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Abstract

The entropy of a pair of random variables is commonly depicted using a Venn diagram. This repre-
sentation is potentially misleading, however, since the multivariate mutual information can be negative.
This paper presents new measures of multivariate information content that can be accurately depicted
using Venn diagrams for any number of random variables. These measures complement the existing
measures of multivariate mutual information and are constructed by considering the algebraic structure
of information sharing. It is shown that the distinct ways in which a set of marginal observers can
share their information with a non-observing third party corresponds to the elements of a free distribu-
tive lattice. The redundancy lattice from partial information decomposition is then subsequently and
independently derived by combining the algebraic structures of joint and shared information content.

1 Introduction
For any pair of random variables X and Y, the entropy H satisfies the inequality
H(X)+H(Y)=H(X,Y)>H(X), HY) > 0. (1)

From this inequality, it is easy to see that the conditional entropies and mutual information are non-negative,

H(X|Y)=H(X,Y)-H() >0, (2)
H(Y|X)=H(X,Y)— H(X) >0, (3)
I(X;Y)=H(X)+H(Y) - H(X,Y)>0. (4)

For any pair of sets A and B, a measure j satisfies the inequality
u(A) + pu(B) > p(AUB) > u(A), u(B) > 0, (5)

which follows from the non-negativity of measure on the relative complements and the intersection,

1A\ B) = n(AUB) — u(B) = 0 (6)
w(B\A) = p(AU B) — u(A) =0 (7)
(AN B) = u(A) + u(B) — p(AUB) > 0. (8)

Although the entropy is not itself a measure, several authors have noted the entropy is analogous to measure
in this regard @ﬁ] Indeed, it is this analogy which provides the justification for the typical depiction of a
pair of entropies using Venn diagrams, i.e. Figure[Ill Nevertheless, MacKay B] notes that this representation
is misleading for at least two reasons: Firstly, since the measure on the intersection (AN B) is a measure on
a set, it gives the false impression that the mutual information I(X;Y) is the entropy of some intersection
between the random variables. Secondly, it might lead one to believe that this analogy can be generalised
beyond two variables. However, the analogy does not generalise beyond two variables since the multivariate
mutual information between three random variables,

I(X;Y;Z2)=HX)+HY)+H(Z)-H(X,Y)-H(X,Z)-H(Y,Z)+ H(Z,)Y, Z), (9)
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Figure 1: Top left: When depicting a measure on the union of two sets u(A U B), the area of each section
can be used to represent the inequality (B) and hence the values p(A\ B), u(B\ A) and u(AN B) correspond
to the area of each section. This correspondence can be generalised to consider an arbitrary number of
sets. Bottom left: When depicting the joint entropy H(X,Y'), the area of each section can also be used to
represent the inequality () and hence the values H(X|Y), H(Y|X) and I(X;Y) correspond to the area of
each section. However, this correspondence does not generalise beyond two variables. Right: For example,
when considering the entropy of three variables, the multivariate mutual information I(X;Y’; Z) cannot be
accurately represented using an area since, as represented by the hatching, it is not non-negative.

is not non-negative |9, 3], and hence is not analogous to measure on the triple intersection pu(A N BN C)
[3]. Indeed, this “unfortunate” property led Cover and Thomas conclude that “there isn’t really a notion of
mutual information common to three random variables” [10, p.49]. Consequently, MacKay [8] recommends
against depicting the entropy of three or more variables using a Venn diagram, i.e. Figure 77, unless one is
aware of these issues with this representation.

However, Yeung [6] showed that there is an analogy between entropy and signed measure that is valid
for an arbitrary number of random variables. To do this, Yeung defined a signed measure on a suitably
constructed sigma-field that is uniquely determined by the joint entropies of the random variables involved.
This correspondence enables one to establish information-theoretic identities from measure-theoretic identi-
ties. Thus, Venn diagrams can be used to represent the entropy of three or more variables provided one is
aware that the certain overlapping areas may correspond to negative quantities. Moreover, the multivariate
mutual information is useful both as summary quantity and for manipulating information-theoretic identities
provided one is mindful it may have “no intuitive meaning” [6, 15].

In this paper, we introduce new measures of multivariate information that are analogous to measures
upon sets and maintain their operational meaning when considering an arbitrary number of variables. These
new measures complement the existing measures of multivariate mutual information, and will be constructed
by considering the distinct ways in which a set of marginal observers might share their information with a
non-observing third party. In Section[2] we will discuss the existing measures of information content in terms
of a set of individuals who each have different knowledge about a joint realisation from a pair of random
variables. Then in Section [B] we will discuss how these individuals can share their information with a non-
observing third party, and derive the functional form of this individual’s information. In Section[d] we relate
this new measure of information content back to the mutual information. Sections Bl and [0l then generalise
the arguments of Sections Bl and Ml to consider an arbitrary number of observers. Finally, in Section [ we
will discuss how these new measures can be combine to define new measures of mutual information.



2 Mutual Information Content

Suppose that Alice and Bob are separately observing some process and let the discrete random variables X
and Y represent their respective observations. Say that Johnny is a third individual who can simultaneously
make the same observations as Alice and Bob such that his observations are given by the joint variable
(X,Y). When a realisation (z,y) occurs, Alice’s information is given by the information content [g],

h(x) = —logpx(x) >0, (10)

where px () is the probability mass of the realisation z of variable X computed from the probabilty distri-
bution px. Likewise, Bob’s information is given by the information content h(y), while Johnny’s information
is by the joint information content h(z,y) = —logpxy (z,y). The information that Alice can expect to gain
from an observation is given by the entropy,

H(X) = Ex [h(x)] >0, (11)

where Ex represents an expectation value over realisations of the variable X. Similarly, Bob’s expected
information gain is given by the entropy H(X) and Johnny’s expected information is given by the joint
entropy H(X,Y) = Exy[h(z,y)]. Clearly, for any realisation, Johnny has at least as much information as
either Alice or Bob,

h(z.y) > h(z). h(y) > 0. (12)

The conditional information content can be used to quantify how much more information Johnny has relative
to either Alice or Bob, respectively,

h(zly) = h(z,y) — h(y)
h(ylz) = h(z,y) — h(z)

Similarly, we can quantify how much more information Johnny expects to get compared to either Alice or
Bob via the conditional entropies,

0, (13)
0.
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H(X|Y) = Exy [h(zly)] >0, (15)
H(Y|X) = Exy [h(yl2)] > 0. (16)

Now consider a fourth individual who does not directly observe the process, but with whom Alice and
Bob share their knowledge. To be explicit, we are considering the situation whereby this individual knows
that the joint realisation (x,y) has occurred and knows the marginal distributions px and py, but does
not know the joint distribution pxy. How much information does this individual obtain from the shared
marginal knowledge provided by Alice and Bob? The answer to this question will be provided in Section [3]
but for now let us consider a simplified version of this problem. Suppose that such an individual, whom
we will call Indiana, assumes that Alice’s observations are independent of Bob’s observations. In terms of
the probabilities, this means that Indy believes that the joint probability pxy (z,y) is equal to the product
probability pxxy (z,y) = px(x)py(y), while in terms of information, this assumption leads Indiana to
believe that her information is given by the independent information content h(x) 4+ h(y). Moreover, the
information that Indiana can expect to gain from any one realisation is given by H(X) + H(Y).

Let us now compare how much information Indiana believes that she has compared to our other observers.
For every realisation, Indiana believes that she has at least as much information as either Alice or Bob,

h(z) + h(y) > h(x), h(y) > 0. (17)

Since Indy knows what both Alice and Bob know individually, it is hardly surprising that she always as at
least as much information either Alice or Bob. The comparison between Indiana and Johnny, however, is not
so straightforward—there is no inequality that requires the information content of the joint realisation to be
less than the information content of the independent realisations, or vice versa. Consequently, the difference
between the information that Indiana thinks she has and Johnny’s information, i.e. the mutual information
content between a pair of realisations,

i(z;y) = h(z) + h(y) — h(z,y) = log prY(“” v)

x(z) py (y)’ (18)
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Figure 2: Left: Indiana assumes that Alice’s information h(z) is independent of Bob’s information h(y)
such that her information is given by h(x) 4+ h(y). Middle: Johnny knows the joint distribution pxy, and
hence his information is given by the joint information content h(x,y). Right: There is no inequality that
requires Johnny’s information to be no greater than Indiana’s assumed information, or vice versa. On one
hand, Johnny can have more information than Indiana since a joint realisation can be more surprising than
both of the individual marginal realisations. On the other hand, Indiana can have more information than
Johnny since a joint realisation can be less surprising than both of the individual marginal realisations
occurring independently. Thus, as represented by the hatching, the mutual information content i(x;y) is not
non-negative.

is not non-negative [11]. (This function goes by several different names including the pointwise mutual
information, the information density [12] or simply the mutual information [9].) Thus, similar to how it is
potentially misleading to depict the entropy of three of more variables using a Venn diagram, representing
the information content of two variables using a Venn diagram is somewhat dubious (see Figure [2]).

Since Johnny knows the joint distribution pxy, while Indiana only knows the marginal distributions
Px (z) and Py (y), we might expect that Indiana should never have more information than Johnny. However,
Indiana’s assumed information is based upon the belief that Alice’s observations X are independent of Bob’s
observations Y, which leads Indiana to overestimate her information on average. Indeed, Indiana is so
optimistic that information she expects to get upper bounds the information that Johnny can expect to get,

H(X)+H(Y)>H(X,Y)>0. (19)

Thus, despite the fact that Indiana can have less information than Johnny for certain realisations—despite
the fact that the mutual information content is not non-negative—the mutual information is non-negative,

I(X;Y)=H(X)+ H(Y) - H(X,Y) = Exy [i(z;y)] > 0. (20)

Crucially, and in contrast to the information content (I0) and entropy (1), the non-negativity of the mutual
information does not follow directly from the non-negativity of the mutual information content (I8]), but
rather must be proved separately. (Typically, this is done by showing that the mutual information can
be written as a Kullback-Leibler divergence which is non-negative by Jensen’s inequality, e.g. see Cover
and Thomas [10].) Thus, not only does Indiana potentially have more information than Johnny for certain
realisations, but on average we expect Indiana to have more information than Johnny. Of course, by assuming
Alice’s observations are independent of Bob’s observations, Indiana is overestimating her information. Thus,
in the next section, we will consider the situation when this one does not make this assumption.

3 Marginal Information Sharing

Suppose that Eve is another individual who, similar to Indiana, does not make any direct observations, but
with whom both Alice and Bob share their knowledge; i.e. Eve knows the joint realisation (x, y) has occurred
and knows the marginal distributions px and py, but does not know the joint distribution pxy. Furthermore,
suppose that Eve is more conservative than Indiana and does not assume that Alice’s observations are
independent of Bob’s observations—how much information does Eve have for any one realisation?

It seems clear that Eve’s information should always satisfy the following two requirements. Firstly, since
Alice and Bob both share their knowledge with Eve, she should have at least as much information as either



of them have individually. Secondly, since Eve has less knowledge than Johnny, she should have no more
information than Johnny; i.e. in contrast to Indy, Eve should never have more information than Johnny.
As the following theorem shows, these two requirements uniquely determine the functional form of Eve’s
information:

Theorem 1. The unique function h(zUy) of px (z) and py (y) that satisfies h(x,y) > h(zUy) > h(z), h(y) >

0 for all pxvy (z,y) is
h(z Uy) = max (h(z), h(y)) > 0. (21)

Proof. Clearly, the function is lower bounded by max (h(z), h(y)). The upper bound is given by the minimum
possible h(z,y) which corresponds to the maximum allowed pxy(x,y). For any px(x) and py(y), the
maximum allowed pxy (z,y) is min (px (), py (y)), which corresponds to h(z,y) = max (h(z), h(y)). O

Eve’s information is given by the maximum of Alice’s and Bob’s information, or the information content
of the most surprising marginal realisation. Although we have defined Eve’s information by requiring it to
be no greater than Johnny’s information, it is also clear that Eve also has no more information than Indiana.
As such, Eve’s information satisfies the inequality

h(z) + h(y) > h(z Uy) > h(z), h(y) >0, (22)

which is analogous to the inequality (B satisfied by measure. Hence, as pre-empted by the notation (and will
be further justified in Section[l), Eve’s information will be referred to as the union information content. The
union information content is the maximum possible information that Eve can get from knowing what Alice
and Bob know—it quantifies the information provided by a joint event (x,y) when one knows the marginal
distributions px and py, but does not know nor make any assumptions about the joint distribution pxy .

Similar to how the conditional information contents (IH) and (I6) enables us to quantify how much more
information Johnny has relative to either Alice or Bob, the inequality (22]) enables us to quantify how much
information Eve gets from Alice relative to Bob and vice versa, respectively,

Bz~ y) = h(z Uy) — hly) = max (b(z) — h(y),0) >0, (23)
h(y \ x) = h(z Uy) — h(z) = max (0, h(y) — h(z)) > 0. (24)

These non-negative functions are analogous to measure on the relative complements of a pair of sets and will
be called the unique information content from x relative to y, and vice versa respectively. It is easy to see
that, since Eve’s information is either equal to Alice’s or Bob’s information (or both), at least one of these
two functions must be equal to zero.

The inequality ([22) also enables us to quantify how much more information Indiana has relative to
Eve. Since Indiana’s assumed information is given by the sum of Alice’s and Bob’s information while Eve’s
information is given by the maximum of Alice’s and Bob’s information, the difference between the two is
given by the minimum of Alice’s and Bob’s information,

h(zMy) = h(x) + h(y) — h(z Uy) = h(x) + h(y) — max (h(x), h(y)) = min (h(x), h(y)) > 0. (25)

In contrast to the comparison between Indiana and Johnny, i.e. the mutual information content (Ig]), the
comparison between Indiana and Eve is non-negative. As such, this function is analogous to measure on the
intersection of two sets and hence will be referred to as the intersection information content. The intersection
information content is the minimum possible information that Eve could have gotten from knowing either
what Alice or Bob know, and is given by the information content of the least surprising marginal realisation.

Finally, from (2I) and 23)—(28), it is not difficult to see that Eve’s information can be decomposed into
the information that could have gotten from either Alice or Bob, the unique information from Alice relative
to Bob and the unique information from Bob relative to Alice,

h(zUy) =h(zNy)+ h(z~y)+ h(y \ x). (26)

Of course, as already discussed, at least one of these unique information contents must be zero. Figure B3]
depicts this decomposition for some realisation whereby Alice’s information h(x) is greater than Bob’s
information h(y).
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Figure 3: Left: If Alice’s information h(z) is greater than Bob’s information h(y), then Eve’s information
h(z Uy) is equal to Alice’s information h(x). In effect, Eve is pessimistically assuming that information
provided by the least surprising marginal realisation h(x My) is already provided by the most surprising
marginal realisation h(z Uy), i.e. Bob’s information h(y) is a subset of Alice’s information h(z). From this
perspective, Eve gets unique information from Alice relative to Bob h(z N\ y), but does not get any unique
information from Bob relative to Alice h(y \ ) = 0. Right: Although for each realisation Eve can only get
unique information from either Alice or Bob, it is possible that Eve can expect to get unique information
from both Alice and Bob on average. (Do not confuse this representation of the union entropy with the
diagram that represents the joint entropy in Figure[Il)

To summarise thus far, both Alice and Bob share their information with Indiana and Eve, who then each
interpret this information in a different way. By comparing Figure 2l and Figure Bl we can easily contrast
their distinct perspectives. Eve is more conservative than Indiana and assumes that she has gotten as little
information as she could possibly have gotten from knowing what Alice and Bob know; this is given by
the maximum from Alice’s and Bob’s information, or is the information content associated with the most
surprising marginal realisation observed by Alice and Bob. In effect, Eve’s conservative approach means that
she pessimistically assumes that the information provided by the least surprising marginal realisation was
already provided by the most surprising marginal realisation. In contrast, Indiana optimistically assumes
that the information provided by the least surprising marginal realisation is independent of the information
provided by the most surprising marginal realisation.

Let us now consider the information that Eve expects to get from a single realisation,

H(XUY)=Exy[h(zUy)] > 0. (27)

This function will be called the union entropy, and quantifies the expected surprise of the most surprising
realisation from either X or Y. Similar to how the non-negativity of the entropy () follows from the
non-negativity of the information content (I0]), the non-negativity of the union entropy (21) follows directly
from the non-negativity of the union information content (2I)). Since the expectation value is monotonic,
and since the union information content satisfies the inequality ([22), we get that the union entropy satisfies

H(X)+H(Y)>HXUY)>H(X), HY) >0, (28)

and hence is also analogous to measure on the union of two sets.
Using this inequality, we can quantify how much more information Eve expects to get from Alice relative

to Bob, or vice versa respectively,
H(X\Y) = H(XUY)~ H(Y) = Exy [h(z~ y)] >
H(Y\X)=H(XUY)-H(X)=Exy[h(y ~2)] >

, (29)
, (30)

These functions are also analogous to measure on the relative complements of a pair of sets and hence will
be called the unique entropy from X relative to Y, and vice versa respectively. Crucially, and in contrast
to [23) and (24)), both of these quantities can be simultaneously non-zero; although Alice might observe the
most surprising event in one joint realisation, Bob might observe the most surprising event in another and
hence both functions can be simultaneously non-zero.



Figure 4: Left: This Venn diagram shows how the synergistic information h(z @ y) can be defined by
comparing the joint information content h(z,y) from Figure[2to the union information content h(zUy) from
FigureBl Note that, for this particular realisation, we are assuming that h(z) > h(y). It also provides a visual
representation of the decomposition [@Q) of the joint information content h(x,y). Right: By rearranging the
marginal entropies such that they match Figure @l (albeit with different sizes here), it is easy to see why
the mutual information content i(z;y) is equal to the intersection information content h(x My) minus the
synergistic information content h(z @ y).

Now consider how much more information Indiana expects to get relative to Eve,
H(XI‘IY):H(X)+H(Y)—H(XI_IY):Exy[h(:zrl_ly)}ZO. (31)

This function is also analogous to measure on the intersection of two sets function will be called the inter-

section entropy. In contrast to the mutual information (20]), since the intersection information content (25)

is non-negative, we do not require an additional proof to show that the intersection entropy is non-negative.
Finally, similar to (26]), we can decompose Eve’s expected information into the following components,

HXUY)=HXNY)+HX\Y)+H(Y\X). (32)

It is important to reiterate that, in contrast to (26), there is nothing which requires either of the two
unique either must be zero. Thus, as shown in Figure Bl the Venn diagram which represents the union and
intersection entropy differs from that which represents the union information content.

4 Synergistic Information Content

As we discussed at the beginning of the previous section, and as we required in Theorem[I] one of the defining
features of Eve’s information is that it is never greater than Johnny’s information,

Wz, ) > h(z Uy). (33)
Thus, we can compare how much more information Johnny has relative to Eve,
Wz ®y) = h(z,y) — h(z Uy) = h(z,y) — max (h(z), h(y)) = min (h(y|z), h(z]y)) > 0. (34)

This non-negative function will be called the synergistic information content, and it quantifies how much
more information one gets from knowing the joint probability pxy (z,y) relative to merely knowing the
marginal probabilities px (z) and py (y). Figure dl shows how this relationship can represented using a Venn
diagram. Of course, by this definition, Johnny’s information is equal to the union information content
plus the synergistic information content, and hence, by using (28], we can decompose Johnny’s information
into the intersection information content, the unique information contents, and the synergistic information
contents,

h(z,y) =h(zUy) +hz®y) =hzNy)+h(z~Ny)+h(y~z)+ h(zdy). (35)

This decomposition can be seen in Figure @ although it is important to recall that at least one of h(z \ y)
and h(y \ x) must be equal to zero. In a similar manner, the extra information that Johnny has relative to



Figure 5: This Venn diagram shows how the synergistic entropy H(X @ Y) can be defined by comparing
the joint entropy H(X,Y) from Figure [[] to the union entropy H(X LY from Figure Bl It also provides a
visual representation of the decomposition (0] of the joint entropy H(X,Y).

Bob ([@3)) can be decomposed into the unique information content from Alice and the synergistic information
content, and vice versa for the extra information that Johnny has relative to Alice (4,

h(zly) = h(z ~y) + h(z & y), (36)
h(ylz) = h(y ~ ) + h(z ® y). (37)

Now recall that the mutual information content (I8]) is given by Indiana’s information minus Johnny’s
information. By replacing Johnny’s information with the union information content plus the synergistic
information content via (34 and rearranging using [25]), we get that the mutual information content is equal
to the intersection information content minus the synergistic information content,

i(z;y) = h(z) + h(y) — h(z,y) = h(z) + h(y) =Wz Uy) - bz ®y) = h(zTy) =z Sy).  (38)

Indeed, this relationship can be identified in Figure @l Clearly, the mutual information content is negative
whenever the synergistic information content is greater than the intersection information content. From this
perspective, the mutual information content can be negative because there is nothing to suggest that the
synergistic information content should be no greater than the intersection information content. In other
words, the additional surprise associated with knowing pxy (x,y) relative to merely knowing px(z) and
py (y) can exceed the surprise of the least surprising marginal realisation.

Let us now quantify how much more information Johnny expects to get relative to Eve,

HXa®Y)=Exy[h(zo®y)] =H(X,Y)-H(XUY) >0, (39)

which we will call the synergistic entropy. Crucially, although the synergistic information content is given by
the minimum of the two conditional information contents, the synergistic entropy does not in general equal
one of the two the conditional entropies. This is because, although Alice might observe the most surprising
event in one joint realisation such that the synergistic information content is equal to Bob’s information
given Alice’s information, Bob might observe the most surprising event in another realisation such that the
synergistic information content is equal to Alice’s information given Bob’s information. Thus, the synergistic
entropy does not equal the conditional entropy for the same reason that unique entropies ([Z9) and (B0) can
be simultaneously non-zero.

With the definition of synergistic entropy, it is not difficult to show that, similar to (33]), the joint entropy
can be decomposed into the following components,

HX,Y)=HXUY)+HXa®Y)=HXNY)+HX\Y)+HY\X)+HXaY). (40)

Figure [l depicts this decomposition using a Venn diagram, and shows how the union entropy from Figure
is related to the joint entropy H(X,Y'). Likewise, similar to (B6) and (B7), it is easy to see that conditional
entropies can be decomposed as follows,
HX|Y)=HX\Y)+ HXaY), (41)
HY|X)=HY\X)+ HXa®Y) (42)



Finally, just like (B8]), we can also show that the mutual information is equal to the intersection entropy
minus the synergistic entropy,

I(X;Y)=H(XNY)-HXaY)>0. (43)

Although there is nothing to suggest that the synergistic information content must be no greater than
the intersection information content, we know that the synergistic entropy must be no greater than the
intersection entropy because I(X;Y) > 0. In other words, the expected difference between the surprise of
the joint realisation and the most surprising marginal realisation cannot exceed the expected surprise of the
least surprising realisation.

5 Generalised Marginal Information Sharing

Theorem [ determined the function form of Eve’s information when Alice and Bob share their knowledge
with her. We now wish to generalise this result to consider the situation whereby an arbitrary number of
marginal observers share their information with Eve. Rather than try to directly determine the functional
form, however, we will proceed by considering the algebraic structure of shared marginal information.

If Alice and Bob observe the same realisation x such that they have the same information h(x), then
upon sharing we would intuitively expect Eve to have the same information h(x). Similarly, the minimum
information that Eve could have received from either Alice or Bob should be the same information h(z).
Since the maximum and minimum operators are idempotent, the union and intersection information content
both align with this intuition.

Property 1 (Idempotence). The union and intersection information content are idempotent,

h(zUzx) = h(x), (44)
h(zMx) = h(zx). (45)

It also seems reasonable to expect that Eve’s information should not depend on the order in which Alice
and Bob share their information, and nor should the minimum information that Eve could have received
from either individual. Again, since the maximum and minimum operators are commutative, the union and
intersection information content both align with our intuition.

Property 2 (Commutativity). The union and intersection information content are commutative,

h(zUy) = h(yUz), (46)
h(zMy) = h(yNz). (47)

Now suppose that Charlie is another individual who, just like Alice and Bob, is separately observing some
process, and let the random variable Z represent her observations. Say that Dan is yet another individual
with whom, just like Eve, our observers can share their information. Intuitively, it should not matter whether
Alice, Bob and Charlie share their information directly with FEve, or whether they share their information
through Dan. To be specific, Alice and Bob could share their information with Dan such that his information
is given by h(x Uy), and then Charlie and Dan could subsequently share their information with Eve such
that her information is given by h((azl_ly) I_Iz). Similarly, Bob and Charlie could share their information with
Dan such that his information is given by h(y U z), and then Alice and Dan could subsequently share their
information with Eve such that her information is given by h(x U(yU z)) Alternatively, Alice, Bob and
Charlie could entirely bypass Dan and share their information directly with Eve such that her information
is given by h(x Uy U z). Since the maximum operator is associative, the union information content is the
same in all three cases and hence aligns with our intuition. A similar argument can be made to show that
the intersection information content is also associative.

Property 3 (Associative). The union and intersection information content are associative,

hzUyUz)=h((zUy)Uz) =h(zU(yUz)), (48)
h(zMyMz)=h((zNy)Nz) =h(zn(ynz)), (49)



Suppose now that Alice and Bob share their information with Dan such the information that he could
have gotten from either Alice or Bob is given by h(x My). If Alice and Dan both share their information
with Eve, then Eve’s information is given by

h(a: U (zm y)) = max (h(x), min (h(:z:), h(y))) = h(x), (50)

and hence Bob’s information has been absorbed by Alice’s information. Now suppose that Alice and Bob
share their information with Dan such his information is given by h(zUy). If Alice and Dan both share their
information with Eve, then the information that Eve could have gotten from either Alice or Dan is given by

h(z M (z Uy)) = min (h(z), max (h(z), h(y))) = h(z). (51)

Again, Bob’s information has been absorbed by Alice’s information. Both of these results are a consequence
of the fact that the maximum and minimum operators are connected to each other by the absorption identity.

Property 4 (Absorption). The union and intersection information content are connected by absorption,

h(z U (zMy)) = h(z), (52)
h(zM(zUy)) = h(z). (53)

Now say that Daniella is, just like Eve or Dan, an individual with whom our observers can share their
information. Consider the following two cases: Firstly, suppose that Bob and Charlie share their information
with Dan such that the information that Dan could have gotten from either Bob or Charlie is given by h(yMz).
If both Alice and Dan share their information with Eve, then her information is given by h(z U (yMz)). In
the second case, suppose that Alice and Bob share their information with Dan such that his information is
given by h(z U y), while Alice and Charlie simultaneously share their information with Daniella such that
her information is given by h(z U z). If Dan and Daniella both share their information with Eve, then the
information that she could have gotten from either Dan or Daniella is then given by h((:v Uy)M(zU z)) In
both cases, Eve has the same information since the maximum operator is distributive,

h(z U (yMz)) = max (h(x), min (h(y), h(2)))
= min (max (h(z), h(y)), max (h(z),h(z))) = h((z LUy) N (zU2)). (54)

Since the maximum and minimum operators are distributive over each other, regardless of whether Eve gets
Alice’s information and Bob’s or Charlie’s information, or if Eve gets Alice’s and Bob’s information or Alice’s
and Charlie’s information, Eve has the same information. The same reasoning can be applied to show that
regardless of whether Eve gets Alice’s information or Bob’s and Charlie’s information, or if Eve gets Alice’s
or Bob’s information and Alice’s or Charlie’s information, Eve has the same information.

Property 5 (Distributivity). The union and intersection information content are distribute over each other,

h(:cl_l(yl_lz)) :h((:cl_ly)l_l(:cl_lz)), (55)

h(zM(yUz)) =h((zNy) U (zNz2)). (56)

Now consider a set of n individuals and let X = {X;,X5,...,X,} be the joint random variable

that represents their observations. Suppose that these individuals together observe the joint realisation

x = {x1,29,...,2,} fr