→N as follows: for all m ∈ M \XM,

(i) Decompose m into an expression in terms of generators ǫi ∈ XM and the unary maps
f and g.

(ii) In the decomposition of m, replace every occurrence of ǫi with σ(ǫi), every occurence of
f with f ′ and every occurrence of g with g′. Call this expression υ(m).

(iii) Define Υ(m) to be υ(m), that is, evaluate all maps in υ(m) to give an element of N .

This leads to the following proposition. The proposition follows immediately from the fact
that Υ is equal to the map Γ from Proposition 3.

Proposition 9. Let Υ :M→N be the map of Definition 10. Then Υ is a free (1,1)-magma
isomorphism.

Schematically, we can write Υ as follows:

m
decompose

−−−−−−−→ substitute
ǫi→ σ(ǫi), f→ f ′, g→ g′

evaluate
−−−−−−−→ n. (17)
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Since Υ is an isomorphism between the free (1,1)-magmas (M, f , g) and (N , f ′, g′), we have
that Υ defines a bijection between the base sets M and N . Further to this, it gives us that
this bijection is recursive: if m = f(m0), then

Υ(m) = f ′(Υ(m0)),

and if m = g(m0), then
Υ(m) = g′(Υ(m0)).

It is also important to note that if the free (1,1)-magmas have norms satisfying certain condi-
tions, then the norm is preserved under the map Υ. Suppose that (M, f , g) and (N , f ′, g′)
have norms ‖·‖M :M→ N and ‖·‖N : N → N respectively. If:

(i) ‖m‖M = ‖σ(m)‖N for all m ∈ XM,

(ii) ‖f(m)‖M = ‖m‖M+κ1 for all m ∈ M and ‖f ′(n)‖N = ‖n‖N +κ1 for all n ∈ N , where
κ1 ∈ N, and

(iii) ‖g(m)‖M = ‖m‖M+κ2 for all m ∈ M and ‖g′(n)‖N = ‖n‖N +κ2 for all n ∈ N , where
κ2 ∈ N,

then we have
‖m‖M = ‖Υ(m)‖N , m ∈ M.

This result follows immediately by considering the decomposed expressions for m and Υ(m).

Combinatorially we are primarily interested in bijections between structures of the same “size”
and thus we are interested in bijections which preserve the norm. This is the case for Fibonacci
normed (1,1)-magmas which are invariant under the map Υ.

We now present a number of examples illustrating the universal bijection of Definition 10.
We will consider the following Fibonacci normed (1,1)-magmas:

• Fibonacci tilings (F1, f1, g1),

• Reflections through two plates of glass (F10, f10, g10),

• Binary sequences with no consecutive 1’s (F9, f9, g9),

• Compositions with no 1’s (F4, f4, g4).

See Appendix 7.1 for the definitions and details of each of these (1,1)-magmas.

We begin by demonstrating the bijection from the family of Fibonacci tilings to the family of
reflections through two plates of glass. First, take a Fibonacci tiling, and decompose it down
into its factorised form:

= f1

( )

= f1

(

g1

( ))

= f1 (g1 (f1 (∅))) = f1 (g1 (f1 (ǫ1)))

Next, we replace every occurrence of the generator ǫ1 with the generator of the reflections
through two plates of glass, ǫ10. We also replace each map f1 with f10 and each map g1 with
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g10. After making these substitutions, evaluate the resulting expression to obtain an element
of the second family:

f10 (g10 (f10 (ǫ10))) = f10






g10


















= f10












=

Thus the universal bijection maps

7→

If instead we were seeking a bijection between Fibonacci tilings and binary sequences with
no consecutive 1’s, then we would simply replace all parts of the factorised expression for the
Fibonacci tiling with the parts corresponding to binary sequences with no consecutive 1’s, as
follows:

f9 (g9 (f9 (ǫ9))) = f9 (g9 (∅)) = f9 (01) = 010.

Similarly for the Fibonacci family of compositions containing no 1’s:

f4 (g4 (f4 (ǫ4))) = f4 (g4 (f4 (2))) = f4 (g4 (3)) = f4 (3 + 2) = 3 + 3.

So we see that the universal bijection gives each of the following bijections:

010 3 + 3

This demonstrates how useful this universal bijection is. Rather than simply obtaining bi-
jections between families one by one, we see that each time we determine the (1,1)-magma
structure of a Fibonacci family, it immediately gives us a bijection to each other Fibonacci
family whose (1,1)-magma structure is known. As a result of this, we are able to very quickly
build up a large number of bijections.

4 Motzkin and Schröder normed (1,2)-magmas

In this section we consider (1,2)-magmas and show how these relate to Motzkin numbers and
Schröder numbers. We adopt the convention that the binary map is always written as an
in-fix operator. We begin by constructing an example of a free (1,2)-magma, which we call
the Cartesian (1,2)-magma.
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4.1 Cartesian (1,2)-magma

First, we introduce and discuss some notation that will be used throughout this section. We
will use square parentheses when writing n-tuples to avoid possible ambiguity arising from the
use of round parentheses later. Thus we take the n-ary Cartesian product to be the following:

X1 × · · · ×Xn = {[x1, . . . , xn] : xi ∈ Xi, i ∈ {1, . . . , n}} .

and the notation [X] to mean the set

[X] = {[x] : x ∈ X}.

This gives us a set notation for unary maps which we will use to define an explicit (1,2)-magma.

Definition 11 (Cartesian (1,2)-magma). Let X be a non-empty finite set. Define the sequence
Wn(X) of sets of nested 1- and 2-tuples by

W1(X) = X, (18a)

W2(X) = [W1(X)] , (18b)

Wn(X) = [Wn−1(X)] ∪
n−2
⋃

k=1

(Wk(X) ×Wn−k−1(X)) , n ≥ 3. (18c)

Let WX =
⋃

n≥1Wn(X) and W+
X =WX\X. Define the unary map µ :WX →WX by

µ(w) = [w], w ∈ WX , (19)

and the binary map ⋄ :WX ×WX →WX by

w1 ⋄ w2 = [w1, w2], w1, w2 ∈ WX . (20)

The triple (WX , µ, ⋄) is called the Cartesian (1,2)-magma generated by X.

IfX = {ǫ}, the sequence of setsWn(X) defining the base setWX of the Cartesian (1,2)-magma
begins as follows:

W1(X) = {ǫ},

W2(X) = {[ǫ]},

W3(X) = {[[ǫ]], [ǫ, ǫ]},

W4(X) = {[[[ǫ]]], [[ǫ, ǫ]], [ǫ, [ǫ]], [[ǫ], ǫ]},

...

We now prove that the Cartesian (1,2)-magma is free.

Theorem 3. The Cartesian (1,2)-magma (WX , µ, ⋄) is a free (1,2)-magma.

We will show that (WX , µ, ⋄) is a unique factorisation normed (1,2)-magma with set of irre-
ducibles equal to X. Then, by Theorem 1, we will have that (WX , µ, ⋄) is a free (1,2)-magma
generated by X.
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Proof. Suppose that w,w′ ∈ WX are such that µ(w) = µ(w′). Then [w] = [w′] and hence
w = w′. Thus µ is injective. Now suppose w1, w2, w

′
1, w

′
2 ∈ WX are such that w1⋄w2 = w′

1⋄w
′
2.

Then [w1, w2] = [w′
1, w

′
2] and hence w1 = w′

1, w2 = w′
2 and so ⋄ is injective. Clearly we have

Img(µ) ∩ Img(⋄) = ∅ since Img(µ) contains only 1-tuples and Img(⋄) contains only 2-tuples.
Thus (WX , µ, ⋄) is a unique factorisation (1,2)-magma.

The set of irreducibles is X since this is the complement of Img(µ) ∪ Img(⋄).

For each w ∈ WX , define ‖w‖ = n if w ∈ Wn(X). Now take w ∈ Wn(X). Since µ(w) = [w] ∈
[Wn(X)], we have µ(w) ∈ Wn+1(X) from (18). Therefore

‖µ(w)‖ = n+ 1 > ‖w‖ .

Now consider w1 ∈ Wn1
(X) and w2 ∈ Wn2

(X). We have w1 ⋄ w2 = [w1, w2] and hence
w1 ⋄ w2 ∈ Wn1+n2+1(X) from (18). Therefore

‖w1 ⋄ w2‖ = n1 + n2 + 1 > ‖w1‖+ ‖w2‖ .

Therefore ‖·‖ :WX → N is a norm.

4.2 Motzkin normed (1,2)-magmas

For the purpose of proving Theorem 3 we were required to demonstrate that there exists a
norm on the (1,2)-magma (WX , µ, ⋄). While we could have chosen any function which satisfies
Definition 3, this particular norm was chosen since it gives rise to the Motzkin numbers. In
Section 4.3 we will define a different norm on the same base set which will give rise to the
Schröder numbers.

Proposition 10. Let (WX , µ, ⋄) be the Cartesian (1,2)-magma generated by the set X, where
|X| = p. Define the map ‖·‖M :WX → N by ‖m‖M = n when m ∈ Wn(X), where Wn(X) is
as defined in Definition 11 for n ∈ N. If

Nn = {m ∈ WX : ‖m‖M = n}, n ≥ 1,

then
|Nn| = Mn−1(p), n ≥ 1,

where Mn(p) are the p-Motzkin numbers from Definition 7.

Proof. Since ‖m‖M = n if and only if m ∈ Wn(X), we have Nn = Wn(X). We have
N1 = W1(X) = X so |N1| = |X| = p, and N2 = W2(X) = [X] so |N2| = |[X]| = p. Now, for
n ≥ 3, (18c) gives

|Nn| =

∣

∣

∣

∣

∣

[Wn−1(X)] ∪
n−2
⋃

k=1

(Wk(X) ×Wn−k−1(X))

∣

∣

∣

∣

∣

= |Nn−1|+
n−2
∑

k=1

|Nk| · |Nn−k−1|

This is equivalent to the p-Motzkin recurrence (10).

21



Corollary 2. Let (Wǫ, µ, ⋄) be the Cartesian (1,2)-magma generated by the single element,
ǫ. If Nn and ‖·‖M :Wǫ → N are as defined in Proposition 10, then

|Nn| = Mn−1, n ≥ 1,

where Mn is the Motzkin number from Definition 7.

The norm function ‖·‖M : Wǫ → N from the above corollary could equivalently be defined
recursively as follows: Let ‖·‖M :Wǫ → N be such that

‖ǫ‖M = 1, (21a)

‖µ(w)‖M = ‖w‖M + 1, (21b)
∥

∥w ⋄ w′
∥

∥

M
= ‖w‖M +

∥

∥w′
∥

∥

M
+ 1, (21c)

for all w,w′ ∈ Wǫ.

We see that a free (1,2)-magma generated by a single element is partitioned by the norm
function into sets given by the Motzkin numbers only when the norm satisfies (21). Thus we
define a Motzkin normed (1,2)-magma to be a free (1,2)-magma with a single generator along
with a norm function which satisfies (21) for the relevant (1,2)-magma.

Definition 12 (Motzkin normed (1,2)-magma). Let (M, f , ⋆) be a unique factorisation
normed (1,2)-magma with one irreducible element, ǫ. Let ‖·‖M :M→ N be a norm satis-
fying

‖ǫ‖M = 1, (22a)

‖f(m)‖M = ‖m‖M + 1, (22b)
∥

∥m ⋆m′
∥

∥

M
= ‖m‖M +

∥

∥m′
∥

∥

M
+ 1 (22c)

for all m,m′ ∈ M. Then (M, f , ⋆) with the norm ‖·‖M : M → N is called a Motzkin
normed (1,2)-magma.

If (M, f , ⋆) is a Motzkin normed (1,2)-magma with unique generator ǫ, then the base setM
begins (sorting by norm) by evaluating the following expressions:

Norm 1: ǫ.
Norm 2: f(ǫ).
Norm 3: f(f(ǫ)), ǫ ⋆ ǫ.
Norm 4: f(f(f(ǫ))), f(ǫ ⋆ ǫ), ǫ ⋆ f(ǫ), f(ǫ) ⋆ ǫ.
Norm 5: f(f(f(f(ǫ)))), f(f(ǫ ⋆ ǫ)), f(ǫ ⋆ f(ǫ)), f(f(ǫ) ⋆ ǫ),

ǫ ⋆ f(f(ǫ)), ǫ ⋆ (ǫ ⋆ ǫ), f(ǫ) ⋆ f(ǫ), f(f(ǫ)) ⋆ ǫ,
(ǫ ⋆ ǫ) ⋆ ǫ.

We see that the Motzkin norm ‖·‖M : M → N can be informally stated as follows, where
m ∈ M:

‖m‖M = (number of ǫ’s) + (number of f ’s) + (number of ⋆’s).
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For each Motzkin family the norm is usually a simple function of the conventional size pa-
rameter for that family. This can be seen in Appendix 7.2, where the details of a number of
Motzkin normed (1,2)-magmas can be found.

We will consider a number of combinatorial families which are listed in Appendix 7.2. We
adopt the following convention for any Motzkin normed (1,2)-magma: (i) the unary map is
denoted f and (ii) the binary map is denoted ⋆ and written using in-fix notation. We make it
clear that we are using the maps specific to a certain family by referencing that family in the
subscript of the map which is done via the number assigned to that family in the appendix.

We now discuss another example of a Motzkin normed (1,2)-magma, the Motzkin paths M1.
A Motzkin path of length n is a path from (0, 0) to (n, 0) using steps U = (1, 1), D = (1,−1)
and H = (1, 0) which remains above the line y = 0. The number of such paths of length n is
given by the nth Motzkin number Mn. For the corresponding Motzkin normed (1,2)-magma
(M1, f1, ⋆1), the base set M1 is given by all Motzkin paths from (0, 0) to (n, 0), for all
n ∈ N0. The empty path, n = 0, is taken to be a single vertex.

The generator of this family is the empty path,

ǫ1 = ,

and the two maps are defined schematically as follows:

f1





p



 = p

p1 ⋆1 p2 = p1

p2

Thus the unary map adds a single horizontal step after the path and the binary map con-
catenates the two paths while adding a pair of up and down steps as shown. These are the
usual right factorisations of a Motzkin path corresponding to the recursive structure of all
Motzkin paths, but now interpreted as maps. All Motzkin paths can be constructed using
sequences of compositions of these two maps applied to the generator. Therefore this is a
unique factorisation (1,2)-magma.

The norm ‖m‖M of any Motzkin path m is defined as the length of the path + 1. We can
immediately see that this norm satisfies (22):

‖ǫ‖M = 1,

‖f1(p1)‖M = ‖p1‖M + 1,

‖p1 ⋆1 p2‖M = ‖p1‖M + ‖p2‖M + 1,

for all Motzkin paths p1, p2 ∈M1.

Thus we see that (M1, f1, ⋆1) is a Motzkin normed (1,2)-magma.
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4.3 Schröder normed (1,2)-magmas

In this section, we show how the Schröder numbers are related to free (1,2)-magmas which we
do by defining a different norm on the Cartesian (1,2)-magma. In order to clearly define the
norm in terms of the Cartesian base set, we provide an alternative method for constructing
the Cartesian (1,2)-magma. Note, the resulting set is the same set as that defined by (18)
but constructed differently.

Let X be a non-empty finite set, and define the sequence Yn(X) of sets of nested 1- and
2-tuples by

Y1(X) = X, (23a)

Yn(X) = [Yn−1(X)] ∪
n−1
⋃

k=1

(Yk(X) ×Yn−k(X)) , n ≥ 2. (23b)

If X = {ǫ}, then the sequence of sets Yn(X) begins as follows:

Y1(X) = {ǫ},

Y2(X) = {[ǫ], [ǫ, ǫ]},

Y3(X) = {[[ǫ]], [[ǫ, ǫ]], [ǫ, [ǫ]], [ǫ, [ǫ, ǫ]], [[ǫ], ǫ], [[ǫ, ǫ], ǫ]},

...

Letting YX =
⋃

n≥1 Yn(x), we have that (YX , µ, ⋄) is equal to the Cartesian (1,2)-magma
(WX , µ, ⋄) of Definition 11. This follows from the fact that YX and WX both contain all
nested 1- and 2-tuples containing elements of the set X. Thus we have the following propo-
sition.

Proposition 11. Let YX =
⋃

n≥1 Yn(x). Define the unary map µ :WX →WX by

µ(w) = [w], w ∈ WX ,

and the binary map ⋄ :WX ×WX →WX by

w1 ⋄ w2 = [w1, w2], w1, w2 ∈ WX .

Then (YX , µ, ⋄) is the Cartesian (1,2)-magma of Definition 11.

The link between the Cartesian (1,2)-magma and the Schröder numbers is given by the fol-
lowing proposition.

Proposition 12. Let (WX , µ, ⋄) be the Cartesian (1,2)-magma generated by the set X, where
|X| = p. Define the map ‖·‖S :WX → N by ‖m‖S = n when m ∈ Yn(X), where Yn(X) is as
defined in (23). If

Nn = {m ∈ WX : ‖m‖S = n}, n ≥ 1,

then
|Nn| = Sn−1(p), n ≥ 1,

where Sn(p) are the p-Schröder numbers from Definition 7.
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Proof. Since ‖m‖S = n if and only if m ∈ Yn(X), we have Nn = Yn(X). Thus we have
|N1| = |Y1(X)| = |X| = p. Now, for n ≥ 2, (23b) gives

|Nn| =

∣

∣

∣

∣

∣

Yn−1(X) ∪
n−1
⋃

k=1

Yk(X)× Yn−k(X)

∣

∣

∣

∣

∣

= |Nn−1|+
n−1
∑

k=1

|Nk| · |Nn−k|

This is equivalent to the p-Schröder recurrence (11).

Corollary 3. Let (Wǫ, µ, ⋄) be the Cartesian (1,2)-magma generated by the single element,
ǫ. If Nn and ‖·‖S :Wǫ → N are as defined in Proposition 12, then

|Nn| = Sn−1, n ≥ 1,

where Sn is the Schröder number from Definition 7.

Note the norm function ‖·‖S :Wǫ → N from the above corollary could equivalently be defined
recursively as follows: Let ‖·‖S :Wǫ → N be such that

‖ǫ‖S = 1, (24a)

‖µ(w)‖S = ‖w‖S + 1, (24b)
∥

∥w ⋄ w′
∥

∥

S
= ‖w‖S +

∥

∥w′
∥

∥

S
, (24c)

for all w,w′ ∈ Wǫ.

This motivates the following definition.

Definition 13 (Schröder normed (1,2)-magma). Let (M, f , ⋆) be a unique factorisation
normed (1,2)-magma with only one irreducible element, ǫ. Let ‖·‖S : M → N be a norm
satisfying

‖ǫ‖S = 1, (25a)

‖f(m)‖S = ‖m‖S + 1, (25b)
∥

∥m ⋆m′
∥

∥

S
= ‖m‖S +

∥

∥m′
∥

∥

S
(25c)

for all m,m′ ∈ M. Then (M, f , ⋆) with the norm ‖·‖S : M → N is called a Schröder
normed (1,2)-magma.

If (M, f , ⋆) is a Schröder normed (1,2)-magma with unique generator ǫ, then the base setM
begins (sorting by norm) by evaluating the following expressions:

Norm 1: ǫ.
Norm 2: f(ǫ), ǫ ⋆ ǫ.
Norm 3: f(f(ǫ)), f(ǫ ⋆ ǫ), ǫ ⋆ f(ǫ), ǫ ⋆ (ǫ ⋆ ǫ),

f(ǫ) ⋆ ǫ, (ǫ ⋆ ǫ) ⋆ ǫ.
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Informally, the Schröder norm ‖·‖S :M→ N can be defined as follows, where m ∈M:

‖m‖S = (number of f ’s) + (number of ⋆’s) + 1.

For each Schröder family the norm is usually a simple function of the conventional size pa-
rameter for that family. The details of a number of Schröder normed (1,2)-magmas can be
found in Appendix 7.3.

In the remainder of this section, we will reference a number of Schröder families. Further
details of these families are provided in Appendix 7.3. We call the unary map f and the
binary map ⋆ which will be written in in-fix form. We make it clear that we are using the
maps specific to a certain family by referencing that family in the subscript of the maps which
we do via the number assigned to that family in the appendix.

As an example of a Schröder normed (1,2)-magma, consider the Schröder family of semi-
standard Young Tableaux (SSYT) of shape n × 2, S3 as defined in Appendix 7.3. The nth
Schröder number Sn is equal to the number of such tableaux.

We construct the Schröder normed (1,2)-magma of SSYT of shape n × 2, (S3, f3, ⋆3), as
follows:

• Take the base set S3 to be the set of all semi-standard Young Tableaux of shape n× 2,
for every n ∈ N0. We take the trivial empty tableau ∅ to be the only SSYT of shape
0× 2.

• Define the unary map f3 as follows:

f3





...
...

a b



 =

...
...

a b

b+ 1 b+ 1

with the convention that the empty tableau is considered to have all entries equal to 0.
Thus we have

f3(∅) = 1 1

• Define the binary map ⋆3 as follows:

a b
...

...

c d

⋆3

s t

u v
...

...

y z

=

a b
...

...

c d

d+ 1 t+ d+ 1

s+ d+ 1 v + d+ 1

u+ d+ 1
...

... z + d+ 1

y + d+ 1 z + d+ 2

Again, note that when applying this to the empty tableau, we consider any entries of
the empty tableau to be equal to 0.
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Note that the empty SSYT ǫ is the only element in the base set which is not in the image of
one of the two maps. Thus this is the only generator, so we can define ǫ3 = ∅. Then we can
see that the base set S3 is generated by ǫ3 via the two maps f3 and ⋆3.

Any SSYT of shape n× 2 factorises uniquely in terms of the generator ǫ3 and the two maps
f3 and ⋆3. For example, consider the following SSYT, which we can decompose as follows:

1 1

2 3

4 5

6 6

= f3





1 1

2 3

4 5



 = f3

(

1 1

2 3
⋆3 ∅

)

= f3

((

1 1 ⋆3 ∅
)

⋆3 ∅
)

= f3 ((f3 (∅) ⋆3 ∅) ⋆3 ∅)

We define the norm ‖·‖S of a tableau of shape n × 2 to be n + 1. With this definition we
obtain:

‖ǫ‖S = 1,

‖f3(t)‖S = ‖t‖S + 1, t ∈ S3,

‖t1 ⋆3 t2‖S = ‖t1‖S + ‖t2‖S , t1, t2 ∈ S3.

Thus (S3, f3, ⋆3) is a unique factorisation normed (1,2)-magma with a finite non-empty set of
irreducibles (and hence a free (1,2)-magma). The norm ‖·‖S : S3 → N satisfies (25). Therefore
this is a Schröder normed (1,2)-magma.

4.4 Free (1,2)-magma isomorphisms and a universal bijection

We now apply Proposition 3 which states that there exists a unique (1,2)-magma isomorphism
between any free (1,2)-magmas generated by sets of the same size. We demonstrate how this
defines a universal bijection between any pair of Motzkin families or any pair of Schröder
families.

Definition 14 (Universal bijection). Suppose that (M, f , ⋆) and (N , g, ⋉) are free (1,2)-magmas
with generating sets XM and XN respectively, with |XM| = |XN |. Let σ : XM → XN be any
bijection, and define the map Υ :M→N as follows:
For all m ∈M \XM,

(i) Decompose m into an expression in terms of generators ǫi ∈ XM and the maps f and
⋆.

(ii) In the decomposition of m, replace every occurrence of ǫi with σ(ǫi), every occurence of
f with g and every occurrence of ⋆ with ⋉. Call this expression υ(m).

(iii) Define Υ(m) to be υ(m), that is, evaluate all maps in υ(m) to give an element of N .

This leads to the following proposition, which follows from the fact that Υ is exactly the map
Γ from Proposition 3.

Proposition 13. Let Υ :M→N be the map of Definition 14. Then Υ is a free (1,2)-magma
isomorphism.
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Schematically, we can write Υ as follows:

m
decompose
−−−−−−−→ substitute

ǫi→σ(ǫi), f→ g, ⋆→⋉

evaluate
−−−−−−−→ n. (26)

Since Υ is an isomorphism between the free (1,2)-magmas (M, f , ⋆) and (N , g, ⋉), we have
that Υ defines a bijection between the base setsM and N . Furthermore, it gives us that this
bijection is recursive: if m = f(m0), then

Υ(m) = g(Υ(m0)),

and if m = m1 ⋆ m2, then
Υ(m) = Υ(m1)⋉Υ(m2).

Note, Υ preserves the norm when the two (1,2)-magmas are equipped with suitable norms.
Suppose that (M, f , ⋆) and (N , g, ⋉) are free (1,2)-magmas with the same number of gener-
ators and that they have respective norms ‖·‖M :M→ N and ‖·‖N : N → N. If the following
conditions are satisfied:

(i) ‖m‖M = ‖σ(m)‖N for all m ∈ XM,

(ii) for κ1 ∈ N, ‖f(m)‖M = ‖m‖M + κ1 for all m ∈ M, and ‖g(n)‖N = ‖n‖N + κ1 for all
n ∈ N , and

(iii) for κ2 ∈ N0, ‖m1 ⋆ m2‖M = ‖m1‖M + ‖m2‖M + κ2 for all m1,m2 ∈ M, and
‖n1 ⋉ n2‖N = ‖n1‖N + ‖n2‖N + κ2 for all n1, n2 ∈ N ,

then we have
‖m‖M = ‖Υ(m)‖N , m ∈ M.

This follows by considering the decomposed expressions for m and Υ(m), assuming that (i)-
(iii) hold.

Both the Motzkin norm, (22) and the Schröder norm (25) satisfy (i), (ii) and (iii) above and
thus both norms are invariant under Υ.

4.4.1 Universal bijections for Motzkin families

In this section we consider a number of examples illustrating this universal bijection between
free (1,2)-magmas.

Using a simple example, we demonstrate how the universal bijections work for Motzkin normed
(1,2)-magmas. We consider the following Motzkin normed (1,2)-magmas:

• Motzkin paths (M1, f1, ⋆1),

• Non-intersecting chords (M2, f2, ⋆2),

• Unary-binary trees (M3, f3, ⋆3).
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See Appendix 7.3 for the definitions of these families, as well as details of the relevant (1,2)-
magmas and norms.

Take a Motzkin path and decompose it into its factorised form:

= f1

( )

= f1

(

⋆1

)

= f1 ( ⋆1 f1 ( )) = f1 (ǫ1 ⋆1 f1 (ǫ1))

Now substitute generators and maps then evaluate to obtain an object from the Motzkin
family of non-intersecting chords:

f2 (ǫ2 ⋆2 f2 (ǫ2)) = f2

(

⋆2 f2

( ))

= f2

(

⋆2

)

= f2

( )

=

So the universal bijection maps

7→

If we were instead seeking a bijection from Motzkin paths to Motzkin unary-binary trees,
then we would simply replace the maps and generators in the factorised expression for the
Motzkin path with the maps and generators from the (1,2)-magma corresponding to Motzkin
unary-binary trees as follows:

f3 (ǫ3 ⋆3 f3 (ǫ3)) = f3 ( ⋆3 f3 ( )) = f3

(

⋆3

)

= f3







 =

Thus we see that the universal bijection gives

7→

and also

←→

4.4.2 Universal bijections for Schröder families

Consider the following Schröder normed (1,2)-magmas:

• Rectangulations (S4, f4, ⋆4),
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• Semi-standard Young tableaux of shape n× 2 (S3, f3, ⋆3),

• Unary-binary trees (S5, f5, ⋆5).

See Appendix 7.3 for the definitions of these families and details of the relevant (1,2)-magmas
and norms.

Take a rectangulation and factorise it:

= ⋆4 = f4

( )

⋆4

(

⋆4

)

= f4 (ǫ4) ⋆4 (ǫ4 ⋆4 ǫ4)

Now to obtain the image in the family of semi-standard Young tableaux of shape 2 × n via
the universal bijection we replace the generators and the maps with the respective generators
and maps from the Schröder normed (1,2)-magma of SSYT of shape 2× n:

f3 (ǫ3) ⋆3 (ǫ3 ⋆3 ǫ3) = f3 (∅) ⋆3 (∅ ⋆3 ∅) = 1 1 ⋆3 1 2 =
1 1

2 4

3 5

Finally, to obtain a bijection to Schröder unary-binary trees, replace the maps and generators
in the factorised expression for the rectangulation as follows:

f5 (ǫ5) ⋆5 (ǫ5 ⋆5 ǫ5) = f5 ( ) ⋆5 ( ⋆5 ) = ⋆5 =

Thus we see that we have the following bijections:

1 1

2 4

3 5

5 Fuss-Catalan normed (3)-magmas

In this section we consider (3)-magmas and discuss how these relate to the order 3 Fuss-
Catalan sequence. Recall that a (3)-magma (M, t) is a set M along with a ternary map
t : M×M ×M → M. We begin this section by constructing an example of a free (3)-
magma, which we call the Cartesian (3)-magma.
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5.1 Cartesian (3)-magma

The Cartesian (3)-magma is one of the simplest (3)-magmas and is constructed using Cartesian
products. As in section 4, we use square parentheses to represent a 3-tuple, so we denote the
ternary Cartesian product as follows:

X1 ×X2 ×X3 = {[x1, x2, x3] : x1 ∈ X1, x2 ∈ X2, x3 ∈ X3} .

Definition 15 (Cartesian (3)-magma). Let X be a non-empty finite set. Define the sequence
Wn(X) of sets of nested 3-tuples by

W1(X) = X, (27a)

W2n+1(X) =
n−1
⋃

i=0

n−i−1
⋃

j=0

(

W2i+1(X)×W2j+1(X)×W2(n−i−j−1)+1(X)
)

, n ≥ 1. (27b)

Let WX =
⋃

n≥0W2n+1(X) and W+
X =WX\X. Define τ :WX ×WX ×WX →WX by

τ(w1, w2, w3) = [w1, w2, w3], w1, w2, w3 ∈ WX .

The pair (WX , τ) is called the Cartesian (3)-magma generated by X.

If X = {ǫ}, the sets Wn(X) in the above definition begin:

W1(X) = {ǫ},

W3(X) = {[ǫ, ǫ, ǫ]},

W5(X) = {[ǫ, ǫ, [ǫ, ǫ, ǫ]], [ǫ, [ǫ, ǫ, ǫ], ǫ], [[ǫ, ǫ, ǫ], ǫ, ǫ]},

W7(X) = {[ǫ, ǫ, [ǫ, ǫ, [ǫ, ǫ, ǫ]]], [ǫ, ǫ, [ǫ, [ǫ, ǫ, ǫ], ǫ]], [ǫ, ǫ, [[ǫ, ǫ, ǫ], ǫ, ǫ]]

[ǫ, [ǫ, ǫ, ǫ], [ǫ, ǫ, ǫ], [ǫ, [ǫ, ǫ, [ǫ, ǫ, ǫ]], ǫ], [ǫ, [ǫ, [ǫ, ǫ, ǫ], ǫ], ǫ],

[ǫ, [[ǫ, ǫ, ǫ], ǫ, ǫ], ǫ], [[ǫ, ǫ, ǫ], ǫ, [ǫ, ǫ, ǫ]], [[ǫ, ǫ, ǫ], [ǫ, ǫ, ǫ], ǫ]

[[ǫ, ǫ, [ǫ, ǫ, ǫ]], ǫ, ǫ], [[ǫ, [ǫ, ǫ, ǫ], ǫ], ǫ, ǫ], [[[ǫ, ǫ, ǫ], ǫ, ǫ], ǫ, ǫ]

...

We now prove that the Cartesian (3)-magma is free.

Theorem 4. The Cartesian (3)-magma (WX , τ) is a free (3)-magma.

We will show that (WX , τ) is a unique factorisation normed (3)-magma with set of irreducibles
X. Then, by Theorem 1, we will have that (WX , τ) is a free (3)-magma generated by X.

Proof. Suppose that τ(w1, w2, w3) = τ(w′
1, w

′
2, w

′
3) for wi, w

′
i ∈ WX , i = 1, 2, 3. Therefore

[w1, w2, w3] = [w′
1, w

′
2, w

′
3] and hence (w1, w2, w3) = (w′

1, w
′
2, w

′
3). Thus we have that τ is

injective and so (WX , τ) is a unique factorisation (3)-magma. The set of irreducibles is given
by X since this is the complement of Img(τ). We have ‖τ(w1, w2, w3)‖ = ‖w1‖+ ‖w2‖+ ‖w3‖
as [w1, w2, w3] ∈ Wn1+n2+n3

(X) if wi ∈ Wni
(X), for i ∈ {1, 2, 3}. Thus (WX , τ) is a normed

(3)-magma.
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Note, the norm we have defined in the above proof differs slightly to the traditional size
parameter for combinatorial families counted by this sequence as it is more natural for us to
have only objects with odd norm. This ensures that the norm is strictly additive with respect
to the ternary map. If we instead wanted our base set to be partitioned into ‘norms’ given
by the natural numbers, we would require our norm to be sub-additive with respect to the
ternary map ie. the map would then not be a norm.

We now show how the norm used in the proof of Theorem 4 partitions the Cartesian (3)-
magma into sets whose size is equal to the p-Fuss-Catalan numbers.

Proposition 14. Let (WX , τ) be the Cartesian (3)-magma generated by the set X, where
|X| = p, and define the map ‖·‖T :WX → N by ‖m‖T = n when m ∈ Wn(X). If

Nn = {m ∈ WX : ‖m‖T = n}, n ≥ 1,

then
|N2n+1| = Tn(p), n ≥ 0.

Proof. Begin by noting that ‖m‖T = n if and only if m ∈ Wn(X), and hence we have
Nn =Wn(X). Therefore |N1| = |W1(X)| = |X| = p. For n ≥ 1, (27b) gives

|N2n+1| =

∣

∣

∣

∣

∣

∣

n−1
⋃

i=0

n−i−1
⋃

j=0

(

W2i+1(X)×W2j+1(X)×W2(n−i−j−1)+1(X)
)

∣

∣

∣

∣

∣

∣

=

n−1
∑

i=0

n−i−1
∑

j=0

|N2i+1| · |N2j+1| ·
∣

∣N2(n−i−j−1)+1

∣

∣

This is equivalent to the p-Fuss-Catalan recurrence (7).

Corollary 4. Let (Wǫ, τ) be the Cartesian (3)-magma generated by the single element ǫ. If
Nn and ‖·‖M :Wǫ → N are as defined in Proposition 14, then

|N2n+1| = Tn, n ≥ 0,

with Tn as defined in Definition 12.

Note, the norm function ‖·‖T :Wǫ → N from the above corollary could equivalently be defined
as follows: Let ‖·‖T :Wǫ → N be such that

‖ǫ‖T = 1,

‖τ(w1, w2, w3)‖T = ‖w1‖T + ‖w2‖T + ‖w3‖T , w1, w2, w3 ∈ Wǫ.

We have seen that a free (3)-magma generated by a single element with a norm function
satisfying (28) is partitioned into sets given by the Fuss-Catalan numbers. Thus we are now
ready to characterise when a (3)-magma is associated with the Fuss-Catalan numbers.
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Definition 16 (Fuss-Catalan normed (3)-magma). Let (M, t) be a unique factorisation
normed (3)-magma with one irreducible element, ǫ. Let ‖·‖T :M→ N be a norm which
satisfies ‖ǫ‖T = 1 and

‖t(m1,m2,m3)‖T = ‖m1‖T + ‖m2‖T + ‖m3‖T , (29)

for all m1,m2,m3 ∈ M. Then (M, t) with the norm ‖·‖T :M→ N is called a Fuss-Catalan
normed (3)-magma.

Let (M, t) be a Fuss-Catalan normed (3)-magma. Then the base setM begins by evaluating
the following expressions:

Norm 1: ǫ.
Norm 3: t(ǫ, ǫ, ǫ).
Norm 5: t(ǫ, ǫ, t(ǫ, ǫ, ǫ)), t(ǫ, t(ǫ, ǫ, ǫ), ǫ), t(t(ǫ, ǫ, ǫ), ǫ, ǫ).
Norm 7: t(ǫ, t(ǫ, ǫ, ǫ), t(ǫ, ǫ, ǫ)), t(t(ǫ, ǫ, ǫ), ǫ, t(ǫ, ǫ, ǫ)), t(t(ǫ, ǫ, ǫ), t(ǫ, ǫ, ǫ), ǫ),

t(ǫ, ǫ, t(ǫ, ǫ, t(ǫ, ǫ, ǫ))), t(ǫ, ǫ, t(ǫ, t(ǫ, ǫ, ǫ), ǫ)), t(ǫ, ǫ, t(t(ǫ, ǫ, ǫ), ǫ, ǫ)),
t(ǫ, t(ǫ, ǫ, t(ǫ, ǫ, ǫ)), ǫ), t(ǫ, t(ǫ, t(ǫ, ǫ, ǫ), ǫ), ǫ), t(ǫ, t(t(ǫ, ǫ, ǫ), ǫ, ǫ), ǫ),
t(t(ǫ, ǫ, t(ǫ, ǫ, ǫ)), ǫ, ǫ), t(t(ǫ, t(ǫ, ǫ, ǫ), ǫ), ǫ, ǫ), t(t(t(ǫ, ǫ, ǫ), ǫ, ǫ), ǫ, ǫ).

Another example of a Fuss-Catalan normed (3)-magma is the Fuss-Catalan family of ternary
trees T1. The generator is the tree containing no edges which we represent by a single node:

ǫ1 =

The base set is the set of all ternary trees and the ternary map is defined as follows:

t1







t1

,

t2

,

t3






=

t1 t2 t3

The norm of any ternary tree is defined to be the number of leaves in the tree. Notice that
this norm is additive as the number of leaves in a ternary tree is equal to the sum of the
number of leaves in each of its three factors.

Sorting by norm, the base set of the ternary tree Fuss-Catalan normed (3)-magma begins as
follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))
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Clearly, this is a unique factorisation (3)-magma with only one irreducible element. This is
immediate from the definition of the ternary map, as we see that any ternary tree has unique
left, middle and right subtrees. Noting that there exists a norm, we have from Theorem 1
that this is a free (3)-magma. Since the norm satisfies (29), we have that this is indeed a
Fuss-Catalan normed (3)-magma.

5.2 Free (3)-magma isomorphisms and a universal bijection

Proposition 3 tells us that there is a unique (3)-magma ismorphism between any two free
(3)-magmas with the same number of generators. This allows us to define a universal bijection
between any two Fuss-Catalan normed (3)-magmas.

Definition 17 (Universal bijection). Let (M, t) and (N , t′) be free (3)-magmas with gener-
ating sets XM and XN respectively, with |XM| = |XN |. Let σ : XM → XN be any bijection,
and define the map Υ :M→N as follows. For all m ∈ M \XM,

(i) Decompose m into an expression in terms of generators ǫi ∈ XM and the map t.

(ii) In the decomposition of m replace every occurrence of ǫi with σ(ǫi) and every occurrence
of t with t′. Call this expression υ(m).

(iii) Define Υ(m) to be υ(m), that is, evaluate all maps in υ(m) to give an element of N .

From the above definition, we immediately get the following proposition. As noted in previous
sections, this comes from the fact that the map Υ of Definition 17 is equal to the map Γ of
Proposition 3.

Proposition 15. Let Υ :M→N be the map of Definition 17. Then Υ is a free (3)-magma
isomorphism.

Schematically, we can write Υ as follows:

m
decompose

−−−−−−−→ substitute
ǫi→ σ(ǫi), t→ t′

evaluate
−−−−−−−→ n. (30)

Υ is an isomorphism between the free (3)-magmas (M, t) and (N , t′), and therefore defines
a bijection between the base setsM and N . It also gives us that this bijection is recursive:

Υ (t(m1,m2,m3)) = t′ (Υ(m1),Υ(m2),Υ(m3)) .

It is also important to note that Υ is a norm-preserving map, subject to some conditions
on the norms defined on the two (3)-magmas. Suppose that (M, t) and (N , t′) are free (3)-
magmas with generating sets of the same cardinality which have norms ‖·‖M :M→ N and
‖·‖N : N → N. If the norms ‖·‖M and ‖·‖N are such that:

(i) ‖m‖M = ‖σ(m)‖N for all m ∈ XM, and

(ii) for all m1,m2,m3 ∈ M, ‖t(m1,m2,m3)‖M =
3
∑

i=1
‖mi‖M + κ, and for

all n1, n2, n3 ∈ N , ‖t′(n1, n2, n3)‖M =
3
∑

i=1
‖ni‖M + κ, for some κ ∈ N0,
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then we have
‖m‖M = ‖Υ(m)‖N , m ∈ M.

This can be seen by considering the decomposed expressions for m and Υ(m).

This tells us that if (M, t) and (N , t′) are both Fuss-Catalan normed (3)-magmas, then the
norm is preserved under the universal bijection Υ.

We now give some examples illustrating this universal bijection between free (3)-magmas
generated by a single element. As in previous sections, each map and appearance of a generator
references a family from Appendix 7.4 via the subscript. We consider the following Fuss-
Catalan normed (3)-magmas:

• Ternary trees (T1, t1),

• Quadrillages (T4, t4),

• Non-crossing partitions (T3, t3).

Consider the following ternary tree, which we can factorise as shown:

= t1

(

, ,

)

= t1

(

, t1

(

, ,

)

,

)

= t1 ( , t1 ( , , t1 ( , , )) , )

= t1 (ǫ1, t1 (ǫ1, ǫ1, t1 (ǫ1, ǫ1, ǫ1)) , ǫ1)

We wish to obtain the image of this ternary tree under the universal bijection to the Fuss-
Catalan normed (3)-magma of quadrillages. Thus we replace the generators and the ternary
map in this factorised expression with the generators and the ternary map of the quadrillage
(3)-magma:

t4 (ǫ4, t4 (ǫ4, ǫ4, t4 (ǫ4, ǫ4, ǫ4)) , ǫ4) = t4

(

, t4

(

, , t4

(

, ,
))

,
)

= t4



 , t4



 , ,



 ,



 = t4





, ,



 =

So the universal bijection maps

7→

Bijecting the above ternary tree to a non-crossing partition with blocks of even size, we simply
replace all occurrences of the generator and the ternary map in the factorised expression for
the ternary tree with the generator and the ternary map from the Fuss-Catalan normed
(3)-magma of non-crossing partitions with blocks of even size:

t3 (ǫ3, t3 (ǫ3, ǫ3, t3 (ǫ3, ǫ3, ǫ3)) , ǫ3) = t3

(

, t3

(

, , t3

(

, ,
))

,
)
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= t3

(

, t3

(

, , 1 2

)

,

)

= t3






, 1

2

3

4
,






= 1

2 3

4

56

Thus we see that

7→ 1

2 3

4

56

under the universal bijection.

6 Embedded bijections

In order to use the universal bijection, we are first required to factorise an object. This
procedure is simple in some families, but for others this procedure can be difficult or slow to
do “by hand”. For families where the factorisation process is not straightforward, it may be
the case that there exists a simple bijection to a different family which is easy to factorise.

For families which can be represented geometrically (in contrast to say ‘pure’ sequence fam-
ilies) in certain cases we can give a geometric representation of the product structure. This
representation will then additionally provide the factorisation required to apply a universal
bijection. To this end we use an idea from category theory where the existence of a (binary)
product object is defined via a product diagram (and a universal mapping principle). Thus if
some categorical object A is a product of two other objects B and C, the diagram

B A C

is used as part of the categorical definition1. This idea was used in [8] for Catalan objects
which resulted in the embedding of complete binary trees into other Catalan objects. Here
we consider Motzkin, Schröder and Fuss-Catalan structures which give rise to unary-binary
tree and ternary tree embeddings. The generalisation to other positive algebraic structures is
clear.

6.1 Embedded bijections for Motzkin and Schröder geometric structures

We can use the (1,2)-magma structure of any Motzkin (respectively Schröder) family to define
an embedding of some other Motzkin (Schröder) object inside any object in that family. This
occurs in such a way that the recursive structure of these families is respected.

In Section 4.4, we showed how unary-binary trees correspond to both Motzkin and Schröder
normed (1,2)-magmas. Assuming that unary-binary trees correspond to the free (1,2)-magma

1We don’t provide the full categorical definition as this is not required here - only the diagram.
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(M, f , ⋆) with the single generator ǫ, we label each leaf and each internal node of a unary-
binary tree as follows:

7→
f( )

, 7→
( )
⋆ .

The labels given to an internal node are determined by whether that node has out-degree 1
or 2. After labelling in this way, counter-clockwise traversal of the tree gives its factorisation.
For example, consider the following unary-binary tree which has been labelled:

( )
⋆

( )
⋆

f( )

f( ) ( )
⋆ǫ

ǫ ǫ ǫ

By traversing this tree counter-clockwise we find that its factorisation is

((ǫ ⋆ f (ǫ)) ⋆ f ((ǫ ⋆ ǫ))) .

Since we are able to determine the factorisation of a unary-binary tree by simple tree traversal,
we focus on embedding unary-binary trees into other geometric families (both Motzkin and
Schröder).

In this section we assume that all free (1,2)-magmas have a single generator and are geometric
(meaning they are defined pictorially in some way rather than as sequences). Given that a
family is geometric, the details of its (1,2)-magma structure give us the following:

(i) We know which part of the geometry is associated with the generator. We will call this
the generator geometry.

(ii) From the definition of the unary map, we know which part of the geometry is added
each time the unary map is applied. We will call this the unary map geometry.

(iii) From the defintion of the binary map, we know which part of the geometry is added
each time the binary map is applied. We will call this the binary map geometry.

For example, we know that for unary-binary trees, the generators correspond to leaves, and
thus the generator geometry is a leaf. From the definitions of the two maps,

f









t









=

t

a

e

t1
⋆

t2
=

t1 t2

b

e1 e2

we can see that the unary map geometry is the new root node a and the edge e. The binary
map geometry is the new root node b and the two edges e1 and e2.

37



For any geometric family, it is clear that there may be many different ways of drawing the
same objects, with each representation differing only slightly and these being trivially in
bijection. In order to make it clear exactly which parts of an object’s geometry correspond to
the generator and which arise from the two maps, we will choose a canonical way of drawing
an object in a given family. In particular, we choose a way of drawing our objects so that
the points of any object can be partitioned into disjoint subsets. Thus for a (1,2)-magma
we require the objects to be drawn such that there are three disjoint subsets: one subset
corresponding to the generator geometry, one to the unary map geometry and one to the
binary map geometry. We call this canonical form the (1,2)-magma form.

Let (M, f , ⋆) be a free (1,2)-magma with a single generator. For m ∈ M, define the following
sets:

• Let GM(m) be the set of all elements of generator geometry.

• Let UM(m) be the set of all elements of unary map geometry.

• Let BM(m) be the set of all elements of binary map geometry.

For example, if we choose to draw unary-binary trees as follows, with generator , unary map
geometry drawn in blue and binary map geometry drawn in orange, then it is clear that any
unary-binary tree can be partitioned into these sets, as shown in the following example:

1

2

3 4

5

6

7

 

This gives the partition

GM(m) =
{

3 , 5 , 7

}

, UM(m) =
{

4
,

6
}

, BM(m) =
{

1
,

2
}

.

For each piece of generator geometry we mark a point, called the leaf. For some families,
the generator is the empty object. In these cases, we enforce that the generator is associated
with some geometry by trivially modifying how the object is drawn. This ensures that we are
able to mark this point. For each piece of unary map geometry and each piece of binary map
geometry, we also mark a point. In both cases, this marked point is called the root.

For example, for the family of Motzkin paths M1 the generator is the empty path so we choose
to represent it by a single node, which is also our marked leaf:

ǫ =

We mark the root in the definition of the unary map, noting that this root is part of the unary
map geometry:

f



 p



 = p

root
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Similarly, we mark the root in the definition of the binary map, again noting that this root is
part of the binary map geometry:

p1 ⋆ p2 = p1

p2

root

Now, for any object m from a (1,2)-magma (M, f , ⋆) such that m = f(m0), let the subroot
of m be the root of m0 if it exists (that is, if m0 6= ǫ) and the leaf of m0 if m0 = ǫ. If
m = m1 ⋆ m2, then define the following:

• Let the left subroot of m be the root of m1 if m1 6= ǫ and the leaf of m1 if m1 = ǫ.

• Let the right subroot of m be the root of m2 if m2 6= ǫ and the leaf of m2 if m2 = ǫ.

For example, if we are considering the (1,2)-magma of unary-binary trees (considered as either
a Motzkin family or a Schröder family), then the tree

1

2

3 4

= f

(

2

3 4

)

has subroot node 2, while for the tree

1

2

3

4 5

6

7
=

2

3

4 5

⋆
6

7

the left subroot is node 2 and the right subroot is node 6.

We now define our embedded bijections via the following recursive procedure of embedding

pairs (P,→) and triples (
L
←, P,

R
→) into some Motzkin or Schröder object m. This is done as

follows:

• If m = f(m0), then attach P to the root of the unary map f . The arrow → in the pair
(P,→) points from P to the subroot of m.

• If m = m1 ⋆m2, then attach P to the root of the binary map ⋆. The left arrow
L
← of the

triple (
L
←, P,

R
→) points from P to the left subroot and the right arrow

R
→ points from

P to the right subroot.

We can represent this embedding schematically by drawing the root (of either the unary or
binary map) and the subroots in the definition of the maps. For example, for unary-binary
trees we have the following:

f











t











=

t

a

e

 

P

t

subroot
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t1
⋆

t2
=

t1 t2

b

e1 e2

 

t1 t2

P

left
subroot

right
subroot

L R

Repeating the embedding recursively gives, for example,

 

P

P P

P P

L R

L R

L R

It is clear that this embedded representation is trivially an alternative way of drawing a

unary-binary tree. Thus by recursively embedding the pair (P,→) and triple (
L
←, P,

R
→) we

have effectively embedded a unary-binary tree inside our object. Note that the unary-binary
tree which is embedded is precisely the unary-binary tree which the object maps to under
the universal bijection. Thus the object and the embedded unary-binary tree have the same
factorisation. This gives us a simple way of decomposing the object, since we can simply
traverse the embedded unary-binary tree as illustrated previously.

We now illustrate how these embedded bijections work with a number of examples, working
with both Motzkin normed (1,2)-magmas and Schröder normed (1,2)-magmas.

6.1.1 Motzkin embedded bijections

M1: Motzkin paths Consider the family of Motzkin paths. The generator is the empty
path which we represent by a single node: ǫ = . The unary and binary maps are as follows,
and we have labelled these diagrams with the roots and details of the embedding:

f



 p



 = p

subroot root
P

p1 ⋆ p2 = p1

p2

left subroot

right subroot

rootL

R

P

From this, we see that we can embed a unary-binary tree inside a Motzkin path as illustrated
in the following example:

 

P

P

P P

R

L

R

L
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This is an important example as it demonstrates why we must keep track of which is the left
subroot and which is the right. If we had have omitted the labels on the arrows, then it would
seem that we have embedded a different tree (namely the tree which is obtained by reflecting
the embedded tree across a vertical line travelling through the root).

M2: Non-intersecting chords Consider the Motzkin family of non-intersecting chords
joining n points on a circle. Note that on each diagram, we place a mark at the top of the
circle to fix its orientation. The generator is represented by:

ǫ =

We need to mark a point on this generator to be the leaf, so we take it to be the marked point
shown in blue below:

Note, the marked (in blue) point is not a node of the circle used for connecting chords but,
as seen below, is a point between such nodes. We take the convention that the n points on
the circle which we are connecting are drawn in black. The two maps are as follows, with the
roots, subroots and embedded arrows all labelled:

f







 p1









=

root

subroot

p1

P

p1
⋆ p2

=

root

right subroot

left subroot

p1
p2

R

L

P

From these, we can see that we can embed a unary-binary tree inside a non-intersecting chord
diagram as follows:

 

P

P

P
P

P

R

R L

L  
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6.1.2 Schröder embedded bijections

S1: Schröder paths To embed a Schröder unary-binary tree inside a Schröder path. The
generator for Schröder paths is taken to be a single vertex: ǫ = . The embedding of the pairs

(P,→) and triples (
L
←, P,

R
→) is shown in the following diagram:

f









p









= p

Proot
subroot

p1 ⋆ p2 =

p1

p2

P
root

right subroot

left subroot

R
L

Thus we see that we can embed a unary-binary tree inside a Schröder path as shown in the
following example:

 

P

P

P

P

P

L

R

L R

L
R

 

S4: Rectangulations Finally, we will show how to embed a unary-binary tree inside objects
from the Schröder family of rectangulations. The generator is the following, with the marked
point shown being the leaf:

ǫ =

The unary and binary maps have the following geometry, where LS and RS are used to denote
the left subroot and the right subroot respectively:

f











p











= p

Proot
subroot

42



p1 ⋆ p2 =











































































































































































p2

P
root RS

LS

R

L if p1 = ǫ,

p1

p2

P
root

LS

RS
R

L

if p1 =
p′1

p′′1
,

p1

p2

P
root

LS

RS
R

L

if p1 =
p′1

p′′1
.

Thus we can embed a unary-binary tree inside a rectangulation as demonstrated in the fol-
lowing example:

 

P

P

P P
R

L

R

L

 

6.2 Embedded bijections for Fuss-Catalan (3)-magmas

In this section we consider how to embed ternary trees inside objects from other Fuss-Catalan
families.

Assume the ternary map in the ternary tree (3)-magma is t and the unique generator is ǫ. If
we label each leaf and each internal node in a ternary tree as follows:

7→
ǫ

and 7→
t( )
, ,
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then a counter-clockwise traversal of the tree gives its factorisation, as shown in the following
example:

t( )

, ,

t( )

, ,

t( )

, ,

ǫ ǫ

ǫ ǫ

ǫ ǫ ǫ

Traversing this tree, we can see that its factorisation is t (ǫ, t (ǫ, ǫ, t (ǫ, ǫ, ǫ)) , ǫ) .

From the definition of any geometric (3)-magma, we have the following information:

(i) We know which part of the geometry is associated with the generator. We will call this
the generator geometry.

(ii) From the definition of the ternary map, we know which part of the geometry is added
each time the ternary map is applied. We will call this the ternary map geometry.

Take the family of ternary trees T1 for example. We can see that the generators correspond
to leaves of the tree, while from the ternary map definition,

t







t1

,

t2

,

t3






=

t1 t2 t3

r

e1 e2
e3

we observe that the ternary map geometry is the new root r and the three added edges e1, e2
and e3.

For the Fuss-Catalan family of quadrillages T4, the generators correspond to sides of the
polygon (with the exception of the single marked side for all polygons with more than one
edge). From the ternary map ,

t











q1

e1
,

q2

e2
,

q3

e3











=
q1

q2

q3
e1

e2

e3

e

we can see that the ternary map geometry is just the new marked side e.

As in Section 6.1, we wish to draw our objects in such a way that it is clear exactly which parts
of an object’s geometry correspond to the generator and which parts arise from the ternary
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map. We choose to draw our objects so that the points of the object can be partitioned into
two disjoint subsets, with one containing all pieces of generator geometry and the other all
pieces of ternary map geometry. We will say that families defined in such a way that their
objects can be partitioned into these subsets are in (3)-magma form.

For any free (3)-magma (M, t) with a single generator and every object m ∈ M, define the
following sets:

• Let GM(m) to be the set of all pieces of generator geometry.

• Let TM(m) to be the set of all pieces of ternary map geometry.

For example, drawing ternary trees with generator and ternary tree geometry in orange,
we can see how any ternary tree can be partitioned into these subsets. For example, for the
ternary tree

1

2 3 7

4 5 6

 

this partition is

GM(m) =
{

2 , 4 , 5 , 6 , 7
}

, TM(m) =

{

1

,
3

}

.

Now, for each piece of generator geometry we shall mark a point and call this point the leaf.
In some cases, the generator is the empty object. In these instances, we enforce that the
generator is associated with some geometry so that we are able to mark this point. We also
mark a particular point in each piece of ternary map geometry, calling this point the root.
For example, for the Fuss-Catalan family of quadrillages, the generator is a single edge, so we
represent this by the following:

ǫ =

Notice that we have marked a point on this edge in blue. This point is the leaf. Similarly, we
can mark the root in our definition of the ternary map, noting that this root is part of the
ternary map geometry. This is shown in blue in the following figure:

t











q1

e1
,

q2

e2
,

q3

e3











=
q1

q2

q3
e1

e2

e3

Now, for any objectm from a Fuss-Catalan family with (3)-magma (M, t) such thatm = t(m1,m2,m3),
define the following:

• Let the left subroot be the root of m1 if it exists (that is, if m1 6= ǫ) and the leaf of
m1 if m1 = ǫ.
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• Let the middle subroot be the root of m2 if m2 6= ǫ and the leaf of m2 if m2 = ǫ.

• Let the right subroot be the root of m3 if m3 6= ǫ and the leaf of m3 if m3 = ǫ.

For example, if we are considering the family of ternary trees and we have

m =

1

2 3

4 5 6

7

8 9 10

= t






2 ,

3

4 5 6
,

7

8 9 10







then the left subroot is node 2, the middle subroot is node 3 and the right subroot is node 7.

We can now define our embedded bijections via the following recursive procedure of embedding

4-tuples (P,
L
←, ↓,

R
→) inside the Fuss-Catalan object m. If m = t(m1,m2,m3), then attach P

to the root of the ternary map. The arrow
L
← points from P to the left subroot, the arrow ↓

points from P to the middle subroot and the arrow
R
→ points from P to the right subroot.

We can represent this embedding process schematically by drawing the roots, subroots and
embedded arrows in the definition of the ternary map. For example, for ternary trees we have
the following:

t







t1

,

t2

,

t3






=

t1 t2 t3

root

LS
MS

RS

L RP

Here, LS, MS and RS denote the left subroot, middle subroot and right subroot respectively.

Repeating this embedding recursively gives, for example,

1

2 3

4 5 6

7

8 9 10

 

P

P P

L R

L R L R

This clearly defines another tree which trivially differs from a ternary tree. We see that by

recursively embedding 4-tuples (P,
L
←, ↓,

R
→) inside an object we are effectively embedding

ternary trees. Moreover, we are embedding precisely the ternary tree which is in bijection
with that object via the universal bijection. As a result we are then able to easily factorise
the original object simply by factorising the embedded ternary tree.

We now demonstrate some explicit embedded bijections for different Fuss-Catalan families.

T4: Quadrillages The generator of this family is a single edge, drawn here with a marked
point for the leaf:

ǫ =
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The ternary map is as follows, with details of the embedding drawn in:

t



 q1
,

q2
,

q3



 =

q1

q2

q3

P
root

RS

MS

LS

L R

We can see from this how we can embed a ternary tree inside a quadrillage. The following is
an example of this embedding:

 

P

P

P

P
P

L R

L
R

L

R L

R

L

R

 

T6: Lattice paths We will show how to embed a ternary tree inside a lattice path of
the type enumerated by the Fuss-Catalan numbers. These are paths from (0, 0) to (n, 2n)
consisting of n East steps (1, 0) and 2n North steps (0, 1) that lie weakly below the line y = 2x.
The generator for these paths is taken to be a single vertex: ǫ = . The ternary map is as
follows, with the root, subroots and embedded arrows all labelled:

t













p1

,

p2

,

p3













=

p1

p2

p3

P
root

RS

MS

LS

L

R

The dotted line in the above schematic diagram is the line y = 2x.
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We see that we can embed a ternary tree inside a lattice path of this type as shown in the
following example:

 

P

P

P

P

R

L
RL

R

L R
L
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7 Appendix

In the following appendices, we list a number of families which are enumerated by each of the
Fibonacci numbers (Section 7.1), Motzkin numbers (Section 7.2), Schröder numbers (Section
7.3) and order 3 Fuss-Catalan numbers (Section 7.4). For each family, we provide a reference
and give a brief definition before detailing the following:

• The generator of the relevant n-magma.

• A definition of all of the relevant n-magma maps. These are in most cases schematic
diagrams.

• A definition of the norm, in terms of some natural parameter of the objects of that
family.

• A list of some elements of the corresponding n-magma. In each family, we list the
elements with the smallest norms alongside their decomposition in terms of the generator
and the n-magma maps. This information provides concrete examples of how to apply
the maps.

One can then use the information provided to obtain a bijection between any two families
which are enumerated by the same integer sequence. This can be done using the relevant
universal bijection (Definition 10 for Fibonacci families, Definition 14 for Motzkin or Schröder
families and Definition 17 for Fuss-Catalan families).
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7.1 Fibonacci Families

We present a number of Fibonacci normed (1,1)-magmas for well-known families of objects
enumerated by the Fibonacci numbers. We take the convention that each generator is called
ǫ and the two unary maps are called f and g. These are chosen in such a way that

‖f(m)‖ = ‖m‖+ 1, ‖g(m)‖ = ‖m‖+ 2,

for all m ∈ M, where M is the base set of the (1,1)-magma. Despite the same names
being used for each family presented, it is clear that these are all different maps and that the
generators are all different. The choice to use the same names was made for the sake of clarity
and simplicity. At any point in this paper where these maps or generators are referenced,
they appear with a subscript indicating which family they correspond to.

F1 : Fibonacci tilings [4, 5]

The Fibonacci number Fn+1 is the number of ways to tile a 1× n board using 1× 1 squares
and 1× 2 dominoes. We will represent a 1× 1 square and a 1× 2 domino by

and

respectively.

Generator: The empty tiling:
ǫ = ∅.

Unary maps:

f

(

t

)

= t

g

(

t

)

= t

Norm: If t is a tiling of a 1× n board, then ‖t‖ = n+ 1.

(1,1)-magma: The (1,1)-magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = g(ǫ)

Norm 4: = f(f(f(ǫ))), = g(f(ǫ)), = f(g(ǫ))

Norm 5: = f(f(f(f(ǫ)))), = f(f(g(ǫ))),

= f(g(f(ǫ))), = g(f(f(ǫ))), = g(g(ǫ))

F2 : Path graph matchings [12]
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Fn+1 is the number of matchings in a path graph on n vertices, Pn. This is a tree with two
nodes of degree 1 and the other n− 2 nodes of degree 2.

Generator: The empty matching on zero vertices:

ǫ = ∅.

Unary maps: Let g = · · · be a matching on a path graph on n vertices. Define
two unary maps as follows:

f
(

· · ·
)

= · · ·

g
(

· · ·
)

= · · ·

Norm: If g is a matching in a path graph on n vertices, then ‖g‖ = n+ 1.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = g(ǫ)

Norm 4: = f(f(f(ǫ))), = f(g(ǫ)),
= g(f(ǫ))

Norm 5: = f(f(f(f(ǫ)))), = f(f(g(ǫ))),
= f(g(f(ǫ))), = g(f(f(ǫ))),
= g(g(ǫ))

F3 : Perfect matchings in a ladder graph [22]

Fn+1 is the number of perfect matchings in the ladder graph Ln = P2 × Pn.

Generator: The empty matching in the ladder graph on zero vertices:

ǫ = ∅.

Unary maps:

f











 · · ·













= · · · g











 · · ·













=
· · ·

Norm: If M is a perfect matching in Ln, then ‖M‖ = n+ 1.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:
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Norm 1: ∅ = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = g(ǫ)

Norm 4: = f(f(f(ǫ))), = f(g(ǫ)), = g(f(ǫ))

Norm 5: = f(f(f(f(ǫ)))), = f(f(g(ǫ))),

= f(g(f(ǫ))), = g(f(f(ǫ))), = g(g(ǫ))

F4 : Compositions with no 1’s [26]

Fn is the number of compositions of n+1 with no part equal to 1. A composition of an integer
n is a way of writing n as the sum of a sequence of strictly positive integers. Two sequences
that differ in the order of their terms define different compositions of their sum.

Generator: The composition of 2 into one part:

ǫ = 2.

Unary maps: Let α1+· · ·+αk be a composition of n, where αi ∈ N\{1} for each i ∈ {1, . . . , k}.
Then define two unary maps as follows:

f(α1 + · · · + αk) = α1 + · · ·+ (αk + 1),

g(α1 + · · · + αk) = α1 + · · ·+ αk + 2.

Norm: If c is a composition of the integer n, then ‖c‖ = n− 1.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: 2 = ǫ

Norm 2: 3 = f(ǫ)

Norm 3: 4 = f(f(ǫ)), 2 + 2 = g(ǫ)

Norm 4: 5 = f(f(f(ǫ))), 2 + 3 = f(g(ǫ)), 3 + 2 = g(f(ǫ))

Norm 5: 6 = f(f(f(f(ǫ)))), 2 + 4 = f(f(g(ǫ))), 3 + 3 = f(g(f(ǫ))),
4 + 2 = g(f(f(ǫ))), 2 + 2 + 2 = g(g(ǫ))

F5 : Compositions with no part greater than 2 [16]

Fn is the number of compositions of n− 1 with no part greater than 2.
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Generator: The empty composition:
ǫ = ∅.

Unary maps: Let c be a composition, and define two unary maps as follows:

f(c) = c+ 1,

g(c) = c+ 2.

Norm: If c is a composition of the integer n, then ‖c‖ = n+ 1.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: 1 = f(ǫ)

Norm 3: 1 + 1 = f(f(ǫ)), 2 = g(ǫ)

Norm 4: 1 + 1 + 1 = f(f(f(ǫ))), 2 + 1 = f(g(ǫ)),
1 + 2 = g(f(ǫ))

Norm 5: 1 + 1 + 1 + 1 = f(f(f(f(ǫ)))), 2 + 1 + 1 = f(f(g(ǫ))),
1 + 2 + 1 = f(g(f(ǫ))), 1 + 1 + 2 = g(f(f(ǫ))),
2 + 2 = g(g(ǫ))

F6 : Compositions using odd parts [26]

Fn is the number of compositions of n into odd parts.

Generator: The composition of 1 into one part:

ǫ = 1.

Unary maps: Let α1 + . . . + αk be a composition, and define two unary maps as follows:

f(α1 + . . . + αk) = α1 + . . .+ αk + 1,

g(α1 + . . . + αk) = α1 + . . .+ (αk + 2).

Norm: If c is a composition of the integer n, then ‖c‖ = n.
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(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: 1 = ǫ

Norm 2: 1 + 1 = f(ǫ)

Norm 3: 1 + 1 + 1 = f(f(ǫ)), 3 = g(ǫ)

Norm 4: 1 + 1 + 1 + 1 = f(f(f(ǫ))), 3 + 1 = f(g(ǫ)), 1 + 3 = g(f(ǫ))

Norm 5: 1 + 1 + 1 + 1 + 1 = f(f(f(f(ǫ)))), 3 + 1 + 1 = f(f(g(ǫ))),
1 + 3 + 1 = f(g(f(ǫ))), 1 + 1 + 3 = g(f(f(ǫ))), 5 = g(g(ǫ))

F7 : Binary words with odd run lengths [22]

Fn is the number of binary words (words in the alphabet {0, 1}) of length n beginning with
0 and having all run lengths odd. A run is a subword containing only 0’s or only 1’s which
is maximal (meaning that we cannot extend the subword and still have the property that it
contains only 0’s or only 1’s).

Generator:
ǫ = 0.

Unary maps: Let w be a binary word. Define two unary maps as follows:

f(w) =

{

w0, if length of w is even,

w1, if length of w is odd,

g(w) =

{

w11, if length of w is even,

w00, if length of w is odd.

Norm: If w is a binary word of length n, then ‖w‖ = n.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: 0 = ǫ

Norm 2: 01 = f(ǫ)

Norm 3: 010 = f(f(ǫ)), 000 = g(ǫ)

Norm 4: 0101 = f(f(f(ǫ))), 0001 = f(g(ǫ)), 0111 = g(f(ǫ))

Norm 5: 01010 = f(f(f(f(ǫ)))), 00010 = f(f(g(ǫ))), 01110 = f(g(f(ǫ))),
01000 = g(f(f(ǫ))), 00000 = g(g(ǫ))

F8 : Permutations with |pk − k| ≤ 1 [21]

Fn+1 is the number of permutations p1p2 · · · pn of {1, . . . , n} such that

|pk − k| ≤ 1, k = 1, . . . , n.

Generator: The empty permutation (n = 0):

ǫ = ∅.
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Unary maps: Let p1p2 · · · pn be a permutation of {1, . . . , n}. Define two unary maps as follows:

f(p1p2 · · · pn) = p1p2 · · · pn(n+ 1),

g(p1p2 · · · pn) = p1p2 · · · pn(n+ 2)(n + 1).

Norm: If p is a permutation of {1, . . . , n}, then ‖p‖ = n+ 1.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: 1 = f(ǫ)

Norm 3: 12 = f(f(ǫ)), 21 = g(ǫ)

Norm 4: 123 = f(f(f(ǫ))), 213 = f(g(ǫ)), 132 = g(f(ǫ))

Norm 5: 1234 = f(f(f(f(ǫ)))), 2134 = f(f(g(ǫ))), 1324 = f(g(f(ǫ))),
1243 = g(f(f(ǫ))), 2143 = g(g(ǫ))

F9 : Binary sequences with no consecutive 1’s [19]

Fn+2 is equal to the number of binary sequences (words in the alphabet {0, 1}) of length n

that have no consecutive 1’s.

Generator: For this family there does not exist a natural representation for the generator ǫ.
This is due to the fact that norm n objects correspond to words of length n−2 and thus there
is no natural way to describe a norm 1 object. For this reason, we describe the (1,1)-magma
corresponding to this Fibonacci family in the manner described at the end of Section 3. We
define the generator simply to be ǫ (with no further meaning associated with it) and define
the following objects:

f(ǫ) = ∅ (the empty word),

g(ǫ) = 1.

Having defined these objects along with the unary and binary maps which follow, we have
thus completely specified the relevant (1,1)-magma.

Unary maps: Let w be a binary sequence of length n containing no consecutive 1’s. Then
define two unary maps as follows:

f(w) = w0,

g(w) = w01.

Norm: If w is a binary sequence of length n, then ‖w‖ = n+ 2.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: ǫ

Norm 2: ∅ = f(ǫ)

Norm 3: 0 = f(f(ǫ)), 1 = g(ǫ)

Norm 4: 00 = f(f(f(ǫ))), 10 = f(g(ǫ)), 01 = g(f(ǫ))

Norm 5: 000 = f(f(f(f(ǫ)))), 010 = f(g(f(ǫ))), 100 = f(f(g(ǫ))),
001 = g(f(f(ǫ))), 101 = g(g(ǫ))
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F10 : Reflections across two glass plates [13, 17]

Fn+2 is equal to the number of paths through two plates of glass with n reflections (where re-
flections can occur at plate/plate or plate/air interfaces). These are represented schematically
as in [13].

Generator: We represent the generator as follows:

ǫ =

Unary maps: For the generator ǫ,

f(ǫ) = g(ǫ) =

For all elements of the base set other than ǫ, the unary maps can be illustrated schematically
as follows:

f












= , f












= ,

g












= , g












= .

The map f simply adds one reflection by taking the exiting ray and reflecting it as it leaves
the bottom plate. The map g adds two reflections by taking the exiting ray and reflecting it
twice, with the second reflection occurring at the centre plate/plate interface. Thus f changes
the direction the ray exits the plates whilst g does not change the direction.

Norm: If p is a path with n reflections, then ‖p‖ = n+ 2.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:
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Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = g(ǫ)

Norm 4: = f(f(f(ǫ))), = f(g(ǫ)), = g(f(ǫ))

Norm 5: = f(f(f(f(ǫ)))), = g(f(f(ǫ))),

= f(g(f(ǫ))), = f(f(g(ǫ))),

= g(g(ǫ))

F11 : Subsets with no consecutive integers [26]

Fn+2 is equal to the number of subsets of {1, 2, . . . , n} that contain no consecutive integers.

To distinguish between two equal subsets that arise as subsets of two different sized sets we
consider F11 to be pairs (n, S) where S ⊆ {1, 2, . . . , n}. Thus (n, S) and (m,S) are only equal
if n = m (even though both subsets are the same).

Generator: For this family there does not exist a natural representation for the generator ǫ.
This is due simply to the nature of the family, since norm n objects correspond to subsets
of {1, 2, . . . , n − 2} and thus there is no natural way to describe a norm 1 object. For this
reason, we describe the (1,1)-magma corresponding to this Fibonacci family in the manner
described at the end of Section 3. We define the generator simply to be ǫ (with no further
meaning associated with it) and define the following objects:

f(ǫ) = (0, ∅),

g(ǫ) = (1, {1}).

Having defined these objects along with the unary and binary maps which follow, we have
thus completely specified the relevant (1,1)-magma.

Unary maps: Let S be a subset of {1, 2, . . . , n} containing no consecutive integers. Define
two unary maps as follows:

f(n, S) = (n+ 1, S)
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g(n, S) = (n+ 2, S ∪ {n+ 2}).

Norm: ‖(n, S)‖ = n+ 2.

(1,1)-magma: The (1,1) magma begins (sorting by norm) as follows:

Norm 1: ǫ

Norm 2: f(ǫ) = (0, ∅)

Norm 3: f(f(ǫ)) = (1, ∅), g(ǫ) = (1, {1})
Norm 4: f(f(f(ǫ))) = (2, ∅), f(g(ǫ)) = (2, {1}),

g(f(ǫ)) = (2, {2})
Norm 5: f(f(f(f(ǫ)))) = (3, ∅), f(f(g(ǫ))) = (3, {1}),

f(g(f(ǫ))) = (3, {2}), g(f(f(ǫ))) = (3, {3}),
g(g(ǫ)) = (3, {1, 3})
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7.2 Motzkin Families

We present a number of Motzkin normed (1,2)-magmas. For each (1,2)-magma, we take
the convention that the generator is ǫ, the unary map is f and the binary map is ⋆ (and
this is always written as an in-fix operator). Despite the same names being used for each
(1,2)-magma presented, it is clear that these are all different maps and that the generators
are all different.

M1 : Motzkin paths [11]

Mn is the number of paths from (0, 0) to (n, 0) using steps U = (1, 1), D = (1,−1) and
H = (1, 0) which remain above the line y = 0.

Generator: The empty path which we represent by a single vertex:

ǫ =

Unary map:

f





p



 = p

Binary map:

p1 ⋆ p2 = p1

p2

Norm: If p is a Motzkin path from (0, 0) to (n, 0), then ‖p‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ,

= ǫ ⋆ f(ǫ)
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M2 : Non-intersecting chords [18]

Mn counts the number of ways of drawing any number of non-intersecting chords joining up
to n distinct points on a circle. These n points are called chord points. Note that not all n
chord points must be incident with a chord. We mark, with a , a unique point at the top
of each circle. This fixes the orientation of the circle and distinguishes non-intersecting chord
diagrams which only differ by a rotation.

Generator: The trivial way of joining zero chord points on a circle:

ǫ =

Unary map:

f







aa′

p1






=

a
a′

p1

Binary map:

aa′

p1
⋆

bb′

p2
=

b

b′a

a′

p1
p2

Norm: If p contains n chord points, then ‖p‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ,

= ǫ ⋆ f(ǫ)
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M3 : Motzkin unary-binary trees [11]

Mn is equal to the number of rooted trees with n edges in which every vertex has degree at
most 3, and in which the root has degree at most 2.

Generator: The generator is a single vertex, that is, the only tree containing no edges:

ǫ =

Unary map:

f











t











=
t

Binary map:

t1
⋆

t2
=

t1 t2

Norm: If t is a tree with n edges, then ‖t‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= f(ǫ) ⋆ ǫ
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M4 : Bushes [11]

Mn−1 is the number of rooted planar trees with n edges and no degree two nodes, except
possibly for the root. Such a tree is called a bush.

Generator:

ǫ =

Unary map:

f











t











=
t

Binary map:

t1
⋆

t2
=



































































t1

if t2 = ,

t1

t2

otherwise.

Norm: If b is a bush with n edges, then ‖b‖ = n.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ,

= ǫ ⋆ f(ǫ)

M5 : UUU-avoiding Dyck paths [23]
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Mn is the number of Dyck paths of length 2n with no sequence of three or more consecutive
up steps. A Dyck path is a path from (0, 0) to (2n, 0) using steps U = (1, 1) and D = (1,−1)
which remain above the line y = 0.

Generator: The empty path which we represent by a single vertex:

ǫ =

Unary map:

f



 p



 = p

Binary map:

p1 ⋆ p2 = p1

p2

Norm: If p is a Dyck path from (0, 0) to (2n, 0), then ‖p‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ),

= ǫ ⋆ f(ǫ), = f(ǫ) ⋆ ǫ

M6 : UDU-avoiding Dyck paths [23]

Mn−1 is the number of Dyck paths of length 2n with no sequence of UDU steps.

Generator:
ǫ =

Unary map:

f



 p



 =
p
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Binary map:

p1 ⋆ p2 =

p1

p2

Norm: Let p be a Dyck path from (0, 0) to (2n, 0). Then ‖p‖ = n.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ),

= ǫ ⋆ f(ǫ), = f(ǫ) ⋆ ǫ

M7 : Recursive set of bracketings [23]

Mn−1 is the number of strings of length 2n from the following recursively defined set: L

contains the string [ ] and, for any strings a and b in L, we also find [ a ] and [ ab ] in L.

Generator:
ǫ = [ ].

Unary map: Let a be a bracketing. Then define the unary map as

f(a) = [ a ].

Binary map: Let a and b be two bracketings. Then define the binary map as

a ⋆ b = [ ab ].

Norm: If a is a bracketing of length 2n, then ‖a‖ = n.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:
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Norm 1: [ ] = ǫ

Norm 2: [ [ ] ] = f(ǫ)

Norm 3: [ [ [ ] ] ] = f(f(ǫ)), [ [ ] [ ] ] = ǫ ⋆ ǫ

Norm 4: [ [ [ [ ] ] ] ] = f(f(f(ǫ))), [ [ [ ] [ ] ] ] = f(ǫ ⋆ ǫ),
[ [ ] [ [ ] ] ] = ǫ ⋆ f(ǫ), [ [ [ ] ] [ ] ] = f(ǫ) ⋆ ǫ

M8 : Dyck paths with even valleys [23]

Mn is the number of length 2n Dyck paths whose valleys all have even x-coordinates. A valley
is a path vertex preceded by a down step and followed by an up step.

Generator: The empty path which we represent by a single vertex:

ǫ =

Unary map:

f



 p



 = p

Binary map:

p1 ⋆ p2 = p1

p2

Norm: If p is a Dyck path from (0, 0) to (2n, 0), then ‖p‖ = n+ 1.
(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ)

Norm 3: = f(f(ǫ)), = ǫ ⋆ ǫ

Norm 4: = f(f(f(ǫ))), = f(ǫ ⋆ ǫ),

= ǫ ⋆ f(ǫ), = f(ǫ) ⋆ ǫ

M9 : RNA shapes [15]
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Mn is the number of RNA shapes of size 2n+2. RNA shapes are Dyck words without “directly
nested” motifs of the form A [ [B ] ]C for A, B and C Dyck words. A Dyck word is a word
in the alphabet { [ , ] } with an equal number of left and right parentheses with the property
that, reading from left to right, the number of right parentheses never exceeds the number of
left parentheses.

Generator:
ǫ = [ ].

Unary map: Let w be an RNA shape. Then define the unary map as

f(w) = w [ ].

Binary map: Let w1 and w2 be RNA shapes. Then define the binary map as

w1 ⋆ w2 = w′
1 [ ]w2 ],

where w1 = w′
1 ].

Norm: If w is an RNA shape of length 2n, then ‖w‖ = n.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: [ ] = ǫ

Norm 2: [ ] [ ] = f(ǫ)

Norm 3: [ ] [ ] [ ] = f(f(ǫ)), [ [ ] [ ] ] = ǫ ⋆ ǫ

Norm 4: [ ] [ ] [ ] [ ] = f(f(f(ǫ))), [ [ ] [ ] ] [ ] = f(ǫ ⋆ ǫ),
[ [ ] [ ] [ ] ] = ǫ ⋆ f(ǫ), [ ] [ [ ] [ ] ] = f(ǫ) ⋆ ǫ
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7.3 Schröder Families

We present a number of Schröder normed (1,2)-magmas. For each (1,2)-magma, we take the
convention that the generator is ǫ, the unary map is f and the binary map is ⋆ (and that
this is always written as an in-fix operator). Despite the same names being used for each
Schröder family presented, it is clear that these are all different maps and the generators are
all different.

S1 : Schröder paths [6]

Sn is the number of paths from (0, 0) to (n, n) using only steps (1, 0), (0, 1) and (1, 1) which
lie weakly below the line y = x. The diagonal y = x is shown as a dashed line in the schematic
diagram defining the binary map.

Generator: The empty path which we represent by a single vertex:

ǫ =

Unary map:

f









p









= p

Binary map:

p1 ⋆ p2 =

p1

p2

Norm: If p is a Schröder path from (0, 0) to (n, n), then ‖p‖ = n+ 1.
(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S2 : Dyck paths with coloured peaks [10]
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Sn is the number of Dyck paths from (0, 0) to (2n, 0) with each peak coloured black or white.
A peak is a point preceded by an up step and followed by a down step.

Generator: The empty path which we represent by a single vertex which is coloured black:

ǫ =

Note that when applying the unary map to ǫ or applying the binary map with ǫ as the left
factor that this is simply the empty path since this will not correspond to a peak and thus
the node need not be coloured.

Unary map:

f





p



 = p

Binary map:

p1 ⋆ p2 =



































p1 if p2 = ǫ

p1

p2

if p2 6= ǫ

Norm: If p is a Dyck path with coloured peaks from (0, 0) to (2n, 0), then ‖p‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S3 : Semi-standard Young tableaux of shape n× 2 [25]

Sn is the number of semi-standard Young tableaux (SSYT) of shape n × 2. Each tableau is
filled with entries from {1, . . . , r} for some r ∈ N, and we require that each number in this set
appears in at least one cell. The rows must be weakly increasing from left to right and the
columns must be strictly increasing from top to bottom.

Generator: The empty SSYT:
ǫ = ∅.
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When applying either of the two maps to the generator, every entry of the empty tableau is
taken to be 0. In the map definitions which follow, we explicitly state what happens when
applying the maps to the generator in order to make this clear.

Unary map:

f





...
...

a b



 =

...
...

a b

b+ 1 b+ 1

Note that we have
f(ǫ) = 1 1

Binary map:

a b
...

...

c d

⋆

s t

u v
...

...

y z

=

a b
...

...

c d

d+ 1 t+ d+ 1

s+ d+ 1 v + d+ 1

u+ d+ 1
...

... z + d+ 1

y + d+ 1 z + d+ 2

If we apply the binary map with the generator, we have the following:

ǫ ⋆ ǫ = 1 2

a b
...

...

c d

⋆ ǫ =

a b
...

...

c d

d+ 1 d+ 2

ǫ ⋆

s t

u v
...

...

y z

=

1 t+ 1

s+ 1 v + 1

u+ 1
...

... z + 1

y + 1 z + 2

Norm: If t is a semi-standard Young tableau of size n× 2, then ‖t‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: 1 1 = f(ǫ), 1 2 = ǫ ⋆ ǫ

Norm 3:
1 1

2 2 = f(f(ǫ)),
1 2

3 3 = f(ǫ ⋆ ǫ),
1 2

2 3 = ǫ ⋆ f(ǫ),

1 3

2 4 = ǫ ⋆ (ǫ ⋆ ǫ),
1 1

2 3 = f(ǫ) ⋆ ǫ,
1 2

3 4 = (ǫ ⋆ ǫ) ⋆ ǫ

S4 : Rectangulations [1]
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Sn is the number of ways to divide a rectangle into n + 1 smaller rectangles using n cuts
through n points placed equidistant from each other inside the rectangle along the diagonal
joining the bottom left corner and the top right corner. Each cut intersects one of the points
and divides only a single rectangle in two.

Curiously, this combinatorial family appears on the Schröder numbers Wikipedia page with
no citation. After some investigation, it was discovered that these are equivalent to “point-
constrained rectangular guillotine partitions” as defined in [1].

Generator: The generator is taken to be the trivial way of dividing a rectangle into one
rectangle using zero cuts:

ǫ =

Unary map:

f







p






=

p

After applying the unary map, any vertical cuts in p are extended downwards until they reach
the lower boundary. This is represented by the dashed arrow.

Binary map:

p1 ⋆ p2 =



































































































p2 if p1 = ǫ,

p1

p2

if p1 =
p′1

p′′1 ,

p1

p2

if p1 =
p′1

p′′1 .

After joining the two rectangulations as shown in the binary map, we then extend all cuts
until they meet the boundary. This is represented by the dashed arrows.

Note that p′1 and p′′1 above are not necessarily unique, however the product rule is well defined.
In any rectangulation, there will be either a cut which joins the left and right boundaries or
there will be a cut which joins the top and bottom boundaries. This follows from the constraint
that each cut may divide only a single rectangle in two. It is the unique orientation of any
longest cut which determines how we apply the product rule.

Norm: If p is a rectangle dissection using n internal lines (so the rectangle consists of n + 1
smaller rectangles), then ‖p‖ = n+ 1.
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(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S5 : Schröder unary-binary trees [25]

Sn is equal to the number of rooted trees with n non-leaf nodes in which every vertex has
degree at most 3, and in which the root has degree at most 2.

Generator: The generator is a single vertex:

ǫ =

Unary map:

f











t











=
t

Binary map:

t1
⋆

t2
=

t1 t2

Norm: If t is a tree with n non-leaf nodes, then ‖t‖ = n+ 1. Note that we consider the only
node in ǫ to be a leaf node, and hence ‖ǫ‖ = 1.
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(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S6 : Polygon dissections [25]

Sn is the number of dissections of a regular (n + 4)-gon by diagonals that do not touch the
base. A diagonal is a straight line joining two non-consecutive vertices and dissection means
that diagonals are non-crossing though they may share an endpoint. We draw all polygons
with a marked side which is denoted by a thick black line. This fixes the orientation of the
polygon and distinguishes polygons which only differ by a rotation.

Generator: The trivial dissection of a square obtained by placing no diagonals:

ǫ =

Unary map:

f











p

e











= p
e

Binary map:

p1

e1 e2
e3

⋆ p2

f1
f2 f3

f4

=

p2
f1

f2
f3

f4

p1

e1

e2

e3

where the edge f1 coincides with the edges e2e3 to form a single diagonal.

Norm: If p is a dissection of an n-gon, then ‖p‖ = n− 3.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:
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Norm 1: = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S7 : Perfect matchings in an Aztec triangle [9]

Sn is the number of perfect matchings in an Aztec triangle, which is a triangular grid of n2

squares. This grid is formed by starting with one square, then placing a centred row of 3
squares beneath it, followed by a centred row of 5 squares beneath this and so on. We then
place a node at the corner of each square. We allow only perfect matchings in which no two
edges cross when all edges are drawn as straight lines connecting two nodes. This enforces
that any node is matched with a node placed on an adjacent corner of the same square ie. all
matching edges are either a horizontal or vertical and unit length.

Generator: The trivial empty matching in a triangular grid of zero squares:

ǫ = ∅.

Unary map:

f



 m



 = · · ·m

Binary map:

m1 ⋆ m2 =

· · ·

· · · · ·
·

·
·
·

· ·
·

· · ·

m1

m2

Norm: If m is a perfect matching in an Aztec triangle of n2 squares, then ‖m‖ = n+ 1.
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(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:

Norm 1: ∅ = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ

S8 : Coloured parallelogram polyominoes (zebras) [20]

Sn is the number of parallelogram polyominoes of perimeter 2n+2 with each column coloured
black or white. A parallelogram polyomino is a translation invariant array of unit squares
bounded by two lattice paths that use the steps (0, 1) and (1, 0) and that intersect only at
their first and last vertices.

Generator: The empty parallelogram polyomino, which we choose to represent as follows:

ǫ =

We take this to have perimeter 2.

Unary map: Add a single white square to the top right of the coloured parallelogram poly-
omino:

f







p






= p

Binary map:

p1 ⋆ p2 =























































p1 if p2 = ǫ,

p1

p2

otherwise.

The red section means that we join p1 and p2 as shown and then add one cell at the bottom
of each column of p2, with this cell being given the colour of the column it is being added to.

Norm: If p is a coloured parallelogram polyomino of perimeter 2n+ 2, then ‖p‖ = n+ 1.

(1,2)-magma: The (1,2)-magma begins (sorting by norm) as follows:
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Norm 1: ∅ = ǫ

Norm 2: = f(ǫ), = ǫ ⋆ ǫ

Norm 3: = f(f(ǫ)), = f(ǫ ⋆ ǫ), = ǫ ⋆ f(ǫ),

= ǫ ⋆ (ǫ ⋆ ǫ), = f(ǫ) ⋆ ǫ, = (ǫ ⋆ ǫ) ⋆ ǫ
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7.4 Fuss-Catalan Families

We present a number of Fuss-Catalan normed (3)-magmas for combinatorial families enumer-
ated by the order 3 Fuss-Catalan numbers. We take the convention that each generator is
called ǫ and that each ternary map is called t. Despite the same names being used for each
(3)-magma presented, it is clear that these are all different maps and the generators are all
different.

T1 : Ternary trees [2]

Tn is the number of complete ternary trees with 2n + 1 leaves. A complete ternary tree is a
rooted tree such that every non-leaf node has three children.

Generator: The generator is a single vertex:

ǫ =

Ternary map:

t







t1

,

t2

,

t3






=

t1 t2 t3

Norm: If t is a ternary tree with n leaves, then ‖t‖ = n. Note that we consider the only node
in ǫ to be a leaf node, and hence ‖ǫ‖ = 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))
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T2 : Even trees [24]

Tn is the number of rooted plane trees with 2n edges, where every vertex has even out-degree.

Generator: The generator is a single vertex:

ǫ =

Ternary map:

t







t1

,

t2

,

t3






=

t1

t2

t3

Norm: If t is a tree with n edges, then ‖t‖ = n+ 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))

T3 : Non-crossing partitions with blocks of even size [24]

Tn is the number of non-crossing partitions of {1, 2, . . . , 2n} with all blocks of even size.
We represent such a partition schematically by n marked points on a circle, with a chord
connecting points which are in the same block.

Generator: The generator is the trivially empty partition of the empty set:

ǫ =
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Ternary map:

t









1

2

2n1

··
·p1

,

1

2

2n2

··
·p2

,

1

2

2n3

··
·p3









=































































































1

2

· · ·

2n2 + 1

2n2 + 2

2n2 + 3

2n2 + 4
· · ·

2n2 + 2n3

+ 2

p2

p3

if p1 = ǫ,

1

2

· ·
·
2n1 2n1 + 1

2n1 + 2

2n1 + 3

··
·

2n1 + 2n2 + 1

2n1 + 2n2 + 2

2n1 + 2n2 + 32n1 + 2n2 + 4

· · ·

2n1 + 2n2

+2n3 + 2

p1

p2

p3

if p1 6= ǫ.

In the second case, the chord shown connecting node 1 with node 2n1 +1 means that we add
node 2n1+1 to the block containing node 1. Note that this will not always result in the chord
shown.

Norm: If p is a partition of {1, 2, . . . , 2n}, then ‖p‖ = 2n + 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: 1 2 = t(ǫ, ǫ, ǫ)

Norm 5: 1

2

3

4

= t(t(ǫ, ǫ, ǫ), ǫ, ǫ), 1

2

3

4

= t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

1

2

3

4

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))

T4 : Quadrillages [3]

Tn is the number of quadrillages of a (2n+ 2)-gon. A quadrillage is a dissection of a polygon
such that all sub-objects have four sides. We draw all polygons with a marked side which
is denoted by a thick black line. This fixes the orientation of the polygon and distinguishes
polygons which only differ by a rotation.

Generator: The generator is taken to be a single edge, i.e. a 2-gon:

ǫ =
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Ternary map:

t









q1

e1 ,

q2

e2 ,

q3

e3









=
q1

q2

q3
e1

e2

e3

Norm: If q is a quadrillage of a (2n+ 2)-gon, then ‖q‖ = 2n + 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))

T5 : Polygon dissection [24]

Tn is the number of dissections of some convex polygon by non-intersecting chords into poly-
gons with an odd number of sides and having a total number of 2n + 1 edges (sides and
diagonals). We draw all polygons with a marked side which is denoted by a thick black line.
This fixes the orientation of the polygon and distinguishes polygons which only differ by a
rotation.

Generator: The generator is taken to be a single edge:

ǫ =

Ternary map:

t









p1

e1 ,

p2

e2 ,

p3

e3









=
p1

p2

p3

e1

e2

e3

In the above figure, the dotted internal line for p1 denotes the fact that we “open up” the
polygon p1 by disconnecting it at the vertex on the right hand end of the marked thick edge.
We do this in such a way that any diagonals adjacent to this vertex remain connected to the
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endpoint of the non-thick edge. For example, we “open up” the following polygon dissection
as shown:

−→

An example of this map is the following:

t





, ,



 = t





, ,



 =

Norm: If p is a polygon dissection with a total of n of edges (sides and diagonals), then
‖p‖ = n.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))

T6 : Lattice paths [14]

Tn is the number of lattice paths from (0, 0) to (n, 2n) consisting of n East steps (1, 0) and
2n North steps (0, 1) that lie weakly below the line y = 2x. The line y = 2x is shown as a
dashed line in the schematic diagram defining the map.

Generator: The empty path which we represent by a single vertex:

ǫ =
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Ternary map:

t













p1

,

p2

,

p3













=

p1

p2

p3

Norm: If p is a path from (0, 0) to (n, 2n), then ‖p‖ = 2n+ 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:

Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ), = t(ǫ, ǫ, t(ǫ, ǫ, ǫ))

T7 : 2-Dyck paths [2]

Tn is the number of paths from (0, 0) to (3n, 0) with steps (1, 1) and (1,−2) which remain
above the line y = 0.

Generator: The empty path which we represent by a single vertex:

ǫ =

Ternary map:

t





p1

,
p2

,
p3



 = p1
p2

p3

Norm: If p is a 2-Dyck path from (0, 0) to (3n, 0), then ‖p‖ = 2n+ 1.

(3)-magma: The (3)-magma begins (sorting by norm) as follows:
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Norm 1: = ǫ

Norm 3: = t(ǫ, ǫ, ǫ)

Norm 5: = t(t(ǫ, ǫ, ǫ), ǫ, ǫ), = t(ǫ, t(ǫ, ǫ, ǫ), ǫ),

= t(ǫ, ǫ, t(ǫ, ǫ, ǫ))
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and small. Discrete Mathematics, 241:235–240.

[11] Donaghey, R. and Shapiro, L. (1977). Motzkin numbers. Journal of Combinatorial
Theory, Series A, 23(3):291 – 301.

[12] Farrell, E. (1986). On the occurrences of fibonacci sequences in the counting of matchings
in linear polygonal chains. The Fibonacci Quarterly, 24:238–246.

[13] Hoggatt Jr, V. (1979). Reflections across two and three glass plates. The Fibonacci
Quarterly, 17:118–142.

[14] Lin, C.-H. (2011). Some combinatorial interpretations and applications of Fuss-Catalan
numbers. ISRN Discrete Mathematics, 2011.

[15] Lorenz, W. A., Ponty, Y., and Clote, P. (2008). Asymptotics of RNA shapes. Journal of
Computational Biology, 15(1):31–63.

[16] Moser, L. (1963a). Problem B-5. The Fibonacci Quarterly, 1(1):74.

[17] Moser, L. (1963b). Some reflections. The Fibonacci Quarterly, 1(4):75 – 76.

83



[18] Motzkin, T. (1948). Relations between hypersurface cross ratios, and a combinatorial
formula for partitions of a polygon, for permanent preponderance, and for non-associative
products. Bull. Amer. Math. Soc., 54(4):352–360.

[19] Nyblom, M. (2012). Enumerating binary strings without r-runs of ones. International
Mathematical Forum, 7(37–40):1865–1876.

[20] Pergola, E. and Sulanke, R. A. (1998). Schröder triangles, paths, and parallelogram
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