
UNIVERSITY OF OXFORD

Expanding the use of
quasi-subfield polynomials

Candidate: Marie Euler

supervised by Dr Christophe Petit

A dissertation submitted for the degree of

Master of Mathematics and Foundations of Computer Science

Trinity 2019
2nd September 2019

ar
X

iv
:1

90
9.

11
32

6v
1

 [
cs

.C
R

]
 2

5
Se

p
20

19

Acknowledgements

I would like to thank Dr Petit for his encouragements and guidance as
my supervisor. Weekly discussions helped me to generate new ideas and
to distinguish the promising leads among them.

I also want to thank the Booking.com Women in Technology Scholarship
which financial support enabled me to spend this wonderful year in
Oxford.

Moreover, I would like to thank Gary McGuire and Daniela Mueller for
their transparency towards my supervisor and me. Indeed, Theorem 1.2
is in some sense similar to their results of [12] not yet published, and
which they shared with us in July 2019. However, these results were
established independently at the same time.

Last but not least, I want to warmly thank my family and friends for
their encouragements all along the summer.

Abstract

The supposed hardness of the elliptic curve discrete logarithm prob-
lem is crucial for modern cryptographic protocols. In 2018, the article
Quasi-subfield polynomials and the elliptic curve discrete logarithm prob-
lem [11] by Huang et al. highlighted the potential of a specific class of
polynomials to solve this problem at lower cost.

Following different tracks that were mentioned in this article, we were
able to prove new results: we have exhibited and proved five more fam-
ilies of quasi-subfield polynomials. They are based on additive groups
and multiplicative groups. Nonetheless, none of the found families al-
lows us to beat already known ECDLP algorithms. We explained this
obstruction in the case of linearized polynomials by proving a new tight
lower bound. Finally, we briefly discuss how other algebraic groups
could be used in this context.

Contents

1 Introduction 5

2 From quasi-subfield polynomials to an ECDLP algorithm 7

2.1 Previous ECDLP algorithms . 7

2.2 The quasi-subfield approach . 8

2.3 Complexity of the quasi-subfield approach 9

3 Use of additive subgroups 13

3.1 Linearized polynomials . 13

3.2 How to find linearised quasi-subfield polynomials 15

3.3 Linearized quasi-subfield polynomials with n Mersenne 21

4 Lower bounds on β for linearized quasi-subfield polynomials 23

4.1 The result . 23
4.2 The informal proof . 25

4.3 The formal proof . 29

4.4 Comparison with other lower bounds 31

4.5 Consequences of this theorem . 32

5 Use of multiplicative groups 33

5.1 Polynomials based on multiplicative groups 33

5.2 New families of quasi-subfield polynomials 33

5.3 Critics of this definition of quasi-subfield polynomial 38

6 Use of other algebraic groups 38

6.1 Torus . 38
6.2 Elliptic curves . 39

7 Conclusion 41

References 42

A Appendix 43

A.1 Omitted proofs . 43

A.2 Systematic search of quasi-subfield polynomials 45

3

Symbols used

p a prime number

q a prime power

n an integer

n′ an integer smaller than n

ñ an integer dividing n

k an integer such that n = k.ñ.

We often choose q = pk so that Fpn = Fqñ
P a monic polynomial in Fpn [X]

L a monic linearized polynomial in Fpn [X]

σ An element of Gal(Fqñ/Fq)
d The σ-degree of L

λ a polynomial in Fpn [X] such that P = Xpn
′
− λ(X)

` logp(λ)

β `n
n′2

m an integer

α m.n
′

n

calgo constant appearing in the estimation of the complexity

of the ECDLP algorithm, currently estimated as 4.876

Lp,n the set of linearized quasi-subfield polynomials in Fpn [X]

� a symbol used to mark unknown coefficients

4

1 Introduction

The hardness of the discrete logarithm problem (for a cyclic group G =< g >

and h, compute k such that h = gk, also called DLP) is an essential component

of modern cryptography. This is indeed fundamental in the Diffie Hellman key

exchange protocol which enables us to exchange cryptographic keys through an

insecure channel. When applied using elliptic curves, it is called the elliptic curve

discrete logarithm problem (ECDLP).

In 2018, quasi-subfield polynomials were introduced in [11] by Huang, Kosters,

Petit, Yeo and Yun, with the aim of obtaining a new and more efficient algorithm

than what is currently known to solve the elliptic curve discrete logarithm problem.

Indeed, they permit to solve more quickly a polynomial system which is central in

this new approach of the problem. They are defined in the following way:

Definition 1.1 (Quasi-subfield polynomial). Let p prime and n ≥ n′ two integers.

Then, P = Xpn
′
− λ(X) ∈ Fpn [X] is a quasi-subfield polynomial if and only if P

completely splits over Fpn and β(P) :=
logp(deg λ).n

n′2
≤ 1. In the following, we will

note ` := logp(deg λ). It may not be an integer.

This definition is motivated by the polynomial Xpn
′
− X i.e. the polynomial

whose roots exactly define the base field if n′ = 1, or if n′ > 1 and n′|n define a

subfield of Fpn . However [7] already treated the case of the base field and [9] treated

the case n composite. Moreover, the most frequent cases in cryptography use p and

n primes. Therefore, we wanted to mainly focus on the case when n is prime. These

subfield polynomials can naturally be generalized by allowing more low-degree terms,

leading to Definition 1.1 (hence the name quasi-subfield polynomials). In order to

avoid dealing with subfield polynomials, we will only consider deg λ > 1, and thus

only deal with β(P) > 0. When the signification is clear, we will often write β

instead of β(P).

The idea to keep in mind in the following part is that the lower β is, the better

the ECDLP algorithm is. If β is close to 1, this approach is slighly better than the

most naive approach to solve the ECDLP but it does not improve the best existing

algorithms. To beat the latter, we would need β close to 0.1 or less. The original

paper gives only one family of quasi-subfield polynomials: P = X+Xqp0 +· · ·+Xqpa ,

where q and q′ are powers of p, n is such that pn = qpa+1 , and pi = 1 + q′+ · · ·+ q′i.

Nonetheless, for this family, β is really close to 1. A natural question is therefore

whether other families of quasi-subfield polynomials exist, and what is the minimal

possible value for β.

5

Methodology and results In this work, we studied different candidates for

quasi-subfield polynomials. We grouped them according to the group structure

of their roots: additive groups, multiplicative groups and other algebraic groups

were considered. We gave rules to deduce new linearized (a special case of polyno-

mials based on additive groups) quasi-subfield polynomials from known ones and

then group them by equivalence classes. This helped us to exhibit two new fami-

lies of linearized quasi-subfield polynomials. One of our families uses a Mersenne

number for n and contradicts with a conjecture made in [11].

We then established the following lower bound on β in the case of linearized

polynomials.

Theorem 1.2. Let L = Xpn
′
− (a`X

p` + a`−1X
p`−1

+ · · · + a0X) a linearized

polynomial with ` ≥ 1 and ∀i, ai ∈ Fpn . If L completely splits over Fpn then

β = `.n/n′2 ≥ 3/4.

This is a major obstruction to the existence of linearized quasi-subfield polyno-

mials able to beat the best known ECDLP algorithms.

We used the computer algebra system SageMath[2] through this work to guide

our intuition and conjecture interesting families of quasi-subfield polynomials. As-

sociated with a result of McGuire and Sheekey [13] characterizing linearized polyno-

mials that completely split over their field of definition, this helped us to conjecture

two new families of linearized quasi-subfield polynomials. SageMath also helped us

conjecture three new families of quasi-subfield polynomials based on multiplicative

groups. The lowest β encountered for a quasi-subfield polynomial in this disserta-

tion is 4
9

log2(3) ' 0.7 (with a multiplicative polynomial).

Outline. In Section 2, we will describe more explicitly the contribution of quasi-

subfield polynomials to the elliptic curve discrete logarithm problem algorithm. We

will in particular highlight the relation between the value of β and the complexity

of this new approach and thus explicit the constraints required for this to run faster

than the already known algorithms. In Section 3, we will give three new families of

linearized quasi-subfield polynomials. We will notice that their β is really close to 1

and explain this result by a lower bound on β for linearized polynomials in Section

4. In Section 5, we will explore quasi-subfield polynomials based on multiplicative

groups and we will exhibit some of them. Finally, in Section 6, we will initiate

a study based on other algebraic groups such as the torus or elliptic curves. We

conclude the thesis in Section 7.

6

2 From quasi-subfield polynomials to an ECDLP

algorithm

Let us now provide more information about the contribution of quasi-subfield poly-

nomials to the solving of the elliptic curve discrete logarithm problem. Therefore,

we will first do a benchmark of the existing ECDLP algorithms. Then, we will

present the algorithm introduced in [11] which uses quasi-subfield polynomials to

solve the ECDLP. We will later recall its complexity and give more insight about

the link between the value of β and the complexity of the algorithm.

2.1 Previous ECDLP algorithms

Let us consider an ECDLP instance: Let E be an elliptic curve on K = Fpn , P

a point on the curve E and Q a point in < P >, the group generated by P . We

are looking for k such that Q = kP . How do we compute k? At what cost?

Throughout this document, we will compare the complexity of the algorithm of [11]

solving the ECDLP to two targets:

• O (pn) which is approximately the size of < P >. It is often called the com-

plexity of the exhaustive search or of brute-force algorithms: it corresponds

to compute all the elements of < P > until finding Q.

• O
(
pn/2

)
which is approximately

√
| < P > |. It can be obtained using generic

algorithms such that Baby-Step-Giant-Step or Pollard-Rho [18].

For more information about these algorithms and other tracks to solve the

ECDLP, the reader can consult Recent progress on the elliptic curve discrete loga-

rithm problem [8] by Galbraith and Gaudry. It is also worth noticing that the two

targets introduced here are associated to algorithms which can solve the discrete

logarithm problem in any group. Therefore, we can hope that the new algorithm,

which uses the structure of the group, has a better complexity.

If we want to consider the case where n is composite, we write n = ñk and

consider q = pk so that Fpn = Fqñ . In that case, we need to compare our results

to the best done for this kind of field: Gaudry [9] succeeded in 2009 to find an

algorithm solving the elliptic curve discrete logarithm problem on Fqñ in O(q2−2/ñ)

where the O(.) notation hides a constant increasing quickly with ñ. For ñ = 2,

it leads to an algorithm in O(p(n/2)(2−1)) = O(pn/2) comparable with the generic

7

algorithm. For ñ = 3, it leads to an algorithm in O(p(n/3)(2−2/3)) = O(p4/9n) slightly

better than generic algorithms.

Diem also proved that there exists a sequence of prime powers Qi = qnii with

ni '
√
log(qi) such that the ECDLP in E(FQi) can be solved in subexponential

time [7]. It works any elliptic curve over FQi and uses an approach similar to

the one introduced below but with subfield polynomials instead of quasi-subfield

polynomials. This was one of the motivation of this new approach.

2.2 The quasi-subfield approach

Let us now introduce the algorithm which uses quasi-subfield polynomials to solve

the elliptic curve discrete logarithm problem. let us consider an ECDLP instance:

Let E be an elliptic curve on K = Fpn , P ∈ E and Q ∈< P >. We are looking for

k such that Q = kP .

Let R ∈ Fpn [X] be a quasi-subfield polynomial. We define V as the set of the

roots of R and F := {(x, y) ∈ E|x ∈ V }. We are looking for more than |V | relations

of the shape: ajP + bjQ = P1 + · · ·+Pm with the Pi in F . Indeed, if we succeed to

find these relations, some linear algebra will give the value of k such that Q = kP .

In order to find these relations, we rely on an idea introduced by Semaev in [16]

which uses Semaev summation polynomials: for an elliptic curve E defined on a

field K we can define Sr ∈ K[X] such that

Sr(x1, . . . , xr) = 0⇔ ∃(x1, y1), . . . (xr, yr) ∈ E , (x1, y1) + . . . (xr, yr) = 0

Moreover, we can choose aj, bj uniformly at random in Fpn and consider ajP +

bjQ = (Xj, Yj). Then, computing P1,. . . ,Pm such that ajP + bjQ = P1 + · · ·+Pm =

(x1, y1) + · · · + (xm, ym) with the xi in V amounts in finding x1, . . . , xm ∈ V such

that (Xj, Yj) + (x1,−y1) + . . . (xm,−ym) = 0 (we here only explicit the case where

we can use the reduced Weierstrass equation of the elliptic curve, and thus have

−(x, y) = (x,−y)). Therefore, it boils down to finding x1, . . . , xm ∈ V such that

Sm+1(Xi, x1, . . . , xm) = 0 and then finding the associated yi.

In order to solve the polynomial equation Sm+1(Xi, x1, . . . , xm) = 0, let us in-

troduce the following tools:

• Let M be the set of monomials in K[x1, . . . , xm]. Let i be a positive integer.

For f =
∑

M∈M aMM ∈ K[x1, . . . , xm], we define F i(f) =
∑

M∈M ap
i

MM .

8

• Let

φ : K[x1, . . . , xm] → K[x1, . . . , xm]

f(x1, . . . , xm) 7→ F n′(f)(λ(x1); . . . , λ(xm))

Then fp
n′ ≡ φ(f) mod (xp

n′

1 − λ(x1), . . . , xp
n′

m − λ(xm))

• Let S(0)(x1, . . . , xm) = Sm+1(Xi, x1, . . . , xm) and for k ∈ {1, . . . ,m− 1},
S(k)(x1, . . . , xm) = φ(S(k−1)(x1, . . . , xm))

Then the point decomposition problem is reduced to solving S =
{
S(k)

}m−1

k=1

which is a sparse polynomial system of m equations and m variables. Repeating

this step with different aj, bj until we know the decomposition of |V | different points

of the curve. Then, as said before, it is possible to recover, through linear algebra,

the value of k.

2.3 Complexity of the quasi-subfield approach

Let us now recall how the original article gave an estimation of the complexity of

this algorithm.

We know that S =
{
S(k)

}m−1

k=1
is a sparse polynomial system of m equations and

m variables. Therefore, it can be solved efficiently using Rojas’ sparse resultant

algorithm [15] and a univariate polynomial root finding algorithm such as BTA [3].

According to [11] (Lemma 3.1) the cost of this step is Õ(m5.188(3p`)calgom
2
). Here

we introduce the notation calgo instead of the value 4.876 present in Lemma 3.1

since we think this numerical value may be suboptimal. Moreover, it succeeds only

with probability |F|m/m!
pn

since (Xi, Yi) is a random point on E with |E| ' pn and

the number of sum of m points in F is approximately |F|m/m!. Also, heuristically,

half of the values in V are the x-coordinates of exactly two points on the curve

so |F| ' |V | = pn
′
. Furthermore, we are looking for pn

′
relations of this type.

Therefore the cost of the relation search phase is pn
′m!.pn

pn′.m
Õ(m5.188(3p`)calgom

2
)

Once all the pn
′

relations are gathered, each of them involves m points. There-

fore, the system built from this relations is sparse. Thus, a sparse linear algebra algo-

rithm can be used to finish the computation [19]. It costs approximately mp2n′ . This

gives the complete cost of the algorithm: m!pn−n
′.m+n′Õ(m5.188(3p`)calgom

2
) +mp2n′ .

Rewriting it to make β appear, we get the following estimation of the complexity:

9

Proposition 2.1 (Complexity of the new algorithm). Let us consider a β-quasi-

subfield polynomial P = Xpn
′
− λ(X) and ` = logp(deg λ). If |F| ' |V| ' pn

′
, the

complexity of this algorithm is

Õ

(
m!p

n

(
1+calgoβ

(
n′m
n

)2
−n
′m
n

)
+n′

m5.1883calgom
2

)
+mp2n′

where calgo is a constant involved in the cost of the resolution of the system S
currently majored by 4.876.

We will try to find m which minimises this complexity. In the following section

we will consider α > 0 as an abbreviation for n′m/n. We will assume that m is

fixed.

Proposition 2.2 (Best choice of parameters). We can observe the following results

in order to optimize the complexity:

• The minimal complexity is obtained for α = αβ with αβ := 1
2calgoβ

. Then, the

complexity becomes Õ
(
pmax(2αβ/m,1−αβ(1/2−1/m))n

)
.

• In order to beat brute force algorithms, it is required to havem > max(2αβ, 2).

So we have interest not to choose a very small integer for m.

• If αβ < 2 and m� 1, then the complexity can be rewritten as Õ
(
p(1−αβ/2)n

)
• Therefore, to beat generic algorithms, we need αβ > 1

We can remark that the condition αβ < 2 is not really restrictive. Indeed

for all the quasi-subfield polynomials exhibited in this dissertation, we will have

αβ < α0.5 < 1.

Proof. Let us now prove these four results. The complexity of the algorithm is

bounded by Õ(m!pn(1+calgoβ(n′m/n)2−n′m/n)+n′m5.1883calgom
2
) + mp2n′ which with the

α-notation and the fact that m is considered as a fixed integer, can be rewritten as

Õ(pn(calgoβα
2−α+1)+αn/m + p2αn/m)

Since calgoβα
2 − α + 1 is minimum for α = 1

2calgoβ
= αβ (we recall that we only

consider β > 0) and then has minimal value calgoβ
1

(calgoβ)2
− 1

2calgoβ
+1 = 1− 1

4calgoβ
=

1− αβ
2

, we get that the complexity can be rewritten as

Õ
(
pmax(2αβ/m,1−αβ(1/2−1/m))n

)
.

10

In order to beat the brute force algorithms (which corresponds to a complexity

of O(pn)), what we need is to have on one side 2αβ/m < 1 which is true as soon

as m > 2αβ, and on the other side, 1 − αβ(1/2 − 1/m) < 1 ie m > 2. Hence

m > max(2αβ, 2).

Moreover, one can notice that 2αβ/m ≤ 1− αβ(1/2− 1/m) if only if αβ(1/m+

1/2) ≤ 1. Therefore if m � 1 then αβ ≤ 2 implies 2αβ/m ≤ 1 − αβ((1/2 − 1/m),

so we can rewrite the complexity as Õ
(
p(1−αβ/2)n

)
.

Generic algorithms have a complexity of 0(pn/2), therefore we need αβ > 1 to

run faster than them.

Let us now observe some values in order to get some insights on the results we

can hope to have. We approximate calgo by 4.876.

β 1− αβ/2 max(2αβ, 2) αβ

1.0 0.949 2 0.103

0.8 0.936 2 0.128

0.6 0.915 2 0.171

0.4 0.872 2 0.256

0.2 0.744 2 0.513

0.15 0.658 2 0.684

0.1 0.487 2.05 1.025

Table of the relations between β and the complexity

We observe that for β = 1, 1 − αβ/2 ' 0.95 so we get a complexity slightly

better than the one of brute force algorithms. This motivated the choice of the

bound β ≤ 1 for the definition of quasi-subfield polynomials.

Also, we observe again here the fact that we beat generic algorithms for αβ > 1,

which for this specific value of calgo implies β < 0.103.

Of course, the results of Proposition 2.2 uses the fact that we can choose any

value for α = n′m/n. However this would be an ideal case. Indeed this implies

m = αn/n′, which is rarely an integer. Thus it is unlikely that αβn/n
′ is an

integer. In that sense, the results of Proposition 2.2 gives only lower bounds on the

complexity. Therefore, we can ask to what extent can we change α so that αn/n′

is an integer and the complexity is still interesting.

11

Lemma 2.3 (Choice of α with m integer). Here are a few results about the realistic

requirements to beat the other algorithms:

• If αβ = 1
2.calgoβ

≥ 9n′

4n
, then it is possible to beat the exhaustive search.

• If αβ >
1+
√

1+n′2/n2

2
and n′

n
� αβ −

√
α2
β − αβ, then it is possible to reach a

complexity better than generic algorithms.

The proof can be found in appendix.

In the following, we will only keep the least restrictive condition which give

us a good overview of when the polynomials would allow us to have an algorithm

better than the exhaustive search. Therefore, we would like to suggest the following

variant of quasi-subfield polynomials:

Definition 2.4 (Full quasi-subfield polynomials). Let p prime and n ≥ n′ two

integers. Then, P = Xpn
′
−λ(X) ∈ Fpn [X] is a full quasi-subfield polynomial if and

only if it matches the following three requirements :

• P completely splits over Fpn

• β(P) =
logp(deg λ).n

n′2
≤ 1

• αβ = 1
2.calgoβ

≥ 9n′

4n
.

Let us apply this definition to the quasi-subfield polynomials exhibited in the

original article. There, it is shown that Pa = X+
∑a

i=0X
qpi , (where q = pk, q′ = pr,

pi =
∑i

j=0 q
′j) is a 1-quasi-subfield polynomial in Fqpa+1 . The associated values are

n = kpa+1, n′ = kpa,` = kpa−1. Moreover n/n′ = kpa+1/(kpa) = (q′pa + 1)/pa ' q′

so Pa is a full quasi-subfield polynomial if and only if q′ > 21 (for calgo ' 4.876).

Furthermore, β = pa+1.pa−1

p2a
= (q′.pa+1)(pa−1)/q′

p2a

= p2a−pa+(pa−1)/q′

p2a

= 1− 1
pa

(1− 1
q′

+ 1
q′.pa

)

≥ 1− 1
2

(
1 + 1

2

)
= 1/4 (q′ ≥ 1 and pa ≥ p2 = 1 + q′ ≥ 2)

Thus αβ < 1, therefore there is no hope of beating generic algorithms with this

family. This justifies our need to find other families of quasi-subfield polynomials.

Now that we have motivated the interest of quasi-subfield polynomials to solve

the ECDLP, and given more insights of what we expect from these polynomials, let

us search some other families of quasi-subfield polynomials.

12

3 Use of additive subgroups

The previous family of quasi-subfield polynomials belong to a larger family called

the linearized polynomials. These polynomials have the particularity that the group

of their roots is additive. Since the only example of quasi-subfield polynomials we

had was of this type, we dedicated a good part of our time to the search of similar

quasi-subfield polynomials.

Let us now present the track we followed to find them. We will first introduce

the linearized polynomials and some of their properties. Then, we will introduce

how we found new families of quasi-subfield polynomials and how we grouped them

in order to avoid repetition of similar polynomials. Finally, we will comment on the

presence of Mersenne prime n in the exhibited families.

3.1 Linearized polynomials

Let us begin by introducing linearized polynomials. Since we focus on the roots

of these polynomials, we can admit without loss of generality that they are monic.

Let us consider q a prime power: q = pk with p prime and k ≥ 1. Then, we now

write n = ñk so that Fpn = Fqñ .

Definition 3.1 (Linearized polynomials). Let f = a0 + a1X + · · ·+Xd ∈ Fpn [X].

Then Lf,σ = a0X+a1X
σ+· · ·+Xσd ∈ Fpn [X] with σ ∈ Gal(Fpn) is the linearized

polynomial associated with f and σ. The σ-degree of Lf,σ is d. σ ∈ Gal(Fpn) so

Xσ is a notation for σ(X) = Xqs with gcd(s, ñ) = 1.

It is worth noticing that when we are considering the case k > 1, we are working

with extension field with the degree of the extension being composite. The com-

plexity of the best known algorithms for ECDLP in these fields is recalled in Section

2.

Gary McGuire and John Sheekey give in A characterisation of the number of

roots of linearized and projective polynomials in the field of coefficients [13] a way

to identify linearized polynomial which completely splits and this could be quasi-

subfield polynomial. It uses the following matrices.

13

Definition 3.2 (Companion matrix CL, AL). Let L = a0X + a1X
σ + · · · + Xσd

a linearized polynomial with coefficients in Fpn . We can associate to L the matrix

CL :=



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
...

. . .
...

0 0 . . . 1 −ad−1


.

Then, we also define the matrix AL := CL.C
σ
L.C

σ2

L . . . Cσñ−1

L with Cσ
L being the

application of x 7→ xσ = xq
s

coefficient-wise. Note that AL and CL are square

matrices of dimension d.

Then, the characterisation of completely splitting linearized polynomials relies

on this useful result:

Proposition 3.3 (Number of roots). Let L = a0X + a1X
σ + · · ·+Xσd a linearized

polynomial with coefficients in Fpn . The number of roots of L in Fqñ is given by

qn1 , where n1 is the dimension of the eigenspace of AL with eigenvalue 1. Hence, L

completely splits over Fpn [X] if and only if AL = I.

The maximum number of roots of L in Fqñ is qd. So L completely splits over

Fqñ only if s = 1. Therefore we will only consider the case s = 1 in the following

discussion. Hence, we can now replace σ by q in the expression of L. Moreover,

one can observe any polynomial written as Lf,pk can also be written as Lg,p with

g = f(Xk). Hence we will now always admit that q = p and write Lf as a shortcut

for Lf,p.

Another property about completely splitting linearized polynomials is the follow-

ing. It will be really useful when it comes to verifying that a linearized polynomial

completely splits.

Proposition 3.4 (Completely splitting). Let f = a0 + a1X + · · · + Xd ∈ Fpn [X].

Then the following properties are equivalent.

1. Lf (X) completely splits over Fpn [X]

2. Lf (X) divides Xpn −X

3. f divides Xn − 1

14

3.2 How to find linearised quasi-subfield polynomials

3.2.1 Rules to deduce new quasi-subfield polynomials from known ones

In order to simplify our search of quasi-subfield polynomials, we will first focus in

ways to deduce new quasi-subfield polynomials from known ones. We will introduce

two types of transformations: the first one one will change the value of β and thus

potentially improve it, but the value of the coefficients are hard to compute explicitly

in the general case. The second one will keep the same β, thus will not produce

more interesting linearised quasi-subfield polynomials but will allow us to group

them by equivalence classes. Let us write Lp,n for the set of linearized quasi-subfield

polynomials in Fpn [X].

The first way to obtain a linearized quasi-subfield polynomial from another one

is what we will call in the following the inversion process.

Proposition 3.5 (Inversion). Let f = a0 + · · · + a`X
` + Xn′ ∈ Fpn [X] such that

Lf ∈ Lp,n and n′ < n. Let g = (Xn − 1)/f . Then Lg ∈ Fpn [X] is a quasi-subfield

polynomial. We say that Lg is the inverse of Lf .

Proof. By Proposition 3.4, we know that f |Xn − 1 so g is well-defined.

Let g = b0 + · · · + brX
r + Xn−n′ . We will prove that r + n′ ≤ n − n′ + `.

Indeed, f.g = (Xn′ + a`X
` + · · ·+ a0)(Xn−n′ + brX

r + · · ·+ b0) = Xn + +brX
r+n′ +

a`X
`+n−n′ + · · · = Xn − 1. So, if r + n′ > ` + n − n′ then the coefficient of

Xr+n′ in f.g comes exclusively from (br.X
r).Xn′ and thus is not zero. Therefore,

β(Lg) = n.r
(n−n′)2 ≤

n.(n−2n′+`)
(n−n′)2 = 1− n′2−`.n

(n−n′)2

≤ 1−
(

n′

n−n′
)2

(1− β(Lf)) ≤ 1

Let us now introduce transformations that keep the value of β unchanged.

Proposition 3.6 (Transformations keeping same β). Let k ≥ 1, α ∈ Fpn with

αn = 1, γ ∈ F∗pn . Let f = a0 + · · ·+ a`X
` +Xn′ ∈ Fpn [X].

Then the following propositions are equivalent:

(1) Lf ∈ Lp,n
(2) Lf,pk = Lf(Xk) = a0X + a1X

pk + · · ·+ a`X
pk.` +Xpk.n

′
∈ Lp,kn

(3) α−n
′
Lf(α.X) = α−n

′
(a0X + a1α.X

p + · · ·+ a`α
`.Xp` + αn

′
.Xpn

′
) ∈ Lp,n

(4) γ−p
n′
Lf (γ.X) = γ−p

n′
(a0X + a1(γ.X)p + · · ·+ a`(γ.X)p

`
+ (γ.X)p

n′
) ∈ Lp,n

15

Proof. One can observe that these four quasi-subfield polynomials have the same

β. Therefore, we only have to show that the conditions for splitting are equivalent.

The equivalence between (1) and (2) comes directly from Proposition 3.4. In-

deed,

(1) Lf ∈ Lp,n ⇔ f |Xn − 1 ⇔ f(Xk)|Xkn − 1 in Fpn [X]

⇔ Lf(Xk) ∈ Lp,kn (3) (we recall that the

ai are fixed in Fpn)

Let us now prove that (1) and (3) are equivalent. Indeed,

(1) Lf, ∈ Lp,n ⇔ f |Xn − 1 ⇔ f(α.X)|(α.X)n − 1

⇔ f(α.X)|Xn − 1 since αn = 1

⇔ α−n
′
f(α.X)|Xn − 1

⇔ α−n
′
Lf(α.X) ∈ Lp,n (3)

Finally, replacing X by γ.X clearly does not change the fact that the polynomial

split, therefore (1)⇔ (4) is trivial.

One can also observe that n/n′ is not changed by any of these transformations.

So we would also write all these equivalences with full linearized quasi-subfield

polynomials.

Hence since none of these transformations changes the value of β and they

all send (full) linearized quasi-subfield polynomials on other (full) linearized quasi-

subfield polynomials, we can define equivalence classes by saying that two linearized

quasi-subfield polynomials are equivalent to each other if one can be obtained from

the other with one of the previous transformations. Obviously, since the trans-

formations do not change the value of β, we are only interested by finding one

representative of each class.

Let us now consider polynomials with only coefficients in the base field Fp. Then

if L is of the shape a0X + a1X
pk + · · ·+ an′X

pkn
′
∈ Lp,kn, it is equivalent to a0X +

a1X
p+· · ·+an′Xpn

′
∈ Lp,n. Therefore, we may reduce the search of representative of

each class to polynomial of the shape L = a0X+a1X
p+ · · ·+a`Xp` +Xpn

′
∈ Fpn [X]

with {i ≥ 1, ai 6= 0} ∪ {n} coprime setwise.

One can also notice that transformation (1)⇔ (3) cannot often be used. Indeed

if n is prime then αn = 1 implies n|pn − 1. Moreover the transformation (1)⇔ (4)

changes the values of the coefficients only when considering γ ∈ Fpn
mathbbFp, therefore it is not useful when we only consider polynomials with coeffi-

cients in Fp.

16

3.2.2 New families of quasi-subfield polynomials

Let us now look at how we could to a systematic search of representatives of each

class of equivalence of quasi-subfield polynomials.

As seen before, we will search for linearized polynomials L = a0X+a1X
p+ · · ·+

a`X
p` + Xpn

′
∈ F[X] which verify β ≤ 1, completely split over Fpn and such that

{i ≥ 1, ai 6= 0} ∪ {n} are coprime setwise.

We recall that we restrict the search to polynomials in Fp[X]. Therefore CL ∈
Md(Fp), thus AL = Cn

L. Hence, Proposition 3.3 says that L splits over Fpn if and

only if Cn
L = I. A first idea could then be to consider a fixed n, compute Cn

Lf
for

all the linearized polynomial Lf ∈ Fp[X] of degree less than n and check whether it

is the identity. When it is the identity, it means that Lf splits in Fpn . After that,

we still have to verify that β(Lf) < 1. However, in this plan, as n grows, we have

to consider more and more Lf and the chance to find a quasi-subfield polynomial

collapses.

Another idea is to consider a fixed linearized polynomial L and search for the

smaller n such that L splits over Fpn . This amounts to searching for n such that

Cn
L = I: finding the order of CL. Note that CL is in GLn′(Fp) since detCL =

(−1)n
′
a0 6= 0 (if a0 = 0 then 0 is a root of L with multiplicity at least p so L

does not split completely). Hence CL belongs to a finite group. Therefore n exists.

Moreover as we also want β(L) = n.`/(n′)2 ≤ 1, we only have to check the Ck
L

with k < n′2/`. If we find such a k, then Lf ∈ Lp,k. In order to accelerate the

computation, we can verify before starting the computation of the Ck
L, that L is

not in the equivalence classes of the known quasi-subfield polynomials.

Therefore we can write an algorithm (presented extensively in Appendix B) to

produce a set of representatives of the previously defined quasi-subfield polynomials.

It outputs results of this kind.

17

f n β p

X2 +X + 1 3 0.75 2,3,5,7

X3 +X + 1 7 0.77 2

X3 +X + 1 8 0.88 3

X3 +X2 +X + 1 4 0.88 2,3,5,7

X4 +X + 1 15 0.93 2

X4 +X + 1 13 0.81 3

X4 +X2 +X + 1 7 0.87 2

X4 +X3 +X2 +X + 1 5 0.93 2

X5 −X3 +X2 +X + 1 8 0.96 3
...

Outputs of the algorithm (In order to improve the readability we list the value of
f instead of the quasi-subfield polynomials Lf .)

Observing patterns in them allowed us to conjecture new types of quasi-subfield

polynomials. Of course, here we only present one representative per equivalence

class. Therefore other quasi-subfield polynomials can be obtained by using the

rules listed in Proposition 3.6. Moreover, let us recall that this list does not cover

all the equivalence classes. It was only conjectured from what was found with small

n and small p.

Proposition 3.7 (Families of linearized quasi-subfield polynomials). The following

types of linearized polynomials are quasi-subfield polynomials:

Type 1 Lh with h = 1 + Xp0 + · · · + Xpa , where q = pr, r ≥ 0, n = pd+1, pi =

1 + q+ · · ·+ qi and a ≥ 2 β = 1− 1
pa

(1− pa−1
q′.pa

). It is the family introduced in

[11]

Type 1bis X +Xp +Xp2 ++Xpn−1
, n′ = n− 1, β = 1− 1

(n−1)2

Type 2 Lfa with fa =

{
1 +Xq−1 + · · ·+Xqd−1 if a = 0

a+X +Xq + · · ·+Xqd otherwise
, n = qd+1 − 1,

q = pr, r ≥ 1, a ∈ Fq, β = 1− qd−1

(1+q+···+qd−1)2

Type 3 Inverses of type 1 and inverses of type 2.

We will now prove these families which were initially introduced as conjectures.

18

Proof. The type 1 is proven in the original paper [11].

Moreover it is obvious that LX−1 is a quasi-subfield in Fpn for any p prime and n

(tolerating here ` = 0). Therefore its inverse (see Proposition 3.5) L(Xn−1)/(X−1) =

L1+X+X2+···+Xn−1 is a quasi-subfield in Fnp . This proves the type 1bis. One can

notice that it is in fact a particular case of Type 1 (when r = 0).

Looking at type 2, we need to compute the factorisation of Xqd+1−1− 1. It may

be easier to compute this by looking at X(Xqd+1−1 − 1) = Xpr.(d+1) − X since the

Frobenius is easy to compute in Fpn . One can observe for any a ∈ Fq,

(Xqd + · · ·+X + a)q − (Xqd + · · ·+X + a) = Xqd+1
+Xqd + · · ·+Xq + aq

−Xqd − · · · −Xq −X − a
= Xqd+1 −X

Indeed since a ∈ Fq, we have that aq = a. Hence writing ga = a+X+Xq+Xq2 +

· · ·+Xqd , we have that Xqd+1 −X = gqa − ga, hence ga|Xqd+1 −X. Let a 6= b, then

gcd(ga, gb) = gcd(ga, ga − gb) = gcd(ga, a − b) = a − b where the greatest common

divisor is defined up to multiplication by an invertible constant. Thus ga and gb are

coprime. Thus
∏

a∈Fp ga|X
qd+1 −X. But deg(

∏
a∈Fq ga) = q.qd = deg(Xqd+1 −X).

Therefore
∏

a∈Fq ga = Xqd+1 −X. Rewriting it, we get, (Xqd + · · ·+X)
∏

a∈F∗q
ga =

Xqd+1 −X. Thus, (Xqd−1 + · · ·+ 1)
∏

a∈F∗q
ga = Xpd+1−1− 1 = Xn− 1. But if a 6= 0,

ga = fa and f0 = Xqd−1 + · · · + 1. That is why,
∏

a∈Fq fa = Xn − 1. This gives

that polynomials of the type 2 completely split over Fpn . Moreover, we also have

to verify that β ≤ 1.

But if a = 0, then n′ = qd − 1 and ` = qd−1 − 1 so,

β = (qd−1−1)(qd+1−1)
(qd−1)2

= 1− qd+1+qd−1−2qd

(qd−1)2
= 1− qd−1(q−1)2

(qd−1)2

= 1− qd−1

(1+q+···+qd−1)2
< 1

If a 6= 0, then n = qd+1 − 1, n′ = qd, ` = qd−1, so β = qd−1(qd+1−1)
q2d

= qd+1−1)
qd+1 =

1− 1
qd+1 < 1

In any case n′/n ' 1/q and αβ ≥ 1/(2calgo) ' 1/10, thus Lfa is a full quasi-

subfield polynomial as soon as q ≥ 22.

Regarding Type 3, by Proposition 3.5 there is nothing to prove anymore. About

the exact values, we know that for Type 1 we have, Xhq = h + Xn − 1 thus

Xn − 1 = h(Xhq−1 − 1) and the inverse of Lh is LXhq−1−1. For Type 2, we have∏
a∈Fp fa = Xn − 1, thus the inverse of Lfa is L∏

b 6=a fb
.

We will now try to classify the results output by our algorithm when asking

for representative of the equivalence classes for p being 2,3,5 or 7 and n′ equal or

19

less than 16. We mark by a cross when the linearized polynomial belongs to the

category, except for the last category where we give the value of the inverse.

f n β p T1 T2 T3

X2 +X + 1 3 0.7 2 X X

X2 +X + 1 3 0.7 3,5,7 X

X3 +X + 1 7 0.7 2 X X

X3 +X + 1 8 0.8 3 X

X3 +X2 +X + 1 4 0.8 2,3,5,7 X

X4 +X + 1 15 0.9 2 X

X4 +X + 1 13 0.8 3 X

X4 +X2 +X + 1 7 0.8 2 X X X3 +X + 1

X4 +X3 +X2 +X + 1 5 0.9 2,3,5,7 X

X5 +X + 1 21 0.8 2 X

X5 +X + 1 24 0.9 5 X

X5 +X4 +X3 +X2 +X + 1 6 0.9 2,3,5,7 X

X5 −X3 −X2 +X − 1 8 0.9 3 X3 +X + 1

X6 +X + 1 31 0.8 5 X

X6 +X5 +X4 +X3 +
X2 +X + 1

7 0.9 2,3,5,7 X

X7 +X + 1 48 0.9 7 X

X7 +X3 +X + 1 15 0.9 2 X X

X7 +X6 + · · ·+X2 +X + 1 8 0.9 2,3,5,7 X

X8 +X + 1 63 0.9 2 X

X8 +X + 1 57 0.8 7 X

X8 +X4 +X2 +X + 1 15 0.9 2 X X X7 +X3 +X+ 1

X8 + · · ·+X2 +X + 1 9 0.9 2,3,5,7 X

X9 +X + 1 73 0.9 2 X

X9 +X + 1 80 0.9 3 X

X9 +X3 +X + 1 26 0.9 3 X

X9 −X6 −X5 +X3 −
X2 +X − 1

13 0.9 3 X4 +X + 1

X9 + · · ·+X2 +X + 1 10 0.9 2,3,5,7 X

X10 +X + 1 91 0.9 3 X

X10 + · · ·+X2 +X + 1 11 0.9 2,3,5,7 X

20

f n β p T1 T2 T3

X11 +X8 +X7 +X5 +
X3 +X2 +X + 1

15 0.9 2 X X4 +X + 1

X11 + · · ·+X2 +X + 1 12 0.9 2,3,5,7 X

X12 + · · ·+X2 +X + 1 13 0.9 2,3,5,7 X

X13 +X4 +X + 1 40 0.9 3 X

X13 + · · ·+X2 +X + 1 14 0.9 2,3,5,7 X

X14 + · · ·+X2 +X + 1 15 0.9 2,3,5,7 X

X15 +X7 +X3 +X + 1 31 0.9 2 X X

X15 +X14 + · · ·+X2 +X+1 16 0.9 2,3,5,7 X

nX16 +X + 1
255

0.9 2 X

X16 +X4 +X + 1 63 0.9 2 X

X16 +X8 +X4 +X2 +X+1 31 0.9 2 X X
X15 +X7 +
X3 +X + 1

X16 +X12 +X11 +X8 +
X6 +X4 +X3 +X2 +X + 1

21 0.9 2 X X5 +X + 1

X16 + · · ·+X2 +X + 1 17 0.9 2,3,5,7 X
...

Classification of the outputs of the algorithm

In order to have an efficient computation we used Sage to search linearized

polynomial with the values of coefficients being included in {0, 1,−1}. Therefore

the previous list is not exhaustive of all the equivalence classes for n′ < 16 when p

is bigger than 3. For example, when we launch the algorithm for very small n with

the coefficients allowed to be anything in Fp, we get for p = 5 and n = 4, L(X2+X+3).

Indeed (X2 +X+3)(X2−X+3) = (X2 +3)2−X2 = X4 +X2−1−X2 = X4−1, so

X2 +X + 3 splits in F54 and β = 4 ∗ 1/4 = 1. Moreover, computing its equivalence

class using Proposition 3.6, we observe that none element of its equivalence class

has all its coefficients in {0, 1,−1}.

3.3 Linearized quasi-subfield polynomials with n Mersenne

For p = 2, pd+1 − 1 is a Mersenne number . Therefore, type 2 gives examples

of linearized quasi-subfield polynomials with n Mersenne. Therefore it may seem

interesting to recall what was written in the appendix dedicated to linearized quasi-

21

subfield polynomials with n a Mersenne prime, present in the original article [11].

There, they were studied because of the fact that when n = 2k − 1 is a Mersenne

prime, (Xn − 1)/(X − 1) has (n − 1)/k irreducible factors of degree k over F2,

which gives a great number of potential candidates for linearized quasi-subfield

polynomials in F2n . However, because of a heuristic that we will recall here, [11]

decides to exclude them from the promising leads to find linearized quasi-subfield

polynomials.

The reasoning of the original article Let us consider k such that n = 2k − 1

is prime and denote N(k, n′) the number of distinct polynomials of degree n′ that

divide Xn − 1.

Then [11] gives the following lemma:

Lemma 3.8. N(k, n′) =

{ (bn/kc
bn′/kc

)
if n′ mod k = 0 or 1

0 else

Moreover, log(
(
n/k
n′/k

)
) ' (n′/k) log(n/n′).

Let us also introduce the heuristic used in [11]: For n a Mersenne prime, we

may assume that the density of “sparse enough” polynomials (ie polynomials of

the shape Xpn
′
− λ(X) with deg(λ) = `) is identical for factors of Xn − 1 and for

random polynomials, for a value of ` that we will precise later.

Since in F2[X], there are 2n
′

monic polynomials of degree n′ and 2` polynomials

of degree `, this assumption allows us to approximate the number of polynomials

of degree n′ that divide Xn − 1 and are sparse enough by N(k, n′)2`−n
′
. Therefore

such polynomials a priori exist only if ` > n′ − (n′/k) log(n/n′).

The case considered in the appendix of the article is when the quasi-subfield poly-

nomials beat generic algorithms, which by Lemma 2.3 requires αβ = 1
2calgoβ

≥ 1. Let

us present it first even if the Type 2 does not fall in this category since its αβ ' 1
2calgo

is not bigger than 1. To improve on generic algorithms, we want αβ = 1
2calgo`n/n′2

≥ 1

hence

` ≤ n′2

2calgon
. With the previous constraint on `, it gives: n′2

2calgon
> n′−(n′/k) log(n/n′).

Thus, since k ' log(n), we get n′

2calgon
> 1 − log(n/n′)/log(n) = log(n′)/ log(n).

Therefore, log(n)
2calgon

< log(n′)
n′

.

Since 2calgo ' 10, and n′ < n, this inequality fails and with the heuristic, there

should not be any linearized quasi-subfield polynomials with n Mersenne beating

generic algorithms.

22

Our adaptation of this reasoning to the case of Type 2 Type 2 polynomials

are quasi-subfield polynomials, so they respect β = `.n/n′2 ≤ 1. Therefore, we have

` ≤ n′2/n. This constraint added to the same heuristic as before gives: n′2

n
> n′ −

(n′/k) log(n/n′) which similarly as in the previous paragraph gives log(n)
n

< log(n′)
n′

.

Since x 7→ log(x)/x is decreasing for x > e, this is also not possible for n > n′ ≥ 3.

Therefore, the Type 2 polynomials provide a counter-example to the heuristic.

Hence, we may deduce that when n is a Mersenne prime, there exists an ` such that

the density of “sparse enough” polynomials (ie polynomials of the shape Xpn
′
−λ(X)

with deg(λ) = `) is bigger for factors of Xn − 1 than for random polynomials.

4 Lower bounds on β for linearized quasi-subfield

polynomials

We will now introduce one of our main results: a lower bound on β for linearized

quasi-subfield polynomials. We looked for a result of this type after observing that

for all the quasi-subfield polynomial returned by our systematic search using Sage

(cf Appendix B), β was always equal or bigger than 3/4. The equality is obtained

for Xp2 +Xp +X in Fp3 [X] (Type 1bis) and all its equivalence class.

4.1 The result

Theorem 4.1 (β ≥ 3/4). Let L = Xpn
′
− (a`X

p` + a`−1X
p`−1

+ · · · + a0X) a

linearized polynomial with ` ≥ 1 and ∀i, ai ∈ Fpn . If L completely splits over Fpn
then β = `.n/n′2 ≥ 3/4.

This result is in fact a consequence of the following lemma which highlights that

the field has to be big enough to have completely splitting linearized polynomials

in it.

Lemma 4.2 (Lower bound on n). Let L = Xpn
′
− (a`X

p` +a`−1X
p`−1

+ · · ·+a0X)

with ` ≥ 1 and ∀i, ai ∈ Fpn . If L completely splits over Fpn then

n ≥ n′ + (n′ − `)
⌊n′ − 1

`

⌋
Before proving this lemma, we will begin by proving that this result is enough

to prove the theorem.

23

Proof. One can first observe that since n′ and ` are integers:
⌊n′ − 1

`

⌋
≥ n′

`
− 1.

Therefore, by the lemma 4.2, n ≥ n′ + (n′ − `)n
′

`
− (n′ − `) ≥ n′2

`
− n′ + `

Thus β =
`n

n′2
≥ 1− `

n′
+
`2

n′2
= 1− `

n′

(
1− `

n′

)
.

Since the maximum of x ∈ [0, 1] 7→ x(1− x) is 1/4, we have β ≥ 3/4.

Let us now reduce the proof of the lemma to the proof of a result about the

power of matrix. Property 3.3 gives that L completely splits over Fpn if and only if

AL = CL.C
σ
L . . . C

σn−1

L = I

with CL =



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
...

.
...

0 0 . . . 1 −a`
...

...
...

. . . 0
...

...
...

. . .
...

0 0 1 0


a matrix of size n′ × n′.

Therefore we have to prove that

∀r < n′ + (n′ − `)
⌊n′ − 1

`

⌋
, CL,r := CL.C

σ
L . . . C

σr−1

L 6= I

Our result depends only of the value of n′ and `, therefore we will abstract a

little more the values of CL: to do this, we attribute to each coefficient of CL a

symbol: 0 if for any p and any values of the (ai)i≤` this coefficient is zero, 1 for 1,

pow(x) for the powers of x = (−a`) 6= 0, and � for anything else. Knowing that

x 6= 0, all the coefficients marked pow(x) are non null.

The operations on these categories are as follow:

+ 0 1 pow(x) � × 0 1 pow(x) �

0 0 1 pow(x) � 0 0 0 0 0

1 1 � � � 1 0 1 pow(x) �

pow(x) pow(x) � � � pow(x) 0 pow(x) pow(x) �

� � � � � � 0 � � �

Moreover, recalling that σ acts on matrices coefficient-wise, one can observe that

24

all the Cσk

L can be written as

M :=



0 0 . . . 0 �

1 0 . . . 0 �

0 1 . . . 0 �
...

...
.

...

0 0 . . . 1 pow(x)
...

...
...

. . . 0
...

...
...

. . .
...

0 0 1 0


Therefore with this notation, CL,r is merely M r. Our goal is then to study the

shape of the powers of M , which is a companion matrix defined on {0, 1, pow(x),�}.

Lemma 4.3 (The powers are not the identity).

∀r < n′ + (n′ − `)
⌊n′ − 1

`

⌋
,M r 6= I

The two next subsections will be dedicated to proofs of this lemma. The first

one will give an informal proof based on visual intuition whereas the second one

will be a more formal proof.

4.2 The informal proof

Let us first give an informal proof of this claim: We will use a visual representation

of the matrices. We will represent in white the zero coefficients in the matrices,

grey the powers of x (including x0 = 1) and black all the coefficients for which we

cannot track the value.

For example, M is represented by:

25

Moreover, one can convince itself that the shape of a M r is (for some values of

`, n′ and r, three grey stripes may appear):

Then multiplying by M implies a shift of the stripes toward the bottom-left

corner. Therefore stripes appear at the right side and disappear at the left side

when computing the different M r. Every time a new stripe appears, it is larger and

thus progressively the whole matrix is covered by the black - unknown coefficients.

26

When this happens, we have completely lost track of the value of the coefficients

of the matrix. From this time, the powers of M may happen to be the identity

but we are unable to say when. However, as long as the grey part of the stripes is

present, we are able to prove that the matrix is not the identity by showing that a

coefficient of this grey stripe is not on the main diagonal of the matrix.

Therefore we need to count the stripes of pow(x) appearing in the successive

M r (since the width of the stripe depend of its ranking in the order of apparition)

and know until which r, the kth stripe of pow(x) is present in the matrix M r.

Therefore we will search the answer to the following questions:

1. At what condition the (k + 1)th stripe of pow(x) appear?

2. When does the kth stripe of pow(x) disappear (call this time Dk)?

3. What is the largest R where we are sure that for all 1 ≤ r ≤ R, M r 6= I?

1. At what condition does the (k + 1)th stripe of pow(x) appear?
One can observe that the following operation leads to the apparition of the

first cell of the (k + 1)th stripe of pow(x):

27

However, this operation is possible if and only if there are only 0 at the left

of the first coefficient of the kth stripe of pow(x). We do not know what is in

the (k-1)-th black stripe, so we will just give a sufficient condition for this to

happen: the (k-1)-th black stripe begins after the (`+ 1)-th row of the matix.

Looking at the composition of the first column we see that this is true when

`+ (k − 1)` ≤ n′ − (`+ 1) ie k + 1 ≤ n′ − 1

`
.

2. When does the kth stripe of pow(x) disappear?

Let us consider k ≤ n′ − 1

`
so that the kth stripe of pow(x) appears in some

M r. We will denote Dk the time where this stripe disappears.

At time Dk, the (k + 1)th stripe of pow(x) begins at the (` + 1) row of the

first column, and each time we multiply by M all the stripes move to one

column to the left, so one can observe that Dk+1 = Dk + (n′ − `) and thus

Dk = n′ + k(n′ − `).

3. What is the largest R where we are sure that for all 1 ≤ r ≤ R,

M r 6= I?

The (k + 1)th stripe of pow(x) appears when k + 1 ≤ n′ − 1

`
. Therefore, the

last stripe of pow(x) that we are sure will be present is the kth
max one with

kmax =
⌊n′ − 1

`

⌋
.

It disappears at time Dkmax = n′ + (n′ − `)kmax, therefore for all r < Dkmax ,

M r is of the previously shown shape.

Let us now show that for r < Dkmax , M r
ir,1 = pow(x) 6= 0 with

ir = r − (n′ − `)
⌊
r − `
n′ − `

⌋
+ 1

Indeed, one can notice that at time Dk, with k < kmax, the (k+ 1)th stripe of

pow(x) begins at the (`+ 1) row of the first column, ie M
(Dk)
`+1,1 = pow(x) 6= 0.

Each time we multiply by M all the stripes move to one column to the left,

so for any r such that Dk ≤ r < Dk+1 we write r = Dk + a and we have

M r
`+1+a,1 = pow(x) 6= 0.

Let us now consider a generic integer r < Dkmax . Then, noting k =

⌊
r − n′

n′ − `

⌋
,

we have Dk = n′+(n′−`)
⌊
r − n′

n′ − `

⌋
≤ r < Dk+1 . Thus M r

`+1+a,1 = pow(x) 6= 0

with a = r −Dk = r − (n′ − `)
⌊
r − n′

n′ − `

⌋
− n′.

28

Moreover, `+ a+ 1 = r − (n′ − `).
⌊
r − n′

n′ − `

⌋
− n′ + `+ 1

= r − (n′ − `).
(⌊

r − n′

n′ − `

⌋
+ 1

)
+ 1

= r − (n′ − `)
⌊
r − `
n′ − `

⌋
+ 1

Hence, M r
ir,1 = pow(x) 6= 0 with ir = r−(n′−`)

⌊
r − `
n′ − `

⌋
+1. Moreover,` ≥ 1,

we have that ir = `+a+1 > 1. This means that there is a non zero coefficient

on the first column which is not on the first row in M r, hence M r 6= I.

Therefore, the largest R where we are sure that for all 1 ≤ r ≤ R, M r 6= I is

R = Dkmax = n′ + (n′ − `)
⌊n′ − 1

`

⌋
which is exactly the value we wanted to

find to prove the lemma 4.3.

4.3 The formal proof

Let us now give a more formal proof of lemma 4.3. For this, we will use the result of

The combinatorial power of the companion matrix [4], by Chen and Louck, about

the powers of companion matrices. After a few modifications to make their results

match our definition of companion matrices (see Appendix A.1.2), we have:

M r
i,j =

{
1 if r = i− j∑

k1,...,kn′
wk0k1+···+kn′−`−1pow(x)kn′−`�kn′−`+···+kn′ otherwise

where k = (ki)1≤i≤n′ are non-negative integers such that k1+2k2 · · ·+n′kn′ = r−i+j

and wk =
kj + · · ·+ kn′

k1 + · · ·+ kn′

(
k1+···+kn′
k1,...,kn′

)
If k1 + · · · + kn′−`−1 > 0 then 0k1+···+kn′−`−1pow(x)kn′−`�kn′−`+···+kn′ = 0, so we

can remove all terms involving a positive ki with i < n′ − `. Therefore we get

M r
i,j =

{
1 if r = i− j∑

kn′−`,...,kn′
wkpow(x)kn′−`�kn′−`+···+kn′ otherwise

where (n′ − `)kn′−` · · ·+ n′kn′ = r − i+ j. Let us observe that wk is now

wk =
kmax(n′−i+1,n′−`) + · · ·+ kn′

kn′−` + · · ·+ kn′

(
kn′−` + · · ·+ kn′

kn′−`, . . . , kn′

)
.

We do not want to remove the exponents over the black square. Indeed when

kn′−` + · · · + kn′ = 0, we have �kn′−`+···+kn′ = 1; so we get a term wkpow(x)kn′−`

which in the case wk 6= 0 is exactly what we want to prove the lemma 4.3.

29

The first line of this expression of the coefficients of M r can only be used when

r < n′. Therefore, let us split the proof of the lemma 4.3 in two claims according

to whether r < n′.

Claim 1:

∀r < n′, M r
r+1,1 = 1.

This is obvious thanks to the previous expression of the powers of M . Indeed,

(r + 1)− 1 = r.

Claim 2:

∀n′ ≤ r < n′ + (n′ − `)
⌊n′ − 1

`

⌋
, M r

ir,1 = pow(x)

with ir = r − (n′ − `)
⌊ r − `
n′ − `

⌋
+ 1 ∈ [2, n′]

One can notice that ir is inspired by the value found in the informal proof.

Let n′ ≤ r ≤ n′ + (n′ − `)
⌊n′ − 1

`

⌋
− 1. Let us first observe that M r

ir,1 is well

defined and is not in the top left corner since:

ir = r − (n′ − `)
⌊ r − `
n′ − `

⌋
+ 1 ≤ r − (n′ − `)(r − `

n′ − `
− n′ − `− 1

n′ − `
) + 1

≤ r − (r − n′ + 1) + 1

≤ n′

and

ir = r − (n′ − `)
⌊ r − `
n′ − `

⌋
+ 1 ≥ r − (n′ − `) r − `

n′ − `
+ 1

≥ l + 1

≥ 2

Moreover,
r − `
n′ − `

≤
n′ + (n′ − `)

⌊n′ − 1

`

⌋
− 1− `

n′ − `
≤
⌊n′ − 1

`

⌋
+

(
1− 1

n′ − `

)
.

Then 1 ≤
⌊ r − `
n′ − `

⌋
≤
⌊n′ − 1

`

⌋
. Furthermore, n′− ir + 1 ≤ n′− (`+ 1) + 1 = n′− `

so max(n′ − ir + 1, n′ − `) = n′ − `.

So M r
ir,1 =

∑
kn′−`,...,kn′

kn′−` + · · ·+ kn′

kn′−` + · · ·+ kn′

(
kn′−`+···+kn′
kn′−`,...,kn′

)
pow(x)kn′−`�kn′−`+···+kn′

=
∑

kn′−`,...,kn′

(
kn′−`+···+kn′
kn′−`,...,kn′

)
pow(x)kn′−`�kn′−`+···+kn′

where (n′ − `)kn′−` · · ·+ n′kn′ = r − ir + 1 = (n′ − `)
⌊ r − `
n′ − `

⌋
(1)

kn′−`+1 = · · · = kn′ = 0 and kn′−` =
⌊ r − `
n′ − `

⌋
verifies (1).

30

Let us show that there are no other solutions. Let us assume that there exist

kn′−`, . . . , kn′ such that
∑n′

i=n′−` i.ki = (n′ − `)
⌊ r − `
n′ − `

⌋
and

∑n′

i=n′−`+1 ki > 0.

Then, (n′ − `)
⌊ r − `
n′ − `

⌋
=
∑n′

i=n′−` i.ki

= (n′ − `)
∑n′

i=n′−` ki +
∑n′

i=n′−`+1(i− (n′ − `))ki
= (n′ − `)

∑n′

i=n′−` ki +
∑`

i=1 ikn′−`+i

.

Since
∑`

i=1 kn′−`+i > 0, we have
∑`

i=1 ikn′−`+i > 0 and (n′ − `)|
∑`

i=1 ikn′−`+i.

Therefore
∑`

i=1 ikn′−`+i ≥ n′ − `.

Thus, (n′ − `)
⌊ r − `
n′ − `

⌋
≥ (n′ − `)(1 +

∑n′

i=n′−` ki)

≥ (n′ − `)

(
1 +

∑`
i=1 ikn′−`+i

`

)
≥ (n′ − `)

(
1 +

n′ − `
`

)
≥ (n′ − `).n

′

`

Since
⌊ r − `
n′ − `

⌋
≤
⌊n′ − 1

`

⌋
<
n′

`
, this is absurd.

Therefore M r
ir,1 =

(
kn′−`
kn′−`

)
pow(x)

⌊ r − `
n′ − `

⌋
= pow(x)

Hence, M r 6= In′

4.4 Comparison with other lower bounds

In the original paper, a lower bound was given in the lemma 4.1: for all L quasi-

subfield polynomial, ⌊ n
n′

⌋
`+ (n mod n′) ≥ n′

Therefore β '
⌊ n
n′

⌋ `
n′
≥ 1−(n mod n′)

n′
. Depending on the value of

(n mod n′)

n′
,

the bound given here is sharper or not. Heuristically, if (n mod n′) is considered

as uniform at random between 0 and n′ − 1, then there is only a probability of ap-

proximately 1/4 to have the lower bound β ≥ 3/4. This bound is given by Theorem

1.2 without any heuristic involved. However it is only valid when L is a linearized

polynomial.

Moreover, this bound is similar to the one given by Daniela Mueller and Gary

McGuire in [12] which was established during the completion of this dissertation.

Indeed, using also [13] they have shown (in Theorem 1.1) that for any linearized

trinomial L = Xqd − bXq − aX ∈ Fpn = Fqñ with b 6= 0, the fact that it completely

31

splits implies that ñ ≥ (d − 1)d + 1 = d2 − d + 1. Let us compare it with the

bound given by our lemma 4.2. Let us write n = kñ so that q = pk. Thus

L = Xpkd − bXpk − aX. The lemma gives: n ≥ kd+ (kd− k)
⌊kd− 1

k

⌋
so kñ ≥ k(d + (d− 1)(d− 1)). Thus ñ ≥ d + (d− 1)2 = d2 − d + 1. Therefore, we

obtain exactly the same bound.

Even if their bound is less general than ours by only considering trinomials,

they gave a more complete description of completely splitting linearized trinomials.

Indeed, this description takes into account the case ` = 0 which we did not consider

in this dissertation, and describes exhaustively the different possibilities:

• either ñ = id, b = 0 and a1+qd+···+q(i−1)d
= 1

• either ñ = (d − 1)d + 1, a1+q+···+q(d−1)d
= (−1)d−1, b = −aqe1 where e1 =∑d−1

i=0 q
id and d− 1 is a power of p

• either ñ > (d− 1)d+ 1

4.5 Consequences of this theorem

Let us now study the consequences of the Theorem 1.2. Let L be a linearized

quasi-subfield polynomial. Then β(L) ≥ 3/4 and αβ =
1

2.calgoβ(L)
≤ 2

3.calgo
< 1/7.

Hence aβ ≥ 1 is false and then it is not possible to beat generic algorithms with L.

The best complexity we can hope is indeed Õ(p(1−αβ(1/2−1/m))n)which is bigger that

Õ(p(1−1/14)n).

To be more precise, the previous estimation used the approximation of calgo '
4.876. If we succeeded to have calgo < 1.5 then, when β(L) = 3/4, we would have

αβ > 1, so such a polynomial L could allow us to have an algorithm running faster

than generic algorithms. However, this drastic reduction of calgo does not seem

plausible. Therefore, we decided not to consider the track of establishing a finer

estimate of the complexity of the algorithm introduced in 2.

This questions the strategy used so far to find efficient quasi-subfield polynomials

because the path of using the linearized polynomial of a polynomial dividing Xn−1

is now conditional to a major improvement in the estimation of calgo. However, it

does not mean that there are no quasi-subfield polynomial allowing to beat generic

algorithms with the current estimation of calgo, but if there exists one, then it is not

a linearized polynomial.

32

As the roots of any linearized polynomial form an additive group, we can be

interested in what happen with other groups. Therefore, we will now study what

happen when we consider a multiplicative group.

5 Use of multiplicative groups

Let us now follow an other track suggested by [11] to find quasi-subfield polyno-

mials whose roots form a multiplicative group. To do this, we will first recall the

conditions that it implies on the coefficients, then provide three new families of

quasi-subfield polynomials which verifies these conditions. Finally, we will discuss

the fact that these polynomials do not split completely but still can be used in the

algorithm to solve the ECDLP.

5.1 Polynomials based on multiplicative groups

In the original article, the use of quasi-subfield polynomials of the type L = Xpn
′
−

Xa with a = pn
′

mod r, r|pn − 1 and n′ > logp(r) is suggested. They are obtained

from the multiplicative group formed by the solutions of Xr−1. We can factor L as

L = Xa(Xpn
′−a−1) so the maximum number of roots of L in Fpn is 1+pn

′−a. But

one knows that there are gcd(k, pn−1) roots of Xk−1 in Fpn . Hence we are looking

for tuples (p, n, n′, r) such that for a := pn
′

mod r, and gcd(pn
′−a, pn−1) = pn

′−a
ie pn

′ − a|pn − 1.

This matches a looser definition of a quasi-subfield polynomial: instead of re-

quiring that the polynomial completely splits, we will require that it splits and

has all its roots simple except 0. More information about the impact of this slight

modification will be given in paragraph 5.3.

5.2 New families of quasi-subfield polynomials

Similarly as for the search of linearized quasi-subfield polynomials, we used Sage-

Math to provide us a list of values of n′ and r which fulfil the previously mentioned

requirements and also verify n.logp(a)/n′2 ≤ 1 (the condition on β where a := pn
′

mod r). To do this it considers all the possible value for r among the divisors of

pn − 1 and outputs only the one meeting the requirements. This outputs quite a

messy set of polynomials (see A.2.2). However, using he On-Line Encyclopedia of

Integer Sequences1 [1], we identified the frequent presence of p of the shape kn+k−1

1see https://oeis.org/A002327 and https://oeis.org/A100698 for examples

33

https://oeis.org/A002327
https://oeis.org/A100698

associated with n′ = 1 and of p of the shape kn − k− (−1)n with n′ = n− 1. After

some more work to conjecture the values of r associated in each case, we were able

to establish three families of multiplicative quasi-subfield polynomials:

Proposition 5.1 (Multiplicative quasi-subfield polynomials). Let us consider three

possible sets of parameters

1. Let p prime and k ≥ 2 and i ≥ 1 integers. Let n = 2ik, n′ = i(2k− 1) = n− i
and r = pn−1

p2i−1
.

2. Let p = kn + k − 1 prime and k ≥ 2 an integer. Let n′ = 1 and r =

(p− k)/(k − 1).

3. Let p = kn− k− (−1)n be prime, n > 2 and k > 1 integers such that kn � 1.

Let n′ = n− 1 and r = (pn−1)(k−(−1)n)
(kn−k)(kn−(−1)n)

Then for each set, a = pn
′

mod r is such that L = Xpn
′
− Xa is a quasi-subfield

polynomial in Fpn .

Before proving this proposition, let us give a few remarks about these families.

• First, we can observe that contrary to the first family, the two other may

be used with n prime. Therefore, they correspond to the most frequent case

where we need to use the ECDLP in cryptography: a field Fpn with p and n

prime.

• Secondly, one can notice that for the first family, with p = 2, i = 1 and k = 2,

we get r = (24−1)/(22−1) = 5 and a = 3, thus L = X8−X3 is a quasi-subfield

polynomial. However, for this polynomial β = log2(3) ∗ 4/32 ' 0.70 < 0.75.

Hence, the previously proved lower bound on β is not valid for multiplicative

quasi-subfield polynomials. It leads to an algorithm with a complexity less

than 0(p0.93n)

• Thirdly, we did not prove the existence of a prime p of the shape kn + k − 1

or kn − k − (−1)n for any n prime. For some n, they indeed do not exist: for

exemple with n = 5, k5 + k − 1 = (k3 + k2 − 1)(k2 − k + 1) so k5 + k − 1

is not prime as soon as k > 1. Therefore, we highlight that the proposition

only says that if such couple (p, n) exists then we can build a quasi-subfield

polynomial in Fpn .

34

• Furthermore, (k−1)2−(k−1)−1 = k2−k−1 so the last two families overlap

when n = 2. We excluded the case n = 2 in the last family, because such a

choice of n′ and r would lead to β = 0 which is not allowed in our definition of

quasi-subfield polynomials. However, thanks to the two last families, we have

a multiplicative quasi-subfield polynomial for any n and p = kn − k − (−1)n

prime.

• Last but not least, it is worth noticing that the case p = kn−k− (−1)n is the

most promising among the families introduced. Indeed, primes of the form

f(2m), where f(x) is a low-degree polynomial with small integer coefficients,

are often used in cryptography since they were introduced in [17]. Indeed as

well as for Mersenne primes, they allow fast modular reduction. They are

called Solinas primes, or generalized Mersenne primes. Coming back to our

exemple, f(x) = xn − x − (−1)n verifies the constraint required about the

weights of the coefficients, so the last family when applied with k a power of 2

corresponds to Solinas primes. It is then important to notice that Curve448,

which is part of the approved elliptic curves for use by the US Federal Gov-

ernment, uses a prime exactly of this shape: p = 2448− 2224− 1.[10][5]. More-

over, four others curves recommended by NIST in 1999 [14] also uses Solinas

primes : p-192 (p = 2192 − 264 − 1), p-224 (p = 2224 − 296 + 1) and p-256

(p = 2256 − p224 + 2192 + 296 − 1) and p-384 (p = 2384 − 2128 − 296 + 232 − 1).

Therefore, it may seem interesting to study more deeply multiplicative quasi-

subfield polynomials when p is a Solinas prime. For a list of Solinas primes of

the shape 2n − 2m ± 1, one can consult [17]. Of course, this approach is still

far from threatening the security of these curves : they are defined on a prime

field Fp (so the objective would be to have a complexity better than 0(
√
p))

while we are considering an extension field Fpn with n ≥ 2 and have β ' 1 so

we obtain a complexity of 0(p0.95n).

Proof. Let us now prove that these sets of parameters lead to quasi-subfield poly-

nomials.

1. Since 2i|n, it is obvious that r = pn−1
p2i−1

is an integer an r|pn − 1.

Let us first explicit the calculus of a by observing that

r.(pi − 1) = pn−1
p2i−1

.(pi − 1) = p2ik−1
pi+1

= p2ik−i − p2ik−i+1
pi+1

= pn
′ − c with c = pi(2k−1)+1

pi+1
> 0

But,

35

c
r

= (pi(2k−1)+1)
(pi+1)

(p2i−1)
(p2ik−1)

= (pi(2k−1)+1)(pi−1)
p2ik−1

= 1− pi(2k−1)−pi
p2ik−1

< 1 since 2k − 1 > 1.

Thus 0 < c < r, and then a = (pn
′

mod r) = c.

Therefore pn
′ − a = r.(pi − 1) = p2ik−1

pi+1
thus pn

′ − a|pn − 1. Hence, L splits

over Fpn .

Moreover, using a = pi(2k−1)+1
pi+1

=
∑2k−2

j=0 (−pi)j ≤ pi(2k−1),

we get β =
logp(a).n

n′2
≤ i(2k−2).2ik

(i(2k−1))2
= 1− 1

(2k−1)2
≤ 1

2. r = p−k
k−1

= kn−1
k−1

is clearly an integer since k − 1|kn − 1. Also, r|pn − 1 since

pn − 1 = (kn + k − 1)n − 1 =
∑n

i=1

(
n
i

)
(kn − 1)ikn−i

= r(k − 1)
∑n

i=1

(
n
i

)
(kn − 1)i−1kn−i

.

Moreover, p = p−k
k−1

(k − 1) + k = r(k − 1) + k with k < 1 + k + · · ·+ kn−1 = r

so a = (p mod r) = k and p− a = r(k − 1)

Therefore, pn− 1 = (p− a)
∑n

i=1

(
n
i

)
(kn− 1)i−1kn−i and thus p− a|pn− 1. So

L = Xp −Xa splits in Fpn .

Furthermore, since kn ≤ kn + k − 1 = p, we have

β = logp(a).n/1 = logp(a
n) = logp(k

n) ≤ 1

3. Let us first show that r = (pn−1)(k−(−1)n)
(kn−k)(kn−(−1)n)

is an integer ie that
(kn−k)(kn−(−1)n))

k−(−1)n
∈ N and divides pn − 1.

For this we will show that gcd ((kn − k), (kn − (−1)n)) = k − (−1)n, that

(kn − k)|pn − 1 and that (kn − (−1)n)|pn − 1.

First, gcd((kn − k), (kn − (−1)n)) = k − (−1)n since k − (−1)n divides both

terms and (kn − (−1)n)− (kn − k) = k − (−1)n.

Moreover, (pn−1) = ((kn−k)+(−1)n+1)n−1 =
∑n

i=1

(
i
n

)
(kn−k)i(−1)(n+1)(n−i)

so (kn − k)|pn − 1.

Similarly,

(pn − 1) = ((kn − (−1)n)− k)n − 1

=
∑n

i=1

(
i
n

)
(kn − (−1)n)i(−k)n−i + (−k)n − 1

= (kn − (−1)n)
(∑n

i=1

(
i
n

)
(kn − (−1)n)i−1(−k)n−i + (−1)n

)
so (kn − (−1)n)|pn − 1

Let us now split the study according to the parity of n.

36

• If n is even:

Let us show that (pn
′

mod r) = pn
′ − r k

n−(−1)n

k−(−1)n

Indeed, c := pn
′−r k

n−(−1)n

k−(−1)n
= pn−1− pn−1

kn−k = pn−1+1
kn−k ' kn(n−1)−n = kn

2−2n

while r ' kn
2+1−2n for kn � 1, so c/r ' 1/k and thus for kn big enough

c < r. So a := (pn
′

mod r) = c

Moreover pn
′ − a = pn−1

kn−k |p
n − 1 so L splits over Fpn

Furthermore, we see that showing that β = n logp(a)/(n − 1)2 ≤ 1 is

equivalent to showing that an < p(n−1)2 .

But an

p(n−1)2
' (kn

2−2n)n

kn(n−1)2
= (kn)(n2−2n−n2+2n+1) = k−n < 1 when kn � 1 so

β = n logp(a)/(n− 1)2 ≤ 1

• If n is odd:

Let us show that (pn
′

mod r) = pn
′ − r kn−k

k−(−1)n
.

Indeed c := pn
′ − r kn−k

k−(−1)n
= pn−1 − pn−1

kn+1
= pn−1k+1

kn+1
≥ 0

and r = (pn−1)(k+1)
(kn−k)(kn+1)

= pn−1

kn+1
(p(k + 1)) 1

kn(1−k1−n)
− 1

(kn−k)(kn+1)

= pn−1

kn+1
(kn+1 + kn + o(k3))k−n(1 + k1−n + o(k1−n)) + o(1) for kn � 1

= pn−1

kn+1
(k + 1 + o(k3−n))(1 + k1−n + o(k1−n)) + o(1)

= pn−1

kn+1
(k + 1 + o(k3−n)) + o(1)

= pn−1k+1
kn+1

− 1
kn+1

+ pn−1

kn+1
(1 + o(k3−n)) + o(1)

= c+ pn−1

kn+1
(1 + o(k3−n)) + o(1)

= c+ pn−1

kn+1
(1 + o(1)) since n ≥ 3

> c

so c < r and thus a := (pn
′

mod r) = c

Moreover pn
′ − a = pn−1

kn+1
|pn − 1.

The only remaining thing to prove is that β ≤ 1. For this, we will as

before show that an ≤ p(n−1)2 .

Indeed,

an =
(
pn−1k+1
kn+1

)n
=
(
pn−1k
kn+1

+ o(1)
)n

= p(n−1)2+n−1kn

(kn+1)n
+ o

(
pn(n−1)kn

kn2

)
= p(n−1)2 pn−1kn

(kn+1)n
+ o(kn(n−1)2)

= p(n−1)2 (kn(n−1)−(n−1)k1+n(n−2)+o(nk1+n(n−2)))kn

(1+1/kn)n
k−n

2
+ o(kn(n−1)2)

= p(n−1)2(1− (n− 1)k1−n + o(nk1−n))(1− k−n + o(k−n)) + o(kn(n−1)2)

= p(n−1)2(1− (n− 1)k1−n + o(nk1−n)) + o(kn(n−1)2)

< p(n−1)2

37

An heuristic introduced in the appendix of [11] says that there are only rare

parameters for which we can have a quasi-subfield multiplicative polynomials. It

uses really similar arguments to the one introduced before about the case with

n a Mersenne prime. The previous families show that this heuristic about the

repartition of completely splitting polynomials in fact fails.

5.3 Critics of this definition of quasi-subfield polynomial

In this part, we admitted that we could use the same result about the complexity

of the algorithm and thus keep the same definition about β. However, this cannot

be done without more explanations. Indeed now |F| ' |V| = pn
′ − a + 1 which in

some case can be very different from pn
′
.

Therefore noting n′′ = logp(p
n′−a+1), we should now consider only polynomials

such that n.`/n′′2 ≤ 1, which is a constraint more restrictive than the one used

before.

However the families introduced before are still valid. Indeed for the first one,

pn
′ − a + 1 = p2ik−1

pi+1
+ 1 ' pi(2k−1) = pn

′
thus n′′ ' n′. For the second one

pn
′−a+ 1 = p−a+ 1 = (kn+k−1)−k+ 1 = kn is very close to p = pn

′
if k or n is

big enough. For the last one, in the even case pn
′−a+ 1 = pn−1

kn−k + 1 ' kn(n−1) ' pn
′

if k or n is big enough. In the odd case, pn
′ − a+ 1 = pn−1

kn+1
+ 1 ' kn(n−1) ' pn

′
is k

or n if big enough.

6 Use of other algebraic groups

In Section 3 and Section 5, we considered additive and multiplicative groups to

construct quasi-subfield polynomials. Therefore, we are also interested in knowing

what would happen with other algebraic groups.

In Galois invariant smoothness basis [6], Couveignes and Lercier describe a way

to extend a theory classically applied to additive and multiplicative groups to other

commutative algebraic groups such that the torus and elliptic curves. We will try

to explore their path in order to see how we could use these groups to deduce

quasi-subfield polynomials.

6.1 Torus

In the part about the torus, Couveignes and Lercier consider the following setting:

K = Fp is a finite field not of characteristic two and D ∈ F∗p is not a square

38

in Fp. The group G(Fp) = {P = (U, V) ∈ P1(K), U2 −DV 2 6= 0} has order p + 1

and the affine coordinates u(P) = U/V lie in Fp ∪ {∞}. We call G(Fp) a torus.

The unit element is 0G = (1, 0).The addition law on the group is defined as follow

for elements P1 and P2 which are not the unit: u(P1 ⊕G P2) = u(P1)u(P2)+D
u(P1)+u(P2)

and

u(G(P1)) = −u(P1). Let n ≥ 2 which divides p + 1 and a a generator of G(Fp).
Let I be the multiplication by n isogeny.

Then Pa(X) =
∏

b∈I−1(a)(X − u(b)) is irreducible in Fp[X] but completely splits

over K = Fpn . An explicit description of Pa is

Pa(X) =
∑

0≤2k≤n

Xn−2k

(
n

2k

)
Dk − u(a)

∑
1≤2k+1≤n

Xn−2k−1

(
n

2k + 1

)
Dk

How can we deduce from Pa(X) a quasi-subfield polynomial? It is not obvious

since the degree Pa is not a power of p and Pa is not sparse.

By construction, if a 6= a′ then the roots to Pa and Pa′ are distinct so PaP
′
a also

completely splits over Fpd . Therefore we may look for quasi-subfield polynomials

among the products of different Pa. However degPa = n|p + 1 thus degPa does

not divide p and thus there is no chance of finding a polynomial of degree a power

of p by merely multiplying a few Pa. Nonetheless, as in the case of multiplicative

subgroups, one can cope with this problem by multiplying by X until reaching a

degree which is a power of p.

We did not find any quasi-subfield polynomials whose roots form a torus. How-

ever, this goal is maybe accessible.

For example, the product of Pa and P	a is sparse: half of its coefficients are

zeroes.

Indeed, Pa.P	a =
∏

b∈I−1(a)(X − u(b))
∏

b∈I−1(a)(X − u(b))

=
∏

b∈I−1(a)(X − u(b)).
∏

b∈I−1(a)(X − u(b))
=
∏

b∈I−1(a)(X − u(b))(X + u(b))

=
∏

b∈I−1(a)(X
2 − u(b)2)

which has only monomials of even degree.

Therefore, we may hope to reach sparse enough polynomials which would be

good candidates for quasi-subfield polynomials.

6.2 Elliptic curves

The main problem while studying the torus is that it imposes the condition n|p+1.

To get rid of this condition, Couveignes and Lercier extend their ideas to elliptic

curves and succeed to find a solution to their problem for any (p, n) such that

39

• n is odd

• n < (
√
p+ 1)2

• there is a square-free multiple D of n such that D 6≡ 1 mod p and

(
√
p+ 1)2 < D < (

√
p+ 1)2

Since their problem is really different from ours, we cannot be sure that this

approach will be as successful in our case. Nonetheless, the conditions on n and p

are still restrictive as they force n to be of the same order of magnitude that p or

smaller than p. In particular, the case of the field F2n with n a big prime cannot

be dealt with this approach.

40

7 Conclusion

In this thesis, we focused on building better families of quasi-subfield polynomials

than the one introduced in [11]. We succeeded to find five new families based on

additive and multiplicative groups. They lead to a more efficient ECDLP algorithm

than the exhaustive search for wider families of p and n than what the original paper

provided. For the specific case of linearized quasi-subfield polynomials, we ruled out

the existence of quasi-subfield polynomials where deg λ is small enough to improve

on the generic algorithms for ECDLP (or it would require a major breakthrough in

the estimation of the complexity of the algorithm used here).

We mainly studied additive and multiplicative groups. Further research may

study other families of multiplicative quasi-subfield polynomials, in particular when

p is a Solinas prime. Another interesting direction is the use of other algebraic

groups, as suggested in the last section, in order to find quasi-subfield polynomials

with much smaller β. Lastly, the question of the existence of non-linearized quasi-

subfield polynomials where deg λ is small enough to improve on generic algorithms

remains open. It is linked with the question of the existence of a numerical lower

bound on β, similar to the one given by Theorem 1.2, but valid for any quasi-subfield

polynomial. An interesting candidate would be 0.1. as we found no quasi-subfield

polynomial with β less than 0.1 and that it is the bound determining whether the

quasi-subfield polynomials can bring a significant impact to the resolution of the

ECDLP.

References

[1] The on-line encyclopedia of integer sequences (OEIS). https://oeis.org/.

[2] SageMath - open-source mathematical software system. http://www.

sagemath.org/.

[3] Elwyn Berlekamp. Algebraic coding theory. World Scientific, 1968.

[4] William Y. C. Chen and James D. Louck. The combinatorial power of the

companion matrix. Linear Algebra and its Applications, 232:261–278, 1996.

[5] Information Technology Laboratory Computer Security Division. Transition

plans for key establishment schemes | CSRC. https://csrc.nist.gov/News/

2017/Transition-Plans-for-Key-Establishment-Schemes.

41

https://oeis.org/
http://www.sagemath.org/
http://www.sagemath.org/
 https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes
 https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes

[6] Jean-Marc Couveignes and Reynald Lercier. Galois invariant smoothness basis.

arXiv:0802.0282 [math], 2008.

[7] Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio

Mathematica, 147(1):75–104.

[8] Steven D. Galbraith and Pierrick Gaudry. Recent progress on the elliptic curve

discrete logarithm problem. Designs, Codes and Cryptography, 78(1):51–72, 01

2016.

[9] Pierrick Gaudry. Index calculus for abelian varieties of small dimension and the

elliptic curve discrete logarithm problem. Journal of Symbolic Computation,

44(12):1690–1702, 2009.

[10] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. https://eprint.

iacr.org/2015/625.

[11] Ming-Deh Huang, Michiel Kosters, Christophe Petit, Sze Ling Yeo, and Yang

Yun. Quasi-subfield polynomials and the elliptic curve discrete logarithm prob-

lem. Journal of Mathematical Cryptology, 11 2018.

[12] Gary McGuire and Daniela Mueller. Some results on linearized trinomials that

split completely. 2019.

[13] Gary McGuire and John Sheekey. A characterization of the number of roots of

linearized and projective polynomials in the field of coefficients. Finite Fields

and Their Applications, 57:68–91, 2019.

[14] NIST. Recommended elliptic curves for federal government use, 1999.

[15] J. Maurice Rojas. Solving degenerate sparse polynomial systems faster. Journal

of Symbolic Computation, 28(1):155–186, 1999.

[16] Igor Semaev. Summation polynomials and the discrete logarithm problem on

elliptic curves. http://eprint.iacr.org/2004/031.

[17] Jerome A Solinas et al. Generalized mersenne numbers. 1999.

[18] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with

cryptanalytic applications. J. Cryptology, 12:1–28, 1999.

[19] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans-

actions on Information Theory, 32(1):54–62, 1986.

42

https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
http://eprint.iacr.org/2004/031

A Appendix

A.1 Omitted proofs

A.1.1 Proof of Lemma 1.3

Let us first prove the condition about the exhaustive search. In order to beat

exhaustive search, we know that we need m > 2.

Therefore, 1− α + α
m

+ calgoβα
2 ≤ 1− 2α

3
+ calgoβα

2. Moreover, 1− 2α
3
βα2 = 1

if and only if α = 0 or −2
3

+ calgoβα = 0 ie α = 2/3
calgoβ

= 4/3αβ. Hence, for all

α ∈]0, 4/3αβ[, 1− α + α
m

+ calgoβα
2 < 1.

Further more, if 4/3αβ
n
n′
≥ 3, then Z>2 ∩ {α n

n′
, 0 < α < 4/3αβ} 6= ∅. Thus we

can choose an integer m in this set which will allow us to get a better complexity

that the brute-force algorithms.

Finally,4/3αβ
n
n′
≥ 3⇔ αβ ≥ 9n′

4n

Remark A.1. If we just considered that 1/m was negligible, we would only need

to know when −α + calgoβα
2 = 0 which happens when α = 0 or α = 1

calgoβ
= 2αβ.

Therefore to find m ≥ 3 in [0, 2αβ
n
n′

], we would have needed αβ >
3n′

2n
. Moreover, to

keep the assumption m� 1 we would need 2αβ
n
n′
� 1. This leads to the condition

αβ � n′

2n
which is coherent with the previously given bound.

Let us now look at the requirements needed to beat the generic algorithms.

Here we only consider the case m big enough to consider 1/m as negligible. This

time we need to find when 1−α+ calgoβα
2 < 1/2. Therefore we need to search the

roots of 1/2−α+ calgoβα
2. The discriminant is ∆ = 1− 4calgoβ

2
= 1− 1

αβ
. It is non-

negative if and only αβ ≥ 1 and the roots are α± = 1±
√

∆
2calgoβ

=
(

1±
√

1− 1
αβ

)
αβ.

Hence, for all α ∈]α−, α+[, 1− α + calgoβα
2 < 1/2.

Further more,if α+n
n′
� 1 and α+

n
n′
> α−

n
n′

+ 1, then Z�1 ∩ {α n
n′
, α− < α <

α+} 6= ∅. Thus we can choose an integer m in this set which will allow us to get a

better complexity that the generic algorithms.

Finally,

43

α+n
n′
� 1 ⇔

(
1 +

√
1− 1

αβ

)
αβ

n
n′
� 1

⇔
√

1− 1
αβ
� n′

nαβ
− 1

⇔ 1− 1
αβ
�
(

n′

nαβ

)2

− 2. n
′

nαβ
+ 1

⇔ 0� n′2

n2αβ
− 2n

′

n
+ 1

⇔ 0� n′2

n2 − 2αβ
n′

n
+ αβ, ∆ = 4(α2

β − αβ) > 0 if αβ > 1

⇔ |n′
n
− αβ| �

√
∆/2 =

√
α2
β − αβ

and

α+
n
n′
> α−

n
n′

+ 1 ⇔ (α+ − α−) n
n′
> 1

⇔ 2
√

1− 1
αβ
αβ

n
n′
> 1

⇔ 4(1− 1
αβ

)α2
β
n2

n′2
> 1

⇔ α2
β − αβ > n′2

4n2

⇔ αβ >
1+
√

1+n′2/n2

2

As it was forecast, this condition is stronger than simply αβ > 1 as it is in the

ideal case. Moreover, it imposes n′/n small compared to αβ so |n′
n
−αβ| �

√
α2
β − αβ

becomes n′

n
� αβ −

√
α2
β − αβ

A.1.2 The formula for the power of companion matrices

In [4], the main result is a formula to give the value of all the coefficients in the

power of companion matrices. It is a result based on a combinatorial analysis of a

digraph.

It says that for any companion matrix M =



u1 u2 . . . 0 um

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...

0 0 . . . 1 0


,

and any r ≥ 1, we have

M r
i,j =

{
1 if r = i− j∑

k1,...,kn
wku

k1
1 . . . ukmm otherwise

where k = (ki)1≤i≤m are non-negative integers such that k1+2k2 · · ·+mkm = r−i+j
and wk =

kj+···+km
k1+···+km

(
k1+···+km
k1,...,km

)
.

This result is really useful for us as we need to compute the powers of a com-

panion matrix.

44

However in our case, the shape of the matrix is N =



0 0 . . . 0 um

1 0 . . . 0 um−1

0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 1 u1


.

Thus N = f(M) with f the involution defined by

f : (ai,j)1≤i,j≤m 7→ (am−j+1, bm−i+1)1≤i,j≤m

which sends square matrices of size m on square matrices of size m.

Let us show that for any A and B square matrices of size m, f(AB) = f(B)f(A),

in order to have N r = f(M)r = f(M r) and thus deduce the coefficients of N r for

any r ≥ 1. We define C = AB and D = f(AB), E = f(A), F = f(B) and

G = f(B)f(A).

Then ci,j =
∑m

k=1 ai,kbk,j, so

di,j = cm−j+1,m−i+1 =
m∑
k=1

am−j+1,kbk,m−i+1

=
m∑
k=1

em−k+1,jfi,m−k+1

=
m∑
k=1

fi,kek,j

= gi,j

.

Hence N r = f(M r) so N r
i,j = M r

m−j+1,m−i+1

N r
i,j =

{
1 if r = (m− j + 1)− (m− i+ 1) = i− j∑

k1,...,kn
wku

k1
1 . . . ukmm otherwise

where k = (ki)1≤i≤m are non-negative integers such that

k1 + 2k2 · · ·+mkm = r − (m− j + 1) + (m− i+ 1) = r − i+ j

and wk = km−i+1+···+km
k1+···+km

(
k1+···+km
k1,...,km

)
, which is the result that we use in 4.3.

A.2 Systematic search of quasi-subfield polynomials

A.2.1 Search of linearized polynomials

Let us now present the code writen with SageMath to search linearized quasisubfield

polynomials.

45

The class linearized poly represents a linearized polynomial and possesses all the

functions needed to decide whether it is a quasi-subfield polynomial, for which n,

and if it belongs to one of the known families of quasi-subfield polynomials.

It is used inside a function search which explores all the possible coefficients.

class l i n e a r i z e d p o l y :
””” a l i n e a r i z e d po lynomia l ”””

def i n i t (s e l f , matrix , p) :
””” i n i t i a l i s e d by g i v i n g the companion matrice &

the c h a r a c t e r i s t i c o f the f i e l d p ”””
s e l f . matrix=matrix # C L
s e l f . c o e f f s =[−c for c in matrix [−1]]+[Zmod(p) (1)]# L

= sum i (c o e f f s [i]Xˆ(pˆ i))
s e l f . n dash = matrix . nrows () # n ’
s e l f . l= s e l f . l i n d e x () # l
s e l f . p=p # p
s e l f . s imple=s e l f . c o e f f s

def l i n d e x (s e l f) :
””” re turn the v a l u e o f l ”””
for i in range (len (s e l f . c o e f f s)−2 ,0 ,−1) :

i f s e l f . c o e f f s [i] ! = 0 :
return i

return 0

def f (s e l f) :
””” re turn f such t h a t L f i s the po lynomia l

cons idered ”””
poly=0
x=PolynomialRing (Zmod(s e l f . p) , ’X ’) . gen ()
for i in range (len (s e l f . s imple)) :

c=s e l f . s imple [i]
poly+=c∗x ˆ(i)

return poly

def q u a s i s u b f i e l d (s e l f , max b=1) :
””” re turn True i f f i t i s a max b−quasi−s u b f i e l d

po lynomia l and the gcd o f the i n d i c e s o f the
c o e f f i c i e n t s and o f n i s 1

In t h i s case , i n i t i a l i s e s e l f . n to the f i r s t
v a l u e o f n where C Lˆn=I ”””

i f s e l f . l >0:
M=s e l f . matrix
for n in range (2 , int (max b∗ s e l f . n dash ˆ2/ s e l f . l)

+1) :

46

M=M∗ s e l f . matrix
i f n>s e l f . n dash and M. i s o n e () :

s e l f . beta=(s e l f . l ∗n ∗1 . 0) / s e l f . n dash ∗∗2
s e l f . n=n
J=[s e l f . n]
for i in range (len (s e l f . c o e f f s)) :

i f s e l f . c o e f f s [i] ! = 0 :
J . append (i)

return gcd (J)==1
return False

def t o s t r i n g (s e l f) :
return ” ” . j o i n ([str (c) for c in s e l f . c o e f f s])

def t o s t r i n g l a t e x (s e l f) :
s=””
for i in range (len (s e l f . s imple)−1 ,0 ,−1) :

i f s e l f . s imple [i] ! = 0 :
i f s e l f . s imple [i]==Zmod(s e l f . p) (1) :

s+=”+Xˆ{”+str (i)+”}”
e l i f s e l f . s imple [i]==Zmod(s e l f . p) (−1) :

s+=”−Xˆ{”+str (i)+”}”
else :

s+=”+”+str (s e l f . s imple [i])+”Xˆ{”+str (i)+
”}”

s+=”+”+str (s e l f . s imple [0])
return s [1 :]

def e q u i v a l e n t c l a s s (s e l f) :
””” Once we know t h a t i t i s a quasi−s u b f i e l d

polynomial , we compute a l l the e lements o f i t s
e q u i v a l e n t c l a s s which share the same n”””

s e t c l a s s =set ([s e l f . t o s t r i n g ()])
L=[]

for a in Zmod(s e l f . p) :
i f aˆ s e l f . n==1 and a !=1:

c o e f f 3 = [s e l f . c o e f f s [i] ∗a∗∗(i−s e l f . n dash
) for i in range (len (s e l f . c o e f f s))]

L . append (c o e f f 3)
s e t c l a s s . add (” ” . j o i n ([str (c) for c in

c o e f f 3]))
i f (s e l f . p<=2 or GF(s e l f . p) (2) not in

c o e f f 3) and (s e l f . p<=3 or GF(s e l f . p) (3)
not in c o e f f 3) :

s e l f . s imple=c o e f f 3

47

not u s e f u l when c o n s i d e r i n g on ly c o e f f i c i e n t s
in Fp s i n c e the f r o b e n i u s l e a v e s them unchanged

#f o r b in Zmod(s e l f . p) :
i f b !=0 and b !=1:
f o r new co in L :
c o e f f 4 = [new co [i]∗ b ˆ(s e l f . pˆ i−s e l f . p

ˆ(s e l f . n dash)) f o r i in range (l e n (new co))]
s e t c l a s s . add (” ” . j o i n ([s t r (c) f o r c

in c o e f f 4]))
i f (s e l f . p<=2 or GF(s e l f . p) (2) not in

c o e f f 4) and (s e l f . p<=3 or GF(s e l f . p) (3) not in
c o e f f 4) :

s e l f . s imple=c o e f f 4

return s e t c l a s s

def ana lyse shape (s e l f , s e t p) :
””” Try to r e c o g n i z e i f the quasi−s u b f i e l d b e l o n g s

to one o f the f a m i l i e s we i d e n t i f i e d ”””
l i s t i = [i for i in range (len (s e l f . s imple)) i f s e l f

. s imple [i] ! = 0]
type 1 , type 2 , type 3= True , True , True
#pre−a n a l y s i s :
for i in l i s t i [1 :] :

i f s e l f . s imple [i] ! = 1 :
type 0 , type 1=False , Fa l se

type 1 = type 1 and (l i s t i [0]==0) and (s e l f . s imple [
l i s t i [0]]==1)

type 2 = type 2 and ((l i s t i [0]==0 and s e l f . s imple [
l i s t i [0]]==1) or l i s t i [0]==1)

type 1 : X+Xˆ{pˆ{ p 0}}+\do t s + Xˆ{pˆ{ p d }} , where
$q ’=pˆr , n=p {d+1} ,\ p a=1+q ’+\ do t s+q ’ˆ{a} =(q ’ˆ(
a+1)−1)/(q ’−1)

i f l i s t i ! = [0 , 1] :
qq= l i s t i [2]−1
type 1= type 1 and (int (l og (qq , s e l f . p))==log (qq ,

s e l f . p))
a=0
p a=1
while p a <= l i s t i [−1] :

i f a+1>=len (l i s t i) or l i s t i [a+1]!= p a :
type 0 =False

a+=1

48

p a=qq∗p a+1

type 2 : aX+Xˆ(p)+Xˆ(p ˆ(q)) +...+Xˆ(p ˆ(qˆd)) or X+X
ˆ(p ˆ(q−1)) +...+Xˆ(p ˆ(qˆd−1)) , n = (q ˆ(d+1)−1)

i f l i s t i [1]==1:
q= l i s t i [2]
#a !=0:
type 2 a =(int (l og (q , s e l f . p))==log (q , s e l f . p)) and

(l i s t i == [0] + [qˆ i for i in range (int (l og (
len (s e l f . s imple) , q)+1))])

i f s e l f . p !=2:
type 2=type 2 and type 2 a

else :
q= l i s t i [1]+1
type 2 0 = (int (l og (q , s e l f . p))==log (q , s e l f . p

)) and (l i s t i == [0] + [qˆ i−1 for i in
range (1 , int (l og (len (s e l f . s imple) , q)+1))])

type 2=type 2 and (type 2 a or type 2 0)
else :

q= l i s t i [1]+1
type 2 = (int (l og (q , s e l f . p))==log (q , s e l f . p)) and

(l i s t i == [0] + [qˆ i−1 for i in range (1 , int (
l og (len (s e l f . s imple) , q)+1))])

type 3 : i n v e r s e s o f type 1 and 2
x=PolynomialRing (Zmod(s e l f . p) , ’X ’) . gen ()
i n v e r s e =(xˆ s e l f . n−1)// s e l f . f ()
type 3 = ” ” . j o i n ([str (c) for c in i n v e r s e .

c o e f f i c i e n t s (spa r s e=False)]) in s e t p
i f type 3 :

i n v e r s e = ” (”+str (i n v e r s e)+”) ”
else :

i n v e r s e =””
return (”&” . j o i n ([”X” i f c else ” ” for c in [type 1

, type 2 , type 3]])+i n v e r s e+”\\\\”)

def search (p , max n dash=40) :
””” output a l l t he q u a s i s u b f i e l d po lynomia l s in F p [X]

o f degree l e s s than X and p r i n t r e p r e s e n t a t i v e o f
each e q u i v a l e n c e c l a s s encountered ” ”””

s e t p=set () # the s e t o f the known quasi−
s u b f i e l d po lynomia l s

Zp=Zmod(p)
s e t c=set ([Zp (0) ,Zp (1) ,Zp(−1)]) # or s e t (Zp) depending

o f the v a l u e o f n dash we want to reach

49

s tack = [[]] # where we accumulate the
c o e f f i c i e n t s in order to genera te a l l the (a 0 , a 1 ,\
do t s , a (n ’−1)) p o s s i b l e

n dash=−1
while s tack ! = [] :

c o e f f s=stack . pop (0)
i f len (c o e f f s)+1>n dash :

n dash=len (c o e f f s)+1
M=Matrix . companion ([Zp (0) for k in range (n dash)

]+[Zp (1)]) . t ranspose ()
i f n dash> max n dash :

break
i f n dash>0:

for c in s e t c :
co=[c]+ c o e f f s
i f c !=0:

M[n dash−1]=co
P=l i n e a r i z e d p o l y (M, p)
i f P. t o s t r i n g () not in s e t p and P.

q u a s i s u b f i e l d (max b=1) :
for poly in P. e q u i v a l e n t c l a s s () :

s e t p . add (poly)
print (”&” . j o i n ([str (c) for c in [P .

t o s t r i n g l a t e x () ,P . n , str (P. beta)
[: 3] , p ,P . ana lyse shape (s e t p)]]))

s tack . append (co)
return s e t p

For example search(2,max n dash=16) will output all the quasi-subfield polyno-

mials in F2[X] of degree less than 16.

A.2.2 Search of multiplicative quasi-subfield polynomials

We can also use Sage to search multiplicative quasi-subfield polynomials. To do

this, we search tuples of (p, n, n′, r) verify r|pn′ − a|pn − 1 with a = pn
′

mod r and

β =
n. logp(a)

n′2
≤ 1. Let us show here the results for small n. We increase p as long as

to find a few QSP per n. When two values of r for the same (p, n, n′) can be used

and leads to the the same QSP, we only write one set of working parameters.

The code in Sage is the following:

print (”n& p& nn& r & a & beta & 1& 2 & 3 \\\\”)
for n in range (2 , 25) : #We t r y a l l the sma l l n

p=2
s e t p o l y=set () # We keep t r a c k o f the

po lynomia l s known f o r t h i s n in order to avoid

50

p r i n t i n g them s e v e r a l time .
while p<1000 and len (s e t p o l y)<10: # We t r y a l l the

sma l l p
i f i s p r i m e (p) :

for r in d i v i s o r s (pˆn−1) :
for nn in range (1 , n) : # nn =n ’

a=pˆnn %r
beta = f loat (l og (a , p)∗n/(nnˆ2))
poly = ”Xˆ”+str (pˆnn)+” Xˆ”+str (a)
i f (not poly in s e t p o l y) and a!=pˆnn

and (pˆn−1)%(pˆnn−a)==0 and beta <=1
and beta >0:
print (str (n)+”&”+str (p)+”&”+str (nn)+

”&”+s c i (r)+”&”+s c i (a)+”&”+str (
beta) [: 4] + ”&”+get type (p , n , nn , r , a
)+”\\\\”)

s e t p o l y . add (poly)
p=next pr ime (p)

We use here a function get type which we implemented to recognize the families

listed in Proposition 5.1.

Let us display here some of the output of this code. We to cut it to present only

the most significant lines but a thing important to keep in mind is that we were not

able to classify all the output in families. Surely, much more families remains to be

conjectured and proved.

n p n′ r a β 1 2 3

2 5 1 3 2 0.86 X

2 11 1 4 3 0.91 X

2 19 1 5 4 0.94 X

2 29 1 6 5 0.95 X

2 41 1 7 6 0.96 X

3 7 2 19 11 0.92 X

3 29 1 13 3 0.97 X

3 61 2 291 229 0.99 X

3 67 1 21 4 0.98 X

3 211 2 1443 1231 0.99 X

4 2 3 5 3 0.70 X

4 3 3 10 7 0.78 X

4 5 3 26 21 0.84 X

4 7 3 50 43 0.85 X

51

n p n′ r a β 1 2 3

4 11 3 122 111 0.87 X

4 3 3 16 11 0.97
...

4 17 1 15 2 0.97 X

4 83 1 40 3 0.99 X

5 3 3 11 5 0.81

5 5 2 11 3 0.85

5 31 4 86755 55971 0.99 X

5 37 2 33 16 0.95

5 109 2 62 39 0.97

5 241 4 5.5 ∗ 107 4.1 ∗ 107 0.99 X

5 307 2 5231 91 0.98

5 1021 4 5.3 ∗ 109 4.2 ∗ 109 0.99 X

5 3121 4 1.8 ∗ 1011 1.5 ∗ 1011 0.99 X

6 2 5 21 11 0.83 X

6 3 2 7 2 0.94

6 3 5 91 61 0.89 X

6 5 4 93 67 0.97

6 5 5 651 521 0.93 X

6 7 5 2451 2101 0.94 X

6 11 3 37 36 0.99

6 11 4 703 581 0.99
...

6 4099 1 1365 4 0.99 X

7 127 6 9.8 ∗ 1010 6.5 ∗ 1010 0.99 X

7 16381 6 5.8 ∗ 1021 4.7 ∗ 1021 0.99 X

7 78121 6 1.7 ∗ 1025 1.4 ∗ 1025 0.99 X

8 2 6 17 13 0.82 X

8 2 7 85 43 0.88 X

8 3 6 82 73 0.86 X

8 3 7 820 547 0.93 X

8 5 6 626 601 0.88 X

9 19681 8 4.5 ∗ 1030 3.4 ∗ 1030 0.99 X

9 262147 1 87381 4 0.99 X

52

n p n′ r a β 1 2 3

10 2 9 341 171 0.91 X

10 3 9 7381 4921 0.95 X

10 5 9 4.0 ∗ 105 3.2 ∗ 105 0.97 X

10 7 9 5.8 ∗ 106 5.0 ∗ 106 0.97 X

10 11 9 2.1 ∗ 108 1.9 ∗ 108 0.98 X

11 4194301 10 2.0 ∗ 1060 1.6 ∗ 1060 0.99 X

12 2 7 13 11 0.84

12 2 9 65 57 0.86 X

12 2 10 273 205 0.92 X

12 2 11 1365 683 0.93 X

12 3 9 730 703 0.88 X

12 3 10 6643 5905 0.94 X

12 3 11 66430 44287 0.96 X

Some multiplicative quasi-subfield polynomials output by our Sage function

53

	1 Introduction
	2 From quasi-subfield polynomials to an ECDLP algorithm
	2.1 Previous ECDLP algorithms
	2.2 The quasi-subfield approach
	2.3 Complexity of the quasi-subfield approach

	3 Use of additive subgroups
	3.1 Linearized polynomials
	3.2 How to find linearised quasi-subfield polynomials
	3.3 Linearized quasi-subfield polynomials with n Mersenne

	4 Lower bounds on beta for linearized quasi-subfield polynomials
	4.1 The result
	4.2 The informal proof
	4.3 The formal proof
	4.4 Comparison with other lower bounds
	4.5 Consequences of this theorem

	5 Use of multiplicative groups
	5.1 Polynomials based on multiplicative groups
	5.2 New families of quasi-subfield polynomials
	5.3 Critics of this definition of quasi-subfield polynomial

	6 Use of other algebraic groups
	6.1 Torus
	6.2 Elliptic curves

	7 Conclusion
	References
	A Appendix
	A.1 Omitted proofs
	A.2 Systematic search of quasi-subfield polynomials

