
ar
X

iv
:1

90
9.

10
10

9v
1

 [
m

at
h.

C
O

]
 2

3
Se

p
20

19 Subset Parking Functions

Sam Spiro∗

September 24, 2019

Abstract

A parking function (c1, . . . , cn) can be viewed as having n cars
trying to park on a one-way street with n parking spots, where car i
tries to park in spot ci, and otherwise he parks in the leftmost available
spot after ci. Another way to view this is that each car has a set Ci

of “acceptable” parking spots, namely Ci = [ci, n], and that each car
tries to park in the leftmost available spot that they find acceptable.

Motivated by this, we define a subset parking function (C1, . . . , Cn),
with each Ci a subset of {1, . . . , n}, by having the ith car try to park
in the leftmost available element of Ci. We further generalize this idea
by restricting our sets to be of size k, intervals, and intervals of length
k. In each of these cases we provide formulas for the number of such
parking functions.

1 Introduction

Parking functions are a well studied object in combinatorics, and are often
defined in the following way. Imagine that there are n parking spots labeled
1 though n on a one way street. There are n cars, also labeled 1 through n,
that wish to park in these spots, and each has a preferred parking spot ci.
When it is car i’s turn to park, he goes to his preferred spot ci and parks
there if it is empty. Otherwise, he tries to park in the next available spot
that is after ci. The tuple (c1, . . . , cn) is said to be a parking function if every
car succeeds in parking.

∗Dept. of Mathematics, UCSD sspiro@ucsd.edu.

1

http://arxiv.org/abs/1909.10109v1

For example, (2, 2, 2) is not a parking function, as car 1 parks in slot 2;
car 2 tries to park in slot 2 but can not and goes to the next available slot
3; and car 3 tries to park in slot 2 but can not, and there are no slots after
this that are available. On the other hand, (2, 1, 1) is a parking function as
car 1 parks in slot 2; car 2 parks in slot 1; and car 3 tries to park in slot 1
but can not, so he goes to the next available slot 3. We will say that the
parking function (2, 1, 1) has outcome 213, which describes how one would
see the cars parked if one were to walk from slot 1 to slot 3.

Parking functions are well studied and have many interesting combi-
natorial properties. For example, a necessary and sufficient condition for
(c1, . . . , cn) to be a parking function is, after rearranging the ci in increasing
order as b1 ≤ b2 ≤ · · · ≤ bn, we have bi ≤ i for all i. In particular, this shows
that any permutations of the entries of a parking function is also a parking
function. One can also prove that the number of parking functions PF(n)
satisfies

PF(n) = (n+ 1)n−1. (1)

Parking functions have connections to many other areas of combinatorics,
such as hyperplane arrangements [5] and the lattice of non-crossing partitions
[6]. We refer the reader to the survey of Yan [9] for an elegant proof of (1)
and a more in depth study of parking functions.

Many generalizations and variants of parking functions have been studied,
such as x-parking functions [8] and G-parking functions [4]. These examples
generalize the bi ≤ i characterization of parking functions. One can also
generalize the parking analogy. An example of this is to allow cars to park a
few spaces before their preferred spot if this is already taken, which has been
studied recently [1].

In this paper we also consider a variant of parking function that is ob-
tained by modifying the parking rule. To motivate the idea, we observe
that a parking function (c1, . . . , cn) can be viewed as each car choosing a
set Ci = [ci, n] of “acceptable” parking spaces, with each car parking in the
leftmost available spot which is acceptable to them. One can generalize this
idea by allowing each Ci to be an arbitrary set.

To this end, let [n] := {1, 2, . . . , n} and let Sn denote the set of permu-
tations of size n written in one line notation. Given n non-empty subsets
Ci ⊆ [n] and a permutation π ∈ Sn, we will say that C = (C1, . . . , Cn)
is a subset parking function with outcome π if for all 1 ≤ i ≤ n, having
πj = i implies j is the smallest element of Ci \ {π−1

i′ : i′ < i}. That is, if

2

car i ends up in spot j, it must find spot j to be acceptable, all the earlier
spots which are acceptable are already taken, and no one has taken spot j
yet. We let SPF(n, π) denote the number of subset parking functions with
outcome π, and we denote the total number of subset parking functions by
SPF(n) :=

∑

π∈Sn
SPF(n, π). Technically we should say that SPF(n) counts

the number of parking functions of size n, but here and throughout we omit
explicitly noting this dependency on n whenever it is clear from context.

For example, ({2}, {2, 3}, {1, 2, 3}) is a subset parking function with out-
come 312. However, ({2, 3}, {1, 2, 3}, {2}) is not a subset parking function
since we require π2 = 1, π1 = 2, and then no choice from C3 will work. In
particular this shows that for subset parking functions the order of the Ci

sets are important, which is not the case in the classical study of parking
functions.

Our first goal is to enumerate subset parking functions. To this end, we
recall that the inversion number inv(π) of a permutation π is equal to the
number of pairs (i, j) such that i < j and πj < πi.

Theorem 1.1. For any integer n ≥ 1 and π ∈ Sn,

SPF(n, π) = 2n(n−1)−inv(π),

SPF(n) =

n−1
∏

i=0

(2n − 2i).

(Classical) parking functions are subset parking functions where each Ci

is required to be an interval of the form [ci, n]. We can get other interesting
variants by restricting the Ci sets in other ways. For example, we say that
C = (C1, . . . , Cn) is a k-subset parking function if C is a subset parking
function and |Ci| = k for all i. We let SPFk(n, π) denote the number of
k-subset parking functions with outcome π and SPFk(n) the number of k-
subset parking functions.

To state our next result, we define the local inversion number invi(π)
to be the number of pairs (i, j) with i < j and πj < πi. Observe that
inv(π) =

∑

invi(π). We adopt the convention that
(

0
0

)

= 1 and
(

0
x

)

= 0 for
x > 0.

Theorem 1.2. For any integer n ≥ 1, π ∈ Sn, and 1 ≤ k ≤ n,

SPFk(n, π) =

n
∏

i=1

(

n− invi(π)− 1

k − 1

)

,

3

SPFk(n) =

n−1
∏

i=0

((

n

k

)

−

(

i

k

))

.

We next consider the case that each Ci is an interval, and we call such
parking functions interval parking functions. Let IPF(n) and IPF(n, π) be
the total number of interval parking functions and the number of interval
parking functions with outcome π, respectively.

To state our full result, given a permutation π we define ai(π) to be the
largest j with 1 ≤ j ≤ i such that πi ≥ {πi, πi−1, . . . , πi−j+1}. For example,
ai(π) ≥ 2 if and only if πi > πi−1. As another example, for π = 31524,
we have ai(π) equal to 1, 1, 3, 1, 2 as i ranges from 1 to 5. Finally, define
PF(n, π) to be the number of (classical) parking functions with outcome π.

Theorem 1.3. For any n ≥ 1 and π ∈ Sn,

IPF(n, π) = n! · PF(n, π) = n!

n
∏

i=1

ai(π),

IPF(n) = n! · PF(n) = n! · (n + 1)n−1.

Other properties of interval parking functions are currently being inves-
tigated by Christensen, DeMuse, Martin, and Yin [2].

The last variant we consider are k-interval parking functions, which are
interval parking functions where each Ci is an interval containing k ele-
ments. We let IPFk(n) denote the number of k-interval parking functions
and IPFk(n, π) the number of those with outcome π. Define Sk

n to be the set
of permutations π of order n with πn > πn−1 > · · · > πn−k+1.

Theorem 1.4. Let k and n be integers with 1 ≤ k ≤ n and let π ∈ Sn. If

π /∈ Sk
n, then IPFk(n, π) = 0. Otherwise,

IPFk(n, π) =

n−k
∏

i=1

min{ai(π), k} ·

n
∏

i=n−k+1

min{n− i− k+ ai(π) + 1, n− i+1}.

This formula is rather complicated, but for certain k it is manageable.
For example, when k = 1 each term in the product is 1. We conclude
that IPF1(n, π) = 1 for all π, and hence IPF1(n) = n!. When k = n, we
have IPFn(n, π) = 1 when π = 12 · · ·n (since in general a1(π) = 1 and
an−i(π) ≤ n − i), and otherwise IPFn(n, π) = 0, so IPFn(n) = 1. Both of
these results can also be verified directly. The formulas for k = n − 1 and
k = 2 are also quite nice.

4

Corollary 1.5. If n ≥ 2 and π ∈ Sn−1
n with π1 = j, then

IPFn−1(n, π) =

{

2n−j−1, j 6= n,

1 j = n.

Moreover,

IPFn−1(n) = 2n−1.

To state the formula for k = 2, we define the ascent number asc(π) of a
permutation π to be the number of i with 2 ≤ i ≤ n and πi−1 < πi. Define
the Eulerian number

〈

n

k

〉

to be the number of permutations π ∈ Sn with
asc(π) = k.

Corollary 1.6. If n ≥ 2 and π ∈ S2
n, then

IPF2(n, π) = 2asc(π)−1.

Moreover,

IPF2(n) =

n−1
∑

k=1

(n− k)

〈

n− 1

k − 1

〉

2k−1.

2 Subset Results

We first prove enumeration results for a generalization of subset parking
functions where each car is given a list of allowed subset sizes. To this end,
given L = (L1, . . . , Ln) with Li ⊆ [n], we define SPF(n,L) to be the number
of subset parking functions where |Ci| ∈ Li, and we will call this an L-parking
function. Our first goal will be to enumerate SPF(n,L).

To do this, we define the notion of a partial parking function, which
intuitively describes where the first m cars have parked. Let Sm,n denote the
set of strings π = π1 · · ·πn where for all 1 ≤ i ≤ m there exists a unique
index j with πj = i and such that every other letter is an auxillary letter
∗. Note that Sn,n is simply the set of permutations. For i ≤ m we let π−1

i

denote the unique index j with πj = i.
We say that (C1, . . . , Cm) with each Ci a non-empty subset of [n] is a

partial L-parking function with outcome π ∈ Sm,n if for all 1 ≤ i ≤ m, |Ci| ∈
Li and π−1

i = j implies j is the smallest element of Ci\{π
−1
i′ : i′ < i}. Finally,

given a permutation π, we write π(m) to denote the string where π
(m)
i = πi

if i ≤ m and π
(m)
i = ∗ otherwise. Once one unpacks these definitions, the

following is immediate.

5

Lemma 2.1. Let 1 ≤ m ≤ n and π ∈ Sn. C is an L-parking function with

outcome π if and only if (C1, . . . , Cm) is a partial L-parking function with

outcome π(m) for all m.

The following lemma shows how to extend partial parking functions.

Lemma 2.2. Let 1 ≤ m ≤ n and π ∈ Sn. If (C1, . . . , Cm−1) is a partial

L-parking function with outcome π, then (C1, . . . , Cm) is a partial L-parking
function if and only if |Cm| ∈ Lm and Cm 6⊂ {π−1

i : i < m}.

Proof. If Cm is such a set, then by assumption |Cm| ∈ Lm and there exists
some minimal j in Cm \ {π−1

k : k < m}. Thus by defining π′ by π′
i = πi for

i 6= j and π′
j = m, we see that (C1, . . . , Cm) is a partial L-parking function

with outcome π′. Conversely, if (C1, . . . , Cm) is a partial L-parking function,
then Cm \ {π−1

k : k < m} must be non-empty, so Cm 6⊂ {π−1
k : k < m}. We

also must have |Cm| ∈ Lm by definition, proving the result.

Theorem 2.3. For any n ≥ 1 and L = (L1, . . . , Ln),

SPF(n,L) =

n
∏

i=1

(

∑

ℓ∈Li

(

n

ℓ

)

−

(

i− 1

ℓ

)

)

.

Proof. Consider the following procedure. We start with an empty list ().
Recursively, given a partial L-parking function (C1, . . . , Ci−1), we choose a
set Ci such that (C1, . . . , Ci) is a partial L-parking function. By Lemma 2.1,
every L-parking function is obtained (uniquely) by this procedure. Thus to
obtain our result we need only enumerate how many choices we can make at
each stage of the procedure.

Assume one has already chosen (C1, . . . , Ci−1) so now we need to choose
Ci. By Lemma 2.2, for any ℓ ∈ Li, the number of ways to choose an appro-
priate Ci with |Ci| = ℓ is

(

n

ℓ

)

−
(

i−1
ℓ

)

. Namely, one can choose any ℓ-element
subset that is not contained in {π−1

j : j < i}. As we allow |Ci| to be any
element of Li, we conclude that the number of choices for Ci is exactly
∑

ℓ∈Li

(

n

ℓ

)

−
(

i−1
ℓ

)

. As the number of choices for Ci is independent of all of
the other Cj sets, we conclude that the total number of ways to complete
this procedure is the product of all of these sums. This gives the desired
result.

We can prove a similar general theorem when the outcome is specified.
To this end, define SPF(n,L, π) to be the number of L-parking functions

6

with outcome π. Recall that invi(π) is defined to be the number of (i, j)
with i < j and πj < πi.

Theorem 2.4. For any n ≥ 1, π ∈ Sn, and L = (L1, . . . , Ln),

SPF(n,L, π) =
n
∏

i=1

(

∑

ℓ∈Li

(

n− invi(π)− 1

ℓ− 1

)

)

.

Proof. Consider the following procedure. We start with an empty list ().
Recursively, given a partial L-parking function (C1, . . . , Ci−1) with outcome
π(i−1), we choose a set Ci such that (C1, . . . , Ci) is a partial L-parking function
with outcome π(i). By Lemma 2.1, every L-parking function with outcome
π is obtained (uniquely) by this procedure. Thus to obtain our result we
need only enumerate how many choices we can make at each stage of the
procedure.

Assume (C1, . . . , Ci−1) is a partial L-parking function with outcome π(i−1).
By Lemma 2.2, if we wish to have |Ci| = ℓ ∈ Li, then we must have
Ci 6⊂ {π−1

i′ : i′ < i}. Moreover, we also must choose this set so that it
has outcome π(i). If j = π−1

i , this is equivalent to having Ci be any subset
with j the minimal element of Ci \ {π

−1
i′ : i′ < i}. To summarize, necessary

and sufficient conditions for Ci to have |Ci| = ℓ are

(a) |Ci| = ℓ,

(b) Ci 6⊂ {π−1
i′ : i′ < i},

(c) j ∈ Ci, and

(d) k /∈ Ci if k < j and k /∈ {π−1
i′ : i′ < i}.

Note that (b) is implied by (c), so this is irrelevant. Condition (d) is equiv-
alent to avoiding k with k < j and i < πk (that is, the car that appears in
the earlier spot k parks after i). The number of such k is exactly invi(π),
so we conclude that the number of Ci satisfying these conditions is exactly
(

n−1−invi(π)
ℓ−1

)

. Summing this value over all ℓ ∈ Li gives the total number of
choices for Ci. As this quantity is independent of all the other choices of Cj ,
we can take their product to arrive at the desired count for SPF(n,L, π).

With this we can now prove our results. We start with Theorem 1.2.

7

Proof of Theorem 1.2. Note that k-subset parking functions are precisely L-
parking functions where Li = {k} for all i. The result follows from Theo-
rems 2.3 and 2.4.

Proof of Theorem 1.1. Subset parking functions are precisely L-parking func-
tions where Li = [n] \ {0} for all i. By Theorem 2.3 we have

SPF(n) =

n
∏

i=1

(

(2n − 1)− (2i−1 − 1)
)

.

Canceling the 1’s and reindexing the product gives the first result. For the
second result, Theorem 2.4 implies

SPF(n, π) =

n
∏

i=1

2n−invi(π)−1 = 2n(n−1)−inv(π),

where we used that inv(π) =
∑

invi(π).

We note that Theorem 1.1 implies

∑

π∈Sn

2n(n−1)−inv(π) =

n−1
∏

i=0

(2n − 2i),

which one can verify using the generating function for the inversion statistic.
This also provides an alternative way to prove the formula for SPF(n) given
the formulas for each SPF(n, π). Similarly Theorem 1.2 implies

∑

π∈Sn

n
∏

i=1

(

n− invi(π)− 1

k − 1

)

=
∏

i=1

((

n

k

)

−

(

i− 1

k

))

.

We are not aware of a more direct method to prove this.
Before closing this section, we briefly discuss a variant of subset parking

functions. Since subset parking functions allow each car to have any set of
positions be acceptable, it also makes sense to allow each car to have their
own preference order for these spots insteadof always requiring them to park
in the left-most available spot.

To formalize this, we say that a list of subsets C = (C1, . . . , Cn), together
with a list of bijections fi : Ci → [|Ci|], is an ordered parking function
with outcome π = π1 · · ·πn if for all 1 ≤ i ≤ n, πj = i implies fi(j) =

8

minj′∈Di
fi(j

′), where Di := Ci \ {π−1
i′ : i′ < i}. We let OPF(n, π) denote

the number of ordered parking functions with outcome π and OPF(n) :=
∑

OPF(n, π) the number of ordered parking functions.
If we define L-ordered parking functions analogous to how we defined L-

parking functions, then essentially the same proof used to prove Theorem 2.3
shows that

OPF(n,L) =

n
∏

i=1

(

∑

ℓ∈Li

(

n

ℓ

)

ℓ!−

(

i− 1

ℓ

)

ℓ!

)

.

With this established, one can prove a nice analog of Theorem 1.1. Namely,
define O(n) =

∑n

ℓ=0

(

n

ℓ

)

ℓ! to be the number of ordered subset of [n]. Then

OPF(n) =

n−1
∏

i=0

(O(n)−O(i)).

In the ordered setting, every π is equally likely to be the outcome of an
ordered parking function, so OPF(n, π) = OPF(n)/n! for all π.

3 Interval Results

As before we first prove a more general theorem. Let K = (K1, . . . , Kn) be
such that Ki ⊆ [n] \ {0} for all i. We say that (C1, . . . , Cn) is a K-interval
parking function if each Ci is an interval with |Ci| ∈ Ki. We define partial
K-interval parking functions analogous to how we defined partial L-parking
functions in the previous section, and as before we immediately have the
following.

Lemma 3.1. Let 1 ≤ m ≤ n and π ∈ Sn. C is a K-interval parking function

with outcome π if and only if (C1, . . . , Cm) is a partial K-interval parking

function with outcome π(m) for all m.

We also have an analog of Lemma 2.2. Recall that we define ai(π) to be
the largest j ≤ i such that πi ≥ {πi, πi−1, . . . , πi−j+1}.

Lemma 3.2. Let 1 ≤ m ≤ n and π ∈ Sn. Let (C1, . . . , Cm−1) be a partial

K-interval parking function with outcome π(m−1) and let p = π−1
m . Then

(C1, . . . , Cm) is a partial K-interval parking function with outcome π(m) if

and only if Cm = [r, r + k − 1] with k ∈ Ki and

max{p− ap(π) + 1, p− k + 1} ≤ r ≤ min{p, n− k + 1}.

9

Proof. Assume (C1, . . . , Cm) is such a partial K-interval parking function
with Cm = [r, r + k − 1] for some r and k. Because |Cm| = k we require
k ∈ Km, and because Cm ⊆ [n] we must have r + k − 1 ≤ n. We also
need p − k + 1 ≤ r ≤ p so that this set contains p. Further, we require
every x ∈ [r, p] to satisfy πx < m, otherwise p will not be the smallest
element of Cm \ {π−1

i : i < m}, which would contradict (C1, . . . , Cm) having
outcome π(m). By definition this will not be the case if r < p− ap(π) + 1, so
r ≥ p− ap(π) + 1. We conclude that r satisfies the desired inequalities.

Conversely, assume Cm = [r, r+k] has r and k satisfying these conditions.
Because p−ap(π)+1 ≥ 1 we have Cm ⊆ [n], and we also have |Cm| = k ∈ Ki.
Again by definition of ap(π) these inequalities imply that p is the smallest
element of Cm \ {π−1

i : i < m}, so this gives the desired partial K-interval
parking function.

Let IPF(n,K, π) denote the number of K-interval parking functions with
outcome π and define

bi(π, k) :=











min{ai(π), k} i ≤ n− k,

0 ai(π) < k + i− n,

min{n− i− k + ai(π) + 1, n− i+ 1} otherwise.

Theorem 3.3. For any n ≥ 1, π ∈ Sn, and K = (K1, . . . , Kn),

IPF(n,K, π) =
n
∏

i=1





∑

k∈Kπi

bi(π, k)



 .

Proof. We consider the number of ways to iteratively build partial K-interval
parking functions with outcomes π(m). If one has already chosen (C1, . . . , Ci−1)
and p = π−1

i , then by Lemma 3.2 the number of ways to choose an appropri-
ate Ci with |Ci| = k ∈ Ki is the number of r in the range

max{p− ap(π) + 1, p− k + 1} ≤ r ≤ min{p, n− k + 1}.

If p ≤ n− k this number is exactly min{ap(π), k}. Otherwise it is

max{0,min{n− k − p+ ap(π) + 1, n− p+ 1}}.

Because n− p+1 ≥ 1, this quantity is 0 if and only if ap(π) + 1 ≤ k+ p−n.
Thus the number of choices for Ci with |Ci| = k is exactly bp(π, k). Summing

10

this over all k ∈ Ki gives a quantity independent of all the other Cj, so we
can take the product of these values and conclude

IPF(n,K, π) =
n
∏

i=1

(

∑

k∈Ki

bπ−1

i

(π, k)

)

.

By reindexing this product, we get the stated result.

Proof of Theorem 1.4. Recall that we wish to prove

IPFk(n, π) =
n−k
∏

i=1

min{ai(π), k} ·
n
∏

i=n−k+1

min{n− i− k+ ai(π) + 1, n− i+ 1}

whenever π ∈ Sk
n. That is, whenever πn > · · · > πn−k+1. Observe that

k-interval parking functions are exactly K-interval parking functions with
Ki = {k} for all i, so a formula for IPFk(n, π) is given by Theorem 3.3. It
remains to rewrite this formula into the desired form.

If π /∈ Sk
n, then there exists some i with 0 ≤ i ≤ k − 2 and πn−i <

πn−i−1. This implies an−i(π) = 1 < k − i, and hence bn−i(π, k) = 0. Thus
IPFk(n, π) = 0.

From now on we assume π ∈ Sk
n. This implies an−i(π) ≥ k − i for all

0 ≤ i ≤ k − 1, and hence for these i we have bn−i(π, k) = min{i − k +
an−i(π) + 1, i + 1}. This gives bj(π, k) for all j ≥ n − k + 1, and otherwise
we have bj(π, k) = min{aj(π), k}. Taking the products of these terms gives
the desired result.

Proof of Corollary 1.5. The statement can be verified for n = 2, so assume
n ≥ 3. By Theorem 1.2 we have for π ∈ Sn−1

n that

IPFn−1(n, π) = min{a1(π), n− 1} ·min{a2(π), n− 1} ·

n
∏

i=3

min{ai(π)− i+ 2, n− i+ 1}

= a2(π) ·
n−1
∏

i=3

min{ai(π)− i+ 2, n− i+ 1},

where we used a1(π) ≤ 1 and a2(π) ≤ 2 ≤ n− 1. We claim that this is equal
to

n−1
∏

i=2

(ai(π)− i+ 2).

11

Indeed this follows from the fact that ai(π) − i + 2 ≤ 2 ≤ n − i + 1 for all
i ≤ n− 1.

Assume π1 = j, and recall that π ∈ Sn−1
n implies that π2 < · · · < πn.

Thus for all i > 1 we have ai(π) = i if πi > j and ai(π) = i − 1 otherwise.
Thus j = n implies that ai(π) = i− 1 for all i ≥ 2, and otherwise there are
exactly n− 1 − j different i with 2 ≤ i ≤ n− 1 and ai(π) = i. We conclude
the first result. For the second result,

IPFn−1(n) =
∑

π∈Sn−1
n

IPFn−1(n, π) = 1 +

n−1
∑

j=1

2n−j−1 = 2n−1.

In principle this same technique can be used to compute IPFn−k(n, π) and
IPFn−k(n) for any fixed k, though the case analysis and computations become
rather complicated. We note that one can prove IPFn−1(n) = 2n−1 more
directly by observing that (C1, . . . , Cn) will be an (n − 1)-interval parking
function if and only if Cn = [2, n] and Ci is [1, n− 1] or [2, n] for all other i.

Before proving Corollary 1.6, we give an enumeration result for permuta-
tions in S2

n with a given number of ascents. We adopt the convention
〈

0
k

〉

= 0

for k > 0,
〈

0
0

〉

= 1, and
〈

n

−1

〉

= 0.

Lemma 3.4. For all n and k with n ≥ 1 and 0 ≤ k ≤ n− 1, let S+
n,k be the

set of permutations of size n which have πn−1 < πn and which have exactly

k ascents. If P (n, k) := |S+
n,k|, then

P (n, k) = (n− k)

〈

n− 1

k − 1

〉

.

We note that this result is implicitly proven in [3], but for completeness we
include the full proof here. To prove this, we recall the following recurrence
for Eulerian numbers, which is valid for all n, k ≥ 1 [7].

〈

n

k

〉

= (k + 1)

〈

n− 1

k

〉

+ (n− k)

〈

n− 1

k − 1

〉

. (2)

Proof. The result is true for k = 0, so assume that we have proven the result
up to k ≥ 1. For any fixed k the result is true for n = 1, so assume the result

12

has been proven up to n ≥ 2. To help us prove the result, we define S−

n,k to
be the set of permutations which have πn−1 > πn and which have exactly k
ascents. Define M(n, k) := |S−

n,k|. By construction we have

P (n, k) +M(n, k) =

〈

n

k

〉

. (3)

Define the map φ : S+
n,k → Sn−1 by sending π ∈ S+

n,k to the word obtained
by removing the letter 1 from π and then decreasing the value of each letter
by 1. For example, φ(32514) = 2143. We wish to determine the image of φ.
Let π be a permutation in S+

n,k, and let i denote the position of 1 in π. Note
that i 6= n since π ends with an ascent. If πi−1 < πi+1 with 1 < i < n, then
φ(π) will continue to have k ascents and end with an ascent, so φ(π) ∈ S+

n−1,k.

If i = 1 or πi−1 > πi+1 with 1 < i < n− 1, then φ(π) ∈ S+
n−1,k−1. If i = n− 1

and πn−2 > πn, then φ(π) ∈ S−

n−1,k−1.
It remains to show how many times each element of the image is mapped

to by φ. If π ∈ S+
n−1,k, then 1 can be inserted into π in k ways to obtain an

element of S+
n,k (it can be placed between any of the k ascents πi < πi+1). If

π ∈ S+
n−1,k−1, then 1 can be inserted into π in n − k ways (it can be placed

at the beginning of π or between any of the n− 1− k descents πi > πi+1). If
π ∈ S−

n−1,k, then 1 must be inserted in between πn−1 > πn in order to have
the word end with an ascent. With this and the inductive hypothesis, we
conclude that

P (n, k) = kP (n− 1, k) + (n− k)P (n− 1, k − 1) +M(n− 1, k − 1)

= k(n− k − 1)

〈

n− 2

k − 1

〉

+ (n− k)2
〈

n− 2

k − 2

〉

+M(n− 1, k − 1).

(4)

By using (3), the inductive hypothesis, and (2); we find

M(n− 1, k − 1) =

〈

n− 1

k − 1

〉

− P (n− 1, k − 1)

=

〈

n− 1

k − 1

〉

− (n− k)

〈

n− 2

k − 2

〉

= k

〈

n− 2

k − 1

〉

.

13

Plugging this into (4) and using (2) gives

P (n, k) = (n− k)

(

k

〈

n− 2

k − 1

〉

+ (n− k)

〈

n− 2

k − 2

〉)

= (n− k)

〈

n− 1

k − 1

〉

,

as desired.

Proof of Corollary 1.6. By Theorem 1.2 we have, after evaluating terms which
are automatically 1,

IPF2(n, π) =
n−1
∏

i=2

min{ai(π), 2}.

Note that ai(π) ≥ 2 if and only if πi−1 < πi. There are exactly asc(π) − 1
different i with 2 ≤ i < n satisfying this, where we subtract 1 since π ∈ S2

n

implies that there is always an ascent at position n − 1. We conclude the
first result.

For the second result, we sum IPF2(n, π) over all π ∈ S2
n. Each term

contributes 2asc(π)−1, so we conclude the result by Lemma 3.4 after noting
that

〈

n−1
−1

〉

= 0.

Corollary 1.6 shows that, for n ≥ 2, IPF2(n) is equal to the number of
connected threshold graphs on n vertices [3]. This can be proven bijectively
from essentially the same proof as in [3], but for brevity we omit the details.
The formulas for k = 3 and k = n − 2 seem complicated (though the latter
can be put into a closed form), and as of this writing neither sequence appears
in the OEIS.

Before proving our enumeration results for interval parking functions, we
first directly enumerate the number of parking functions with a given out-
come. In what follows we treat parking functions as subset parking functions
(C1, . . . , Cn) where Ci = [ci, n] for some 1 ≤ ci ≤ n. Define a partial parking
function (C1, . . . , Cm) analogous to how we defined L-partial parking func-
tions. We immediately have the following.

Lemma 3.5. Let 1 ≤ m ≤ n and π ∈ Sn. C is a parking function with

outcome π if and only if (C1, . . . , Cm) is a partial interval parking function

with outcome π(m) for all m.

We also have an analog of Lemma 3.2.

14

Lemma 3.6. Let 1 ≤ m ≤ n and π ∈ Sn. Let (C1, . . . , Cm−1) be a partial

parking function with outcome π(m−1) and let p = π−1
m . Then (C1, . . . , Cm) is

a partial parking function with outcome π(m) if and only if Cm = [r, n] with
p− ap(π) + 1 ≤ r ≤ p.

Proof. Assume (C1, . . . , Cm) is such a partial parking function with Cm =
[r, n] for some r. We need r ≤ p so that this set contains j. Further, we
require every x ∈ [r, p] to satisfy πx < m, otherwise p will not be the smallest
element of Cm \ {π−1

i : i < m}, which would contradict (C1, . . . , Cm) having
outcome π(m). By definition this will not be the case if r < p− ap(π) + 1, so
r ≥ p− ap(π) + 1. We conclude that r satisfies the desired inequalities.

Conversely, assume Cm = [r, n] has r satisfying these inequalities. Be-
cause p−ap(π)+1 ≥ 1 we have Cm ⊆ [n]. Again by definition of ap(π) these
inequalities imply that p is the smallest element of Cm \ {π−1

i : i < m}, so
this gives the desired partial parking function.

Proposition 3.7.

PF(n, π) =
n
∏

i=1

ai(π).

Proof. Assume one has chosen C1, . . . , Ci−1 so that (C1, . . . , Ci−1) is a partial
parking function with outcome π(i−1). There are aπ−1

i

(π) choices for Ci to

make (C1, . . . , Ci) a partial parking function with outcome π(i) by Lemma 3.6.
Every parking is obtained this way by Lemma 3.5, so taking the product over
all these values and reindexing gives the desired result.

We use Theorem 3.3 to prove Theorem 1.3, and to do so we require the
following lemma.

Lemma 3.8. For any n ≥ 1 and π ∈ Sn,

n
∑

k=1

bi(π, k) = ai(π)(n− i+ 1).

Proof. Throughout this proof we use that the “otherwise” case in the defini-
tion of bi(π, k) can be written as n− i+ 1 + ai(π)−max{ai(π), k}.

15

We first consider the case ai(π) ≤ n− i and split the sum into two parts.
For ai(π) < n− i we have

n−i
∑

k=1

bi(π, k) =

n−i
∑

k=1

min(ai(π), k) =

ai(π)
∑

k=1

k +

n−i
∑

k=ai(π)+1

ai(π)

=

(

ai(π) + 1

2

)

+ (n− i− ai(π))ai(π). (5)

If ai(π) = n− i the same formula holds by essentially the same reasoning.
If k > n− i+ ai(π) we have bi(π, k) = 0, so the rest of the sum is

n−i+ai(π)
∑

k=n−i+1

bi(π, k) = (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

max{ai(π), k}

= (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

k, (6)

where we used our assumption ai(π) ≤ n− i < k in this last equality. Using
the identity

∑x+y

k=x+1 k = xy +
(

y+1
2

)

, we conclude that (6) equals

(ai(π) + 1)ai(π)−

(

ai(π) + 1

2

)

.

Adding this to (5) gives the desired result.
Now assume ai(π) ≥ n− i+ 1. In this case we have

n−i
∑

k=1

bi(π, k) =
n−i
∑

k=1

min(ai(π), k) =
n−i
∑

k=1

k

=

(

n− i+ 1

2

)

. (7)

The rest of the sum is
n−i+ai(π)
∑

k=n−i+1

bi(π, k) = (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

max{ai(π), k}

= (n− i+ ai(π) + 1)ai(π)− ai(π)(ai(π)− n + i)−

n−i+ai(π)
∑

k=1+ai(π)

k

= (2n− 2i+ 1)ai(π)−

(

n− i+ 1

2

)

− ai(π)(n− i). (8)

16

Adding (7) and (8) gives the desired result.

Proof of Theorem 1.3. Observe that interval parking functions are exactly
K-interval parking functions with Ki = [n] for all i, so by Theorem 3.3,
Lemma 3.8, and Proposition 3.7; we have

IPF(n, π) =
n
∏

i=1

ai(π)(n− i+ 1) = n!
n
∏

i=1

ai(π) = n! · PF(n, π).

Using (1), we find

IPF(n) =
∑

π∈Sn

IPF(n, π) = n!
∑

π∈Sn

PF(n, π) = n! · PF(n) = n! · (n+ 1)n−1.

4 Acknowledgments

The author was fortunate to have many fruitful discussions about this topic
at the Graduate Research Workshop in Combinatorics. In particular we
would like to thank Emma Christensen, Ryan DeMuse, Sean English, Jeremy
Martin, Puck Rombach, Mike Ross, and Mei Yin.

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1650112.
This work was completed in part at the 2019 Graduate Research Workshop
in Combinatorics, which was supported in part by NSF grant #1923238,
NSA grant #H98230-18-1-0017, a generous award from the Combinatorics
Foundation, and Simons Foundation Collaboration Grants #426971 (to M.
Ferrara), #316262 (to S. Hartke) and #315347 (to J. Martin).

References

[1] A. Christensen et al. “A Generalization of Parking Functions Allowing
Backward Movement.” arXiv preprint arXiv:1908.07658 (2019).

[2] E. Christensen, R. Demuse, J. Martin, and M. Yin. Personal Commu-
nications.

17

http://arxiv.org/abs/1908.07658

[3] S. Spiro. “Counting Threshold Graphs with Eulerian Numbers.” arXiv

preprint arXiv:1909.06518 (2019).

[4] A. Postnikov and B. Shapiro. “Trees, parking functions, syzygies, and
deformations of monomial ideals.” Transactions of the American Math-

ematical Society 356.8 (2004): 3109-3142.

[5] R. Stanley. “Hyperplane arrangements, interval orders, and trees.” Pro-
ceedings of the National Academy of Sciences 93.6 (1996): 2620-2625.

[6] R. Stanley. “Parking functions and noncrossing partitions.” Electron.

J. Combin 4.2 (1997): R20.

[7] E. Weisstein. “Eulerian Number.” http://mathworld.wolfram.com/EulerianNumber.html

[8] C. Yan. “On the enumeration of generalized parking functions.” Con-

gressus Numerantium (2000): 201-210.

[9] C. Yan. “Parking functions.” Handbook of Enumerative Combinatorics.
Chapman and Hall/CRC, 2015. 859-918.

18

http://arxiv.org/abs/1909.06518
http://mathworld.wolfram.com/EulerianNumber.html

	1 Introduction
	2 Subset Results
	3 Interval Results
	4 Acknowledgments

