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Abstract. The novelty of this paper is to construct the explicit combinatorial formula for the number of 

all distinct fuzzy matrices of finite order, which leads us to invent a new sequence. In order to achieve 

this new sequence, we analyze the behavioral study of equivalence classes on the set of all fuzzy 

matrices of a given order under a suitable natural equivalence relation. In addition this paper 

characterizes the properties of non-equivalent classes of fuzzy matrices of order 𝑛 with elements having 

degrees of membership values anywhere in the closed unit interval [0,1]. Further, this paper also derives 

some important relevant results by enumerating the number of all distinct fuzzy matrices of a given 

order in general. And also, we achieve these results by incorporating the notion of 𝑘-level fuzzy 

matrices, chains, and flags (maximal chains).   
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1.Introduction 

 

One of the most challenging problems of fuzzy matrix theory is to classify for concerning the 

study of the set of all fuzzy matrices of any given order and to count the same. Counting of all 

distinct fuzzy matrices of finite order is great of an interest in both and theoretical and practical 

point of view in contexts of mathematics. In recent years, this topic has undergone a remarkable 

development in many areas and many interesting important results have been proposed. The 

pioneering work of Zadeh [1] on fuzzy subsets of a set and Rosenfeld [2] on fuzzy subgroups 

of a group led to the fuzzification of some algebraic structures like group, ring, etc. Though 

handling such a problem is quite a difficult job, many researchers have been still working on 

classifying and counting both fuzzy subsets and fuzzy subgroups in the last few years. Research 

works on counting the number of fuzzy subsets of a finite set was initially noticed by Murali 

and Makamba [3] and later many other researchers such as Tărnăucean [4], Šešelja and 

Tepavčević [5], and Jain [6] have taken further away. To determine the number of fuzzy 

subgroups of finite groups, at first, several papers have treated the special cases of finite abelian 

groups such as computing the number of distinct square-free order of fuzzy cyclic group [3], 

fuzzy cyclic group of order  𝑝𝑛𝑞𝑚 (𝑝, 𝑞 primes) ([7], [8]–[11]). Later, the authors in ([4], [12]) 

deal for determining the number of distinct fuzzy subgroups for two classes of finite abelian 

groups: finite cyclic groups and finite elementary abelian 𝑝-groups. Further, this investigation 

has been propagated to some remarkable classes of non-abelian groups: symmetric groups 

([13], [14]), alternating group [15], dihedral groups ([16], [17], [18]), hamiltonian groups [19]. 

Subsequently, the same problems were also implemented and analyzed in the case of the fuzzy 

normal subgroup ([20], [16]). 

 

The research works on calculating the formula for the number of all distinct fuzzy matrices 

through a combinatorial approach are very important in deriving a new sequence that can be 

used in many real-life applications. Researchers have concentrated their research activities on 

counting the fuzzy subsets of a finite set as well as fuzzy subgroups of a finite group, but no 

researchers have focused their research works on computing the number of fuzzy matrices. 

Since the problem of counting the number of non-equivalent fuzzy subsets in one-dimensional 
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space was obtained, but it remains still open for two-dimensional space, i.e., the formula for 

calculating the number of non-equivalent classes of fuzzy matrices. Thus, it motivates us to 

contribute novel research for invention in the field of fuzzy matrix theory ([21], [22]). In order 

to achieve the new invents on establishing the formula for the number of all distinct fuzzy 

matrices on finite set, this paper discusses equivalence classes on fuzzy matrices on a finite set 

under a natural equivalence relation. Because of the fact that fuzzy matrices on a finite set are 

more abundant than crisp matrices. The necessity of classification of fuzzy matrices have done 

based on 𝛼-cuts due to the following fact: there are uncountably many fuzzy matrices on the 

same domain, even if the domain is either a singleton (or finite) or countable. Since there are 

different notions of equivalence ([4], [5], [11], [23]–[27]), research works have grown to be a 

major branch which have many more interesting challenges in the classification of fuzzy 

subsets, fuzzy subgroups, etc. The present paper utilizes equivalence [24] by accepting the 

property on support which is significant to construct the formula for the number of all distinct 

fuzzy matrices. In this paper we mainly focus to propose a closed explicit formula by indicating 

the number of all distinct fuzzy matrices of order 𝑛. This closed formula leads us to invent a 

new important sequence that is not present in the Online Encyclopedia of Integer Sequences 

(OEIS) [28].  

 

The structure of this paper is organized as follows: Section 2 focuses on a few important 

definitions, results and notational set up which are necessary throughout the paper. Precisely, 

we will concentrate on counting the number of all fuzzy matrices up to Murali’s equivalence 

relation and will derive some of its relevant results in Section 3. In the final section conclusions 

and further research of this paper are specified.  

 

2. Preliminaries 

 

The main goal of this section is to set up notations, collect some basic definitions and results 

with its properties to introduce the new important results on counting some specific fuzzy 

matrices. 

 

2.1. Fuzzy matrices (FMs) 

 

Throughout this paper, let us assume that �̃� = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 fuzzy matrix with elements 

having membership values in the real unit interval 𝐼 = [0,1], where 𝑛 is a non-zero, non-

negative integer. The union (∪), intersection (∩) of two fuzzy matrices, and complementation 

(c) of a fuzzy matrix are defined by using supremum (sup or max) and infimum (inf or min) 

component-wise, and 1 − 𝑎𝑖𝑗 operator pointwise, respectively [1], [29]. The containment of a 

fuzzy matrix �̃� in a fuzzy matrix �̃�, denoted as �̃� ⊆ �̃� if 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 for all 𝑖, 𝑗. Further we denote 

fuzzy matrices by �̃�, �̃�, �̃�, etc. and its membership values by 𝛼, 𝛽, 𝛾, etc. Through an 𝛼-cut of 

fuzzy matrix �̃� for 𝛼 belongs to 𝐼, we have a crisp matrix �̃�𝛼 = {
1, 𝑎𝑖𝑗 ≥ α

0, otherwise
. This is called 

the weak 𝛼-cut. By strong 𝛼-cut we mean �̃�α = {1, if 𝑎𝑖𝑗 > α and 0, otherwise}. But, in this 

paper we are always dealt with weak 𝛼-cut. It is easy to verify that for 0 ≤ 𝛼 ≤ 𝛼′ ≤ 1, we 

have �̃�𝛼 ⊇ �̃�α′
. For any arbitrary fuzzy matrix �̃� it can be decomposed into a union of 

characteristic function as follows: 

 

Theorem 2.1 [30], [29], [31]. For any fuzzy matrix �̃� = ∪
𝛼

{𝛼𝜒�̃�𝛼: 0 ≤ 𝛼 ≤ 1}, where 𝜒�̃�𝛼 

denotes the characteristic function of the crisp matrix �̃�𝛼.  
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2.2. Binomial numbers  

 

To prove our results, we recall some known definitions and theorems in the area of 

combinatorics. 

Definition 2.2 (Binomial Number) [32]. Let us denote ( 𝑛
𝑚

) be the number of 𝑚-element subsets 

of an 𝑛-element set; that is nothing but the number of ways we can select 𝑚 distinct elements 

from an 𝑛-element set. This is well-known as a binomial number or a binomial coefficient. (An 

alternative notation, 𝐶(𝑛, 𝑚)) 

 

Now we are going to present a famous theorem, known as binomial theorem. 

Theorem 2.3 (Binomial Theorem) [32]. For all integers 𝑛 ≥ 0, 

 

(𝑎 + 𝑏)𝑛 = ∑ ( 𝑛
𝑚

) 𝑎𝑚𝑛
𝑚=0 𝑏𝑛−𝑚. 

 

In fact, one has to give the familiar formula of binomial numbers. (By definition, 0! = 1.) 

Lemma 2.4. For 𝑛 ≥ 𝑚 ≥ 0, 

 

( 𝑛
𝑚

) =
𝑛!

(𝑛−𝑚)!
, 

 

with the convention that ( 𝑛
𝑚

) = 0, for any 𝑚 > 𝑛. 

 

2.3. Equivalent fuzzy matrices and concepts of chains  

 

The purpose of this section is to briefly discuss the study of an equivalence relation on the set 

of all fuzzy matrices and the concept of chains. Thus we start with an equivalence relation ≅ 

defined on any class of fuzzy matrices as follows: 

 

Definition 2.5 [24], [33], [34]. �̃� ≅ �̃� if and only if for all 𝑖, 𝑗, 𝑟, 𝑠  

 

(i) 𝑎𝑖𝑗 > 𝑎𝑟𝑠 if and only if 𝑏𝑖𝑗 > 𝑏𝑟𝑠  

(ii) 𝑎𝑖𝑗 = 1 if and only if 𝑏𝑖𝑗 = 1 

(iii)𝑎𝑖𝑗 = 0 if and only if  𝑏𝑖𝑗 = 0. 

 

It is easy to verify that this relation is indeed an equivalence relation on the set of all fuzzy 

matrices and when its entries restricted to 𝐼′ = {0, 1}, which corresponds with equality of crisp 

matrices. Based on this equivalence relation, equivalence class having �̃� is denoted as [�̃�] and 

two fuzzy matrices �̃� and �̃� are distinct if �̃� and �̃� are not equivalent, that is, �̃� ≇ �̃�.  

 

The next proposition proposes the relation between 𝛼-cuts and equivalence. 

Proposition 2.6 [35]. Let �̃� and �̃� be two fuzzy matrices of order 𝑛. Then �̃� ≅ �̃� if and only if 

for each 𝛼 > 0  there exists a 𝛽 > 0 such that �̃�𝛼 = �̃�𝛽. 

 

It follows from the above proposition that the equivalent fuzzy matrices can be analyzed by 

their 𝛼-cuts. This observation promotes us an innovation to raise the ideas 𝑘-level fuzzy 

matrices, chains, and flags. Now we will elaborate them explicitly in the following subsection. 

 

2.4. 𝑘-level fuzzy matrices and flags 
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We will classify non-equivalent classes of fuzzy matrices by incorporating the concept 𝛼-cuts 

for 0 ≤ 𝛼 ≤ 1. In this subsection, we briefly give some definitions using the basic ideas.    

 

Definition 2.7. For 𝑛 ∈ ℕ and 0 ≤ 𝑘 ≤ 𝑛2, by a 𝑘-level fuzzy matrix �̃�, it means �̃� has 𝑘-

number of distinct membership values in the open unit interval, that is, 𝐼 \ {0,1}. Explicitly, a 

𝑘-level fuzzy matrix of order 𝑛 is a (𝑘 + 1)-pair of a chain of crisp matrices under the usual 

inclusion of the form 

                                                                                                   

Λ ∶ �̃�𝛼0 ⊂ �̃�𝛼1 ⊂ �̃�𝛼2 ⊂ ⋯ ⊂ �̃�𝛼𝑘  
with 

 

1 ≥ 𝛼0 > 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑘 ≥ 0 
 

α𝑖’s are in the unit interval 𝐼, and not necessarily including 0 and 1, written in the descending 

order of magnitude. Then a fuzzy matrix �̃� = ∪
𝛼𝑖

{𝛼𝑖𝜒�̃�𝛼𝑖 : 0 ≤ 𝛼𝑖 ≤ 1} has its 𝛼𝑖-cuts 

equals �̃�𝛼𝑖.  

 

Here �̃�𝛼𝑖’s are called various components of the chain Λ. It follows that the above inclusions 

in the chain Λ are always taken to be strict. By taking 𝑘 = 𝑛2 in the above chain Λ, we can get 

a maximal chain, that is named as a flag. 

              

We call two 𝑘-level fuzzy matrices are distinct if they are not equivalent. It is also clear that 

for any fuzzy matrix of order 𝑛 can have maximum 𝑛2-distinct values of membership degree 

in 𝐼. Hence the maximum possible number of distinct 𝛼-cut relational matrices of a fuzzy 

matrix of order 𝑛 is 𝑛2 + 1. The cause behind is that the set of 𝑛2-distinct real numbers in the 

open interval (0,1) will split the closed interval [0,1] into 𝑛2 + 1 segments. Now take an 𝛼 in 

each open segment will provide a distinct 𝛼-cut. Therefore, the length of the flag for a fuzzy 

matrix of order 𝑛 is 𝑛2 + 1.  

 

Hence, it can be concluded that �̃� ≅ �̃� if and only if �̃� and �̃� determine the same chain of crisp 

matrices of type Λ. It obviously follows that there is a one-to-one correspondence between the 

set of 𝑘-level distinct fuzzy matrices of order 𝑛 and the set of chains crisp matrices of order 𝑛 

of length 𝑘 under the usual inclusion. 

Definition 2.8. Let 𝑛 be a positive integer and let 𝐴0, 𝐴1, 𝐴2, … 𝐴𝑘 be crisp matrices of order 𝑛 

with 𝐴𝑖 ⊂ 𝐴𝑖+1 for 𝑖 = 0, 𝑘 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with 0 ≤ 𝑘 ≤ 𝑛2 then the following matrix chain of the type   

 

𝛤 ∶ 𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ ⋯ ⊂ 𝐴𝑘 

is called a chain of crisp matrices of order 𝑛. In this case, the integer 𝑘 is called the length of 

the proper subgroup chain 𝛤, and the subgroups 𝐴0 and 𝐴𝑘 are called the initial term and the 

terminal term of 𝛤. 

Definition 2.9. (i) Let 𝑂 be an 𝑛 × 𝑛 null matrix is a matrix that is defined as �̃� = (𝑎𝑖𝑗)𝑛×𝑛, 

where 𝑎𝑖𝑗 = 0 for all 𝑖, 𝑗 ∈ { 1, 2, … , 𝑛} and 𝐽 be a unit matrix of order 𝑛 is a matrix which is 

defined as 𝐽 = (𝑎𝑖𝑗)𝑛×𝑛, where 𝑎𝑖𝑗 = 1 for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

 



5 
 

(ii) A chain of crisp matrices of order 𝑛 is called 𝑂-rooted (respectively, 𝐽-rooted) if it contains 

𝑂 (respectively, 𝐽). Otherwise, it is simply called a chain of crisp matrices of order 𝑛. 

It can be remark that there is a one-to-one correspondence between the set of 𝑂-rooted 

(respectively, 𝐽-rooted) 𝑘-level distinct fuzzy matrices of order 𝑛 and the set of 𝑂-rooted 

(respectively, 𝐽-rooted) chains of crisp of matrices of order 𝑛 of length 𝑘 under inclusion. 

Definition 2.10. Suppose 𝑛 be a positive integer and 0 ≤ 𝑘 ≤ 𝑛2. Let ℳ be the set of all crisp 

matrices of order 𝑛 and let 𝐶 be the family of all chains of crisp matrices of order 𝑛 of length 

𝑘. Now set 

𝐹𝑀𝑛,𝑘(ℳ) = {𝛤 ∈ 𝐶 | the length of 𝛤 is 𝑘, that is the initial term and the terminal term of 𝛤 

are not necessarily be the null matrix and the unit matrix respectively}. 

𝐹𝑀𝑛,𝑘
𝑂 (ℳ) = {𝛤 ∈ 𝐶 | the initial term of 𝛤 is 𝐴0 = 𝑂 of length 𝑘}; 

𝐹𝑀𝑛,𝑘
𝐽 (ℳ) = {𝛤 ∈ 𝐶 | the terminal term of 𝛤 is 𝐴𝑘 = 𝐽 of length 𝑘}; 

Let us denote 𝐹𝑀𝑛,𝑘(ℳ), 𝐹𝑀𝑛,𝑘
𝑂 (ℳ) and 𝐹𝑀𝑛,𝑘

𝐽 (ℳ) be the set of all chains of crisp matrices 

of order 𝑛 of length 𝑘, 𝑂-rooted chains of crisp matrices of order 𝑛 of length 𝑘 and 𝐽-rooted 

chains of crisp matrices of order 𝑛 of length 𝑘, respectively. We use notation 𝑓𝑛,𝑘, 𝑓𝑛,𝑘
𝑂  and 𝑓𝑛,𝑘

𝐽
 

to denote the cardinal numbers of 𝐹𝑀𝑛,𝑘(ℳ), 𝐹𝑀𝑛,𝑘
𝑂 (ℳ) and 𝐹𝑀𝑛,𝑘

𝐽 (ℳ) respectively. The 

relations between these numbers are of the following. 

Remark 2.11. It is obvious that 𝐹𝑀𝑛,𝑘
𝑂 (ℳ) ⊂ 𝐹𝑀𝑛,𝑘(ℳ) and 𝐹𝑀𝑛,𝑘

𝐽 (ℳ) ⊂ 𝐹𝑀𝑛,𝑘(ℳ). 

Hence, 𝑓𝑛,𝑘
𝑂 < 𝑓𝑛,𝑘 and 𝑓𝑛,𝑘

𝐽 < 𝑓𝑛,𝑘. 

Also, we denote 𝐹𝑀𝑛(ℳ), 𝐹𝑀𝑛
𝑂(ℳ) and 𝐹𝑀𝑛

𝐽(ℳ) be the set of all chains of crisp matrices 

of order 𝑛, 𝑂-rooted chains of crisp matrices of order 𝑛 and 𝐽-rooted chains of crisp matrices 

of order 𝑛, respectively. Take 𝑓𝑛 = |𝐹𝑀𝑛(ℳ)|, 𝑓𝑛
𝑂 = |𝐹𝑀𝑛

𝑂(ℳ)| and 𝑓𝑛
𝐽 = |𝐹𝑀𝑛

𝐽(ℳ)|. 

Similarly, we can conclude that there is also a one-to-one correspondence between the 

collection of distinct fuzzy matrices of order 𝑛 (respectively, 𝑂-rooted distinct fuzzy matrices 

of order 𝑛, 𝐽-rooted distinct fuzzy matrices of order 𝑛) and the collection of chains crisp 

matrices of order 𝑛 (respectively, 𝑂-rooted chains crisp matrices of order 𝑛, 𝐽-rooted chains 

crisp matrices of order 𝑛) under inclusion. 

3. Enumeration of fuzzy matrices 

 

In this section, we keen to develop the method for counting the number of 𝐹𝑀(ℳ). Here, the 

explicit closed combinatorial summation formulae were discovered for computing the number 

of 𝐹𝑀𝑛(ℳ), 𝐹𝑀𝑛
𝑂(ℳ) and 𝐹𝑀𝑛

𝐽(ℳ). In order to determine these numbers, we first establish 

the number of 𝐹𝑀𝑛,𝑘(ℳ), 𝐹𝑀𝑛,𝑘
𝑂 (ℳ) and 𝐹𝑀𝑛,𝑘

𝐽 (ℳ) in the following section. 
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3.1. The number of 𝑘-level fuzzy matrices  
 

This subsection motivates to achieve our objective of finding the formulas for calculating the 

numbers 𝑓𝑛,𝑘, 𝑓𝑛,𝑘
𝑂  and 𝑓𝑛,𝑘

𝐽
. In order to derive the explicit formula of 𝑓𝑛,𝑘, we shall first 

investigate with some of its specific cases. 

 

Let us take 𝑛 = 2, the lattice of 𝐹𝑀2,0(ℳ) (that is the set of all crisp matrices of order 

2), 𝐿(𝐹𝑀2,0(ℳ)) is constituted by the following matrices: 

 

 𝐴0 = (
0 0

0 0
), 

 

 𝐴1
1 = (

1 0

0 0
) , 𝐴1

2 = (
0 1

0 0
) , 𝐴1

3 = (
0 0

1 0
) , 𝐴1

4 = (
0 0

0 1
), 

 

 𝐴2
1,2 = (

1 1

0 0
) , 𝐴2

1.3 = (
1 0

1 0
) , 𝐴2

1,4 = (
1 0

0 1
) , 𝐴2

2,3 = (
0 1

1 0
) , 𝐴2

2,4 = (
0 1

0 1
), 

𝐴2
3,4 = (

0 0

1 1
), 

 

𝐴3
1,2,3 = (

1 1

1 0
) , 𝐴3

1,2,4 = (
1 1

0 1
) , 𝐴3

1,3,4 = (
1 0

1 1
) , 𝐴3

2,3,4 = (
0 1

1 1
), 

 

 𝐴4 = (
1 1

1 1
), 

 

and its lattice structure has shown in Figure 1. 

 

For 𝑛 = 2 and 𝑘 = 3. We can precisely determine the number of 𝐹𝑀2,3(ℳ), by describing all 

chains through manually by direct calculation in the five possibilities as listed below: 

 

 

 
 

Figure 1. Graphical illustration of 𝐿(𝐹𝑀2,0(ℳ)) 
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Case I. Consider the chains in 𝐹𝑀2,3(ℳ) of the type 

          

𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 
 

have the following 24 chains: 
 

𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1,2 ⊂ 𝐴3
1,2,3, 𝐴0 ⊂ 𝐴1

1 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1.3 ⊂ 𝐴3
1,2,3, 𝐴0 ⊂ 𝐴1

1

⊂ 𝐴2
1.3 ⊂ 𝐴3

1,3,4
, 𝐴0 ⊂ 𝐴1

1 ⊂ 𝐴2
1,4 ⊂ 𝐴3

1,2,4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1,4 ⊂ 𝐴3
1,3,4, 

 

𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

1,2 ⊂ 𝐴3
1,2,3, 𝐴0 ⊂ 𝐴1

2 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

2,3 ⊂ 𝐴3
1,2,3

, 𝐴0 ⊂ 𝐴1
2

⊂ 𝐴2
2,3 ⊂ 𝐴3

2,3,4
, 𝐴0 ⊂ 𝐴1

2 ⊂ 𝐴2
2,4 ⊂ 𝐴3

1,2,4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

2,4 ⊂ 𝐴3
2,3,4, 

 

𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴2

1.3 ⊂ 𝐴3
1,2,3, 𝐴0 ⊂ 𝐴1

3 ⊂ 𝐴2
1.3 ⊂ 𝐴3

1,3,4
, 𝐴0 ⊂ 𝐴1

3 ⊂ 𝐴2
2,3 ⊂ 𝐴3

1,2,3
, 𝐴0 ⊂ 𝐴1

3

⊂ 𝐴2
2,3 ⊂ 𝐴3

2,3,4
, 𝐴0 ⊂ 𝐴1

3 ⊂ 𝐴2
3,4 ⊂ 𝐴3

1,3,4, 𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴2

3,4 ⊂ 𝐴3
2,3,4, 

 

𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴2

1,4 ⊂ 𝐴3
1,2,4, 𝐴0 ⊂ 𝐴1

4 ⊂ 𝐴2
1,4 ⊂ 𝐴3

1,3,4
, 𝐴0 ⊂ 𝐴1

4 ⊂ 𝐴2
2,4 ⊂ 𝐴3

1,2,4
, 𝐴0 ⊂ 𝐴1

4

⊂ 𝐴2
2,4 ⊂ 𝐴3

2,3,4
, 𝐴0 ⊂ 𝐴1

4 ⊂ 𝐴2
3,4 ⊂ 𝐴3

1,3,4, 𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴2

3,4 ⊂ 𝐴3
2,3,4. 

 

 

Case II. The chains in 𝐹𝑀2,3(ℳ) of the type 

 

𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ 𝐴4, 
 

have the following 12 chains: 

 

  

𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1,2 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1.3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴2

1,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

1,2 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴2

2,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴2

1.3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴2

2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴2

3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴2

1,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴2

2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴2

3,4 ⊂ 𝐴4. 
 

 

Case III. The chains in 𝐹𝑀2,3(ℳ) of the type 

 

𝐴0 ⊂ 𝐴1 ⊂ 𝐴3 ⊂ 𝐴4, 
 

have the following 12 chains: 
 

𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
1 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
2 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
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𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
3 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴1
4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4. 
 

 

Case IV. The chains in 𝐹𝑀2,3(ℳ) of the type 

 

𝐴0 ⊂ 𝐴2 ⊂ 𝐴3 ⊂ 𝐴4, 
have the following 12 chains:  

 

𝐴0 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴2
1.3 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
1.3 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴2
1,4 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
1,4 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴2
2,3 ⊂ 𝐴3

1,2,3 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
2,3 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴2
2,4 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
2,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
 

𝐴0 ⊂ 𝐴2
3,4 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴0 ⊂ 𝐴2
3,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4. 
 

 

Case V. The chains in 𝐹𝑀2,3(ℳ) of the type 

 

𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 ⊂ 𝐴4, 
 

have the following 24 chains: 

 

𝐴1
1 ⊂ 𝐴2

1,2 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

1 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴1
1 ⊂ 𝐴2

1.3 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

1

⊂ 𝐴2
1.3 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴1
1 ⊂ 𝐴2

1,4 ⊂ 𝐴3
1,2,4 ⊂ 𝐴4, 𝐴1

1 ⊂ 𝐴2
1,4 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 
 

 
 

Figure 2. Graphical illustration of 𝐹𝑀2(ℳ). 
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𝐴1
2 ⊂ 𝐴2

1,2 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

2 ⊂ 𝐴2
1,2 ⊂ 𝐴3

1,2,4 ⊂ 𝐴4, 𝐴1
2 ⊂ 𝐴2

2,3 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

2

⊂ 𝐴2
2,3 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 𝐴1
2 ⊂ 𝐴2

2,4 ⊂ 𝐴3
1,2,4 ⊂ 𝐴4, 𝐴1

2 ⊂ 𝐴2
2,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
 

 

𝐴1
3 ⊂ 𝐴2

1.3 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

3 ⊂ 𝐴2
1.3 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴1
3 ⊂ 𝐴2

2,3 ⊂ 𝐴3
1,2,3 ⊂ 𝐴4, 𝐴1

3

⊂ 𝐴2
2,3 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 𝐴1
3 ⊂ 𝐴2

3,4 ⊂ 𝐴3
1,3,4 ⊂ 𝐴4, 𝐴1

3 ⊂ 𝐴2
3,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 
 

𝐴1
4 ⊂ 𝐴2

1.4 ⊂ 𝐴3
1,2,4 ⊂ 𝐴4, 𝐴1

4 ⊂ 𝐴2
1.4 ⊂ 𝐴3

1,3,4 ⊂ 𝐴4, 𝐴1
4 ⊂ 𝐴2

2,4 ⊂ 𝐴3
1,2,4 ⊂ 𝐴4, 𝐴1

4

⊂ 𝐴2
2,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4, 𝐴1
4 ⊂ 𝐴2

3,4 ⊂ 𝐴3
1,3,4 ⊂ 𝐴4, 𝐴1

4 ⊂ 𝐴2
3,4 ⊂ 𝐴3

2,3,4 ⊂ 𝐴4. 
 

Thus, it is calculated from the above five cases that the number 𝑓2,3 is 

 

𝑓2,3 = 24 + 12 + 12 + 12 + 24 = 84. 

 

For all other particular cases, we will not provide a list of chains to avoid bulkiness. However, 

the graphical structure of 𝐹𝑀2(ℳ) have displayed in Figure 2. The observation through above 

examples and by analyzing Figure 1 and Figure 2, we come to conclude that the method of 

direct calculation doesn’t work through manually (or becomes too complex) for other cases. 

Thus these problems motivate that we must find another method in order to determine the 

formula of 𝑓𝑛,𝑘. Thus, we give the theorem as follows: 

 

Lemma 3.1. For any 𝑛 ≥ 1 and 𝑘 ∈ {0, 1,2, … , 𝑛2}, the number of 𝐹𝑀𝑛,𝑘(ℳ)’s are given by 

the equality:  

 

𝑓𝑛,0 =∑ (𝑛2

𝑛0
)𝑛2

𝑛0=0 ; 

 

𝑓𝑛,1 = ∑ ∑ (𝑛2

𝑛0
) (𝑛2−𝑛0

𝑛1
)

𝑛2−𝑛0
𝑛1=1

𝑛2−1
𝑛0=0 ; 

 

𝑓𝑛,2 = ∑ ∑ ∑ (𝑛2

𝑛0
) (𝑛2−𝑛0

𝑛1
)

𝑛2−𝑛0−𝑛1
𝑛2=1

𝑛2−𝑛0−1
𝑛1=1

𝑛2−2
𝑛0=0 (𝑛2−𝑛0−𝑛1

𝑛2
); 

 

⋮ 
 

𝑓𝑛,𝑘 = ∑ ∑ … ∑ (𝑛2

𝑛0
) (𝑛2−𝑛0

𝑛1
) …

𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1−𝑘+𝑘
𝑛𝑘=1

𝑛2−𝑛0−𝑘+1
𝑛1=1

𝑛2−𝑘
𝑛0=0 (𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
). 

 

In particular, for 𝑘 = 𝑛2 we have the number 𝑓𝑛,𝑛2 of all distinct flags of crisp matrices of 

order 𝑛 is 

 

𝑓𝑛,𝑛2 = ∏
(𝑛2−𝑘+1)𝑛2−𝑘+1

𝑘!

𝑛2

𝑘=1 . 

 

Proof.  We start the proof by making an auxiliary construction. It is known that all the crisp 

matrices of order 𝑛 are 𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛2, where the number of entries in 𝐴𝑘, |𝐴𝑘| = (𝑛2

𝑘
) for  

𝑛 ∈ ℕ and 𝑘 = 0,1,2, … , 𝑛2. And these crisp matrices satisfy the following condition. 

 

𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ ⋯ ⊂ 𝐴𝑘, for 𝑘 = 0, 𝑛2̅̅ ̅̅ ̅̅  
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Now  

𝐹𝑀𝑛,0(ℳ) = {𝐴𝑘 | 0 ≤ 𝑘 ≤ 𝑛2}; 

 

𝐹𝑀𝑛,1(ℳ) = {𝐴𝑖 ⊂ 𝐴𝑘  |0 ≤ 𝑖 < 𝑘 ≤ 𝑛2}; 

 

⋮ 
 

𝐹𝑀𝑛,𝑘(ℳ) = {𝐴𝑖0
⊂ 𝐴𝑖1

⊂  𝐴𝑖2
⊂ ⋯ ⊂ 𝐴𝑖k

 | 0 ≤ 𝑖0 < 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛2 }. 

 

Next, our aim to find the cardinality of 𝐹𝑀𝑛,𝑘(ℳ) for 𝑘 = 0,1,2, … , 𝑛2 and ∀ 𝑛 ∈ ℕ.  

 

It can easily verify that 𝑓𝑛,0 = |𝐹𝑀𝑛,0(ℳ)| = 2𝑛2
. Let us consider 𝛤 be a chain of crisp 

matrices in 𝐹𝑀𝑛,𝑘(ℳ) for 1 ≤ 𝑘 ≤ 𝑛2 as follows: 

 

𝛤 ∶ 𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ ⋯ ⊂ 𝐴𝑘. 

 

Then one can obviously get the following (𝑘 + 1)-dimensional vector as 

 

𝛼 = (|𝐴0|, |𝐴1|, |𝐴2|, … , |𝐴𝑘|). 

 

For our convenience, let us call 𝛼 the order vector of 𝛤.  

 

Now consider  

 

𝛺 = { 𝛼 | 𝛼 is an order vector of 𝛤, 𝛤 ∈ 𝐹𝑀𝑛,𝑘(ℳ)} 

 

and for any 𝛼 ∈ 𝛺, 
 

𝐹𝑀𝑛,𝑘
𝛼 (ℳ) = {𝛤 ∈ 𝐹𝑀𝑛,𝑘(ℳ) | the order of Γ is 𝛼}. 

 

Then it is very natural to see that 

 

𝐹𝑀𝑛,𝑘(ℳ) = ⋃ 𝐹𝑀𝑛,𝑘
𝛼 (ℳ)

𝛼∈𝛺

, 

and 

 

𝐹𝑀𝑛,𝑘
𝛼 (ℳ) ∩ 𝐹𝑀𝑛,𝑘

𝛽 (ℳ) = ∅ if 𝛼 ≠ 𝛽. 

Therefore,  

   

𝑓𝑛,𝑘 = ∑ |𝐹𝑀𝑛,𝑘
𝛼 (ℳ)|

𝛼∈𝛺

 

 

It is easy to notice that  

 

𝛺 = {𝛼 = ((𝑛2

𝑖0
) , (𝑛2

𝑖1
) , (𝑛2

𝑖2
) , … , (𝑛2

𝑖𝑘
)) | 0 ≤ 𝑖0 < 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛2}. 
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For the order vector 𝛼 of 𝛤 ∈ 𝐹𝑀𝑛,𝑘(ℳ) of length 𝑘, the number of choices for 1𝑠𝑡 term, 2𝑛𝑑 

term, ⋯ , 𝑘𝑡ℎ term of vector 𝛼 are 

 

(𝑛2

𝑛0
) , 0 ≤ 𝑛0 ≤ 𝑛2 − 𝑘; 

 

(𝑛2−𝑛0
𝑛1

) , 1 ≤ 𝑛1 ≤ 𝑛2 − 𝑛0 − 𝑘 + 1; 

 

⋮ 
 

(𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1
𝑛𝑘

) , 1 ≤ 𝑛𝑘 ≤ 𝑛2 − 𝑛0 − 𝑛1 − 𝑛2 − ⋯ 𝑛𝑘−1. 

 

Therefore, we can write exactly the formula 𝑓𝑛,𝑘 as follows: 

 

𝑓𝑛,𝑘 = ∑ ∑ … ∑ (𝑛2

𝑛0
) (𝑛2−𝑛0

𝑛1
) …

𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1−𝑘+𝑘
𝑛𝑘=1

𝑛2−𝑛0−𝑘+1
𝑛1=1

𝑛2−𝑘
𝑛0=0 (𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
). 

 

In particular, taking 𝑘 = 𝑛2 in 𝑓𝑛,𝑘 we have  

 

                𝑓𝑛,𝑛2 = ∏ (𝑛2

𝑘
)n2

𝑘=0 = (𝑛2

0
) (𝑛2

1
) (𝑛2

2
) … (𝑛2

𝑛2) 

 

                          =
(𝑛2)𝑛2

(𝑛2−1)
𝑛2−1

(𝑛2−2)
𝑛2−2

…1

1!2!3!…𝑛2!
 

 

                    = ∏
(𝑛2−𝑘+1)𝑛2−𝑘+1

𝑘!

𝑛2

𝑘=1 .  

 

This completes the proof of the theorem. ∎ 

 

In order to understand and clarify the above Lemma 3.1, we will estimate the number 𝑓2,2 in 

the following: 

Example 3.2. Find the number 𝑓2,2.  

 

Solution. By using the explicit formula 𝑓𝑛,𝑘 in Lemma 3.1. We shall find the number 𝑓2,2 by 

taking 𝑛 = 2 and 𝑘 = 2. Then 

 

𝑓2,2 = ∑ ∑ ∑ ( 4
𝑛0

) (4−𝑛0
𝑛1

) (4−𝑛0−𝑛1
𝑛2

)
4−𝑛0−𝑛1
𝑛2=1

3−𝑛0
𝑛1=1

2
𝑛0=0 = (4

0
)(4

1
)(3

1
) + (4

0
)(4

1
)(3

2
) + (4

0
)(4

1
)(3

3
) +

(4
0
)(4

2
)(2

1
) + (4

0
)(4

2
)(2

2
) + (4

0
)(4

3
)(1

1
) + (4

1
)(3

1
)(2

1
) + (4

1
)(3

1
)(2

2
) + (4

1
)(3

2
)(1

1
) + (4

2
)(2

1
)(1

1
) =

110. 

Hence the theorem is clarified. 

 

In the following, the first two corollaries are obvious in the view of Lemma 3.1.  

Corollary 3.3. For each 𝑛 ∈ ℕ and 𝑘 = 0,1, … , 𝑛2, the number of 𝐹𝑀𝑛,𝑘
𝑂 (ℳ)’s are  given by 

the equality: 

 

𝑓𝑛,0
𝑂 = 1; 
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𝑓𝑛,1
𝑂 = ∑ (𝑛2

𝑛1
)𝑛2

𝑛1=1 ; 

 

𝑓𝑛,2
𝑂 = ∑ ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
)

𝑛−𝑛1
𝑛2=1

𝑛2−1
𝑛1=1 ; 

 

⋮ 
 

𝑓𝑛,𝑘
𝑂 = ∑ ∑ … ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
) … (𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
)

𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1
𝑛𝑘=1

𝑛2−𝑛1−𝑘+2
𝑛2=1

𝑛2−𝑘+1
𝑛1=1 . 

 

Corollary 3.4. For any non-zero positive integers 𝑛 and 0 ≤ 𝑘 ≤ 𝑛2, the number of 

𝐹𝑀𝑛
𝐽(ℳ)’s, are given by the equality: 

 

𝑓𝑛,0
𝐽

 = 1; 

 

𝑓𝑛,1
𝐽  = ∑ (𝑛2

𝑛1
)𝑛2−1

𝑛1=0 ; 

 

𝑓𝑛,2
𝐽

 = ∑ ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
)

𝑛2−𝑛1−1
𝑛2=1

𝑛2−2
𝑛1=0 ; 

 

⋮ 
 

𝑓𝑛,𝑘
𝐽  = ∑ ∑ … ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
) … (𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
)

𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1−1
𝑛𝑘=1

𝑛2−𝑛1−𝑘+1
𝑛2=1

𝑛2−𝑘
𝑛1=0 . 

 

 

3.2.  A Closed formula for 𝑓𝑛 

 

The main objective of this subsection is to expose the closed summation formula 𝑓𝑛 for the 

number of all distinct fuzzy matrices of order 𝑛. By summing up all 𝑓𝑛,𝑘’s we can easily obtain 

an explicit formula for 𝑓𝑛. So, the next result follows immediately from Lemma 3.1. 

 

Theorem 3.5. The number 𝑓𝑛 of all distinct fuzzy matrices of order 𝑛, 𝐹𝑀𝑛(ℳ) is given by the 

following equality: 

 

𝑓𝑛 = ∑ 𝑓𝑛,𝑘
𝑛2

𝑘=0 =

∑ (∑ ∑ … ∑ (𝑛2

𝑛0
) (𝑛2−𝑛0

𝑛1
) …

𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑟−1−𝑘+𝑘
𝑛𝑟=1

𝑛2−𝑛0−𝑘+1
𝑛1=1

𝑛2−𝑘
𝑛0=0 (𝑛2−𝑛0−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
)𝑛2

𝑘=0 ), 

 

where  𝑛 ≥ 1 is arbitrary and fixed. 

 

Next, we are going to estimate the total number of terms in the expansion of the closed formula 

𝑓𝑛 in the following proposition. 

 

Proposition 3.6. For any positive integers 𝑛 ≥ 1, the number of terms in the expansion of 𝑓𝑛 

is 2𝑛2+1 − 1. 

 

Proof. It is well-known that the number of all possible terms in the expression of 𝑓𝑛,𝑘 is 
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(𝑛2+1
 𝑘+1

) , 𝑘 = 0,1,2,3, … , 𝑛2, 

 

Therefore, the total number of terms in the expansion of the expression of the formula 𝑓𝑛 =

∑ 𝑓𝑛,𝑘
𝑛2

𝑘=0  is 

(𝑛2+1
1

) + (𝑛2+1
2

) + ⋯ + (𝑛2+1
𝑛2+1

) = ∑ (𝑛2+1
𝑘

)𝑛2+1
𝑘=1 , 

 

by using Theorem 2.3, we can have  

 

∑ (𝑛2+1
𝑘

)𝑛2+1
𝑘=1 = 2𝑛2+1 − 1. 

 

This completes the proof. ∎ 

 

We have the following two immediate straightforward consequence of Theorem 3.5. 

Corollary 3.7. For a fixed value 𝑛 ∈ ℤ+and 𝑛 ≥ 1, the number 𝑓𝑛
𝑂 of all distinct 𝑂-rooted 

fuzzy matrices of order 𝑛 is given by the following equality: 

 

𝑓𝑛
𝑂 = ∑ 𝑓𝑛,𝑘

𝑂𝑛2

𝑘=0 =

∑ (∑ ∑ … ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
) … (𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
))

𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1
𝑛𝑘=1

𝑛2−𝑛1−𝑘+2
𝑛2=1

𝑛2−𝑘+1
𝑛1=1

𝑛2

𝑘=0 . 

 

Corollary 3.8. The number 𝑓𝑛
𝐽
 of all distinct 𝐽-rooted fuzzy matrices of order 𝑛, where 𝑛 ≥ 1, 

is given by the following equality: 

 

𝑓𝑛
𝐽 = ∑ 𝑓𝑛,𝑘

𝐽𝑛2

𝑘=0 =

∑ (∑ ∑ … ∑ (𝑛2

𝑛1
) (𝑛2−𝑛1

𝑛2
) … (𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1

𝑛𝑘
))

𝑛2−𝑛1−𝑛2−⋯𝑛𝑘−1−1
𝑛𝑘=1

𝑛2−𝑛1−𝑘+1
𝑛2=1

𝑛2−𝑘
𝑛1=0

𝑛2

𝑘=0 . 

 

Remark 3.9. A fuzzy matrix of order 0, does not have a conventional meaning as there no 

elements that exist in the matrix. Thus, we simply take 𝑓0 = 1 as an initial condition for the 

counting function 𝑓𝑛 for 𝑛 = 0. 

 

In the following, we construct the table for the number of 𝐹𝑀𝑛,𝑘(ℳ), 𝑓𝑛,𝑘 (in Lemma 3.1) and 

the number of 𝐹𝑀𝑛(ℳ), 𝑓𝑛 (in Theorem 3.5) for 0 ≤ 𝑘 ≤ 𝑛2, 𝑛 ≤ 3. 

Table 1. 𝑓𝑛 and  𝑓𝑛,𝑟 for 0 ≤ 𝑟 ≤ 𝑛2, 𝑛 ≤ 3 

28349043362880217728055944008013600697284037598401225230223290191715123

299248411065162

3121

110

;

9,8,7,6,5,4,3,2,1,0,

,

nnnnnnnnnnn

kn

fffffffffffn

kf 

 

 

Thus, we have obtained the number of fuzzy matrices 𝑓𝑛 for 𝑛 ≥ 0, which, in turn, shall form 

a sequence (𝑓𝑛)𝑛≥0 of natural numbers. 

 

The initial first five terms for 𝑛 = 0,1,3,4,5 of (𝑓𝑛)𝑛≥0 are  
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1, 3, 299, 28349043, 21262618727925419. 

Table 2. Number of fuzzy matrices 𝑓𝑛

.1235222925834942417851639819

.37095516161844674407648

.213125629499534497

.66871947673366

.33554432255

7925419212626187265536164

2834904351293

2991642

3211

1100

)

(

)

002416(

2

)

000290(000027(

22

OEISin

availableNot

f

OEISin

A

OEISin

A

n

OEISin

A

n n

n

 

 

4. Conclusions and Further Research 

The investigate about the classification of fuzzy matrices is an important aspect of fuzzy matrix 

theory. In this paper, we have classified and counted all distinct fuzzy matrices of order 𝑛 by 

incorporating Murali’s equivalence relation ([24], [33], [35]). For each 𝑛 ∈ ℕ, listing the 

number of all distinct the fuzzy matrices of order 𝑛 will take a considerable amount of time 

due to enormous and the quick exponential growth of the number 𝑓𝑛. It will be a very complex 

task to calculate many more terms of the sequence (𝑓𝑛) using our counting technique. The 

classification of the counting problem can successfully be extended to some other special 

classes of fuzzy matrices. The study of fuzzy matrices can be effectively used in matrix theory, 

combinatorics as well as in geometry. It might be interesting to attack the classification of 

counting problem from different perspectives with more efficiently. This will surely indicate 

the way to further research. 

 

There are two open problems according to this area of classification are as follows: 

Problem 4.1. Is there any other explicit formula is to determine a formula for 𝑓𝑛 where 𝑛 is an 

arbitrary positive integer? 

Problem 4.2. Write recurrence relation as well as generating function satisfied for the number 

𝑓𝑛. 
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