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ZSIGMONDY’S THEOREM FOR CHEBYSHEV POLYNOMIALS
STEFAN BARANCZUK

ABSTRACT. For every natural number a > 1 consider the sequence (T}, (a) — 1)52, defined by
Chebyshev polynomials T;,. We list all pairs (n,a) for which the term T}, (a) — 1 has no primitive
prime divisor.

There is an intriguing link between the sequence of the power maps ™ and the sequence of the
Chebyshev polynomials T),(z), defined either by the property T, (cos(f)) = cos(n#), or recursively
To(x) =1, Ti(z) = x, Thyo(x) = 22T, 41 (x) — T(x) (our reference for the Chebyshev polynomials
is [Riv]). For example, they both satisfy the composition identity, which we state here for the
Chebyshev polynomials:

T.(Ton(x)) = To(To()) = T ().
Furthermore, the celebrated Julia-Ritt result says that if two polynomials commute under compo-
sition, then either both are iterates of the same polynomial, or both are in a sense similar to either
Chebyshev polynomials or power maps.

There are also number theoretic properties shared by both sequences (see Section 5.3. in [Riv]).
In this paper we investigate such property — namely, we prove the Chebyshev polynomials analogue
of Zsigmondy’s Theorem.

Zsigmondy’s Theorem says for which natural numbers a,n > 1 there is a prime divisor p of
a™ — 1 that does not divide any of the numbers a? — 1, d < n (such primes are called primitive
prime divisors) or equivalently, there is a prime number p such that the multiplicative order ord,(a)
equals n.

The above mentioned similarities evoke the question whether we could replace a™ in Zsigmondy’s
Theorem by T, (a). Our answer is as follows. Denote by Che,(z) the minimal positive integer m
such that 7,,(z) =1 mod p; this quantity is the Chebyshevian analogue of the multiplicative order
(this claim is justified by Lemmas [3] and @]).

Theorem 1. Let a,n > 1 be natural numbers. There exits a prime number p such that n = Che,(a),
except in the following cases:

en=2anda=2%—-1,

en=3 anda:?’a;l,

e n=4anda = 2%,

en==06anda= L;l

The proof takes as a model the einfacher Bewais of Zsigmondy’s Theorem presented in [LiinI]
(compare our Theorem [I3] with Satz 1).

Proposition 2. (Ezercise 1.1.5 in |[Riv]) If a,b are nonnegative integers, then
(Tars @) = )Ty () — 1) = (Tu() — Th(x))*.
The following lemma is the analogue of Fermat’s little theorem for Chebyshev polynomials.
Lemma 3. Let p be an odd prime number. For every x € N
Ty1(z) =1 modp or T,(r)=1 modp.

For every x € N
To(x) =1 mod 2.
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Proof. Ty(x) = 22? — 1. If p is an odd prime then we have (cf. (5.32) in [Riv])
Ty(z) =Ti(x) modp
and
(Tp1(2) = D)(Tpa(2) = 1) = (T(x) — Ta(x))?
by Proposition O

Lemma 4. Let p be a prime number and x € N. Let m be the minimal positive integer such that
T(x) =1 mod p. Then T,(x) =1 mod p for a positive integer n if and only if m | n.
Proof. (<) For every n we have T,,(1) = 1. Thus if m | n then T,,(x) =1 mod p by the composition
identity.

(=) Let r = n — km be the remainder obtained upon dividing n by m. Suppose r > 0. Putting
a = km and b = r in Proposition 2] we get

(T(2) = V(T () = 1) = (Tim() = 1) = (T (2) = 1))*.
Arguing as in the (<) part of the proof we get Ty, (z) —1 =0 mod p. Since T,,(z)—1 =0 mod p,
we have T,.(x) — 1 =0 mod p by the above identity. This contradicts the minimality of m. UJ

We immediately get the following.

Lemma 5. Ifx € N and p is an odd prime number then Che,(x) divides p—1 or p+1. In particular,
Che,(z) and p are coprime. If x is odd then Chey(z) = 1. If x is even then Chey(x) = 2.

The key tool of the proof of Zsigmondy’s Theorem is the factorization of polynomials ™ — 1
into cyclotomic polynomials (our reference for them is [Liin2]). The following lemma describes its
analogue for Chebyshev polynomials.

Lemma 6. For everyn > 1

To(z) -1 =[] 95(x)
din
where Qy(x) =z — 1 and for d > 2

Qq(z) = H Q(x—COSQIfT’r)

1<k<$
ged(k,d)=1
and
|1 ifd=1,2,
947 2 ifd>2.
Proof. For every n > 1 the local maxima of T),(x) are exactly at cos %T’T, 1 <k < 3, and they all
have value 1. Besides those points, T,,(x) = 1 only for = 1 and arbitrary n, and for x = —1 and
even n (see Section 1.2. in [Riv]). O

The significance of €,(z) can be seen at a glance: it is exactly the factor that distinguishes
T.(z) — 1 from all Ty(x) — 1, d | n, d < n. Precisely speaking, if there is a primitive prime divisor
of T,,(xz) — 1, it has to divide €, (z) by Lemma [I0

Proposition 7. Let m,n be positive integers. Then Q. () is a divisor of Q,(T,.(x)). If moreover
n > 3 and every prime divisor of m divides also n, then Quy,(z) = Q,(T,,(z)).

Proof. Let o be any zero of €,,,,,(z). We have a = cos ff—g for some k coprime to mn and 1 < k < 7%,
Since T, (cos(6)) = cos(mf), we get Tp,(a) = cos 2 = cos w Thus T,,(a) is a zero of ,(x).
So all zeros of Q,,,(z) are zeros of ,(T,,(z)). Since Q. (z) has only simple zeros, we get that
Qo () is a divisor of Q, (T, (2)).

Now suppose that n > 3 and every prime divisor of m divides also n. If d > 3 then the degree of
Qg is (d)/2 and its leading coefficient is 2¢(9/2, If every prime divisor of m divides also n, then
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n and mn have the same set of prime divisors. Hence we get p(mn) = me(n) (see e.g. Satz 9.4 in
[Liin2]). Thus Q,.,(z) and Q,(T;,(x)) have the same degree and the same leading coefficient. [J

Proposition 8. Let n be an odd natural number. Then §,(0) = +1. If moreover n > 3 then
Qo () = £, (—2x).
Proof. The proof of the first statement is by induction on n. We have O () = x—1, so £;(0) = —1.
Suppose that for every odd natural number d such that 1 < d < n we have ©Q4(0) = £1. Now
comptte ~1 = T,(0) ~ 1 = [Ty 9 (0) = 24(0) - Ty rcaen 230) - 22(0) = ~2(0). We get
02(0) =

Now suppose n > 3. We have deg s, = ¢(2n)/2 = ¢(n)/2 = deg?,. The same shows that
s, and €, have the same leading coefficient, namely 2¢(™/2 It remains to examine the zeros. We
have — cos =% 2’” = cos w Denote | = n — 2k. The conditions 1 < k < %, ged(k,n) = 1 are
equivalent to1 <1< 2 ged(l,2n) = 1. Hence Qs,(2) and Q,(—z) have the same set of zeros. 0
Proposition 9. Let K be a field of characteristic 0. Suppose that P(x) € Klz], P(0) = 1, and
P?(x) € Z[x]. Then P(x) € Z[z].
Proof. Put P(z) = >, ¢;a’. Since the coefficient of z¥ in P?(x) equals 2¢y, + Y g_;-p, CiChs, We
get by induction on k that each ¢, is a rational number with denominator being a power of 2.
Thus P(z) =1 + 9 where Q(z) = Yoo, dixt € Z[x] with some d; being odd. The coefficient of

A 2¢ )
2¥ in Q*(x) equals df + 23, d;jiidj i, so it is an odd integer. Thus the coefficient of 2%/ in

2°71Q(z) + Q*(z) is also odd. But we have P?(z) =1+ %&LQQ(@, so e = 0. O
Lemma 10. Q, € Z[z].
Proof. First we prove the lemma for odd n. We use induction. Q; € Z[x]. Let n > 1. Suppose
that for every odd natural number d such that 1 < d < n we have Q; € Z[z]. We have T),(z) —1 =
[ Ly, Q' (x) = Q4 (2)g(x), where g(z) € Z[z]. Put Q2 (z) = Z“’(" a;z' and g(z) = Z;:O“’(") bix'.
We have ay = £1 and by = £1 by Proposition 8 Let i < ¢(n) and assume that a; € Z for every
J < i. Since aby + a;_1by + ... € Z as the coefficient of z' in Ty, (x) — 1, we have a; € Z. Thus
2, € Z[z] by Proposition

We directly compute that Qy(x) = 2(z + 1), and Q4(z) = 2.

If n is the product of 2 and an odd natural number greater or equal to 3, we use Proposition &

Finally, we get the lemma for arbitrary even n by Proposition [7 since Z[x] is closed under
composition. 0

Proposition 11. For every natural number n and every nonzero real number x
T, 1)—1 2(n? —1 2(n? -1 —4
@) =1 w =) D),
x 6 90
where the dots denote terms with irrelevant coefficients.

Proof. The formula

n?(n*—1) , n*n*—-1)(n*>—-4) ,

To(z+1)=1+n? e
(x+1) +n7w + 5 r° + 30 x° +
can be proved by induction on n. O
Remark 12. One can observe that
28T —1
T.(z+1)=1+ Z (n” — )xk

Theorem 13. Let a,n > 1 be natural numbers. Let p be a prime number dividing Q,(a). Denote
f = Chey(a). There exits a nonnegative integer i such that n = fp'. Ifi > 0, then p is the
greatest prime divisor of n. If moreover p* | Q,(a) then either p =2 and n € {2,4}, or p =3 and
n e {3,6}.
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Proof. Q,(a) is a divisor of T,,(a) — 1, so T,,(a) — 1 =0 mod p. Hence f | n by Lemma @], and we
can write n = fp'w, where w is a natural number not divisible by p. Denote r = fp’. Since f | r,
we get by Lemma [] that 7,.(a) — 1 =0 mod p. Compute

Toa)—1 T,(T(a)—1)+1)—1
To(a)—1 To(a) — 1 =w" modp,

where the congruence is obtained by putting n = w and x = T,.(a) — 1 in Proposition [[1l Suppose

%égj by Lemma [6l But p | Q,(a), so we

get p | w?, contrary to the definition of w. Thus w =1 and n = fp'.

w > 1. This implies r < n. Hence £, (a) is a divisor of

Suppose ¢ > 0. Lemma [ asserts that f divides one of the numbers p — 1,p,p + 1, and that
(p, f) = (2,3) is not possible. Thus p is the greatest prime divisor of n.

Define s = fp'~!. By Lemma [ we have T,(a) — 1 =0 mod p. Assume p > 5. Compute

To(a) =1  T,((Ts(a) —1)+1) -1 _ , 3
Toa)—1 T,(a) - 1 pe mod p7,

where the congruence is obtained by putting n = p and x = Ti(a) — 1 in Proposition Il Since s | n

and s < n we get by Lemma [0l that Q,,(a)?" is a divisor of ?:((Z))j So if p? | Q,(a) and n > 3 we

get a contradiction with the above computation. Thus if p? | ,(a), then we have p = 2,3 or n = 2.

Consider first the case when p = 2. Since p is the greatest prime divisor of n, we have n = 2%,
So 4 | Qyi(a). For i > 1 we have Qyi(a) = 2T5i—2(a) (see Section 1.2. in |Riv| for the zeros of T),).
But 27Thi-2(a) =2 mod 4 for i > 2 (for i = 3 we have 2T5(z) = 42> — 2, and for higher i use the
composition identity). Thus i € {1,2}, so n € {2,4}.

Now let p = 3. Since p is the greatest prime divisor of n, we have n = 273% with i > 1.

Consider first the case when j = 0. The only zero in Z/9Z of the polynomial Q3(z) = 2x + 1
is z = 4. Computing the image of T3 on Z/9Z we get {0,1,8}. So by Proposition [7] we have that
9| Q,(a) implies n = 3.

Now consider the case when j > 1. The only zero in Z/9Z of the polynomial Q(z) = 2z — 1 is
x = 5. Computing the image of Ty on Z/9Z we get {1,4,7,8}, and as we said above the image of
T3 is {0,1,8}. So by Proposition [7] we have that 9 | 2,,(a) implies n = 6.

Thus if 9 | Q,(a) then n € {3,6}.

Now let n = 2. We get that f =1 and p = 2. O

Corollary 14. Let a,n > 1 be natural numbers. A prime number p such that n = Che,(a) does
not exists if and only if Q,(a) is either a power of an odd prime number that is the greatest prime
divisor of n, or a power of 2.

Proof. Suppose first that €2, (a) has at least 2 distinct prime divisors, p; and p,. By Theorem
we have n = Che,, (a)p}' = Che,,(a)p’. If neither Che,, (a) nor Che,,(a) equals n, then ij, iy > 0.
But this means that both pi, ps are the greatest prime divisor of n. By the contradiction we have
Chey, (a) = n or Che,,(a) = n.

Now suppose that ,(a) is a power of an odd prime number p coprime to n. By Theorem [[3] we
have Che,(a) = n.

Suppose that €2,(a) is a power of an odd prime number p dividing n. By Lemma [0 we have that
Che, is coprime to p. So by Theorem [[3 we get that n = Che,(a)p’ with ¢ > 0. Thus n # Che,(a).
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We also get that p is the greatest prime divisor of n.

Let Q,(a) be power of 2. By Lemma [ the possible values of Chey(a) are 1 or 2. Hence if
n = Che,(a) then n = 2. So Qy(a) = 2(a + 1) is a power of 2. Thus a is odd and we have
Ches(a) = 1.

UJ

Proof of Theorem[1. First we show that the exceptional cases described in Corollary [I4] can appear
for n € {2,3,4,6} only.

Let Q,(a) be power of an odd prime number p that is the greatest prime divisor of n. Suppose
n ¢ {2,3,4,6}. By Theorem [3 we get 2,(a) = p. For 1 < k < % we have a — cos T > ¢ — 1.
Since p | n, we get p — 1 = (p) | p(n). Hence

(n) -
p=@= J[ 20a—cos®m)>(2a—-1))"% >(20a—1)"7 .
1<k<?
ged(k,n)=1

This implies a = 2 and p € {3,5}. Suppose p* | n. This means that p | Z. Thus by Proposition [7

we have Q,(z) = Qp%(x) = Q%(Tp(x)). Using this, we get as above

33

()

p=1
p=0(2) =Q=(T,(2)) > 2(T,(2) = 1)) * = Q2(T,(2)-1) = .

But 75(2) — 1 = 25 and 75(2) — 1 = 361, a contradiction. Hence n = p - Che,(2). We have

Ches(2) = 2 and Ches(2) = 3. Son =6 or n = 15. But 245(2) = 529, so it is not a power of 5.

Thus n = 6, a contradiction.

Now let Q,(a) be a power of of 2. Suppose n ¢ {2,3,4,6}. By Lemma [l and Theorem [I3 we
get that n = 2%, 7 > 3, and Q,(a) = 2. We use the identity Qq = 2T5-2. For a > 2 the sequence
T, (a) is strictly increasing and Ty(a) = 1. Thus Q,(a) > 2, a contradiction.

Hence the exceptional cases can appear only for n € {2,3,4,6}. We obtain the values of cor-
responding a by examining Qs(a) = 2(a + 1), Q3(a) = 2a + 1, Q4(a) = 2a, and Qs(a) = 2a — 1,
according to Corollary [14] O
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