
ar
X

iv
:1

90
9.

12
14

3v
1 

 [
m

at
h.

N
T

] 
 2

6 
Se

p 
20

19

ZSIGMONDY’S THEOREM FOR CHEBYSHEV POLYNOMIALS

STEFAN BARAŃCZUK

Abstract. For every natural number a > 1 consider the sequence (Tn(a) − 1)∞n=1
defined by

Chebyshev polynomials Tn. We list all pairs (n, a) for which the term Tn(a) − 1 has no primitive
prime divisor.

There is an intriguing link between the sequence of the power maps xn and the sequence of the
Chebyshev polynomials Tn(x), defined either by the property Tn(cos(θ)) = cos(nθ), or recursively
T0(x) = 1, T1(x) = x, Tn+2(x) = 2xTn+1(x)− Tn(x) (our reference for the Chebyshev polynomials
is [Riv]). For example, they both satisfy the composition identity, which we state here for the
Chebyshev polynomials:

Tn(Tm(x)) = Tm(Tn(x)) = Tmn(x).

Furthermore, the celebrated Julia-Ritt result says that if two polynomials commute under compo-
sition, then either both are iterates of the same polynomial, or both are in a sense similar to either
Chebyshev polynomials or power maps.

There are also number theoretic properties shared by both sequences (see Section 5.3. in [Riv]).
In this paper we investigate such property – namely, we prove the Chebyshev polynomials analogue
of Zsigmondy’s Theorem.

Zsigmondy’s Theorem says for which natural numbers a, n > 1 there is a prime divisor p of
an − 1 that does not divide any of the numbers ad − 1, d < n (such primes are called primitive
prime divisors) or equivalently, there is a prime number p such that the multiplicative order ordp(a)
equals n.

The above mentioned similarities evoke the question whether we could replace an in Zsigmondy’s
Theorem by Tn(a). Our answer is as follows. Denote by Chep(x) the minimal positive integer m
such that Tm(x) ≡ 1 mod p; this quantity is the Chebyshevian analogue of the multiplicative order
(this claim is justified by Lemmas 3 and 4).

Theorem 1. Let a, n > 1 be natural numbers. There exits a prime number p such that n = Chep(a),
except in the following cases:

• n = 2 and a = 2α − 1,
• n = 3 and a = 3α−1

2
,

• n = 4 and a = 2α,
• n = 6 and a = 3α+1

2
.

The proof takes as a model the einfacher Bewais of Zsigmondy’s Theorem presented in [Lün1]
(compare our Theorem 13 with Satz 1).

Proposition 2. (Exercise 1.1.5 in [Riv]) If a, b are nonnegative integers, then

(Ta+b(x)− 1)(T|a−b|(x)− 1) = (Ta(x)− Tb(x))
2.

The following lemma is the analogue of Fermat’s little theorem for Chebyshev polynomials.

Lemma 3. Let p be an odd prime number. For every x ∈ N

Tp−1(x) ≡ 1 mod p or Tp+1(x) ≡ 1 mod p.

For every x ∈ N

T2(x) ≡ 1 mod 2.
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Proof. T2(x) = 2x2 − 1. If p is an odd prime then we have (cf. (5.32) in [Riv])

Tp(x) ≡ T1(x) mod p

and
(Tp+1(x)− 1)(Tp−1(x)− 1) = (Tp(x)− T1(x))

2

by Proposition 2. �

Lemma 4. Let p be a prime number and x ∈ N. Let m be the minimal positive integer such that
Tm(x) ≡ 1 mod p. Then Tn(x) ≡ 1 mod p for a positive integer n if and only if m | n.

Proof. (⇐) For every n we have Tn(1) = 1. Thus if m | n then Tn(x) ≡ 1 mod p by the composition
identity.

(⇒) Let r = n− km be the remainder obtained upon dividing n by m. Suppose r > 0. Putting
a = km and b = r in Proposition 2 we get

(Tn(x)− 1)(T|km−r|(x)− 1) = ((Tkm(x)− 1)− (Tr(x)− 1))2 .

Arguing as in the (⇐) part of the proof we get Tkm(x)−1 ≡ 0 mod p. Since Tn(x)−1 ≡ 0 mod p,
we have Tr(x)− 1 ≡ 0 mod p by the above identity. This contradicts the minimality of m. �

We immediately get the following.

Lemma 5. If x ∈ N and p is an odd prime number then Chep(x) divides p−1 or p+1. In particular,
Chep(x) and p are coprime. If x is odd then Che2(x) = 1. If x is even then Che2(x) = 2.

The key tool of the proof of Zsigmondy’s Theorem is the factorization of polynomials xn − 1
into cyclotomic polynomials (our reference for them is [Lün2]). The following lemma describes its
analogue for Chebyshev polynomials.

Lemma 6. For every n ≥ 1

Tn(x)− 1 =
∏

d|n

Ωσd

d (x)

where Ω1(x) = x− 1 and for d ≥ 2

Ωd(x) =
∏

1≤k≤ d
2

gcd(k,d)=1

2(x− cos 2kπ
d
)

and

σd =

{

1 if d = 1, 2,
2 if d > 2.

Proof. For every n ≥ 1 the local maxima of Tn(x) are exactly at cos 2kπ
n

, 1 ≤ k < n
2
, and they all

have value 1. Besides those points, Tn(x) = 1 only for x = 1 and arbitrary n, and for x = −1 and
even n (see Section 1.2. in [Riv]). �

The significance of Ωn(x) can be seen at a glance: it is exactly the factor that distinguishes
Tn(x)− 1 from all Td(x)− 1, d | n, d < n. Precisely speaking, if there is a primitive prime divisor
of Tn(x)− 1, it has to divide Ωn(x) by Lemma 10.

Proposition 7. Let m,n be positive integers. Then Ωmn(x) is a divisor of Ωn(Tm(x)). If moreover
n ≥ 3 and every prime divisor of m divides also n, then Ωmn(x) = Ωn(Tm(x)).

Proof. Let α be any zero of Ωmn(x). We have α = cos 2kπ
mn

for some k coprime to mn and 1 ≤ k ≤ mn
2

.

Since Tm(cos(θ)) = cos(mθ), we get Tm(α) = cos 2kπ
n

= cos 2(n−k)π
n

. Thus Tm(α) is a zero of Ωn(x).
So all zeros of Ωmn(x) are zeros of Ωn(Tm(x)). Since Ωmn(x) has only simple zeros, we get that
Ωmn(x) is a divisor of Ωn(Tm(x)).

Now suppose that n ≥ 3 and every prime divisor of m divides also n. If d ≥ 3 then the degree of
Ωd is ϕ(d)/2 and its leading coefficient is 2ϕ(d)/2. If every prime divisor of m divides also n, then
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n and mn have the same set of prime divisors. Hence we get ϕ(mn) = mϕ(n) (see e.g. Satz 9.4 in
[Lün2]). Thus Ωmn(x) and Ωn(Tm(x)) have the same degree and the same leading coefficient. �

Proposition 8. Let n be an odd natural number. Then Ωn(0) = ±1. If moreover n ≥ 3 then
Ω2n(x) = ±Ωn(−x).

Proof. The proof of the first statement is by induction on n. We have Ω1(x) = x−1, so Ω1(0) = −1.
Suppose that for every odd natural number d such that 1 ≤ d < n we have Ωd(0) = ±1. Now
compute −1 = Tn(0) − 1 =

∏

d|n Ω
σd

d (0) = Ω1(0) ·
∏

d|n, 1<d<n Ω
2
d(0) · Ω

2
n(0) = −Ω2

n(0). We get

Ω2
n(0) = 1.
Now suppose n ≥ 3. We have deg Ω2n = ϕ(2n)/2 = ϕ(n)/2 = deg Ωn. The same shows that

Ω2n and Ωn have the same leading coefficient, namely 2ϕ(n)/2. It remains to examine the zeros. We

have − cos 2kπ
n

= cos 2(n−2k)π
2n

. Denote l = n − 2k. The conditions 1 ≤ k ≤ n
2
, gcd(k, n) = 1 are

equivalent to 1 ≤ l ≤ 2n
2
, gcd(l, 2n) = 1. Hence Ω2n(x) and Ωn(−x) have the same set of zeros. �

Proposition 9. Let K be a field of characteristic 0. Suppose that P (x) ∈ K[x], P (0) = 1, and
P 2(x) ∈ Z[x]. Then P (x) ∈ Z[x].

Proof. Put P (x) =
∑∞

i=0 cix
i. Since the coefficient of xk in P 2(x) equals 2ck +

∑

0<i<k cick−i, we
get by induction on k that each ck is a rational number with denominator being a power of 2.

Thus P (x) = 1 + Q(x)
2e

, where Q(x) =
∑∞

i=1 dix
i ∈ Z[x] with some dj being odd. The coefficient of

x2j in Q2(x) equals d2j + 2
∑

0<i<j dj+idj−i, so it is an odd integer. Thus the coefficient of x2j in

2e+1Q(x) +Q2(x) is also odd. But we have P 2(x) = 1 + 2e+1Q(x)+Q2(x)
22e

, so e = 0. �

Lemma 10. Ωn ∈ Z[x].

Proof. First we prove the lemma for odd n. We use induction. Ω1 ∈ Z[x]. Let n > 1. Suppose
that for every odd natural number d such that 1 ≤ d < n we have Ωd ∈ Z[x]. We have Tn(x)− 1 =
∏

d|n Ω
σd

d (x) = Ω2
n(x)g(x), where g(x) ∈ Z[x]. Put Ω2

n(x) =
∑ϕ(n)

i=0 aix
i and g(x) =

∑n−ϕ(n)
i=0 bix

i.

We have a0 = ±1 and b0 = ±1 by Proposition 8. Let i ≤ ϕ(n) and assume that aj ∈ Z for every
j < i. Since aib0 + ai−1b1 + . . . ∈ Z as the coefficient of xi in Tn(x) − 1, we have ai ∈ Z. Thus
Ωn ∈ Z[x] by Proposition 9.

We directly compute that Ω2(x) = 2(x+ 1), and Ω4(x) = 2x.
If n is the product of 2 and an odd natural number greater or equal to 3, we use Proposition 8.
Finally, we get the lemma for arbitrary even n by Proposition 7, since Z[x] is closed under

composition. �

Proposition 11. For every natural number n and every nonzero real number x

Tn(x+ 1)− 1

x
= n2 +

n2(n2 − 1)

6
x+

n2(n2 − 1)(n2 − 4)

90
x2 + . . . ,

where the dots denote terms with irrelevant coefficients.

Proof. The formula

Tn(x+ 1) = 1 + n2x+
n2(n2 − 1)

6
x2 +

n2(n2 − 1)(n2 − 4)

90
x3 + . . .

can be proved by induction on n. �

Remark 12. One can observe that

Tn(x+ 1) = 1 +

n
∑

k=1

2k
∏k−1

i=0 (n
2 − i2)

(2k)!
xk.

Theorem 13. Let a, n > 1 be natural numbers. Let p be a prime number dividing Ωn(a). Denote
f = Chep(a). There exits a nonnegative integer i such that n = fpi. If i > 0, then p is the
greatest prime divisor of n. If moreover p2 | Ωn(a) then either p = 2 and n ∈ {2, 4}, or p = 3 and
n ∈ {3, 6}.
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Proof. Ωn(a) is a divisor of Tn(a)− 1, so Tn(a)− 1 = 0 mod p. Hence f | n by Lemma 4, and we
can write n = fpiw, where w is a natural number not divisible by p. Denote r = fpi. Since f | r,
we get by Lemma 4 that Tr(a)− 1 ≡ 0 mod p. Compute

Tn(a)− 1

Tr(a)− 1
=

Tw((Tr(a)− 1) + 1)− 1

Tr(a)− 1
≡ w2 mod p,

where the congruence is obtained by putting n = w and x = Tr(a)− 1 in Proposition 11. Suppose

w > 1. This implies r < n. Hence Ωn(a) is a divisor of Tn(a)−1
Tr(a)−1

by Lemma 6. But p | Ωn(a), so we

get p | w2, contrary to the definition of w. Thus w = 1 and n = fpi.

Suppose i > 0. Lemma 5 asserts that f divides one of the numbers p − 1, p, p + 1, and that
(p, f) = (2, 3) is not possible. Thus p is the greatest prime divisor of n.

Define s = fpi−1. By Lemma 4 we have Ts(a)− 1 ≡ 0 mod p. Assume p ≥ 5. Compute

Tn(a)− 1

Ts(a)− 1
=

Tp((Ts(a)− 1) + 1)− 1

Ts(a)− 1
≡ p2 mod p3,

where the congruence is obtained by putting n = p and x = Ts(a)−1 in Proposition 11. Since s | n

and s < n we get by Lemma 6 that Ωn(a)
σn is a divisor of Tn(a)−1

Ts(a)−1
. So if p2 | Ωn(a) and n ≥ 3 we

get a contradiction with the above computation. Thus if p2 | Ωn(a), then we have p = 2, 3 or n = 2.

Consider first the case when p = 2. Since p is the greatest prime divisor of n, we have n = 2i.
So 4 | Ω2i(a). For i > 1 we have Ω2i(a) = 2T2i−2(a) (see Section 1.2. in [Riv] for the zeros of Tn).
But 2T2i−2(a) ≡ 2 mod 4 for i > 2 (for i = 3 we have 2T2(x) = 4x2 − 2, and for higher i use the
composition identity). Thus i ∈ {1, 2}, so n ∈ {2, 4}.

Now let p = 3. Since p is the greatest prime divisor of n, we have n = 2j3i with i ≥ 1.
Consider first the case when j = 0. The only zero in Z/9Z of the polynomial Ω3(x) = 2x + 1

is x = 4. Computing the image of T3 on Z/9Z we get {0, 1, 8}. So by Proposition 7 we have that
9 | Ωn(a) implies n = 3.

Now consider the case when j ≥ 1. The only zero in Z/9Z of the polynomial Ω6(x) = 2x− 1 is
x = 5. Computing the image of T2 on Z/9Z we get {1, 4, 7, 8}, and as we said above the image of
T3 is {0, 1, 8}. So by Proposition 7 we have that 9 | Ωn(a) implies n = 6.

Thus if 9 | Ωn(a) then n ∈ {3, 6}.

Now let n = 2. We get that f = 1 and p = 2. �

Corollary 14. Let a, n > 1 be natural numbers. A prime number p such that n = Chep(a) does
not exists if and only if Ωn(a) is either a power of an odd prime number that is the greatest prime
divisor of n, or a power of 2.

Proof. Suppose first that Ωn(a) has at least 2 distinct prime divisors, p1 and p2. By Theorem 13
we have n = Chep1(a)p

i1
1 = Chep2(a)p

i2
2 . If neither Chep1(a) nor Chep2(a) equals n, then i1, i2 > 0.

But this means that both p1, p2 are the greatest prime divisor of n. By the contradiction we have
Chep1(a) = n or Chep2(a) = n.

Now suppose that Ωn(a) is a power of an odd prime number p coprime to n. By Theorem 13 we
have Chep(a) = n.

Suppose that Ωn(a) is a power of an odd prime number p dividing n. By Lemma 5 we have that
Chep is coprime to p. So by Theorem 13 we get that n = Chep(a)p

i with i > 0. Thus n 6= Chep(a).
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We also get that p is the greatest prime divisor of n.

Let Ωn(a) be power of 2. By Lemma 5 the possible values of Che2(a) are 1 or 2. Hence if
n = Chep(a) then n = 2. So Ω2(a) = 2(a + 1) is a power of 2. Thus a is odd and we have
Che2(a) = 1.

�

Proof of Theorem 1. First we show that the exceptional cases described in Corollary 14 can appear
for n ∈ {2, 3, 4, 6} only.

Let Ωn(a) be power of an odd prime number p that is the greatest prime divisor of n. Suppose
n /∈ {2, 3, 4, 6}. By Theorem 13 we get Ωn(a) = p. For 1 ≤ k ≤ n

2
we have a − cos 2kπ

n
> a − 1.

Since p | n, we get p− 1 = ϕ(p) | ϕ(n). Hence

p = Ωn(a) =
∏

1≤k≤n
2

gcd(k,n)=1

2(a− cos 2kπ
n
) > (2(a− 1))

ϕ(n)
2 ≥ (2(a− 1))

p−1
2 .

This implies a = 2 and p ∈ {3, 5}. Suppose p2 | n. This means that p | n
p
. Thus by Proposition 7

we have Ωn(x) = Ωpn
p
(x) = Ωn

p
(Tp(x)). Using this, we get as above

p = Ωn(2) = Ωn
p
(Tp(2)) > (2(Tp(2)− 1))

ϕ(n
p )
2 ≥ (2(Tp(2)− 1))

p−1
2 .

But T3(2) − 1 = 25 and T5(2) − 1 = 361, a contradiction. Hence n = p · Chep(2). We have
Che3(2) = 2 and Che5(2) = 3. So n = 6 or n = 15. But Ω15(2) = 5 · 29, so it is not a power of 5.
Thus n = 6, a contradiction.

Now let Ωn(a) be a power of of 2. Suppose n /∈ {2, 3, 4, 6}. By Lemma 5 and Theorem 13 we
get that n = 2i, i ≥ 3, and Ωn(a) = 2. We use the identity Ω2i = 2T2i−2 . For a ≥ 2 the sequence
Tn(a) is strictly increasing and T0(a) = 1. Thus Ωn(a) > 2, a contradiction.

Hence the exceptional cases can appear only for n ∈ {2, 3, 4, 6}. We obtain the values of cor-
responding a by examining Ω2(a) = 2(a + 1), Ω3(a) = 2a + 1, Ω4(a) = 2a, and Ω6(a) = 2a − 1,
according to Corollary 14. �
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